Integrated migration and internal multiple elimination

Kees Wapenaar, Jan Thorbecke, Joost van der Neut, Evert Slob, Filippo Broggin, Jyoti Behura and Roel Snieder

82nd Annual SEG Meeting
Las Vegas, November 6, 2012
Contents

• Introduction
• Creating a virtual source from reflection data
• Imaging scheme, accounting for internal multiples
• Conclusions
Contents

• Introduction
• Creating a virtual source from reflection data
• Imaging scheme, accounting for internal multiples
• Conclusions
Upgoing field at surface (1 shot record)

Upgoing field below deepest reflector (obtained by one-way extrapolation)
Sources

Receivers

Target (e.g. a reservoir)

Seismic interferometry
Sources

Receivers

Virtual source

Target (e.g. a reservoir)

Seismic interferometry
Creating a virtual source from reflection data

Sources and receivers

Virtual source

Target (e.g. a reservoir)
Sources and receivers

Virtual sources and receivers

Target (e.g. a reservoir)

Data-driven redatuming
Sources and receivers

Data-driven redatuming
Upgoing field at surface (1 shot record)

Upgoing field below deepest reflector (obtained by data-driven redatuming)
Contents

• Introduction
• Creating a virtual source from reflection data
• Imaging scheme, accounting for internal multiples
• Conclusions
Creating a virtual source from reflection data
Background

Convolve with reflection response and sum over all sources
Convolve with reflection response and sum over all sources
Convolve with reflection response and sum over all sources
Convolve with reflection response and sum over all sources
Superposition

\[p(x, t) = p^+(x, t) + p^-(x, t) \]
Superposition

\[p(x, t) = p^+ (x, t) + p^- (x, t) \]

Add time-reversed field

\[p(x, t) + p(x, -t) \]
\[p(x, t) + p(x, -t) \]
$G(x, x_{VS}, t) * s(t)$
Directly modeled response

\[G(x, x_{VS}, t) \ast s(t) \]
Summary:
Measured reflection response at surface, plus estimate of primary virtual source response, gives full virtual-source response.
Contents

• Introduction
• Creating a virtual source from reflection data
• Imaging scheme, accounting for internal multiples
• Conclusions
decomposition
decomposition + reciprocity

\[G^{-}(\mathbf{x}, \mathbf{x}_S, t) \ast s(t) \]

\[G^{+}(\mathbf{x}, \mathbf{x}_S, t) \ast s(t) \]
\[G^-(\mathbf{x}, \mathbf{x}_S, t) \ast s(t) \quad G^+(\mathbf{x}, \mathbf{x}_S, t) \ast s(t) \]
\[G^- (x_R, x_S, t) * s(t) = \]

\[
\int R(x_R, x', t) * G^+ (x', x_S, t) * s(t) dx'
\]
Resolve

\[R(x_R, x', t) \]

by MDD, etc.

\[G^{-}(x_R, x_S, t) \ast s(t) = \]

\[\int R(x_R, x', t) \ast G^{+}(x', x_S, t) \ast s(t) dx' \]
Contents

• Introduction
• Creating a virtual source from reflection data
• Imaging scheme, accounting for internal multiples
• Conclusions
Conclusions

Data-driven virtual-source retrieval requires:
• Reflection data at the surface
• Estimate of primary traveltimes
Conclusions

Data-driven virtual-source retrieval requires:
• Reflection data at the surface
• Estimate of primary travel times

Consequences:
• Virtual-source response, including internal multiples
• Basis for imaging, accounting for internal multiples
• Stable w.r.t. small errors in the estimated primaries
• Non-recursive, hence no error accumulation
• No adaptive prediction and subtraction
Conclusions

Data-driven virtual-source retrieval requires:
• Reflection data at the surface
• Estimate of primary traveltime

Consequences:
• Virtual-source response, including internal multiples
• Basis for imaging, accounting for internal multiples
• Stable w.r.t. small errors in the estimated primaries
• Non-recursive, hence no error accumulation
• No adaptive prediction and subtraction

To be investigated:
• Limitations, due to finite acquisition aperture, triplications, errors in traveltimes, head waves, fine-layering, etc.
• Elastodynamic extension
Related presentations “beyond interferometry”:

Already presented:
• Snieder et al., Developments in seismic interferometry: Time-lapse monitoring and autofocusing of internal multiples: Recent Advances and the Road Ahead (yesterday).
• Broggini et al., Creating a virtual source inside a medium from reflection data: A stationary-phase analysis: Imaging and Migration session (today).

To be presented:
• Broggini et al., Focusing inside an unknown medium: This session, 4:25
• Behura et al., Newton-Marchenko-Rose imaging: SPMI 5 New Implementations, Thursday 11:00, Breakers F