Accelerating the Convergence of MIP-based Unit Commitment Problems

The Impact of High Quality MIP Formulations

Germán Morales-España[†],

[†]Delft University of Technology, Delft, The Netherlands

Optimization on Friday April 2017

Outline

1 Short-term Planning (UC)

- Unit Commitment
- Why MIP?
- Improving MIP Formulations

2 Case Studies

- Deterministic Self-UC
- Stochastic UCs: Different Solvers
- Stochastic UCs: IEEE-118 Bus System

3 Conclusions & Collaboration?

Outline

1 Short-term Planning (UC)

Unit Commitment

- Why MIP?
- Improving MIP Formulations

2 Case Studies

- Deterministic Self-UC
- Stochastic UCs: Different Solvers
- Stochastic UCs: IEEE-118 Bus System

3 Conclusions & Collaboration?

Day-ahead Planning

GENERATION AND CONSUMPTION

29 / 09 / 2015 🔻 | 08:10

The system has to respond to instantaneous variations of the demand

Unit Commit for Short-term Planning

Objective:

- To schedule generating units (thermal, nuclear, hydro, etc.) at minimum cost (bids) over the study period subject to:
 - Meet system demand for electricity
 - Satisfy the system constraints (e.g., technical, environmental)
 - Provide a level of flexibility (reserves) to accommodate RES energy

Unit Commit for Short-term Planning

Objective:

- To schedule generating units (thermal, nuclear, hydro, etc.) at minimum cost (bids) over the study period subject to:
 - Meet system demand for electricity
 - Satisfy the system constraints (e.g., technical, environmental)
 - Provide a level of flexibility (reserves) to accommodate RES energy

Planning:

- the physical operation
 - To make **Startup** and **shutdown** decisions
 - To obtain hourly schedules (production) for all generating units

the economic issues

- Give market signals (prices)
- Forecast operational cost

Outline

1 Short-term Planning (UC)

- Unit Commitment
- Why MIP?
- Improving MIP Formulations

2 Case Studies

- Deterministic Self-UC
- Stochastic UCs: Different Solvers
- Stochastic UCs: IEEE-118 Bus System

3 Conclusions & Collaboration?

■ Why do we need 0/1 variables?

- Why do we need 0/1 variables?
- Non-linear generation range
 - $\blacksquare MinGeneration \cdot u \le p \le MaxGeneration \cdot u$
 - where *u* is an on/off decision
 - \blacksquare and p is the unit generation output

- Why do we need 0/1 variables?
- Non-linear generation range
 - $MinGeneration \cdot u \leq p \leq MaxGeneration \cdot u$
 - where u is an on/off decision
 - \blacksquare and p is the unit generation output
- Non-linear operating costs

FixedCost $\cdot u$ + VariableCost $\cdot p$

- Why do we need 0/1 variables?
- Non-linear generation range
 - $MinGeneration \cdot u \leq p \leq MaxGeneration \cdot u$
 - where u is an on/off decision
 - \blacksquare and p is the unit generation output
- Non-linear operating costs

FixedCost $\cdot u$ + VariableCost $\cdot p$

Startup and shutdown costs, e.g.,

$$suc \ge SUcost (u_t - u_{t-1})$$
$$suc \ge 0$$

- Why do we need 0/1 variables?
- Non-linear generation range
 - $\blacksquare MinGeneration \cdot u \le p \le MaxGeneration \cdot u$
 - where u is an on/off decision
 - \blacksquare and p is the unit generation output
- Non-linear operating costs

FixedCost $\cdot u$ + VariableCost $\cdot p$

Startup and shutdown costs, e.g.,

$$suc \ge SUcost (u_t - u_{t-1})$$
$$suc \ge 0$$

Other cases:

CCGTs, line switching, dynamic ramping

- Why do we need 0/1 variables?
- Non-linear generation range
 - $\blacksquare MinGeneration \cdot u \le p \le MaxGeneration \cdot u$
 - where u is an on/off decision
 - \blacksquare and p is the unit generation output
- Non-linear operating costs

FixedCost $\cdot u$ + VariableCost $\cdot p$

Startup and shutdown costs, e.g.,

$$suc \ge SUcost (u_t - u_{t-1})$$
$$suc \ge 0$$

• Other cases:

CCGTs, line switching, dynamic ramping

MIP: Global optimum or within a tolerance

Solving MIPs: Perceptions end 1980s

Many fields:

• "MIP is NP-hard. Really the only choice is to use heuristics."

Solving MIPs: Perceptions end 1980s

Many fields:

- "MIP is NP-hard. Really the only choice is to use heuristics."
- Electrical Power:
 - EPRI GS-6401, June 1989: Mixed-integer programming (MIP) is a powerful modeling tool, "They are, however, theoretically complicated and computationally cumbersome".
 I.e., MIP is an interesting "toy", but it just doesn't work in practice.

Solving MIPs: Perceptions end 1980s

Many fields:

- "MIP is NP-hard. Really the only choice is to use heuristics."
- Electrical Power:
 - EPRI GS-6401, June 1989: Mixed-integer programming (MIP) is a powerful modeling tool, "They are, however, theoretically complicated and computationally cumbersome".
 I.e., MIP is an interesting "toy", but it just doesn't work in practice.
 - California 7-day (UC) model: 48939 constraints, 25755 variables (2856 binary)
 - Reported results 1989 machine unknown
 - 2 day model: 8 hours, no progress
 - 7 day model: 1 hour only to solve the LP

Cplex MIP Speedups 1991-2008

Test set: 1852 real-world MIPs (default solver's settings)

Cplex MIP Speedups 1991-2008

Test set: 1852 real-world MIPs (default solver's settings)

Perceptions Have Changed

California 7-day (UC) model:
 48939 constraints, 25755 variables (2856 binary)

Reported results 1989 – machine unknown

2 day model: 8 hours, no progress

7 day model: 1 hour only to solve the LP

Perceptions Have Changed

- California 7-day (UC) model:
 48939 constraints, 25755 variables (2856 binary)
 - Reported results 1989 machine unknown
 - 2 day model: 8 hours, no progress
 - 7 day model: 1 hour only to solve the LP
- California 7-day model (on a desktop PC)
 - CPLEX 6.5 (1999): 22 minutes, optimal
 - CPLEX 11.0 (2007): 71 seconds, optimal

MIP Speedups 1990-2014

■ Improvement 2009-2014: Gurobi ≈ CPLEX: 29.4x

MIP Speedups 1990-2014

■ Improvement 2009-2014: Gurobi ≈ CPLEX: 29.4x

• Overall Improvement 1990 to 2014:

Algorithms:	870 000×
Machines:	6 500×
Net: Algorithm \times Machine	5 600 000 000x
(180 years / 5.6B $pprox$ 1 second)	

MIP Speedups 1990-2014

■ Improvement 2009-2014: Gurobi ≈ CPLEX: 29.4x

• Overall Improvement 1990 to 2014:

Algorithms:	870 000×
Machines:	6 500x
Net: Algorithm × Machine	5 600 000 000x
(180 years / 5.6B $pprox$ 1 second)	
$\sim 3 { m x}$ faster year-to-year	

- 58 nuclear units
- 47 thermal units
- 448 hydro power plants

- 58 nuclear units
- 47 thermal units
- 448 hydro power plants
- All US ISOs using MIP for their
 - UCs: Day-ahead market, residual UC, real-time look-ahead market

- 58 nuclear units
- 47 thermal units
- 448 hydro power plants
- All US ISOs using MIP for their
 - UCs: Day-ahead market, residual UC, real-time look-ahead market
 - Since MIP implementation, savings:
 - PJM (2004): ~100 Million \$/year
 - CAISO (2009): ~52 Million \$/year

- 58 nuclear units
- 47 thermal units
- 448 hydro power plants
- All US ISOs using MIP for their
 - UCs: Day-ahead market, residual UC, real-time look-ahead market
 - Since MIP implementation, savings:
 - PJM (2004): ~100 Million \$/year
 - CAISO (2009): ~52 Million \$/year
- **Euphemia:** Pan-European Electricity Market Integration Algorithm
 - Electricity market for 23 European countries

- 58 nuclear units
- 47 thermal units
- 448 hydro power plants
- All US ISOs using MIP for their
 - UCs: Day-ahead market, residual UC, real-time look-ahead market
 - Since MIP implementation, savings:
 - PJM (2004): ~100 Million \$/year
 - CAISO (2009): ~52 Million \$/year
- **Euphemia:** Pan-European Electricity Market Integration Algorithm
 - Electricity market for 23 European countries
- So, what is left to do?

- Although significant breakthroughs in (MIP), UCs are also getting more demanding:
 - To deal with uncertainty (renewables),e.g.,
 - Stochastic, Robust

- Although significant breakthroughs in (MIP),
 UCs are also getting more demanding:
 - To deal with uncertainty (renewables),e.g.,
 - Stochastic, Robust
 - To guarantee security, e.g.,
 - N-1 criterion
 - To better exploit the system flexibility, e.g.,
 - CCGTs, dynamic ramping, line switching

- Although significant breakthroughs in (MIP),
 UCs are also getting more demanding:
 - To deal with uncertainty (renewables),e.g.,
 - Stochastic, Robust
 - To guarantee security, e.g.,

N-1 criterion

- To better exploit the system flexibility, e.g.,
 - CCGTs, dynamic ramping, line switching
- The time to solve UC is still a critical limitation
- How to reduce solving times?
 - Computer power (e.g., clusters)
 - Solving algorithms (e.g., solvers, decomposition techniques)

- Although significant breakthroughs in (MIP),
 UCs are also getting more demanding:
 - To deal with uncertainty (renewables),e.g.,
 - Stochastic, Robust
 - To guarantee security, e.g.,

N-1 criterion

- To better exploit the system flexibility, e.g.,
 - CCGTs, dynamic ramping, line switching
- The time to solve UC is still a critical limitation
- How to reduce solving times?
 - Computer power (e.g., clusters)
 - Solving algorithms (e.g., solvers, decomposition techniques)
 - Improving the MIP-Based UC formulation ⇒ ↓ solving times

Outline

1 Short-term Planning (UC)

- Unit Commitment
- Why MIP?

Improving MIP Formulations

2 Case Studies

- Deterministic Self-UC
- Stochastic UCs: Different Solvers
- Stochastic UCs: IEEE-118 Bus System

3 Conclusions & Collaboration?

Convex Hull: The Tightest Formulation

Convex Hull (CH)

Smallest convex feasible region containing all feasible integer points

Convex Hull: The Tightest Formulation

The convex hull problem solves an MIP as an LP

Each vertex satisfies the integrality constraints

So an LP optimum is also an MIP optimum

Unfortunately,

Convex Hull: The Tightest Formulation

The convex hull problem solves an MIP as an LP

Each vertex satisfies the integrality constraints

So an LP optimum is also an MIP optimum

Unfortunately, the convex hull is typically too difficult to obtain

• To solve an MIP is usually easier than trying to find its *convex hull*

Concepts: Tightness and Compactness

- Tightness: defines the search space (relaxed feasible region) that the solver needs to explore to find the solution
- Compactness (problem size): defines the searching speed (data to process) that the solver takes to find the solution

Concepts: Tightness and Compactness

- Tightness: defines the search space (relaxed feasible region) that the solver needs to explore to find the solution
- Compactness (problem size): defines the searching speed (data to process) that the solver takes to find the solution
- Convex hull: The tightest formulation ⇒ MIP solved as LP

- The most common strategy is adding cuts
 - In fact, this is the most effective strategy of current MIP solvers

The most common strategy is adding cuts

- In fact, this is the most effective strategy of current MIP solvers
- They should be added during the $B\&B \Rightarrow \downarrow Time$
- and not directly to the model, huge number of inequalities $\Rightarrow \uparrow$ Time

The most common strategy is adding cuts

- In fact, this is the most effective strategy of current MIP solvers
- They should be added during the $B\&B \Rightarrow \downarrow Time$
- and not directly to the model, huge number of inequalities ⇒ ↑ Time
- Trade-off: Tightness vs. Compactness

The most common strategy is adding cuts

- In fact, this is the most effective strategy of current MIP solvers
- They should be added during the $B\&B \Rightarrow \downarrow Time$
- **and not directly to the model**, huge number of inequalities $\Rightarrow \uparrow$ Time
- Trade-off: Tightness vs. Compactness
- Improving the MIP formulation
 - Provide the *convex hull* for some set of constraints
 - If available, use the convex hull for some set of constraints

Tight and Compact (TC) Formulation

Let's focus on the core of UC formulations:

- Min/max outputs
- SU & SD ramps
- Minimum up/down (TU/TD) times

Tight and Compact (TC) Formulation

Let's focus on the core of UC formulations:

- Min/max outputs
- SU & SD ramps
- Minimum up/down (TU/TD) times, convex hull already available¹
- The whole formulation can be found in the paper TC-UC² and the convex hull proof in gentile *et al.*³

¹D. Rajan and S. Takriti, "Minimum Up/Down Polytopes of the Unit Commitment Problem with Start-Up Costs," IBM, Research Report RC23628, Jun. 2005

²G. Morales-Espana, J. M. Latorre, and A. Ramos, "Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem," *IEEE Transactions on Power Systems*, vol. 28, no. 4, pp. 4897–4908, Nov. 2013

³C. Gentile, G. Morales-España, and A. Ramos, "A tight MIP formulation of the unit commitment problem with start-up and shut-down constraints," en, EURO Journal on Computational Optimization, vol. 5, no. 1, pp. 177–201, Apr. 2016

Formulation for a generating unit (I)

Generation limits taking into account:

$$p_t \le \left(\overline{P} - \underline{P}\right) u_t - \left(\overline{P} - SD\right) w_{t+1} - \max\left(SD - SU, 0\right) v_t \quad \forall t$$
(1)

$$p_t \le \left(\overline{P} - \underline{P}\right) u_t - \left(\overline{P} - SU\right) v_t - \max\left(SU - SD, 0\right) w_{t+1} \quad \forall t$$
(2)

Total generation $= \underline{P} \cdot u_t + p_t$.

	Variables		Parameters
p_t	Energy production above \underline{P}	<u>P</u>	Minimum power output
u_t	Commitment status	\overline{P}	Maximum power output
v_t	Startup status	SU	Startup ramp
w_t	Shutdown status	SD	Shutdown ramp

Formulation for a generating unit (II)

Logical relationship:

$$u_t - u_{t-1} = v_t - w_t \quad \forall t \tag{3}$$
$$v_t \le u_t \quad \forall t \tag{4}$$
$$w_t \le 1 - u_t \quad \forall t \tag{5}$$

where (4) and (5) avoid the simultaneous startup and shutdown. Variable bounds

$$p_t \ge 0 \quad \forall t \tag{6}$$
$$0 \le u_t, v_t, w_t \le 1 \quad \forall t \tag{7}$$

Tightness of the Formulation

Let's study the polytope (1)-(7) using PORTA⁴:

PORTA enumerates all vertices of a convex feasible region

⁴T. Christof and A. Löbel, "PORTA: POlyhedron Representation Transformation Algorithm, Version 1.4.1," Konrad-Zuse-Zentrum für Informationstechnik Berlin, Germany, 2009

Tightness of the Formulation

Let's study the polytope (1)-(7) using PORTA⁴:

- PORTA enumerates all vertices of a convex feasible region
- Example: 3 periods and $\overline{P} = 200, \underline{P} = SU = SD = 100$ for:

• Case 1:
$$TU = TD = 1$$

• Case 2: TU = TD = 2

⁴T. Christof and A. Löbel, "PORTA: POlyhedron Representation Transformation Algorithm, Version 1.4.1," Konrad-Zuse-Zentrum für Informationstechnik Berlin, Germany, 2009

Case 1: Providing The Convex Hull

Formulation:

PORTA results for (TU = TD = 1)

$$p_{t} \leq \left(\overline{P} - \underline{P}\right) u_{t} - \left(\overline{P} - SD\right) w_{t+1}$$

$$- \max\left(SD - SU, 0\right) v_{t} \quad (1)$$

$$p_{t} \leq \left(\overline{P} - \underline{P}\right) u_{t} - \left(\overline{P} - SU\right) v_{t}$$

$$- \max\left(SU - SD, 0\right) w_{t+1} \quad (2)$$

$$u_{t} - u_{t-1} = v_{t} - w_{t} \quad (3)$$

$$v_t \le u_t \tag{4}$$

$$w_t \le 1 - u_t \tag{5}$$

Case 1: Providing The Convex Hull

Formulation:

$$p_{t} \leq \left(\overline{P} - \underline{P}\right) u_{t} - \left(\overline{P} - SD\right) w_{t+1} - \max\left(SD - SU, 0\right) v_{t}$$
(1)

$$p_{t} \leq \left(\overline{P} - \underline{P}\right) u_{t} - \left(\overline{P} - SU\right) v_{t} - \max\left(SU - SD, 0\right) w_{t+1}$$
(2)

$$u_t - u_{t-1} = v_t - w_t$$
 (3)

$$v_t \le u_t \tag{4}$$

$$w_t \le 1 - u_t \tag{5}$$

PORTA results for (TU=TD=1) $u_1, u_2, u_3, v_2, v_3, w_2, w_3, p_1, p_2, p_3$:

$$DIM = 10$$

Case 1: Providing The Convex Hull

Formulation:

$$p_{t} \leq \left(\overline{P} - \underline{P}\right) u_{t} - \left(\overline{P} - SD\right) w_{t+1} - \max\left(SD - SU, 0\right) v_{t}$$
(1)

$$p_t \le \left(\overline{P} - \underline{P}\right) u_t - \left(\overline{P} - SU\right) v_t - \max\left(SU - SD, 0\right) w_{t+1}$$
(2)

$$u_t - u_{t-1} = v_t - w_t$$
 (3)

$$v_t \le u_t \tag{4}$$

$$w_t \le 1 - u_t \tag{5}$$

All vertices are integer ↓ Convex Hull PORTA results for (TU=TD=1) $u_1, u_2, u_3, v_2, v_3, w_2, w_3, p_1, p_2, p_3$:

$$DIM = 10$$

CONV_SECTION

(1)	0	0	0	0	0	0	0	0	0	0
(2)	0	0	1	0	1	0	0	0	0	0
(3)	1	0	0	0	0	1	0	0	0	0
(4)	0	1	0	1	0	0	1	0	0	0
(5)	0	1	1	1	0	0	0	0	0	0
(6)	0	1	1	1	0	0	0	0	0	100
(7)	1	1	0	0	0	0	1	0	0	0
(8)	1	1	0	0	0	0	1	100	0	0
(9)	1	1	1	0	0	0	0	0	0	0
(10)	1	1	1	0	0	0	0	0	0	100
(11)	1	1	1	0	0	0	0	0	100	0
(12)	1	1	1	0	0	0	0	0	100	100
(13)	1	1	1	0	0	0	0	100	0	0
(14)	1	1	1	0	0	0	0	100	0	100
(15)	1	1	1	0	0	0	0	100	100	0
(16)	1	1	1	0	0	0	0	100	100	100
(17)	1	0	1	0	1	1	0	0	0	0
E١	ID										

Case 2: Providing and Using Convex Hulls (I)

Formulation + TU/TD Convex hull:

PORTA results for (TU = TD = 2)

$$p_{t} \leq \left(\overline{P} - \underline{P}\right) u_{t} - \left(\overline{P} - SD\right) w_{t+1} - \max\left(SD - SU, 0\right) v_{t}$$
(1)
$$p_{t} \leq \left(\overline{P} - \underline{P}\right) u_{t} - \left(\overline{P} - SU\right) v_{t}$$

$$-\max(SU-SD,0)w_{t+1}$$
 (2)

$$u_t - u_{t-1} = v_t - w_t$$
 (3)

$$\sum_{i=t-TU+1}^{t} v_i \le u_t \tag{4}$$

$$\sum_{i=t-TD+1}^{t} w_i \le 1 - u_t \tag{5}$$

Case 2: Providing and Using Convex Hulls (I)

Formulation + TU/TD Convex hull:

$$p_{t} \leq \left(\overline{P} - \underline{P}\right) u_{t} - \left(\overline{P} - SD\right) w_{t+1} - \max\left(SD - SU, 0\right) v_{t} \quad (1)$$

$$p_t \leq \left(\overline{P} - \underline{P}\right) u_t - \left(\overline{P} - SU\right) v_t$$

$$-\max(SU-SD,0)w_{t+1}$$
 (2)

$$u_t - u_{t-1} = v_t - w_t$$
 (3)

$$\sum_{i=t-TU+1}^{t} v_i \le u_t \tag{4}$$

$$\sum_{i=t-TD+1}^{t} w_i \le 1 - u_t$$
 (5)

How to remove the fractional vertices?

PORTA results for (TU = TD = 2) $u_1, u_2, u_3, v_2, v_3, w_2, w_3, p_1, p_2, p_3$:

DIM = 10

CC	CONV_SECTION										
(1)	0	0	0	0	0	0	0	0	0	0
(2)	1/2	1	1/2	1/2	0	0	1/2	0	50	0
(3)	1/2	1	1/2	1/2	0	0	1/2	0	50	50
(4)	1/2	1	1/2	1/2	0	0	1/2	50	50	0
(5)	1/2	1	1/2	1/2	0	0	1/2	50	50	50
(6)	0	0	1	0	1	0	0	0	0	0
(7)	1	0	0	0	0	1	0	0	0	0
(8)	0	1	1	1	0	0	0	0	0	0
(9)	0	1	1	1	0	0	0	0	0	100
(10)	1	1	0	0	0	0	1	0	0	0
(11)	1	1	0	0	0	0	1	100	0	0
(12)	1	1	1	0	0	0	0	0	0	0
(13)	1	1	1	0	0	0	0	0	0	100
(14)	1	1	1	0	0	0	0	0	100	0
(15)	1	1	1	0	0	0	0	0	100	100
(16)	1	1	1	0	0	0	0	100	0	0
(17)	1	1	1	0	0	0	0	100	0	100
(18)	1	1	1	0	0	0	0	100	100	0
(19)	1	1	1	0	0	0	0	100	100	100
EN	ID										

Case 2: Providing and Using Convex Hulls (II)

Reformulating (1) and (2) for $TU \ge 2$:

$$p_t \leq \left(\overline{P} - \underline{P}\right) u_t - \left(\overline{P} - SD\right) w_{t+1}$$

$$-\max\left(SD - SU, 0\right) v_t \tag{1}$$

$$p_t \leq \left(\overline{P} - \underline{P}\right) u_t - \left(\overline{P} - SU\right) v_t$$

$$-\frac{\max\left(SU-SD,0\right)w_{t+1}}{2}$$
 (2)

$$p_{t} \leq \left(\overline{P} - \underline{P}\right) u_{t} - \left(\overline{P} - SU\right) v_{t} \\ - \left(\overline{P} - SD\right) w_{t+1}$$
(8)

$$u_t - u_{t-1} = v_t - w_t$$
 (3)

$$\sum_{i=t-TU+1}^{t} v_i \le u_t \tag{4}$$

$$t = t - TU + 1$$

$$\sum_{i=t-TD+1}^{t} w_i \le 1 - u_t \tag{5}$$

PORTA results for (TU = TD = 2) $u_1, u_2, u_3, v_2, v_3, w_2, w_3, p_1, p_2, p_3$:

$$DIM = 10$$

CC	CONV_SECTION										
(1)	0	0	0	0	0	0	0	0	0	0
(2)	0	0	1	0	1	0	0	0	0	0
(3)	1	0	0	0	0	1	0	0	0	0
(4)	0	1	1	1	0	0	0	0	0	0
(5)	0	1	1	1	0	0	0	0	0	100
(6)	1	1	0	0	0	0	1	0	0	0
(7)	1	1	0	0	0	0	1	100	0	0
(8)	1	1	1	0	0	0	0	0	0	0
(9)	1	1	1	0	0	0	0	0	0	100
(10)	1	1	1	0	0	0	0	0	100	0
(11)	1	1	1	0	0	0	0	0	100	100
(12)	1	1	1	0	0	0	0	100	0	0
(13)	1	1	1	0	0	0	0	100	0	100
(14)	1	1	1	0	0	0	0	100	100	0
(15)	1	1	1	0	0	0	0	100	100	100
E١	١D										

Case 2: Providing and Using Convex Hulls (II)

(5)

Reformulating (1) and (2) for $TU \ge 2$:

$$p_t \leq \left(\overline{P} - \underline{P}\right) u_t - \left(\overline{P} - SD\right) w_{t+1}$$

$$\frac{\max\left(SD - SU, 0\right)v_t}{(1)}$$

$$p_t \leq \left(\overline{P} - \underline{P}\right) u_t - \left(\overline{P} - SU\right) v_t$$

$$-\frac{\max\left(SU-SD,0\right)w_{t+1}}{2}$$
 (2)

$$p_{t} \leq \left(\overline{P} - \underline{P}\right) u_{t} - \left(\overline{P} - SU\right) v_{t} \\ - \left(\overline{P} - SD\right) w_{t+1}$$
(8)

$$u_t - u_{t-1} = v_t - w_t$$
 (3)

$$\sum_{i=t-TU+1}^{t} v_i \le u_t \tag{4}$$

$$t - TU + 1$$

$$\sum_{i=t-TD+1} w_i \le 1 - u_t$$

PORTA results for (TU = TD = 2) $u_1, u_2, u_3, v_2, v_3, w_2, w_3, p_1, p_2, p_3$:

$$DIM = 10$$

CONV_SECTION											
(1)	0	0	0	0	0	0	0	0	0	0
(2)	0	0	1	0	1	0	0	0	0	0
(3)	1	0	0	0	0	1	0	0	0	0
(4)	0	1	1	1	0	0	0	0	0	0
(5)	0	1	1	1	0	0	0	0	0	100
(6)	1	1	0	0	0	0	1	0	0	0
(7)	1	1	0	0	0	0	1	100	0	0
(8)	1	1	1	0	0	0	0	0	0	0
(9)	1	1	1	0	0	0	0	0	0	100
(10)	1	1	1	0	0	0	0	0	100	0
(11)	1	1	1	0	0	0	0	0	100	100
(12)	1	1	1	0	0	0	0	100	0	0
(13)	1	1	1	0	0	0	0	100	0	100
(14)	1	1	1	0	0	0	0	100	100	0
(15)	1	1	1	0	0	0	0	100	100	100
E١	١D										

\Rightarrow Convex Hull

ŤUDelft

Outline

Short-term Planning (UC)

- Unit Commitment
- Why MIP?
- Improving MIP Formulations

2 Case Studies

Deterministic Self-UC

- Stochastic UCs: Different Solvers
- Stochastic UCs: IEEE-118 Bus System

3 Conclusions & Collaboration?

Self-UC case Study

■ Case Study: Self-UC for 10-units, for 32-512 days time span

Basic constraints: max/min, SU/SD and TU/TD

Self-UC case Study

Case Study: Self-UC for 10-units, for 32-512 days time span

Basic constraints: max/min, SU/SD and TU/TD

Formulations tested –modeling the same MIP problem:

- **T** C^5 Tight & Compact: a $2^{3 \times 10 \times 512}$ combinatorial problem
- $1bin^6$ 1-binary variable (u): $2^{10 \times 512}$ combinations
- 3binTUTD⁷: 3-binary variable version (u,v,w) + TU/TD convex hull: $2^{3 \times 10 \times 512}$ combinations

⁵G. Morales-Espana, J. M. Latorre, and A. Ramos, "Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem," *IEEE Transactions on Power Systems*, vol. 28, no. 4, pp. 4897–4908, Nov. 2013

⁶M. Carrion and J. Arroyo, "A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem," *IEEE Transactions on Power Systems*, vol. 21, no. 3, pp. 1371–1378, 2006

⁷J. Ostrowski, M. F Anjos, and A. Vannelli, "Tight Mixed Integer Linear Programming Formulations for the Unit Commitment Problem," *IEEE Transactions on Power Systems*, vol. 27, no. 1, pp. 39–46, Feb. 2012

Self-UC case Study

Case Study: Self-UC for 10-units, for 32-512 days time span

Basic constraints: max/min, SU/SD and TU/TD

Formulations tested –modeling the same MIP problem:

- **T** C^5 Tight & Compact: a $2^{3 \times 10 \times 512}$ combinatorial problem
- $1bin^6$ 1-binary variable (u): $2^{10 \times 512}$ combinations
- 3binTUTD⁷: 3-binary variable version (u,v,w) + TU/TD convex hull: $2^{3 \times 10 \times 512}$ combinations

■ All results are expressed as percentages of 1bin results

⁵G. Morales-Espana, J. M. Latorre, and A. Ramos, "Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem," *IEEE Transactions on Power Systems*, vol. 28, no. 4, pp. 4897–4908, Nov. 2013

⁶M. Carrion and J. Arroyo, "A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem," *IEEE Transactions on Power Systems*, vol. 21, no. 3, pp. 1371–1378, 2006

⁷J. Ostrowski, M. F Anjos, and A. Vannelli, "Tight Mixed Integer Linear Programming Formulations for the Unit Commitment Problem," *IEEE Transactions on Power Systems*, vol. 27, no. 1, pp. 39–46, Feb. 2012

Case Study: Self-UC (I)

Results presented as percentages of 1bin:

	3binTUTD (%)	TC (%)
Constraints	<78	<48
Nonzeros	89	72
Real Vars	33.3	33.3
Bin Vars	=300	=300

 $\bigcup_{\substack{\downarrow\\ TC \text{ is more Compact}}}$

Case Study: Self-UC (I)

Results presented as percentages of 1bin:

	3binTUTD (%)	TC (%)
Constraints	<78	<48
Nonzeros	89	72
Real Vars	33.3	33.3
Bin Vars	=300	=300
Integrality Gap	34	=0

 \downarrow *TC* is Tighter **and Simultaneously** more Compact

Case Study: Self-UC (I)

Results presented as percentages of 1bin:

	3binTUTD (%)	TC (%)
Constraints	<78	<48
Nonzeros	89	72
Real Vars	33.3	33.3
Bin Vars	=300	=300
Integrality Gap	34	=0
MIP runtime (speedup)	4.9 (20x)	0.107 (995x)
	\downarrow	

TC is Tighter and Simultaneously more Compact

Case Study: Self-UC (II)

Results presented as percentages of 1bin:

	3binTUTD (%)	TC (%)			
Constraints	<78	<48			
Nonzeros	89	72			
Real Vars	33.3	33.3			
Bin Vars	=300	=300			
Integrality Gap	34	=0			
MIP runtime	4.9	0.107			
LP runtime	80	49.8			
\downarrow					
TI TCC I	 A second sec second second sec				

The *TC* formulation describe the *convex hull* then solving MIP (non-convex) as LP (convex)

Outline

1 Short-term Planning (UC)

- Unit Commitment
- Why MIP?
- Improving MIP Formulations

2 Case Studies

- Deterministic Self-UC
- Stochastic UCs: Different Solvers
- Stochastic UCs: IEEE-118 Bus System

3 Conclusions & Collaboration?

Stochastic UC: Case Study

10 generating units for a time span of 2 days

10 to 200 scenarios in demand

Stochastic UC: Case Study

- 10 generating units for a time span of 2 days
- 10 to 200 scenarios in demand
- Comparing TC, 1bin, 3binTUTD and Two additional formulations Sh⁸ and 3bin⁹

⁸T. Li and M. Shahidehpour, "Price-based unit commitment: A case of Lagrangian relaxation versus mixed integer programming," *IEEE Transactions on Power Systems*, vol. 20, no. 4, pp. 2015–2025, Nov. 2005

⁹J. Arroyo and A. Conejo, "Optimal response of a thermal unit to an electricity spot market," *Power Systems, IEEE Transactions on*, vol. 15, no. 3, pp. 1098–1104, 2000

Stochastic UC: Case Study

- 10 generating units for a time span of 2 days
- 10 to 200 scenarios in demand
- Comparing TC, 1bin, 3binTUTD and Two additional formulations Sh⁸ and 3bin⁹
- Different Solvers
 - Cplex 12.6.0
 - Gurobi 5.6.2
 - XPRESS 25.01.07
- Stop criteria:
 - Time limit: 5 hours or
 - Optimality tolerance: 0.1 %

⁸T. Li and M. Shahidehpour, "Price-based unit commitment: A case of Lagrangian relaxation versus mixed integer programming," *IEEE Transactions on Power Systems*, vol. 20, no. 4, pp. 2015–2025, Nov. 2005

⁹J. Arroyo and A. Conejo, "Optimal response of a thermal unit to an electricity spot market," *Power Systems, IEEE Transactions on*, vol. 15, no. 3, pp. 1098–1104, 2000

Stochastic: Cplex

Stochastic: Cplex

TC deals with 200 scenarios within the time that others deal with 40

Stochastic: Gurobi

TC deals with 200 scenarios within the time that others deal with 50

Stochastic: XPRESS

TC deals with 200 scenarios within the time that others deal with 80

Outline

1 Short-term Planning (UC)

- Unit Commitment
- Why MIP?
- Improving MIP Formulations

2 Case Studies

- Deterministic Self-UC
- Stochastic UCs: Different Solvers
- Stochastic UCs: IEEE-118 Bus System

3 Conclusions & Collaboration?

IEEE-118 Bus System

54 thermal units; 118 buses; 186 transmission lines; 91 loads

- 24 hours time span
- 3 wind farms, 20 wind power scenarios
- Stop Criteria in Cplex 12.6.0
 - 0.05% opt. tolerance or 24h time limit

UC performance comparisons (I)

	Traditional	
	Energy-Block Scheduling	
	3binTUTD ¹⁰	ТС
o.f. [k\$]	829.04	829.02
opt.tol [%]	0.224	0.023
IntGap [%]	1.27	0.58

■ Compared with *3binTUTD*, *TC*:

Iowered IntGap by 53.3%

TUDelft

¹⁰FERC, "RTO Unit Commitment Test System," Federal Energy and Regulatory Commission, Washington DC, USA, Tech. Rep., Jul. 2012, p. 55

UC performance comparisons (I)

	Traditional Energy-Block Scheduling	
	3binTUTD ¹⁰	ТС
o.f. [k\$]	829.04	829.02
opt.tol [%]	0.224	0.023
IntGap [%]	1.27	0.58
MIP runtime [s]	86400	206.5

Compared with *3binTUTD*, *TC*:

- Iowered IntGap by 53.3%
- is more than 420x faster

¹⁰FERC, "RTO Unit Commitment Test System," Federal Energy and Regulatory Commission, Washington DC, USA, Tech. Rep., Jul. 2012, p. 55

UC performance comparisons (II)

	Traditional Energy-Block Scheduling	
	3binTUTD ¹¹	ТС
o.f. [k\$]	829.04	829.02
opt.tol [%]	0.224	0.023
IntGap [%]	1.27	0.58
MIP runtime [s]	86400	206.5
LP runtime [s]	246.76	22.03

■ *TC* solved the MIP before *3binTUTD* solved the LP

■ within the required opt. tolerance (0.05%)

TUDelft

¹¹FERC, "RTO Unit Commitment Test System," Federal Energy and Regulatory Commission, Washington DC, USA, Tech. Rep., Jul. 2012, p. 55

UC performance comparisons (III)

	Traditional		Power-Based
	Energy-based UC		UC
	3binTUTD	ТС	P-TC
o.f. [k\$]	829.04	829.02	818.13
opt.tol [%]	0.224	0.023	0.049
IntGap [%]	1.27	0.58	
MIP runtime [s]	86400	206.5	
LP runtime [s]	246.76	22.03	

P- TC^{12} has a more detailed and accurate UC representation

¹²G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP Formulation for Joint Market-Clearing of Energy and Reserves Based on Ramp Scheduling," *IEEE Transactions on Power Systems*, vol. 29, no. 1, pp. 476–488, 2014

UC performance comparisons (III)

	Traditional Energy-based UC		Power-Based
			UC
	3binTUTD	ТС	P-TC
o.f. [k\$]	829.04	829.02	818.13
opt.tol [%]	0.224	0.023	0.049
IntGap [%]	1.27	0.58	0.74
MIP runtime [s]	86400	206.5	867.9
LP runtime [s]	246.76	22.03	38.1

 \blacksquare *P*-*TC*¹² has a more detailed and accurate UC representation

- it solved 100× faster than *3binTUTD*
- its UC core is also a convex hull¹³

¹²G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP Formulation for Joint Market-Clearing of Energy and Reserves Based on Ramp Scheduling," *IEEE Transactions on Power Systems*, vol. 29, no. 1, pp. 476–488, 2014

¹³G. Morales-España, C. Gentile, and A. Ramos, "Tight MIP formulations of the power-based unit commitment problem," OR Spectrum, vol. 37, no. 4, pp. 929–950, May 2015

Outline

Short-term Planning (UC)

- Unit Commitment
- Why MIP?
- Improving MIP Formulations

2 Case Studies

- Deterministic Self-UC
- Stochastic UCs: Different Solvers
- Stochastic UCs: IEEE-118 Bus System

3 Conclusions & Collaboration?

Beware of what matters in good MIP formulations

Tightness & Compactness

Beware of what matters in good MIP formulations

- Tightness & Compactness
- \uparrow Binaries \Rightarrow \uparrow Solving time False myth

Beware of what matters in good MIP formulations

- Tightness & Compactness
- \uparrow Binaries \Rightarrow \uparrow Solving time False myth

Use the convex hull of some set of constraints

Beware of what matters in good MIP formulations

- Tightness & Compactness
- \uparrow Binaries \Rightarrow \uparrow Solving time False myth

Use the convex hull of some set of constraints

- Minimum up/down times¹⁴
- Unit operation in Energy-based UC¹⁵
- Unit operation in Power-based UC¹⁶
- $\Rightarrow \downarrow$ solving time by simultaneously T&Cing the final UCs^{17,18}

¹⁴D. Rajan and S. Takriti, "Minimum Up/Down Polytopes of the Unit Commitment Problem with Start-Up Costs," IBM, Research Report RC23628, Jun. 2005

¹⁵C. Gentile, G. Morales-España, and A. Ramos, "A tight MIP formulation of the unit commitment problem with start-up and shut-down constraints," en, *EURO Journal on Computational Optimization*, vol. 5, no. 1, pp. 177–201, Apr. 2016

¹⁶G. Morales-España, C. Gentile, and A. Ramos, "Tight MIP formulations of the power-based unit commitment problem," OR Spectrum, vol. 37, no. 4, pp. 929–950, May 2015

¹⁷G. Morales-Espana, J. M. Latorre, and A. Ramos, "Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem," *IEEE Transactions on Power Systems*, vol. 28, no. 4, pp. 4897–4908, Nov. 2013

¹⁸G. Morales-Espana, J. M. Latorre, and A. Ramos, "Tight and Compact MILP Formulation of Start-Up and Shut-Down Ramping in Unit Commitment," *IEEE Transactions on Power Systems*, vol. 28, no. 2, pp. 1288–1296, 2013

Conclusions

- $\blacksquare \text{ Better UC core in stochastic UCs} \Rightarrow$
 - Critical solving time reductions

Conclusions

- Better UC core in stochastic UCs \Rightarrow
 - Critical solving time reductions
- If convex hulls are not available \Rightarrow
 - Create simultaneously tight and compact models
 - by reformulating the problem, e.g., CCGTs¹⁹
 - Key hint: start removing all big-M parameters

¹⁹G. Morales-España, C. M. Correa-Posada, and A. Ramos, "Tight and Compact MIP Formulation of Configuration-Based Combined-Cycle Units," *IEEE Transactions on Power Systems*, vol. 31, no. 2, pp. 1350–1359, Mar. 2016

Possible collaboration?

With PhD Students (papers envisioned)

- Convex hull for variable SU costs
 - Almost there (just one constraint needs to be added)
- Stochastic UC dealing with intra-period uncertainty
 - Based on power-based UC

Possible collaboration?

With PhD Students (papers envisioned)

- Convex hull for variable SU costs
 - Almost there (just one constraint needs to be added)
- Stochastic UC dealing with intra-period uncertainty

Based on power-based UC

- Master theses at Uniper Benelux
 - Stochastic optimization of combined heat and power plants
 - Long term investment model for combined heat and power systems

Possible collaboration?

With PhD Students (papers envisioned)

- Convex hull for variable SU costs
 - Almost there (just one constraint needs to be added)
- Stochastic UC dealing with intra-period uncertainty

Based on power-based UC

- Master theses at Uniper Benelux
 - Stochastic optimization of combined heat and power plants
 - Long term investment model for combined heat and power systems
- Master theses with Jedlix
 - Robust smart charging of EVs
 - Aggregated EV models to deal with uncertainty

Questions

Thank you for your attention

Contact Information: g.a.moralesespama@tudelft.nl

For Further Reading

- J. Arroyo and A. Conejo, "Optimal response of a thermal unit to an electricity spot market," *Power Systems, IEEE Transactions on*, vol. 15, no. 3, pp. 1098–1104, 2000.
- M. Carrion and J. Arroyo, "A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem," *IEEE Transactions on Power Systems*, vol. 21, no. 3, pp. 1371–1378, 2006.
 - T. Christof and A. Löbel, "PORTA: POlyhedron Representation Transformation Algorithm, Version 1.4.1," *Konrad-Zuse-Zentrum für Informationstechnik Berlin, Germany*, 2009.

- FERC, "RTO Unit Commitment Test System," Federal Energy and Regulatory Commission, Washington DC, USA, Tech. Rep., Jul. 2012, p. 55.
- C. Gentile, G. Morales-España, and A. Ramos, "A tight MIP formulation of the unit commitment problem with start-up and shut-down constraints," en, *EURO Journal on Computational Optimization*, vol. 5, no. 1, pp. 177–201, Apr. 2016.
 - T. Li and M. Shahidehpour, "Price-based unit commitment: A case of Lagrangian relaxation versus mixed integer programming," *IEEE Transactions on Power Systems*, vol. 20, no. 4, pp. 2015–2025, Nov. 2005.

For Further Reading (cont.)

- G. Morales-España, C. M. Correa-Posada, and A. Ramos, "Tight and Compact MIP Formulation of Configuration-Based Combined-Cycle Units," *IEEE Transactions on Power Systems*, vol. 31, no. 2, pp. 1350–1359, Mar. 2016.
- G. Morales-Espana, J. M. Latorre, and A. Ramos, "Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem," *IEEE Transactions on Power Systems*, vol. 28, no. 4, pp. 4897–4908, Nov. 2013.
- G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, "An MIP Formulation for Joint Market-Clearing of Energy and Reserves Based on Ramp Scheduling," *IEEE Transactions on Power Systems*, vol. 29, no. 1, pp. 476–488, 2014.
- G. Morales-España, C. Gentile, and A. Ramos, "Tight MIP formulations of the power-based unit commitment problem," *OR Spectrum*, vol. 37, no. 4, pp. 929–950, May 2015.
- G. Morales-Espana, J. M. Latorre, and A. Ramos, "Tight and Compact MILP Formulation of Start-Up and Shut-Down Ramping in Unit Commitment," *IEEE Transactions on Power Systems*, vol. 28, no. 2, pp. 1288–1296, 2013.

For Further Reading (cont.)

J. Ostrowski, M. F Anjos, and A. Vannelli, "Tight Mixed Integer Linear Programming Formulations for the Unit Commitment Problem," *IEEE Transactions on Power Systems*, vol. 27, no. 1, pp. 39–46, Feb. 2012.

D. Rajan and S. Takriti, "Minimum Up/Down Polytopes of the Unit Commitment Problem with Start-Up Costs," IBM, Research Report RC23628, Jun. 2005.

