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Spurious multiples in seismic interferometry of primaries

Roel Snieder', Kees Wapenaar?, and Ken Larner’

ABSTRACT

Seismic interferometry is a technique for estimating the
Green’s function that accounts for wave propagation be-
tween receivers by correlating the waves recorded at these re-
ceivers. We present a derivation of this principle based on the
method of stationary phase. Although this derivation is in-
tended to be educational, applicable to simple media only, it
provides insight into the physical principle of seismic inter-
ferometry. In ahomogeneous medium with one horizontal re-
flector and without a free surface, the correlation of the waves
recorded at two receivers correctly gives both the direct wave
and the singly reflected waves. When more reflectors are
present, a product of the singly reflected waves occurs in the
crosscorrelation that leads to spurious multiples when the
waves are excited at the surface only. We give a heuristic ar-
gument that these spurious multiples disappear when sources
below the reflectors are included. We also extend the deriva-
tion to a smoothly varying heterogeneous background
medium.

INTRODUCTION

Traditionally, imaging techniques are based on the illumination of
an object by a coherent source. In many applications coherent sourc-
es are unavailable. Seismic interferometry is a technique in which
the Green’s function that describes the waves that propagate be-
tween two receivers is extracted by computing the correlation of sig-
nals recorded at these two receivers. These signals may have been
excited by either coherent or incoherent sources. The advantages of
this technique are that incoherent noise can be the source of the
waves used for imaging and that one can, in effect, use a wavefield
that is excited at one of the receivers, even though no physical source
exists at that location.

The first formulation of this technique is from Claerbout (1968),
who used the phrase daylight imaging because the daylight that we

use in our vision also provides an incoherent illumination of the ob-
jects that we view. His derivation was applicable to horizontally lay-
ered media. The emergence of the Green’s function was subsequent-
ly derived for 3D heterogeneous media of finite extent using normal-
mode theory (Lobkis and Weaver, 2001). That derivation is applica-
ble only for finite media that have a discrete frequency spectrum.
This requirement was relaxed in an alternative derivation based on
the representation theorem for one-way wave propagation (Wap-
enaar et al., 2002), and by using the general representation theorem
(Weaver and Lobkis, 2004; Wapenaar, 2004). Alternative, but equiv-
alent, proofs of the emergence of the Green’s function have been for-
mulated using the principle of time-reversal (Derode et al., 2003a, b;
Roux and Fink, 2003). The relationship between these approaches is
shown by Wapenaar et al. (2005).

The reconstruction of the Green’s function from recordings of in-
coherent signals has been shown observationally using ultrasound
(Weaver and Lobkis, 2001; Larose et al., 2004; Malcolm et al.,
2004). Seismic interferometry has been used in helioseismology
(Rickett and Claerbout, 1999; Rickett and Claerbout, 2000), in ex-
ploration seismology (Calvert et al., 2004; Bakulin and Calvert,
2004; Schuster, 2001; Schuster et al., 2004), in crustal seismology
for the retrieval of the surface-wave Green’s function (Campillo and
Paul, 2003; Shapiro and Campillo, 2004; Shapiro et al., 2005), and
for extracting the response of buildings from an incoherent excita-
tion (Snieder and Safak, 2006; Snieder et al., 2006).

The mechanism of seismic interferometry can be explained using
the method of stationary phase (Snieder, 2004a; Roux et al., 2005).
This is not surprising because the stationary-phase approximation is
the natural tool to account for the destructive and constructive inter-
ference that forms the physical basis of seismic interferometry. The
derivation of seismic interferometry based on stationary phase has
also been used for waves in a waveguide (Sabraetal., 2005).

The derivation of stationary phase is applicable for simple media
only where one can easily account for the different rays that propa-
gate through the media. In this sense, the derivation based on station-
ary phase is less generally applicable than are derivations based on
normal modes, representation theorems, or time-reversed imaging.
Despite this limitation, the derivation based on stationary phase is

Manuscript received by the Editor April 1, 2005; revised manuscript received August 18, 2005; published online August 17, 2006.
Center for Wave Phenomena, Colorado School of Mines, Department of Geophysics, Golden, Colorado 80401. E-mail: rsnieder @mines.edu; kenlarner @

gmail.com.

“Delft Institute of Technology, Department of Geotechnology, Mijnbouwstraat 120, 2628 RX Delft, The Netherlands. E-mail: c.p.a.wapenaar @citg.tudelft.nl.

©2006 Society of Exploration Geophysicists. All rights reserved.



SI112 Sniederetal.

useful because it sheds light on the physics that underlies seismic in-
terferometry. The value of such a derivation is mostly didactic, but it
also highlights sampling issues and the generation of spurious multi-
ples.

Here we show that singly reflected waves that propagate between
two receivers in the subsurface can correctly be reproduced by corre-
lating the waves that have been excited by uncorrelated sources at
the surface and are recorded at the two receivers. We first derive this
for the simplest case of a homogeneous medium without a free sur-
face and horizontal reflectors in the subsurface, and, in Appendix A,
treat a medium that is heterogeneous above the reflectors.

In the next section, we derive the general framework for illumina-
tion of the subsurface by incoherent sources, and introduce the em-
ployed single-scattering model in the subsequent section. In the sec-
tion Analysis of term 71, we show how this leads to the retrieval of
the direct wave that propagates between the receivers, and, in the
section Analysis of terms 72 and 73, we show that this procedure
also correctly leads to the singly reflected wave that propagates be-
tween the receivers. The correlation of the singly reflected waves
leads to a contribution that is proportional to the square of the reflec-
tion coefficient. We show in the section Analysis of term 74 that this
term is kinematically equivalent to the direct wave that propagates
between the receivers. We next show a numerical example that illus-
trates the role of stationary phase in seismic interferometry, and gen-
eralize the derivation to the case of a layered medium with more than
one reflector to show that the product of singly reflected waves from
different reflectors gives a nonzero contribution to the crosscorrela-
tion. We refer to these terms as spurious multiples because these
terms depend on the product of reflection coefficients, just as do real
multiples. The spurious multiples, however, have arrival times that
differ from those of real multiples.

ILLUMINATING THE SUBSURFACE
FROM SOURCES ALONG A SURFACE

Consider the problem wherein sources along the surface z = 0 il-
luminate the subsurface. We consider a pressure field p that is related
to a volume injection source S by

\% (lV )+w—2 =S (1)
p p KP— ’

where p denotes the mass density, K the bulk modulus, and w the an-
gular frequency. The sources S can be either temporally coherent or
incoherent, and they may act either simultaneously or sequentially.
The sources are placed at locations rs = (x,y,0) and have a source
time signal Sg(7) that corresponds in the frequency domain to the
complex spectrum Ss( w). The earth response that is excited by these
sources is recorded at two receivers at locations r, = (x,,0,z4) and
rp = (x3,0,25), respectively. Without loss of generality, we have
aligned the x-axis of the employed coordinate system with the pro-
jection of receiver positions onto the horizontal; hence, in this coor-
dinate system the y-coordinate of both receivers vanishes.

The source time-functions Sg(7) may be impulsive, but they might
also correspond to functions with a more random character, as would
be excited by, for example, traffic noise in a land survey or turbulent
wave noise at the sea-surface. In the sequel, we assume that the
source time-functions for sources at ry and r are uncorrelated when

averaged over time and that the power spectra of the source time
functions are identical:

T,

aver

f Ss(1)Sg(t + 7)dt = 85/ C(7), (2)
0

where T, denotes the length of time averaging and C(7) the auto-
correlation of the source time functions. The autocorrelation is the
Fourier transform of the power spectrum. Because all sources are as-
sumed to have the same power spectrum, they have the same auto-
correlation as well.

The source time-functions may have a different character in dif-
ferent imaging experiments. In the controlled virtual-source experi-
ments of Calvert et al. (2004) and Bakulin and Calvert (2004), the
shots do not overlap in time. The shots are recorded and processed
one after the other, and the cross terms between the shots in expres-
sion 2, by definition, vanish. For continuous sources with a random
character, the integral in equation 2 vanishes for different sources
(S # S’) when the source time-functions are uncorrelated and the
averaging time T, is sufficiently large (Snieder, 2004a). Expres-
sion 2 corresponds in the frequency domain to

Ss(@)Sg () = S5 |S(w) . 3)

We now consider correlation of the waves recorded at two receiv-
ers for the special case of an acoustic medium. The waves recorded
atthereceivers A and B are given by

us(©) = 2 Gry,r,0)S5(w),

up(w) = 25 G*N(rg,rg,0)Sg (), )

with G the full Green’s function, which consists of the direct wave,
primaries, and multiples. In the frequency domain, the temporal cor-
relation of these waves is given by

Cap(®) = us(@)uy(o), (5)

where the asterisk denotes the complex conjugate. Inserting equa-
tion 4 into equation 5 gives

Caplw) = 2 GfUH(I'A,I'S)Gfuu*(I'B,rs')Ss(w)S;r(w). (6)
5,8’

Since the sources are uncorrelated, as stated in expression 3, the
cross-terms S # S’ in this double sum vanish; hence,

Cyplw) = E Gfuu(l'A’rs)Gfu”*(rB’rs)|S(w)|2- (7)
S

When the sources are densely and uniformly distributed along the
surface, with n sources per unit surface area, the sum over sources
can be replaced by an integration: Z¢(...) — n [ (...)dxdy over the
surface. This gives

Cyp(w) = |S(w))n f GM™(r,,rg) G (rp,rg)dxdy,

(8)

with x and y the coordinates of the surface source (Figure 1).
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A SINGLE-SCATTERING MODEL

To help understand the physics of seismic interferometry, we first
illustrate this technique with a model that consists of a single hori-
zontal reflector, with a reflection coefficient for downward-arriving
waves r, that is embedded in a homogeneous medium. The far-field
reflection coefficient r is equal to the plane-wave reflection coeffi-
cient. This coefficient depends, in general, on the angle of incidence
0. The Green’s function in the homogeneous medium is given by

eikR
G(R) = - R 9)

with the wavenumber k£ = w/v, v the wave velocity, and R the dis-
tance of propagation (Snieder and Chapman, 1998). We presume
that there is no free surface, so this model does not include any multi-
ply reflected waves. As shown in Figure 1, rg, denotes the reflection
point of the wave that propagates to r,. The full Green’s function is
the superposition of the direct wave and the singly reflected wave:

),

Gf””(rA,l's) = G(|ry = rg]) + rG(|ry — ra| + [rps — g

G"!(rp,rg) = G(Irg — rg]) + rG(|rg — rgp| + [rgp — rg)).
(10)

In this expression, we assumed that the reflected wave is given by the
product of the reflection coefficient and the Green’s function that ac-
counts for the propagation from the source to an image point of the
receiver below the reflector. The image points of the receivers A and
B are indicated in Figure 1 by r} and rj, respectively. As shown in
that figure, for receiver A the total distance covered by the reflected
waveis |1y — rpa| + |rpa — 1.

Inserting equation 10 into expression 8 gives an expression for the
correlation, which consists of a sum of four terms:

720 rs = (x,%.0)
rz=(xg5,0.2g)
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Figure 1. The geometry of an imaging experiment with a source at
the surface and two receivers at r, and rz. The mirror images of these
receivers in the reflector are indicated at the locations r,, and ry,, re-
spectively.

Caplw) = nS(w)Ff G(|x, — DG (|ry — r]dxdy

il

+ ”S(U’)Frf Gllry — rga| + s — DG (g — rdxdy

T2

+ ”S(w)|2rf Gllry = ¥DG (Iry — xagl + |rep — ¥)dxdy

T3

+ nS(w)Przf Gty — rgy| + [rs —rNG (g — rrg| + frzs — r])dxdy.

T4

(11)
Term T'1 is the correlation of the direct waves that propagate to the
two receivers. This term does not depend on the reflection coeffi-
cient. Terms 72 and 73 are proportional to the reflection coefficient
r. For this reason they can be expected to account for the singly re-
flected waves in the Green’s function that are extracted from the cor-
relation. Term T4 depends on 7. In the following, we analyze terms
T1-T4 in order to establish the connection between the correlation
and the Green’s function for this simple wave-propagation problem.

ANALYSIS OF TERM T1

The derivation shown in this section is similar to that in an earlier
analysis (Snieder, 2004a). Using the lengths L, and L, as defined in
Figure 2, and the Green’s function 9, we can write term 7'1 as

9 f exp(ik(Ly — L))
- (477)2 LyLg

Tl dxdy. (12)

The integrand has an oscillatory character with, as we will see, a sta-
tionary point. For this reason we analyze this integral in the station-
ary-phase approximation. This approximation is based on the as-
sumption that the amplitude of the integrand varies smoothly com-
pared to the phase. The dominant contribution(s) to the integral
comes from the point(s) where the phase is stationary (Bleistein,
1984; Snieder, 2004b). The stationary phase approximation is based
on a second order Taylor expansion of the exponent (e.g., equation
24.51 of Snieder, 2004b), and an analytic evaluation of the resulting
integrand (e.g., expression 24.38 of Snieder, 2004b).
InFigure 2, the lengths L,  are given by

z=0

z=D

Figure 2. Definition of the geometric variables in the analysis of term
T1.
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[
Lyp=(x - xA,B)2 + 3+ fo,B- (13)

The stationary point of the integrand follows by setting the partial x-
and y-derivatives of L = L, — Ly equal to zero. For the y-derivative
this gives

JL y y

0="==2 L 14
dy Ly Lg (14

This derivative vanishes for y = 0; hence the condition of stationari-
ty with respect to y implies that the stationary source point lies in the
vertical plane of the receivers. The stationarity condition with re-
spect to the x-coordinate gives

O_%_x—xA X — Xp
T ax Ly Ly

=sin ¢, — sin ¢, (15)

where the angles ¢, and ¢ are defined in Figure 2. The phase thus is
stationary only when

$a=tp and y=0. (16)

The stationarity condition ¢, = ¢ is illustrated in Figure 3. It im-
plies that the one and only stationary source point at the surface is
aligned with the line joining the two receivers. In these figures, the
receivers are at different depths. Note that when the receivers are at
the same depth (z,4 = z;) there is no stationary source position, ex-
cept for sources infinitely far away. Any attenuation will suppress
the contribution of those sources.

Kinematically, expression 12 gives a contribution at a lag time
that is equal to the time it takes for the wave to propagate from re-
ceiver B to receiver A. This is because the wave that propagates
along the path shown in Figure 3 arrives at receiver A with a time de-
lay |r, — rg|/v compared to the wave that arrives at receiver B. It is
nontrivial that the evaluation of the integral in expression 12 gives a
contribution that is also dynamically equal to the Green’s function of
the waves that propagate between the receivers A and B. In the fol-
lowing, we evaluate the integral in the stationary-phase approxima-
tion.

Evaluating the second derivatives of L = L, — Ly while using ex-
pression 16 for the stationary point gives

ﬁzé Z%; Zil Z%;l 2(1 1)

oL Ly 2Ly LAl 4 Ly

(17)

and

z=D

Figure 3. Definition of the geometric variables for the stationary
source positionin term 7'1.

(9y2

2 2
aZL_LA_in_L. (18)
Ly L, Ly Lg
In this example and the following examples, *L/dxdy = 0 at the sta-
tionary point, and the 2D stationary-phase integral reduces to the
product of two 1D stationary-phase integrals over the x- and y-
coordinates, respectively.

In the following, L, and Ly are the path lengths for the stationary
source position as shown in Figure 3. Note that in the geometry of
Figure 3, Ly > Ly so that L;' — L3' < 0. Evaluating integral 12 in
the stationary-phase approximation thus gives

_ p” exp(ik(Ly — L))
(4) LaLg

X e—iw/4 2_17 1 e—iw/4
V & \/ 1

7, )
cos” Yl — —
Ly Ly

2 1
XA\ ——F—. 19
V% T 1 (19)
Vi Ly

In this derivation, we assume that w > 0; hence k > 0. For negative
frequencies the integral can be found by complex conjugation. Us-
ing the relation k = w/v, we can write expression 19 as

Tl

—ip’v  exp(ik(L, — L))
Ly-Lg

Tl =
8w cos

(20)

The distance L, — L is equal to the receiver separation R shown in
Figure 3. With expression 9 and including the factor n|S(w)|? of ex-
pression 11, this gives a total contribution that is equal to

71 = 8@l C®)

2 cos L) @D

This means that the contribution of term 71 to the correlation is, in
the frequency domain, proportional to the Green’s function of the di-
rect wave that propagates between the receivers. Note that this
Green'’s function is multiplied by the source density 7 at the surface.
A denser source distribution gives a stronger correlation than does a
less dense one. The Green’s function is also multiplied by the power
spectrum |S(w)|? of the sources, and one needs to correct for this
term. The impedance term puv is also present in the general derivation
of Wapenaar et al. (2005). In order to retrieve the Green’s function
from term 7’1, one also needs to multiply with —iw. Because of the
employed Fourier transform, f(¢) = [ F(w)exp(—iwt)dw, this multi-
plication corresponds to a differentiation in the time domain. This
differentiation corrects for the integration that is carried out in the
crosscorrelation. This need to carry out the differentiation was also
noted in other formulations of seismic interferometry (e.g., Lobkis
and Weaver, 2001; Snieder, 2004a; Weaver and Lobkis, 2004). The
term cos ¢ in the denominator is an obliquity factor that corrects for
the fact that the length element QQ’ of Figure 4 perpendicular to the
ray corresponds to a line element PP’ along the surface whose length
is givenby PP’ = QQ' cos .

Consider the case that the sources on the surface z = 0 are placed
along just the line y = O rather than over the surface. Then there is no
integration over the y-coordinate, and the terms in expression 19 that
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come from the y-integration are absent; in that case,

in|S(w)|2p\s"; 1 1
Tljype="—— "1\ —-—GR). (22
e ™ /87— iw cos W VL Ly

Note the presence of the factor i and the term 1/ “iw. Correcting for
these terms therefore involves a Hilbert transform and a fractional
derivative. These correction factors are common in two-dimensional
imaging experiments (Yilmaz, 1987; Bleistein et al., 2001; Haney et
al., 2005). Without these corrections the reconstructed Green’s func-
tion does not have the proper phase and frequency dependence.
More seriously, in contrast to equation 21, expression 22 depends
explicitly on the distances L, and L. It turns out that when the deri-
vation leading to expression 22 is repeated using the Green’s func-
tion in 2D, an expression analogous to equation 21 is obtained. The
presence of the fractional derivatives and the lengths L, and Ly is
thus due to a mismatch between the dimensionality of the physical
space through which the waves propagate (3D versus 2D) and the di-
mensionality of the source distribution (2D versus 1D). The deriva-
tion of seismic interferometry by Roux and Fink (2003) is based on
wave propagation in 3D, while the employed sources are placed
along a line. As shown by the example of expression 22, this leads to
a Green’s function that is kinematically correct, but whose ampli-
tude and phase are not.

The analysis of this section can be generalized for a heteroge-
neous medium in which the velocity is sufficiently smooth to war-
rant the use of ray theory. We show in Appendix A that term 71 is
then given by

2 ”|S(w)|2PsUs « Gm’v(l"A,l‘B)
2cos i —iw

T1 = . (23)

stat. points

where G™(r4,rp) is the ray-geometric Green’s function for the
waves recorded at r, that are generated by a point source at rz. The
summation in this expression is over all the stationary source points
on the surface z = 0. These points can be found by tracing rays from
r, to rp and by extending these rays to the surface z = 0. Because in
general more than one ray may connect the receivers, there may be
more than one stationary point. The angle ¢ is the angle between
these rays at the surface and the vertical, while vg and py are the ve-
locity and density, respectively, at the intersection of these rays with
the surface.

ANALYSIS OF TERMS 72 AND 73

The analysis of terms 72 and 73 is achieved by applying the theo-
ry of the previous sections to receivers at the image pointsr,, and ry
of Figure 1. Here we show explicitly that the crosscorrelation cor-

Figure 4. The relationship between an element PP’ along the surface
and the corresponding element QQ’ perpendicular to the receiver
line.

rectly produces the singly reflected waves. With the lengths defined
in Figure 4-6, term 72 is given by

_ p’ J exp(ik(L, + L, — Lp))
(4m) (Ly + L)Ly

This integral can be also evaluated in the stationary-phase approxi-

mation. The lengths L, L,, and Lg, and their derivatives with respect

to the source position are derived in Appendix B. As shown there, the
phase is stationary when the source position satisfies

GA = l//B and y= 0. (25)

dxdy. (24)

This condition is depicted in Figure 6: The net result of waves radiat-
ed from the stationary source position at the surface z = 0 corre-
spond to the straight raypath from the source through receiver B viaa
specular reflection to receiver A. Just as in the analysis of term 7'1,
the time delay of this wave recorded at the two receivers is now equal
to the time it takes the wave to travel from receiver B via the reflector
to receiver A. Thus the correlation is kinematically equal to the
Green'’s function for the reflected waves. With the following station-
ary-phase evaluation of integral 24, we verify that the retrieved
Green’s function is also dynamically correct.

As shown in Appendix B, the second derivatives of L = L; + L,
— Ly withrespect to the source position are given by

%ed 1) o

5> = cos? 6( - —
ox Ll + L2 LB

and

PL__ 11

- —. 27
o> Li+L, Ly @7)

In expressions 26 and 27, it is understood that all lengths are evaluat-
ed at the stationary point.

z=0 rS = (X7.y:9)
Rz Lg
Iz = (Xg,0,2g)
Ly
= (X,0,2,)

9 !
A!
z=D LG

rp = (Xg. g, D)

Figure 5. Definition of the geometric variables in the analysis of term

z=D i

Figure 6. Definition of the geometric variables for the stationary
source position in the analysis of term 72.
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The stationary-phase evaluation of integral 24 can now be carried
out. Keeping inmind that (L, + L,)™' — L' < 0, and using the same
steps as in the section Analysis of term 71, gives

__p” explk(L, + Ly — L))
@m? (L + L)Ly

1 1\t
x(— - —) . (28)
Lp L+ 1L,
As shown in Figure 6, L, — Lz = R}, and L, = R,. With definition 9

for the Green’s function, this gives, after taking the rn|S(w)|* terms
into account,

) 2
—im/4\2
(e ) k cos 6

nS@)lpy Gk, + Ry

(29)
2 cos 0 —iw

Note the resemblance with expression 21 for the contribution of term
T'1 which gives the direct wave that propagates between the receiv-
ers. Expression 29 shows that the contribution of term 72 leads to the
singly-reflected wave that propagates from receiver B via the reflec-
tor to receiver A. The same corrections must be applied to term 72 as
to term 7'1, as discussed in the section Analysis of term 7'1.

The same analysis can be applied to term 73 of expression 11, re-
sulting in the complex conjugate of expression 29, so that

T3 (30)

2 cos 0 —iw

n|S(w)Ppv (am+&v*
= Xr . .
The stationary point now lies at the location on the surface such that
the direct wave from the source to receiver A propagates along the
same path as the wave that travels from the source to the reflector,
and ultimately to receiver B.

The Green'’s function in expression 29 is the causal Green’s func-
tion, while its complex conjugate in equation 30 is the acausal one. It
is known that seismic interferometry gives the superposition of the
causal and the acausal Green’s functions (Lobkis and Weaver, 2001;
Derode et al., 2003a, b; Malcolm et al., 2004). The causal Green’s
function can be retrieved from the cross-correlation either by trun-
cating the cross-correlation for ¢ < 0, or by averaging the cross-cor-
relation for negative times and positive times.

ANALYSIS OF TERM T4

For the analysis of term 74, we carry out the stationary-phase
analysis of the integral

z=0 g = (XJ/:P)
I'g = (Xg,0,Zp)
ry= (xA,O, zA) o
O, B
z=D \%-
f'ea  Trs

Figure 7. Definition of the geometric variables in the analysis of term
T4.

T4 = o f exp(ik(jry = rral + lrpa = rs| = rs = rs| = Ires = rSl))dxdy,

(4m)? (ra = rral + [rra = rsDrg = rrgl + lres = 7))

(31

where all variables are defined in Figure 7. The stationary point fol-
lows from setting the x- and y-derivatives of the phase equal to zero.
As in the previous sections, the stationarity condition with respect to
y leads to the condition y = 0. This means again that the stationary
point lies in the vertical plane of the receivers. Using the same steps
that lead to expression B-10 of Appendix B, one finds that the sta-
tionarity condition with respect to x is given by

oL . .
= — =sin 0, — sin 6, (32)
ox

where the angles 6, and 6; are defined in Figure 7. The point of sta-
tionary phase thus is defined by the conditions

04=0; and y=0. (33)

This condition of stationary phase corresponds to the source posi-
tion shown in Figure 8. The stationary source position launches a
wave that, after specular reflection at the interface, propagates along
the line that joins the receivers. Because the reflected waves are each
proportional to r, this contribution to the correlation is proportional
to 2. The correlation of the waves shown in Figure 8 is nonzero for a
lag-time that is equal to the time it takes for the waves to propagate
between the receivers. Kinematically, term 74 can thus be expected
to correspond to the Green’s function of the direct wave that propa-
gates between the receivers.

In order to carry out the stationary-phase analysis, the second de-
rivatives of the phase are needed. These derivatives follow from ex-
pressions B-11, B-12, B-16, and B-17 with the lengths defined in
Figure 8. Term 74 is then given in the stationary-phase approxima-
tion by

Pt explik(Ly + Loy = Ly = Lyp))
@4m)?* (L) + Loy)(Ly + Lop)

2 1 IR
k cos lﬂ Ll + L2A Ll + LZB

T4 (e—i7T/4)2

where we used the same angle 6 for the stationary source position as
the angle ¢ of Figure 3. According to the geometry of Figure 8, R
= Ly — L,,. With definition 9 for the Green’s function, this gives,
after taking the %n|S(w)|? terms into account,

Figure 8. Definition of the geometric variables in the analysis of term
T4 for the stationary source position.
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T4 =

nlS@lpv r2( G(R)>*. (35)

2 cos i - iw

Apart from the r>-term and a complex conjugation of the Green’s
function, term 74 is similar to term 7'1 as given in expression 21. The
r’-term arises because both of the waves that are reflected upward
from the reflector are proportional to the reflection coefficient. The
complex conjugate appears because the wave arrives at receiver A
before it hits receiver B.

Theory predicts that seismic interferometry leads to the superpo-
sition of the causal and acausal Green’s functions (Wapenaar, 2004;
van Manen et al., 2005). In the frequency domain, this corresponds
to the superposition of the Green’s function and its complex conju-
gate. Note that because of the r>-factor, the term 74 is not equal to the
complex conjugate of term 7'1 in equation 21. This discrepancy can
be explained as follows. Theory predicts that the sum of the causal
and acausal Green’s function is obtained when sources are present
on a closed surface that surrounds the medium (Wapenaar, 2004; van
Manen et al., 2005). This closed surface includes sources that are
placed below the reflector. Let us consider the simplest case where
the reflection is caused by a density contrast only. Sources below the
reflector give a stationary-phase contribution to term 74 that is given
by

_MﬂmevXt{G@Ui (36)

Toetow =
o 2cos i -iw

with ¢ the transmission coefficient for waves incident from below the
reflector, and where p;, is the density below the reflector. In that case,
the reflection coefficient is given by r = (p, — p)/(ps, + p), and the
transmission coefficient for upward traveling waves is equal to ¢
=2p/(py + p), hence pr? + p,i*> = p. Using this result, expressions
35 and 36 combine to give a total contribution

nmmﬁwx<amy
2 cos i iw/)

T4 + Tbelow = (37)

— 1w

This gives the upward traveling Green’s function between the re-
ceivers.

INTERPRETATION OF TERMS T1-T4

Inserting expressions 21, 29, 30, and 35 into equation 11 gives for
a single horizontal reflector, the following total contribution to the
correlation:

Cap(w) = %n|S(G))|2pU G(R) + G(R, + R,)

—iwcos ¥ " _iwcos 0
(a&+&»* { G(R) y
+rl——| +r|——
— iwcos 0 —iwcos ¥

(38)

The correlation is thus proportional to a weighted average of the
causal and acausal Green’s function for the direct wave and the sin-
gly reflected waves. In practical applications of seismic interferome-
try in reflection seismology, this contribution to the direct waves is
not relevant because primary reflections rather than direct waves are
used to image the subsurface.

The four terms in expression 38 correspond to the waves that
propagate along the four trajectories shown in Figure 9. The waves

in diagrams (a) and (b) are the direct waves that propagate in oppo-
site directions between the two receivers. The waves in diagrams (c)
and (d) are the singly reflected waves that propagate in opposite di-
rections between the receivers. These diagrams provide an illustra-
tion of why the correlation leads to the superposition of the causal
and acausal Green’s function.

A NUMERICAL EXAMPLE

For simplicity, consider the theory in two dimensions. A reflector
with the reflection coefficient r = 0.8 is located at a depth 1500 m
below the surface. This is not a small reflection coefficient, but since
there is only one reflector and no free surface, this model generates
no multiple reflections, regardless of how large the reflection coeffi-
cientis. The wave velocity isv = 2000 m/s, and the receivers are lo-
cated atr, = (0,1000) m and rp = (300, 500) m, respectively. We
used sources at the surface with a spacing Ax = 20 m, and a Ricker
wavelet with a dominant frequency of 50 Hz for S( ).

The contributions of the sources at the surface z = 0 to terms 7'1-
T4 is shown in Figure 10a, while the sum over all source positions is
shown in Figure 10b. Figure 10b shows four distinct arrivals. Arriv-

a)

b)

)

d)

Figure 9. The raypaths corresponding to the stationary contributions
to the correlations for the causal direct wave from term 71 (a), the
acausal direct wave from term 74 (b), the causal reflected wave from
term 72 (c), and the acausal reflected wave from term 773 (d).
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als T'1 and 72 are causal, while arrivals 73 and 74 are acausal. Note
that each of the arrivals in Figure 10b corresponds to a stationary
source point in Figure 10a. The nonzero portions of these arrivals are
due solely to the Fresnel zones around stationary source points. The
sources placed at other locations give contributions that interfere de-
structively.

Figure 11 shows a comparison between the exact waveform for
term 72, computed with the 2D Green’s function (shown with the
solid line), and the term 72 obtained by summing the correlation
over the sources at the surface (shown with crosses). The waveform
obtained from seismic interferometry matches the exact waveform
well. Note that these waveforms do notlook like a Ricker wavelet; as
theory predicts, they are shifted with a phase angle equal to /4.

Figure 10b shows weak arrivals between 7’1 and 74. These weak
arrivals arise from endpoint contributions for the sum over the traces
of Figure 10a, especially when the arrival time tends to a constant
near the endpoints. In the numerical example we tapered the contri-
bution of traces near the endpoints of the source region. Without this
tapering these endpoint contributions would be much stronger.

Figure 2 of van Manen et al. (2005) is similar to the correlation
gather of Figure 10, except that they used a more complex model of
the subsurface that includes a salt dome. Their Figure 3 shows the

a) b)
-1.0 -1.0
73 T3
-05 T4 -0.5 _‘ﬂ
0 7T L 0
05 Tl 05 Tl
ts) {(e) a4
T2 T2
1.0 1.0
-3000 -1500 o] 1500 3000
. X (T

Figure 10. (a) The contribution of sources at the surface to the terms
T1-T4 as a function of the source position x. For clarity only every
fifth source position is shown. (b) The sum over all source positions
at the surface.

072 074 076 __ 078 080
—_—> f(s)

Figure 11. Solid line: exact arrival for term 72 computed with the 2D
Green'’s function. The crosses indicate the sum of the correlations for
term 72 over all sources at the surface. Tapering near the end of the
source region was used in the sum.

sum of the correlation gather over the source position, with coherent
arrivals in that figure corresponding to the stationary-phase arrivals
of their Figure 2. Their example illustrates that the principle of sta-
tionary phase can be applied to seismic interferometry in more com-
plex media.

MODEL WITH MORE THAN ONE REFLECTOR

Up to this point the analysis has been based on the assumption of a
single horizontal reflector in the subsurface. Suppose there are more
reflectors, at depths D; with reflection coefficients r; for downgoing
waves. Assuming that the wave velocity remains constant, and con-
sidering just the single-reflection contributions to G™, we need to
replace the second term in both of equations 10 by a sum over all re-
flectors. In expression 11, term 7'1 contains the direct waves only.
This term is not influenced by the presence of more than one reflec-
tor. Terms 72 and 73 in expression 11 involve the cross-term be-
tween the direct wave and the singly reflected waves. Since these
terms are linear in the reflection coefficients, one can retrieve the
sum of all the singly reflected waves by summing terms 72 and 73
over the different reflectors. This means that in the presence of more
than one reflector, the cross-terms 72 and 73 between the direct
wave and the singly reflected waves produce the full set of single re-
flections.

Term 74 in expression 11 contains the product of the singly re-
flected waves. This means that for more than one reflector this term
contains a double sum X, ;r;r;(...). This double sum can be split
into the terms j' = jand theterms j # j':

D) =200+ 2. (39)
i’

J i#J'
Strictly speaking, one should include the transmission coefficients #;
of every interface that the waves cross. The transmission coefficients
satisfy t; = 1 + O(r;). Setting 7, = 1 gives a relative error that is of
the order r;. The following treatment therefore is correct up to second
order in the reflection coefficients 7;r;:.

Analysis of the first term of equation 39 is identical to that of the
term 74 in the section Analysis of term 74. This means that one can
sum expression 35 over all reflectors in the subsurface. The last con-
tribution that needs to be accounted for is that of the second sum in
the right hand side of equation 39 to the term 74. We consider two re-
flectors, at depths D, and D, with reflection coefficients r; and r,, re-
spectively. The derivation holds for any pair of reflectors. Represen-
tative specular raypaths associated with two different reflectors are
shown in Figure 12. The integrand in the term 74 of expression 11

z=0
Z=D1
Z=D2 !

Figure 12. Definition of the geometric variables for the contribution
of term 74 from waves reflected off two different reflectors.
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now contains a phase term exp (ikL) with
L=LP+ LY -1 - 1LY, (40)

where these lengths are defined in Figure 12. As before, the phase is
stationary with respect to the y-coordinate when y = 0. The condi-
tion that the phase is stationary with respect to x gives

JL . .
0 = — =sin 0, — sin 6, (41)
ox

where the angles 6, and 65 are defined in Figure 12. This follows
from the derivation that led to the first term in the right hand side of
expression B-10. The stationary-phase condition for this term there-
fore gives

6A = 63’ y= 0. (42)

Stationary-phase condition 42 gives the two stationary source
points rg, and ry, at the surface shown in Figure 13. The raypaths
shown as solid lines indicate the cross-correlation of the waves that
propagate along the following specular trajectories: rg;— reflector 1
—rpand rg;— reflector 2—r,, while the raypaths shown as dashed
lines indicate the correlation of the waves that propagate along the
following specular trajectories: rg,— reflector 1 —r, and rg,— re-
flector2 —rj.

The difference in the traveltime of the waves that propagate along
the two trajectories shown by the solid lines now differs from the
time it takes to propagate between the receivers. The correlation of
the waves reflected off different reflectors give stationary-phase
contributions that are proportional to the product of reflection coeffi-
cients r;r,. Hence the correlation of the single-reflected waves from
different reflectors gives contributions that dynamically are equiva-
lent to peg-leg multiples that in practice would have been reflected
once from a free surface and twice from reflectors in the subsurface,
because peg-leg surface multiples are also proportional to 7;7».

This may seem a puzzling result, since theory predicts that the full
Green’s function can be retrieved when the sources are placed on a
closed surface that surrounds the region of interest (Wapenaar et al.,
2004; Wapenaar et al., 2005). The key point is that in the derivation
of this paper the sources are placed at the upper surface only. Let us
consider what would happen if we also had sources at a surface z
= z,, thatis located below the reflectors, as shown in Figure 14.

The reflection and transmission responses of the subsurface are
not independent (Claerbout, 1968; Wapenaar et al., 2004). This sug-
gests that sources below the reflectors are again essential for the can-
cellation of the cross-terms for singly reflected waves; we provide a
heuristic argument that this is indeed the case.

Consider the situation in Figure 14 where sources are present at
the surface z = 0 above the reflectors, and at the surface z = z,, below
the reflectors. The points rg, and rg,, on these surfaces are the station-
ary source points for the cross-terms that correspond to the paths in-
dicated with solid lines and dashed lines, respectively. The waves
excited at the surface z = 0 propagate along the paths shown with
solid lines, while the waves excited below the reflectors propagate
along the paths shown in dashed lines. These raypaths coincide after
their first encounter with reflector 1; hence, the contribution of
waves radiated from the stationary points rg; and ry,, to the crosscor-
relation are nonzero for the same delay time. The contribution of the
waves excited at rg; is proportional to r,r,, while the contribution of
the waves excited at rg,, is proportional to —r,r, because the reflec-
tion coefficient of reflector 1 for a downward reflected waves is —r,

Figure 13. The stationary source points r'y; and r, for the correlation
of waves reflected from two different reflectors. The corresponding
ray paths to the receivers are shown with solid and dashed lines, re-
spectively.

z=0
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Z=D2
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Figure 14. The stationary source points rg; at the surface z = 0 and
I, at the surface z = z,, for the correlation of waves reflected from
two different reflectors. The corresponding raypaths to the receivers
are shown with solid and dashed lines, respectively. The reflection
coefficients for the different reflected waves are indicated.

rather than r;. As shown in the examples in the previous sections, it
does not matter how far the stationary point is removed from the sur-
face. Therefore, the stationary points rg; and r,, give contributions
to the crosscorrelation that are equal, but have opposite sign. This
means that the sum of the cross-terms of the crosscorrelation of these
two stationary points gives a vanishing contribution.

In practical situations, the sources may be located at the surface z
= 0 only. Then the cross-terms of waves reflected from different re-
flectors give a nonzero contribution that is proportional to the prod-
uct of reflection coefficients. Therefore, virtual source imaging may
introduce events that we call spurious multiples when the sources
cannot be placed on a closed surface around the region of interest.

CONCLUSION

The main result of this analysis is to demonstrate that the principle
of stationary phase underlies seismic interferometry of the direct
wave and singly reflected waves. Physically this means that when
the contributions from sources on the surface are added, the sources
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in the stationary-phase region alone contribute to the emergence of
the Green'’s function.

In the derivation here, we did not explicitly account for the radia-
tion pattern of the point source. It follows from Figure 9 (and Figure
A-1 for a heterogeneous medium) that the paths that render the phase
of the correlation stationary correspond to rays that propagate in the
same direction to the two receivers. This means that if the source
does not radiate energy isotropically, the two receivers are still illu-
minated with the same source strength. Similarly, when the reflec-
tion coefficient depends on the angle of incidence, the stationary-
phase approximation selects the reflection coefficient at the angle of
the reflected wave that propagates between receivers A and B, as
shown in Figure 9.

When more reflectors are present, the single-reflection contribu-
tion of term 74 is proportional to r;r;;. When only sources at the sur-
face z = 0 are used, these cross-terms lead to spurious contributions
that have the same strength as peg-leg multiples. These spurious
multiples are not removed by algorithms for the suppression of sur-
face-related multiples (Verschuur et al., 1992; van Borselen et al.,
1996; Dragoset and Jeri¢evi¢, 1998) because kinematically they do
not correspond to peg-leg multiples.

This analysis shows that the Green’s function is retrieved from the
stationary-phase contribution for the integration (summation) over
all sources. Sources far from the stationary point give an oscillatory
contribution that averages to zero. When noise, such as swell-noise
in the ocean, is used as a source, these sources in general are spread
out over the free surface.

The theory presented here sheds light on the conditions that must
be satisfied in the practical implementation of seismic interferome-
try. According to expression 2, the sources must be uncorrelated and
must have nearly identical power spectra. Man-made sources that
are fired sequentially are certainly uncorrelated. Care must be taken
that these also have nearly identical power spectra. Natural sources,
such as noise generated by turbulent waves at the ocean surface,
have a finite correlation length. The theory presented here is valid
only when this correlation length is much smaller than the wave-
length of the sound waves that are generated. We assumed in the
analysis that the source density 7 is constant. This is true only when
the sources are stationary in space. These complications need to be
addressed in practical implementations of seismic interferometry.
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APPENDIX A

SEISMIC INTERFEROMETRY
OF THE DIRECT WAVES IN THE
RAY-GEOMETRIC APPROXIMATION

In this appendix, we show that the arguments used in this paper for
a homogeneous medium can be generalized to heterogenous media
where the velocity and density variations are sufficiently smooth to
justify the use of ray theory for the Green’s function. To avoid com-

plications due to curved reflectors, we analyze only term 7'1. The
ray-geometric Green’s function that gives the response at r, due to a
point source at r, is given by expression 15 of Snieder and Chapman

(1998):
1 v explioT,
G™(r;,ry) = — — 1 /MM' (A-1)
4ar [ %) J

/
VJ12

In expression A-1, v; = v(r;), and we use a similar notation for the
density, 7y, is the traveltime for the propagation fromr, tor;, and J;,
is the associated geometrical-spreading factor. Because of reciproci-
ty (Snieder and Chapman, 1998), this Green’s function is also equal

to
1 v, explioT
G™(r;,ry) = — — 1 /MM. (A-2)
4 Uy \J’J21

Note that the traveltime is reciprocal:
T2 = To1s (A-3)

but the geometrical spreading is not (Snieder and Chapman, 1998).
Inserting Green’s function A-2 in term 7'1 of expression 11 gives

| .
T1 1 f VpappPsUs explio(Tsy — Top))

= dxdy,
(4m)? e

[ [
\VuuaUp \salsp

(A-4)

where vg = v(rg) = v(x,y,0),v4 = v(r,),and vz = v(r). By analo-
gy with the situation shown in Figure 3, the stationary points in this
integral correspond to the rays that propagate from the source S
through receiver B to receiver A, as shown in Figure A-1. By virtue
of reciprocity, these stationary points can be found by tracing rays
fromreceiver A to receiver B and continuing these rays to the surface
z = 0. In general there may be more than one stationary point. In the
following, we analyze the contribution of just one stationary point,
but ultimately one needs to sum over all stationary points. It may
happen, in fact, that the region of stationary phase does not consist of
afinite number of points, but of a line or surface area. Then, point A is
acaustic and ray theory breaks down (Berry and Upstill, 1980).

Let the traveltime along the ray from A to B to S be given by 7.
The traveltime for an adjacent ray follows from the second-order
Taylor expansion in the ray-centered coordinates ¢, and g, that mea-
sure the perpendicular distance to the ray in two orthogonal direc-
tions. According to expression 50 of Cerveny and Hron (1980), the
traveltime along an adjacent ray is given by

z=0 Is
A
Iz

S

s

z=D

Figure A-1. The stationary-phase condition for term 7'1 for a hetero-
geneous reference medium.
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1
T=TO+Eq'M'q, (A-5)

with M a matrix of second-order derivatives of the traveltime. In the
following, it is convenient to replace the integration over the surface
z = Oinexpression A-4 by an integration over the ray-centered coor-
dinates ¢; and g,. The orientation of these coordinate axes is ambigu-
ous, since any choice of axes perpendicular to the ray is admissible.
In the following we choose the ¢,-axis to be aligned with the plane z
= 0, as indicated in Figure A-2. The other coordinate, ¢;, then mea-
sures the distance to the ray in the orthogonal direction. As shown in
Figure A-2, the associated g,-axis makes an angle i with the hori-
zontal that is equal to the angle between the ray and the vertical. An
element dg, corresponds to an element dy’ in the x,y-plane, while an
element dg, corresponds to an element dq, = cos dx’. We use
primed coordinates since the ray direction is not necessarily aligned
with the original x-axis. This means that a surface element in the sur-
face integral can be related to a surface element dq,dqg, using

1
dxdy = dx'dy’ = @dqldqz. (A-6)

This expression can be used to evaluate integral A-4 in the sta-
tionary-phase approximation. With Taylor expansion A-5 for the
rays from A to S and from B to S, this integral in the stationary-phase
approximation is given by

' .
_ 1 N papppsvs explio(Ts, — Tgp))
(4’77)2 Cos l,b V’/UAUB

i
Isatsp

iw
X | exp S Mgy — Mgp) - q|dg,dq,.

(A7)
The integration over the g-variables gives (Bleistein, 1984)
oL Npapspsogexpliofry, — 7))
87w cos ¥ \v,uup Wsalsp
exp(isgn/4) (A-8)

\"/|det(MSA - Mgp)|’

where sgn is the number of positive eigenvalues of Mgy — Mg mi-
nus the number of negative eigenvalues. Using the same reasoning
as in the derivation of expression 6.21 of Snieder and Lomax (1996),
term 7'1 is equal to

Figure A-2. Definition of the ray-centered coordinates ¢, and ¢,. The
¢»-axis lies in the x, y-plane and is perpendicular to the ray. The angle
ris the angle between the ray direction and the vertical.

i \pappPsvs  explio(Tsy — Tgp))

T1 = .
8mwcos ¥  \u,vp  VJsaJspdet(Mgy — Mgp)
(A-9)
Since the points 4, '3, and ry are located on the same ray,
Tsa — TSB = TAB> (A-10)

this is the traveltime along the ray that joins receivers A and B. This
means that term 71 is kinematically identical to the Green’s function
that accounts for wave propagation between the receivers A and B. In
the following, we show that expression A-9 also accounts dynami-
cally for this Green’s function by using a derivation similar to that
presented by Snieder and Lomax (1996).

According to expression 68 of Cerveny and Hron (1980), matrix
M is related to the curvature matrix of the wavefronts by the relation

M = —K.
v

(A-11)

Because M is a 2 X 2 matrix, this, together with expression A-10,
implies that

. [ 2 .
T1 = l N PAPBPsVs exp(ioTy)
87w cos 11[/ \‘"UAUB \"/]SAJSBdet(KSA - KSB) ’

(A-12)

Following equation 76 of Cerveny and Hron (1980), the curvature
matrix satisfies the following matrix Ricatti equation:

dK 1dv 1
— = =K - Ky - ;V’

= A-13
ds vds ( )

where v = v, and the matrix V is defined by V;; = &*v/dq,dq;, and
where s is the distance along the ray from r, through r; to the sur-
face, asindicated in Figure A-1. Using this expression, and the corre-
sponding expression for Kgp, it follows that the difference satisfies
the differential equation

d(Kgy - Kgg)  1dv
—A = - (K, - Kgp) — (K5, - K3p).
ds vds
(A-14)

From this it follows after a lengthy calculation that

d 2dv
- det(KSA - KSB) = - det(KSA - KSB)
ds vds

= (tr Kgy + tr Kgp)det(Kgy — Kgp),
(A-15)

where tr denotes the trace. According to expression 36 of Snieder
and Chapman (1998)

(A-16)

Using this expression to eliminate the trace of K, and Kgg from ex-
pression A-15, we can integrate the result to give
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d ) JspJspdet(Kgy — Kgp) | 0
ds U§

(A-17)

or

Jsalspdet(Kgy — Kgp)

2
Ug

= const. (A-18)

This expression holds for any point S along the ray in Figure A-1.
The constant can be found by evaluating this expression for a point §
along the ray ata small distance £ beyond the receiver B, as shown in
Figure A-1, and by letting this distance go to zero. At a small distance
from receiver B, the medium can be considered to be locally homo-
geneous, and the curvature matrix attains its value for a homoge-
neous medium:

/¢ 0 ‘

0 e (A-19)

SB =

In the limit £ — 0 these terms dominate the contributions from Kg,
in expression A-18 and det(Kg, — Kgz) — 1/£2 as ¢ — 0. In that
limit, the geometrical spreading is given by Jg = &2, Js4 — Jpa, and
vg — Up. Inserting these results in expression A-12 shows that the
constant in that expression is given by const = Jg,/v3. Inserting this
in expression A-18 finally gives

2

Ug
Jsadspdet(Kgy — Kgp) = U_QJBA (A-20)
B
or
f U
VsaJspdet(Kgy — Kgp) = + U_S\‘/E~ (A-21)
B

At this point, the sign in the right hand side is arbitrary.
This last result can be used to eliminate Vdet(Kg, — Kg;) from
expression A-12, giving

*ipsUs PaPBUs eXpliwTyp)
Tl = —.
87w cos ¥ Uy \Jpa
Following expression 45 of Snieder and Chapman (1998), the reci-

procity property of the geometrical spreading is given by Jzs
= (vp/va)®J,5; hence,

+ipgU / v explioT,
T1 = PsUs PAPBUA p(/_AB)' (A-23)
87w cos ¢ Up \Jug

Comparison with the ray-geometric Green’s function A-1 gives

(A-22)

T1 = T psvs G (ry,rp)
2 cos i —iw

(A-24)

After multiplying with the terms n|S(w)|?, this result can directly be
compared with the corresponding expression 21 for a homogeneous
medium. This implies that the lower sign in expression A-21 must be
used. After taking the source spectrum and the scatterer density into
account, this finally gives equation 23.

APPENDIX B

COMPUTATION OF THE PATH LENGTH
AND ITS DERIVATIVES

Before we can analyze expression 24 we need the coordinates of the
reflection point r; because this determines the lengths L, and L,. Us-
ing the geometric variables defined in Figure B-1, the condition that
the reflection angle is equal to the angle of incidence gives

(D - ZA)X + D.XA
Xp=— -

2D - A
(D = zy)y
= . B-1
YR 2D -z, (B-1)
Using this, the lengths L,and L, are given by
D \? D \?
L = \/(—) (x —x0)? + <—> y* + D?
2D — z4 2D — z4
(B-2)
and
D - ZA 2 D - ZA 2
N
2 -z, (x = xy) -z, y ( 25
(B-3)

while Ly is given by expression 13.
The stationary points of integral 24 follow from the first partial
derivativesof L = L, + L, — Ly:

_%_(L>2<1)+(u)2<1) >
Toy \2D-z,) \L, 2D -z,) \L,) Ly
(B-4)

Again, the stationary-source position occurs for y = 0; it is located
in the vertical plane of the receivers. The condition for stationarity in
the x-direction is

SR RN
B ox B 2D—ZA Ll 2D—ZA L2

X — Xp
-—. B-5
L (B-5)
z=0
rg = (x,5,0)
2D—zA
z=D

Figure B-1. The angles 6,, 6,, and 6;, and their relation to the geo-
metric variables for the reflected wave.



Seismic interferometry of primaries SI123

In order to interpret this last condition geometrically, it is useful
to relate the ratios in this expression to the angle of incidence at the
reflector. Referring to Figure B-1, the following identities hold:
cos 6, = D/L,, cos 6, = (D - z,)/L,, and cos 65 = (2D — z,)/(L,
+ L,). Since these angles are all equal to the angle of incidence 6, of
the reflected wave, we obtain:

D D- 2D -
cos fy=—= A A (B-6)
L, L,  L+L

Also, since x — x, = L; sin 6; + L, sin 6,, and since both angles are
equal to 6,

X — Xp

sin 6, = (B-7)

Li+L,
Dividing this expression by the last identity of equation B-6 gives

X — Xy

tan Oy = ——. B-8
= p (B-8)

Finally, from expression B-6,
D Ly D-z, L, (B-9)

2D—ZA:L|+L2’ 2D—ZA_L]+L2.

Using expression B-9 in expression B-5, and using equation B-7 to
eliminate x — x,, gives, with the relation (x — xz)/Lg = sin s,

JL . .
0 = — =sin 6, — sin Y. (B-10)

ox

The integrand thus is stationary when the source position satisfies
equation 25.
From expression B-2 we get at, the stationary point,

#L, ( D >2D2

a? " \2D-z,) L}
_ L ZD_zi _ L 2
= 5 = 5 cos” 0.
Li+L,) LiL, (Li+Ly)

(B-11)

In the second identity we have used expression B-9, while the last
identity follows from equation B-6. In a similar way it follows that

PL L
22 = 2 5 cos’ 6, (B-12)
ox (Ll + L2)
and, using equation 17, we obtain for the curvature of L,
P L 1
_23 = — cos? 6. (B-13)
ox Ly

In this last expression, we used the stationary-phase condition
¢ = 6. Combining these results in the path difference L = L, + L,
— Ly gives equation 26.

Differentiation of equation B-2 gives

PL D \* D \?
21 = (x = x> + | — | D*{/L3.
ay 2D -z, 2D -z,

(B-14)

With expressions B-8 and B-9, this is equal to
#L DV*1( L
— == ——] @n?0+1). (B-15)
ay Ly} Li\Ly + Ly

Using the identity D/L; = cos 6, this gives

PL, L
] (B-16)
dy (Ly + Ly)
A similar analysis for L, gives
#L L
= 2 (B-17)

&)’2 B (L, + Lz)z'

This gives expression 27, for the curvature of L in the y-direction.
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