The conventional Kirchhoff integral is based on the two-way wave equation and formulates how the acoustic pressure at a point A inside a closed surface S can be calculated when the acoustic wavefield is known on S. In its general form the integrand consists of two terms: one term containing the gradient of a Green’s function and the acoustic pressure; the other term containing a Green’s function and the gradient of the acoustic pressure. When surface S is planar, the integrand can be simplified by choosing two-way Green’s functions, such that either the first term or the second term vanishes on S. The conventional approach to deriving Rayleigh-type integrals has practical value only for media with small contrasts so that the two-way Green’s functions do not contain significant multiple reflections. We present a modified approach for simplifying the integrand of the Kirchhoff integral by choosing one-way Green’s functions such that the first term of the integrand becomes identical to the second term. The resulting Rayleigh-type integrals are the theoretical basis for true amplitude one-way wavefield extrapolation techniques in inhomogeneous media with significant contrasts. Finally we present a matrix representation of the one-way Rayleigh-type integrals. This matrix representation is useful when discussing numerical schemes.

Delft University of Technology, Laboratory of Seismics and Acoustics, P.O. Box 5046, 2600 AG Delft, The Netherlands.

50th annual EAEG meeting, The Hague