On the relation between seismic interferometry and the simultaneous-source method

Kees Wapenaar* (Delft University of Technology), Joost van der Neut (Delft University of Technology), Jan Thorbecke (Delft University of Technology),

Summary
In seismic interferometry the response to a virtual source is created from responses to sequential transient or simultaneous noise sources. In the simultaneous-source method, overlapping responses to sources with small time delays are recorded. Seismic interferometry and the simultaneous-source method are related. In this paper we make this relation explicit by discussing deblending as a form of seismic interferometry by multidimensional deconvolution.

Introduction
In seismic interferometry the response to a virtual source is created from responses to sequential transient or simultaneous noise sources. Most methods use crosscorrelation (Schuster, 2009), but recently seismic interferometry by multidimensional deconvolution (MDD) has been proposed as well (Wapenaar et al., 2008; van der Neut et al., 2010).

In the simultaneous-source method (also known as blended acquisition), overlapping responses to sources with small time delays are recorded (Beasley et al., 1998). The crosstalk that occurs in imaging of simultaneous-source data can be reduced by using phase-encoded sources (Bagaini, 2006) or simultaneous noise sources (Howe et al., 2008), by randomizing the time interval between the shots (Stefani et al., 2007) possibly followed by a noise filtering process (Moore et al., 2008), by prediction and subtraction (Spitz et al., 2008; Mahdad et al., 2011), or by inverting the blending operator using sparseness constraints (Berkhout, 2008).

Seismic interferometry and the simultaneous-source method are related. In this paper we make this relation explicit by discussing deblending as a form of seismic interferometry by MDD.

Seismic interferometry by multidimensional deconvolution (MDD)
Consider the configuration in Figure 1a, with sources (red stars) at the surface and receivers (black triangles) in a horizontal borehole below a complex overburden. We define the correlation function for sequential transient-source responses as (Bakulin and Calvert, 2006; Mehta et al., 2007)

$$C_{\text{seq}}(x_B, x_A, t) = \sum_i u_{\text{up}}(x_B, x_S^{(i)}, t) \ast u_{\text{down}}(x_A, x_S^{(i)}, -t),$$ (1)

where $u_{\text{down}}(x_A, x_S^{(i)}, t)$ and $u_{\text{up}}(x_B, x_S^{(i)}, t)$ are the downgoing and upgoing wavefields at two different receivers x_A and x_B in the borehole, related to the same source $x_S^{(i)}$ at the surface. Figure 1b shows the correlation function $C_{\text{seq}}(x_B, x_A, t)$ for fixed x_A (the red dot in Figure 1a) and variable x_B (the black triangles in Figure 1a). This is usually interpreted as the response to a virtual source at x_A, observed by a receiver at x_B, i.e., the Green’s function $G(x_B, x_A, t)$. A more precise relation between the correlation function and the Green’s function is (Wapenaar et al., 2011)

$$C_{\text{seq}}(x_B, x_A, t) = \int \hat{G}_d(x_B, x, t) \ast \Gamma_{\text{seq}}(x, x_A, t) \, dx$$ (2)

(\$ coincides with the borehole), where $\Gamma_{\text{seq}}(x, x_A, t)$ is the so-called point-spread function, defined as (van der Neut et al., 2010)

$$\Gamma_{\text{seq}}(x, x_A, t) = \sum_i u_{\text{down}}(x, x_S^{(i)}, t) \ast u_{\text{down}}(x_A, x_S^{(i)}, -t).$$ (3)

Subscript d in $\hat{G}_d(x_B, x, t)$ denotes that the source of this Green’s function is a dipole (at x on \$); the bar denotes a reference situation (i.e., a homogeneous medium above \$). Equation (2) states that the correlation function $C_{\text{seq}}(x_B, x_A, t)$, defined by equation (1), is proportional to the Green’s function $\hat{G}_d(x_B, x, t)$, with its source smeared in space and time by the point-spread function $\Gamma_{\text{seq}}(x, x_A, t)$.

74th EAGE Conference & Exhibition incorporating SPE EUROPEC 2012
Copenhagen, Denmark, 4 - 7 June 2012
This point-spread function is defined, according to equation (3), as the crosscorrelation of the downward propagating fields at \(\mathbf{x}_A \) and \(\mathbf{x} \), summed over the source positions \(\mathbf{x}_A^{(i)} \). Under ideal circumstances the point-spread function approaches a temporally and spatially band-limited delta function (Wapenaar et al., 2011, Appendix). Hence, under ideal circumstances the correlation function \(C_{\text{seq}}(\mathbf{x}_B, \mathbf{x}_A, t) \) is a temporally and spatially band-limited version of the Green’s function \(\tilde{G}_d(\mathbf{x}_B, \mathbf{x}, t) \). In more realistic situations the point-spread function can deviate significantly from a band-limited delta function, as is shown in Figure 1c for fixed \(\mathbf{x}_A \) (the red dot in Figure 1a) and variable \(\mathbf{x} \) (the black triangles in Figure 1a). In order to retrieve the Green’s function from the correlation function, the effect of the point-spread function needs to be removed by inverting equation (2). Because equation (2) represents a multidimensional convolution process along the temporal and spatial axes, inversion of this equation is equivalent to multi-dimensional deconvolution (MDD). The result is shown in Figure 1d. This response accurately resembles the directly modeled Green’s function \(\tilde{G}_d(\mathbf{x}_B, \mathbf{x}, t) \) (not shown here).

Deblending by multidimensional deconvolution

Figure 2a shows a similar configuration as Figure 1a, but this time we consider simultaneous-source acquisition. We form 32 source groups \(\sigma^{(m)} \), each containing four adjacent sources which emit transient wavelets. The ignition times within one source group are chosen randomly from a uniform distribution between 0 and 1 s. We define the correlation function for the simultaneous-source responses as

\[
C_{\text{sim}}(\mathbf{x}_B, \mathbf{x}_A, t) = \sum_m u^{\text{up}}(\mathbf{x}_B, \sigma^{(m)}, t) * u^{\text{down}}(\mathbf{x}_A, \sigma^{(m)}, -t),
\]

where \(u^{\text{down}}(\mathbf{x}_A, \sigma^{(m)}, t) \) and \(u^{\text{up}}(\mathbf{x}_B, \sigma^{(m)}, t) \) are the downgoing and upgoing wavefields in the borehole, related to the same source group \(\sigma^{(m)} \) at the surface. Figure 2b shows the correlation function \(C_{\text{sim}}(\mathbf{x}_B, \mathbf{x}_A, t) \) for fixed \(\mathbf{x}_A \) (the red dot in Figure 2a) and variable \(\mathbf{x}_B \) (the black triangles in Figure 2a). The noise is a result of the crosstalk between the responses to different sources within the source groups.
Analogous to equation (2), the relation between the correlation function and the Green’s function is formulated as

\[C_{\text{sim}}(x_B, x_A, t) = \int_S \bar{G}_d(x_B, x, t) * \Gamma_{\text{sim}}(x, x_A, t) \, dx, \]

where \(\Gamma_{\text{sim}}(x, x_A, t) \) is the point-spread function for simultaneous-source acquisition, defined as

\[\Gamma_{\text{sim}}(x, x_A, t) = \sum_m u_{\text{down}}(x, \sigma_m, t) * u_{\text{down}}(x_A, \sigma_m, -t). \]

This point-spread function is shown in Figure 2c for fixed \(x_A \) (the red dot in Figure 2a) and variable \(x \) (the black triangles in Figure 2a). Similar as in interferometry by MDD, the Green’s function is retrieved from the correlation function by removing the effect of the point-spread by inverting equation (5). The result is shown in Figure 2d. This response accurately resembles the directly modeled Green’s function \(\bar{G}_d(x_B, x, t) \) (not shown here).

Conclusions

We have shown that deblending can be seen as a form of seismic interferometry by multidimensional deconvolution (MDD). Because seismic interferometry is a form of data-driven redatuming, we have discussed deblending also as a form of data-driven redatuming. However, the wave fields involved in the deblending process, i.e., \(u_{\text{down}}(x_A, \sigma_m, t) \) and \(u_{\text{up}}(x_B, \sigma_m, t) \), are not necessarily measured wave fields in a borehole, but can also be obtained by forward and inverse extrapolation of the source groups and their responses, respectively, from the surface to a datum in the subsurface (assuming of course that a model of the overburden is available). In the presentation we will show that the scheme discussed here can be transformed into a deblending scheme that acts directly on the data at the surface. We will also discuss how it is possible that the seemingly underdetermined deblending problem can be solved by a direct inversion process rather than by an iterative procedure.
References