Seismic Interferometry on background-noise field data
Deyan Draganov,1 Kees Wapenaar,1 Wim Mulder1,2 and Johannes Singer2
(1) Delft University of Technology, Department of Geotechnology
Mijnbouwstraat 120, 2628RX Delft, The Netherlands
(2) Shell International E&P, Rijswijk, The Netherlands

Summary
Seismic Interferometry (SI) can construct reflection data from seismic background noise. In recent years, several authors developed the theory and applied it to synthetic data. With field data, the only success until now was the reconstruction of surface waves from coda and microseisms. Here, we attempt to reconstruct reflection events from noise data recorded in a desert area. The SI result shows inclined and horizontal coherent events. Some of the reconstructed events appear to align with reflections from an active survey. We cannot, however, exclude alternative explanations.

Introduction
Correlation of seismic observations at two receiver points with coordinates x_A and x_B reconstructs the Green’s function between these two points, simulating a source in one and a receiver in the other point. This was proved first by Claerbout (1968) for a 1D acoustic medium. He showed that the autocorrelation of the observed transmission response produces the reflection response and named the method Acoustic Daylight Imaging. Later, he conjectured that crosscorrelation should also reconstruct the reflection response for 3D media. Wapenaar et al. (2002) and Wapenaar and Fokkema (2006) proved this concept for 3D inhomogeneous acoustic and elastic media using wave-equation reciprocity theorems of the correlation type. In recent years, the interest in this method has been steadily growing. To avoid confusion among similar techniques bearing different names and different techniques bearing similar names, the term Seismic Interferometry (SI) was selected for reconstruction through correlation, following the terminology of Schuster (2001). One application of SI is the reconstruction of seismic waves from seismic background noise that is otherwise discarded. Several authors have successfully reconstructed surface-wave arrivals between seismological stations from seismic coda and microseismic noise (e.g., Campillo and Paul (2003), Sabra et al. (2005) and Shapiro et al. (2005)). In this paper, we show results obtained from seismic background-noise data recorded in a quiet area. The aim of the experiment was to reconstruct reflection events.

Survey description
In 2005, Shell carried out a small field experiment in a desert area to test the applicability of the SI method for exploration purposes. The site was selected because cultural and man-made noise were minimal during the nightly recordings and an active reflection survey, carried out during day-time, would allow for comparison. Seismic background noise was recorded by one line of seventeen 3C standard industry geophones, spaced at 50 meters. The sampling rate was 4 ms. As standard industry equipment was used, the maximum recording length was limited to 70 seconds, followed by a 30-seconds interruption to store the data. Because time series of the order of hours are required for the reconstruction of reflection data from background noise (Draganov et al., 2004), 523 recording intervals were combined to obtain about 10 hours of seismic background-noise data.

Processing results
For the application of SI to the acquired seismic background-noise data, we use the correlation equation

$$2\Re\left\{\hat{G}_{p,q}(x_A,x_B,\omega)\right\} \hat{S}(\omega) \approx \frac{2}{\rho_p}\left\{\hat{\nu}^{obs}_p(x_A,\omega)\right\}^* \hat{\nu}^{obs}_q(x_B,\omega),$$

as derived in the frequency domain by Wapenaar and Fokkema (2006). $\hat{G}_{p,q}(x_A,x_B,\omega)$ represents the Green’s function measured in the p-direction at x_A at the free surface due to an impulsive source in the q-direction at the free surface at x_B. $\hat{S}(\omega)$ is the power spectrum of the seismic background noise, \Re denotes the real part. The density in the subsurface is described by ρ and the propagation velocity for P-waves by c_p. The symbols $\hat{\nu}^{obs}_p(x_A,\omega)$ and $\hat{\nu}^{obs}_q(x_B,\omega)$ denote the observed particle velocity components in the p- and q-direction at x_A and x_B, respectively, due to a distribution of background-noise sources along an arbitrary shaped surface in the subsurface. The $\langle \cdot \rangle$ stands for spatial ensemble average. Equation 1 shows that we can reconstruct the particle velocity (the reflection response) and its time-reversed version at x_A in the p-direction resulting from a traction source with spectrum $\hat{S}(\omega)$ at x_B in the q-direction by correlating the recorded particle velocity components p and q observed, respectively, at the free-surface points x_A and x_B. The observed wavefields at x_A and x_B result from sources of seismic background noise present in the subsurface. The relationship was derived with the assumption that these sources are uncorrelated. When the subsurface sources of background noise illuminate the observation points from all directions, the reconstructed reflection response and its time-reversed version are symmetric and thus carry redundant information.

Following equation 1, we take the vertical particle veloc-
Seismic Interferometry on background-noise field data

Fig. 1: Intermediate results from the process of building a reconstructed common-shot gather. The individual figures show the gradual reconstruction of the vertical particle velocity as if from a vertical traction source at $x_1 = 0$ m after summation of (a) 100, (b) 200, (c) 300, (d) 400 and (e) 500 correlation panels. We show here the first 10 s of the causal part of the correlation results. The arrows point to events that can be interpreted as nearly horizontal reflection arrivals. These arrivals will become clearer in the following figures.

As mentioned above, the crosscorrelation reconstructs the reflection response (causal part) and its time-reversed version (anti-causal part), i.e., we obtain reflection events at positive as well as at negative times. The distribution of the seismic background-noise sources in the subsurface determines if reconstructed reflection events will appear in the causal and/or the anti-causal part of the correlation panel. As we do not know the source distribution, we should include both the causal and anti-causal parts of the final reconstructed shot gathers. Figure 2 shows the first 10 s of the causal (a) and the reversed-in-time anti-causal (b) parts of the final reconstructed common-shot gather obtained from the summation of 523 correlation panels. Figure 2(c) shows the sum of (a) and (b). The simulated shot is again positioned at a 0-m horizontal distance. The figure shows that some coherent events are reconstructed at positive and other at negative times. The summation of (a) and (b) should give us the full picture and should improve the signal-to-noise ratio. Figure 3 shows the reconstructed common-shot gathers after summing the causal and the anti-causal parts of the correlation panels when we would have a source at 150 m (a) and a source at 350 m (b). The processing that follows is applied to the summed causal and anti-causal parts of the reconstructed records.
By changing the position of the master trace along the receiver array, we have reconstructed common-shot gathers that simulate vertical traction sources at, respectively, \(x_1 = 0\), \(100\), \(150\), ..., \(800\) m. In theory, we could now perform velocity analysis on these shot gathers. In practice, this was difficult as moveout was nearly negligible because of the low frequencies used in the reconstruction and the short length of the receiver array. Another problem could be that when insufficient number of noise sources is present, the reconstruction process can produce incorrect coherent event. Nevertheless, the migration result from these reconstructions will still image correctly the subsurface (Draganov et al., 2004). We therefore took two other approaches. In the first one, we assume that the subsurface layering is flat. The common-shot gathers can then be stacked into a single common-offset panel. Note that the various reconstructed common-offset gathers may have widely different amplitudes. For this reason, we energy-normalized the individual common-offset gathers before stacking.

The second approach is a brute stack of the common-shot gathers (which simulates a plane-wave response). This will emphasize the nearly horizontal events, which can be attributed to deeper reflections or surface waves entering sideways. Random noise, shallow reflections, and surface waves will be suppressed. In each reconstructed common-shot gather, the reconstructed trace at the master-trace position will have a much higher amplitude than the rest of the traces. Again, before stacking, we energy-normalized the reconstructed common-shot gathers to make every trace count. Figure 4(a) shows the result after stacking into a common-offset gather, after normalizing for the different number of contributing traces and summing the corresponding negative and positive offset values. Offsets larger then 650 m were discarded. Several coherent events appear now more clearly against the noise that is still present. Some of these could already be discerned in the common-shot gathers. Figure 4(e) shows a common-offset panel produced from numerical modeling using a 1D elastic subsurface model derived from the active survey. (Note that this modeling result is used only to show that the reflection events for these low frequencies and short offsets should arrive nearly horizontal. The modeling should not be used to compare arrival times.) We might interpret the inclined events as surface waves and the horizontal events as reflections or multiples of reflections. However, surface waves that come in with a wavefront more or less parallel to the receiver array will have a similar character. The brute stack of each common-shot gather is displayed in Figure 4(b). Distance is now determined by the position of the original master trace. The stack suppresses inclined events.

Because we succeeded in bringing out some events, we are now in a position to make a comparison with the active data. Figures 4(c) and (d) show the result of Post-Stack Time-Migration (PSTM) for one line of the active survey that coincided with the passive array, but covering a much larger distance. The migration result extends to 6 s. We zero-padded to 10 s and low-pass filtered to 20 Hz to facilitate the comparison. In spite of the difference in

Fig. 2: Reconstructed vertical particle velocity reflection response as if from a vertical traction source at \(x_1 = 0\) m. (a) Reconstructed coherent events in the causal part of the final correlation panel (positive times). (b) Reconstructed coherent events in the anti-causal part (negative times). (c) Result of the summation of (a) and (b).

Fig. 3: (a) Reconstructed vertical particle velocity reflection response as if from a vertical traction source at \(x_1 = 150\) m after summing the causal and the anti-causal parts. (b) Same as (a) but for a source at \(x_1 = 350\) m.)
We applied Seismic Interferometry to ten hours of passively acquired seismic background-noise data. The cross-correlation produced coherent events in the reconstructed shot gathers for sufficiently long recording time. Coherent arrivals appeared in the causal as well as in the anti-causal part of the reconstructed shot gathers. The cross-correlation results were band-pass filtered between 2 and 10 Hz. Because of these low frequencies and because of the short length of the recording array, deeper reflection events had hardly any moveout. As the geology in the area is nearly horizontally layered, we stacked the reconstructed shot gathers into a single common-offset panel. This produces inclined events that might be interpreted to surface waves, and nearly horizontal events that might be interpreted as deeper reflections. We also performed a brute stack of each shot gather. The latter suppressed events such as surface waves and further improved the signal-to-noise ratio. Both approaches produced coherent horizontal events. Because such events can be attributed not only to reflections, but also to multiples of reflections, to surface waves with a wavefront more or less parallel to the receiver array, and to other causes, we made a comparison to active data recorded in the same area. A number of horizontal events from the passive experiment could be aligned with reflectors in the Post-Stack Time-Migration section. We cannot, however, exclude alternative explanations.

Conclusions

Acknowledgments

This research is supported by The Netherlands Research Centre for Integrated Solid Earth Sciences ISES, by the Technology Foundation STW, applied science division of NWO, and the technology program of the Ministry of Economic Affairs (grant DTN4915). The authors would like to thank Arie Verdel, Fons Ten Kroode, and Gerard Herman for the helpful discussions.

References

