A proposal for model-independent 3D wave field reconstruction from reflection data

Kees Wapenaar, Filippo Brogginini and Roel Snieder

Society of Exploration Geophysicists
San Antonio, September 21, 2011
Inspiration for this work:

Connection of scattering principles: a visual and mathematical tour: CWP paper

Filippo Broggiini & Roel Snieder
Inspiration for this work:

Connection of scattering principles: a visual and mathematical tour: CWP paper

Filippo Brogginini & Roel Snieder

Connection of scattering principles: focusing the wavefield without source or receiver

Today, 2:45 PM, This Room (218)
Can we retrieve a virtual-source response, including all internal multiples, from surface measurements only?
Contents

• Thought experiment
• Iterative scheme for wave-field reconstruction
• Conclusions
Contents

• Thought experiment
• Iterative scheme for wave-field reconstruction
• Conclusions
Thought experiment

lossless medium
Thought experiment
Thought experiment
Thought experiment
Thought experiment
Thought experiment

Assumption: between red curves $D(x, 0, t) = -U(x, 0, -t)$
Thought experiment

Superposition:

\[D(x, 0, t) + U(x, 0, t) \]

Assumption: between red curves \(D(x, 0, t) = -U(x, 0, -t) \)
Thought experiment

Superposition:

\[D(x, 0, t) + U(x, 0, t) \]

Add time-reversed field:

\[D(x, 0, t) + U(x, 0, t) + D(x, 0, -t) + U(x, 0, -t) \]

Assumption: between red curves

\[D(x, 0, t) = -U(x, 0, -t) \]
Thought experiment

Superposition:

\[D(x, 0, t) + U(x, 0, t) \]

Add time-reversed field:

\[\overline{D(x, 0, t)} + U(x, 0, t) + \overline{D(x, 0, -t)} + \overline{U(x, 0, -t)} \]

Assumption: between red curves \[D(x, 0, t) = -U(x, 0, -t) \]
Thought experiment

Superposition:

\[D(x, 0, t) + U(x, 0, t) \]

Add time-reversed field:

\[\overline{D(x, 0, t)} + \overline{U(x, 0, t)} + \overline{D(x, 0, -t)} + \overline{U(x, 0, -t)} \]

Assumption: between red curves

\[D(x, 0, t) = -U(x, 0, -t) \]
Thought experiment

Superposition:

\[D(x, 0, t) + U(x, 0, t) \]

Add time-reversed field:

\[
\overline{D(x, 0, t)} + \overline{U(x, 0, t)} + \\
\overline{D(x, 0, -t)} + \overline{U(x, 0, -t)}
\]

\[= 0 \quad \text{between red curves} \]

Assumption: between red curves \[D(x, 0, t) = -U(x, 0, -t) \]
Thought experiment
Thought experiment
Thought experiment

Superposition
Thought experiment

Add time-reversed field
Thought experiment

Add time-reversed field
Thought experiment

First arrival: primary response of virtual source
Thought experiment

First arrival: primary response of virtual source

Total field: solution of wave equation
Thought experiment

First arrival: primary response of virtual source

Total field: solution of wave equation

Causal part: upgoing at z=0
Thought experiment
Conclusion of thought experiment is plausible, but do we really get the full virtual-source response?
Conclusion of thought experiment is plausible, but do we really get the full virtual-source response?

How do we achieve that

\[D(x, 0, t) = -U(x, 0, -t) \]

between red curves?
Contents

• Thought experiment
• Iterative scheme for wave-field reconstruction
• Conclusions
Convolve with reflection response and sum over all sources.
Convolve with reflection response and sum over all sources
Convolve with reflection response and sum over all sources.
Convolve with reflection response and sum over all sources.
Superposition

downgoing

downgoing + upgoing

upgoing
Superposition

Add time-reversed field
Take causal part
Directly modeled response
Summary:
Measured reflection response at surface, plus estimate of primary virtual source response, gives full virtual-source response.
Contents

• Thought experiment
• Iterative scheme for wave-field reconstruction
• Conclusions
Conclusions

‘Model-independent’ wave-field reconstruction requires:
• Reflection data at the surface
• Estimate of primary traveltimes
Conclusions

‘Model-independent’ wave-field reconstruction requires:
• Reflection data at the surface
• Estimate of primary traveltimes

Consequences:
• Virtual-source response, including internal multiples
• Basis for imaging, accounting for internal multiples
Conclusions

‘Model-independent’ wave-field reconstruction requires:
• Reflection data at the surface
• Estimate of primary traveltimes

Consequences:
• Virtual-source response, including internal multiples
• Basis for imaging, accounting for internal multiples

To be investigated:
• Mathematical model
• Limitations, due to finite acquisition aperture, triplications, errors in traveltimes, head waves, fine-layering, etc.
• Elastodynamic extension
Connection of scattering principles: focusing the wavefield without source or receiver

Filippo Broggini, Roel Snieder and Kees Wapenaar

Today, 2:45 PM, This Room (218)