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Short-term Planning (UC) Unit Commitment
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Unit Commit for Short-term Planning

Objective:
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Meet system demand for electricity
Satisfy the system constraints (e.g., technical, environmental)
Provide a level of flexibility (reserves) to accommodate RES energy
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Objective:

To schedule generating units (thermal, nuclear, hydro, etc.) at
minimum cost (bids) over the study period subject to:

Meet system demand for electricity
Satisfy the system constraints (e.g., technical, environmental)
Provide a level of flexibility (reserves) to accommodate RES energy

Planning:

the physical operation

To make Startup and shutdown decisions
To obtain hourly schedules (production) for all generating units

the economic issues

Give market signals (prices)
Forecast operational cost
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Why do we need 0/1 variables?

Non-linear generation range

MinGeneration · u ≤ p ≤ MaxGeneration · u

where u is an on/off decision
and p is the unit generation output

Non-linear operating costs

FixedCost · u + VariableCost · p

Startup and shutdown costs, e.g.,

suc ≥ SUcost (ut − ut−1)
suc ≥ 0

Other cases:

CCGTs, line switching, dynamic ramping

MIP: Global optimum or within a tolerance
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Short-term Planning (UC) Why MIP?

Perceptions Have Changed

California 7-day (UC) model:
48939 constraints, 25755 variables (2856 binary)

Reported results 1989 – machine unknown

2 day model: 8 hours, no progress
7 day model: 1 hour only to solve the LP

California 7-day model (on a desktop PC)

CPLEX 6.5 (1999): 22 minutes, optimal
CPLEX 11.0 (2007): 71 seconds, optimal
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MIP Speedups 1990-2014

Improvement 2009-2014: Gurobi ≈ CPLEX: 29.4x

Overall Improvement 1990 to 2014:

Algorithms: 870 000x
Machines: 6 500x
Net: Algorithm x Machine 5 600 000 000x
(180 years / 5.6B ≈ 1 second)

∼ 3x faster year-to-year
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Specific MIP-based UC Examples

EDF (main electricity producer in France)

58 nuclear units
47 thermal units
448 hydro power plants
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Specific MIP-based UC Examples

EDF (main electricity producer in France)

58 nuclear units
47 thermal units
448 hydro power plants

All US ISOs using MIP for their

UCs: Day-ahead market, residual UC, real-time look-ahead market
Since MIP implementation, savings:

PJM (2004): ∼100 Million $/year
CAISO (2009): ∼52 Million $/year

Euphemia: Pan-European Electricity Market Integration Algorithm

Electricity market for 23 European countries

So, what is left to do?
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To guarantee security, e.g.,

N-1 criterion

To better exploit the system flexibility, e.g.,

CCGTs, dynamic ramping, line switching

The time to solve UC is still a critical limitation

How to reduce solving times?

Computer power (e.g., clusters)
Solving algorithms (e.g., solvers, decomposition techniques)
Improving the MIP-Based UC formulation ⇒ ↓ solving times
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Convex Hull: The Tightest Formulation
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Convex Hull: The Tightest Formulation

Convex Hull (CH)

Smallest convex feasible region
containing all feasible integer
points

The convex hull problem solves an MIP as an LP

Each vertex satisfies the integrality constraints
So an LP optimum is also an MIP optimum

Unfortunately, the convex hull is typically too difficult to obtain

To solve an MIP is usually easier than trying to find its convex hull
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Short-term Planning (UC) Improving MIP Formulations

Concepts: Tightness and Compactness

Tightness: defines the search space (relaxed feasible region) that
the solver needs to explore to find the solution

Compactness (problem size): defines the searching speed (data to
process) that the solver takes to find the solution
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Concepts: Tightness and Compactness

Tightness: defines the search space (relaxed feasible region) that
the solver needs to explore to find the solution

Compactness (problem size): defines the searching speed (data to
process) that the solver takes to find the solution

Convex hull: The tightest formulation ⇒ MIP solved as LP
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Tightening an MIP Formulation

The most common strategy is adding cuts

In fact, this is the most effective strategy of current MIP solvers
They should be added during the B&B ⇒ ↓ Time
and not directly to the model, huge number of inequalities ⇒ ↑ Time
Trade-off: Tightness vs. Compactness

Improving the MIP formulation

Provide the convex hull for some set of constraints
If available, use the convex hull for some set of constraints
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Tight and Compact (TC) Formulation

Let’s focus on the core of UC formulations:

Min/max outputs
SU & SD ramps
Minimum up/down (T U/T D) times
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Short-term Planning (UC) Improving MIP Formulations

Tight and Compact (TC) Formulation

Let’s focus on the core of UC formulations:

Min/max outputs
SU & SD ramps
Minimum up/down (T U/T D) times, convex hull already available1

The whole formulation can be found in the paper TC-UC2 and the
convex hull proof in gentile et al.3

1D. Rajan and S. Takriti, “Minimum Up/Down Polytopes of the Unit Commitment Problem with Start-Up Costs,”
IBM, Research Report RC23628, Jun. 2005

2G. Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and Compact MILP Formulation for the Thermal Unit
Commitment Problem,” IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 4897–4908, Nov. 2013

3C. Gentile, G. Morales-España, and A. Ramos, “A tight MIP formulation of the unit commitment problem with start-up
and shut-down constraints,” en, EURO Journal on Computational Optimization, vol. 5, no. 1, pp. 177–201, Apr. 2016
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Short-term Planning (UC) Improving MIP Formulations

Formulation for a generating unit (I)

Generation limits taking into account:

pt ≤
(

P − P
)

ut −
(

P − SD
)

wt+1 − max (SD−SU, 0) vt ∀t

(1)

pt ≤
(

P − P
)

ut −
(

P − SU
)

vt − max (SU−SD, 0) wt+1 ∀t

(2)

Total generation = P · ut + pt.

Variables Parameters

pt Energy production above P P Minimum power output

ut Commitment status P Maximum power output

vt Startup status SU Startup ramp

wt Shutdown status SD Shutdown ramp
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Short-term Planning (UC) Improving MIP Formulations

Formulation for a generating unit (II)

Logical relationship:

ut − ut−1 = vt − wt ∀t (3)

vt ≤ ut ∀t (4)

wt ≤ 1 − ut ∀t (5)

where (4) and (5) avoid the simultaneous startup and shutdown.

Variable bounds

pt ≥ 0 ∀t (6)

0 ≤ ut, vt, wt ≤ 1 ∀t (7)
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Short-term Planning (UC) Improving MIP Formulations

Tightness of the Formulation

Let’s study the polytope (1)-(7) using PORTA4:

PORTA enumerates all vertices of a convex feasible region

4T. Christof and A. Löbel, “PORTA: POlyhedron Representation Transformation Algorithm, Version 1.4.1,”
Konrad-Zuse-Zentrum für Informationstechnik Berlin, Germany, 2009
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Short-term Planning (UC) Improving MIP Formulations

Tightness of the Formulation

Let’s study the polytope (1)-(7) using PORTA4:

PORTA enumerates all vertices of a convex feasible region

Example: 3 periods and P = 200, P = SU = SD = 100 for:

Case 1: T U = T D = 1
Case 2: T U = T D = 2

4T. Christof and A. Löbel, “PORTA: POlyhedron Representation Transformation Algorithm, Version 1.4.1,”
Konrad-Zuse-Zentrum für Informationstechnik Berlin, Germany, 2009
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Short-term Planning (UC) Improving MIP Formulations

Case 1: Providing The Convex Hull
Formulation:

pt ≤
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P − P
)
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(

P − SD
)

wt+1

− max (SD−SU, 0) vt (1)

pt ≤
(

P − P
)

ut −
(

P − SU
)

vt

− max (SU−SD, 0) wt+1 (2)

ut − ut−1 = vt − wt (3)

vt ≤ ut (4)

wt ≤ 1 − ut (5)

PORTA results for (T U =T D =1)
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ut − ut−1 = vt − wt (3)

vt ≤ ut (4)

wt ≤ 1 − ut (5)

PORTA results for (T U =T D =1)
u1, u2, u3, v2, v3, w2, w3, p1, p2, p3:

DIM = 10

CONV_SECTION
( 1) 0 0 0 0 0 0 0 0 0 0
( 2) 0 0 1 0 1 0 0 0 0 0
( 3) 1 0 0 0 0 1 0 0 0 0
( 4) 0 1 0 1 0 0 1 0 0 0
( 5) 0 1 1 1 0 0 0 0 0 0
( 6) 0 1 1 1 0 0 0 0 0 100
( 7) 1 1 0 0 0 0 1 0 0 0
( 8) 1 1 0 0 0 0 1 100 0 0
( 9) 1 1 1 0 0 0 0 0 0 0
( 10) 1 1 1 0 0 0 0 0 0 100
( 11) 1 1 1 0 0 0 0 0 100 0
( 12) 1 1 1 0 0 0 0 0 100 100
( 13) 1 1 1 0 0 0 0 100 0 0
( 14) 1 1 1 0 0 0 0 100 0 100
( 15) 1 1 1 0 0 0 0 100 100 0
( 16) 1 1 1 0 0 0 0 100 100 100
( 17) 1 0 1 0 1 1 0 0 0 0

END
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(

P − P
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ut −
(

P − SU
)

vt

− max (SU−SD, 0) wt+1 (2)

ut − ut−1 = vt − wt (3)

vt ≤ ut (4)

wt ≤ 1 − ut (5)

All vertices are integer
⇓

Convex Hull

PORTA results for (T U =T D =1)
u1, u2, u3, v2, v3, w2, w3, p1, p2, p3:

DIM = 10

CONV_SECTION
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Short-term Planning (UC) Improving MIP Formulations

Case 2: Providing and Using Convex Hulls (I)
Formulation + T U/T D Convex hull:

pt ≤
(

P − P
)

ut −
(

P − SD
)

wt+1

− max (SD−SU, 0) vt (1)

pt ≤
(

P − P
)

ut −
(

P − SU
)

vt

− max (SU−SD, 0) wt+1 (2)

ut − ut−1 = vt − wt (3)

t
∑

i=t−T U+1

vi≤ ut (4)

t
∑

i=t−T D+1

wi≤ 1 − ut (5)

PORTA results for (T U =T D =2)
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pt ≤
(
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)
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P − P
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ut −
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)

vt

− max (SU−SD, 0) wt+1 (2)

ut − ut−1 = vt − wt (3)

t
∑

i=t−T U+1

vi≤ ut (4)

t
∑

i=t−T D+1

wi≤ 1 − ut (5)

How to remove the fractional
vertices?

PORTA results for (T U =T D =2)
u1, u2, u3, v2, v3, w2, w3, p1, p2, p3:

DIM = 10

CONV_SECTION
( 1) 0 0 0 0 0 0 0 0 0 0
( 2) 1/2 1 1/2 1/2 0 0 1/2 0 50 0
( 3) 1/2 1 1/2 1/2 0 0 1/2 0 50 50
( 4) 1/2 1 1/2 1/2 0 0 1/2 50 50 0
( 5) 1/2 1 1/2 1/2 0 0 1/2 50 50 50
( 6) 0 0 1 0 1 0 0 0 0 0
( 7) 1 0 0 0 0 1 0 0 0 0
( 8) 0 1 1 1 0 0 0 0 0 0
( 9) 0 1 1 1 0 0 0 0 0 100
( 10) 1 1 0 0 0 0 1 0 0 0
( 11) 1 1 0 0 0 0 1 100 0 0
( 12) 1 1 1 0 0 0 0 0 0 0
( 13) 1 1 1 0 0 0 0 0 0 100
( 14) 1 1 1 0 0 0 0 0 100 0
( 15) 1 1 1 0 0 0 0 0 100 100
( 16) 1 1 1 0 0 0 0 100 0 0
( 17) 1 1 1 0 0 0 0 100 0 100
( 18) 1 1 1 0 0 0 0 100 100 0
( 19) 1 1 1 0 0 0 0 100 100 100

END

23 / 46



Short-term Planning (UC) Improving MIP Formulations

Case 2: Providing and Using Convex Hulls (II)
Reformulating (1) and (2) for T U ≥ 2:

pt ≤
(

P − P
)

ut −
(

P − SD
)

wt+1

− max (SD−SU, 0) vt (1)

pt ≤
(

P − P
)

ut −
(

P − SU
)

vt

− max (SU−SD, 0) wt+1 (2)

pt ≤
(

P − P
)

ut −
(

P − SU
)

vt

−
(

P − SD
)

wt+1 (8)

ut − ut−1 = vt − wt (3)

t
∑

i=t−T U+1

vi ≤ ut (4)

t
∑

i=t−T D+1

wi ≤ 1 − ut (5)

PORTA results for (T U =T D =2)
u1, u2, u3, v2, v3, w2, w3, p1, p2, p3:

DIM = 10

CONV_SECTION
( 1) 0 0 0 0 0 0 0 0 0 0
( 2) 0 0 1 0 1 0 0 0 0 0
( 3) 1 0 0 0 0 1 0 0 0 0
( 4) 0 1 1 1 0 0 0 0 0 0
( 5) 0 1 1 1 0 0 0 0 0 100
( 6) 1 1 0 0 0 0 1 0 0 0
( 7) 1 1 0 0 0 0 1 100 0 0
( 8) 1 1 1 0 0 0 0 0 0 0
( 9) 1 1 1 0 0 0 0 0 0 100
( 10) 1 1 1 0 0 0 0 0 100 0
( 11) 1 1 1 0 0 0 0 0 100 100
( 12) 1 1 1 0 0 0 0 100 0 0
( 13) 1 1 1 0 0 0 0 100 0 100
( 14) 1 1 1 0 0 0 0 100 100 0
( 15) 1 1 1 0 0 0 0 100 100 100

END
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Short-term Planning (UC) Improving MIP Formulations

Case 2: Providing and Using Convex Hulls (II)
Reformulating (1) and (2) for T U ≥ 2:

pt ≤
(

P − P
)

ut −
(

P − SD
)

wt+1

− max (SD−SU, 0) vt (1)

pt ≤
(

P − P
)

ut −
(

P − SU
)

vt

− max (SU−SD, 0) wt+1 (2)

pt ≤
(

P − P
)

ut −
(

P − SU
)

vt

−
(

P − SD
)

wt+1 (8)

ut − ut−1 = vt − wt (3)

t
∑

i=t−T U+1

vi ≤ ut (4)

t
∑

i=t−T D+1

wi ≤ 1 − ut (5)

PORTA results for (T U =T D =2)
u1, u2, u3, v2, v3, w2, w3, p1, p2, p3:

DIM = 10

CONV_SECTION
( 1) 0 0 0 0 0 0 0 0 0 0
( 2) 0 0 1 0 1 0 0 0 0 0
( 3) 1 0 0 0 0 1 0 0 0 0
( 4) 0 1 1 1 0 0 0 0 0 0
( 5) 0 1 1 1 0 0 0 0 0 100
( 6) 1 1 0 0 0 0 1 0 0 0
( 7) 1 1 0 0 0 0 1 100 0 0
( 8) 1 1 1 0 0 0 0 0 0 0
( 9) 1 1 1 0 0 0 0 0 0 100
( 10) 1 1 1 0 0 0 0 0 100 0
( 11) 1 1 1 0 0 0 0 0 100 100
( 12) 1 1 1 0 0 0 0 100 0 0
( 13) 1 1 1 0 0 0 0 100 0 100
( 14) 1 1 1 0 0 0 0 100 100 0
( 15) 1 1 1 0 0 0 0 100 100 100

END

⇒ Convex Hull
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Case Study: Self-UC for 10-units, for 32-512 days time span

Basic constraints: max/min, SU/SD and TU/TD

Formulations tested –modeling the same MIP problem:

TC5 Tight & Compact: a 23×10×512 combinatorial problem
1bin6 1-binary variable (u): 210×512 combinations
3binTUTD7: 3-binary variable version (u,v,w) + T U/T D convex

hull: 23×10×512 combinations

5G. Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and Compact MILP Formulation for the Thermal Unit
Commitment Problem,” IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 4897–4908, Nov. 2013

6M. Carrion and J. Arroyo, “A computationally efficient mixed-integer linear formulation for the thermal unit
commitment problem,” IEEE Transactions on Power Systems, vol. 21, no. 3, pp. 1371–1378, 2006

7J. Ostrowski, M. F Anjos, and A. Vannelli, “Tight Mixed Integer Linear Programming Formulations for the Unit
Commitment Problem,” IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 39–46, Feb. 2012
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Case Study: Self-UC for 10-units, for 32-512 days time span

Basic constraints: max/min, SU/SD and TU/TD

Formulations tested –modeling the same MIP problem:

TC5 Tight & Compact: a 23×10×512 combinatorial problem
1bin6 1-binary variable (u): 210×512 combinations
3binTUTD7: 3-binary variable version (u,v,w) + T U/T D convex

hull: 23×10×512 combinations

All results are expressed as percentages of 1bin results

5G. Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and Compact MILP Formulation for the Thermal Unit
Commitment Problem,” IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 4897–4908, Nov. 2013

6M. Carrion and J. Arroyo, “A computationally efficient mixed-integer linear formulation for the thermal unit
commitment problem,” IEEE Transactions on Power Systems, vol. 21, no. 3, pp. 1371–1378, 2006

7J. Ostrowski, M. F Anjos, and A. Vannelli, “Tight Mixed Integer Linear Programming Formulations for the Unit
Commitment Problem,” IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 39–46, Feb. 2012
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3binTUTD (%) TC (%)

Constraints <78 <48
Nonzeros 89 72
Real Vars 33.3 33.3
Bin Vars =300 =300

⇓

TC is more Compact
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Case Study: Self-UC (I)

Results presented as percentages of 1bin:

3binTUTD (%) TC (%)

Constraints <78 <48
Nonzeros 89 72
Real Vars 33.3 33.3
Bin Vars =300 =300

Integrality Gap 34 =0

MIP runtime (speedup) 4.9 (20x) 0.107 (995x)
⇓

TC is Tighter and Simultaneously more Compact
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Case Studies Deterministic Self-UC

Case Study: Self-UC (II)

Results presented as percentages of 1bin:

3binTUTD (%) TC (%)

Constraints <78 <48
Nonzeros 89 72
Real Vars 33.3 33.3
Bin Vars =300 =300

Integrality Gap 34 =0

MIP runtime 4.9 0.107
LP runtime 80 49.8

⇓

The TC formulation describe the convex hull

then solving MIP (non-convex) as LP (convex)
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10 generating units for a time span of 2 days

10 to 200 scenarios in demand

Comparing TC, 1bin, 3binTUTD and Two additional formulations
Sh8 and 3bin9

8T. Li and M. Shahidehpour, “Price-based unit commitment: A case of Lagrangian relaxation versus mixed integer
programming,” IEEE Transactions on Power Systems, vol. 20, no. 4, pp. 2015–2025, Nov. 2005

9J. Arroyo and A. Conejo, “Optimal response of a thermal unit to an electricity spot market,” Power Systems, IEEE

Transactions on, vol. 15, no. 3, pp. 1098–1104, 2000
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Stochastic UC: Case Study

10 generating units for a time span of 2 days

10 to 200 scenarios in demand

Comparing TC, 1bin, 3binTUTD and Two additional formulations
Sh8 and 3bin9

Different Solvers

Cplex 12.6.0
Gurobi 5.6.2
XPRESS 25.01.07

Stop criteria:

Time limit: 5 hours or
Optimality tolerance: 0.1 %

8T. Li and M. Shahidehpour, “Price-based unit commitment: A case of Lagrangian relaxation versus mixed integer
programming,” IEEE Transactions on Power Systems, vol. 20, no. 4, pp. 2015–2025, Nov. 2005

9J. Arroyo and A. Conejo, “Optimal response of a thermal unit to an electricity spot market,” Power Systems, IEEE

Transactions on, vol. 15, no. 3, pp. 1098–1104, 2000
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Stochastic: Gurobi
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Stochastic: XPRESS
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Case Studies Stochastic UCs: IEEE-118 Bus System

IEEE-118 Bus System
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54 thermal units; 118 buses; 186 transmission lines; 91 loads

24 hours time span
3 wind farms, 20 wind power scenarios
Stop Criteria in Cplex 12.6.0

0.05% opt. tolerance or 24h time limit
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Case Studies Stochastic UCs: IEEE-118 Bus System

UC performance comparisons (I)

Traditional
Energy-Block Scheduling

3binTUTD10 TC

o.f. [k$] 829.04 829.02

opt.tol [%] 0.224 0.023

IntGap [%] 1.27 0.58

Compared with 3binTUTD, TC:

lowered IntGap by 53.3%

10FERC, “RTO Unit Commitment Test System,” Federal Energy and Regulatory Commission, Washington DC, USA,
Tech. Rep., Jul. 2012, p. 55
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UC performance comparisons (I)

Traditional
Energy-Block Scheduling

3binTUTD10 TC

o.f. [k$] 829.04 829.02

opt.tol [%] 0.224 0.023

IntGap [%] 1.27 0.58

MIP runtime [s] 86400 206.5

Compared with 3binTUTD, TC:

lowered IntGap by 53.3%
is more than 420x faster

10FERC, “RTO Unit Commitment Test System,” Federal Energy and Regulatory Commission, Washington DC, USA,
Tech. Rep., Jul. 2012, p. 55
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UC performance comparisons (II)

Traditional
Energy-Block Scheduling

3binTUTD11 TC

o.f. [k$] 829.04 829.02

opt.tol [%] 0.224 0.023

IntGap [%] 1.27 0.58

MIP runtime [s] 86400 206.5

LP runtime [s] 246.76 22.03

TC solved the MIP before 3binTUTD solved the LP

within the required opt. tolerance (0.05%)

11FERC, “RTO Unit Commitment Test System,” Federal Energy and Regulatory Commission, Washington DC, USA,
Tech. Rep., Jul. 2012, p. 55
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Case Studies Stochastic UCs: IEEE-118 Bus System

UC performance comparisons (III)

Traditional Power-Based
Energy-based UC UC

3binTUTD TC P-TC

o.f. [k$] 829.04 829.02 818.13

opt.tol [%] 0.224 0.023 0.049

IntGap [%] 1.27 0.58

MIP runtime [s] 86400 206.5

LP runtime [s] 246.76 22.03

P-TC12 has a more detailed and accurate UC representation

12G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, “An MIP Formulation for Joint Market-Clearing of Energy and
Reserves Based on Ramp Scheduling,” IEEE Transactions on Power Systems, vol. 29, no. 1, pp. 476–488, 2014
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UC performance comparisons (III)

Traditional Power-Based
Energy-based UC UC

3binTUTD TC P-TC

o.f. [k$] 829.04 829.02 818.13

opt.tol [%] 0.224 0.023 0.049

IntGap [%] 1.27 0.58 0.74

MIP runtime [s] 86400 206.5 867.9

LP runtime [s] 246.76 22.03 38.1

P-TC12 has a more detailed and accurate UC representation

it solved 100x faster than 3binTUTD

its UC core is also a convex hull13

12G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, “An MIP Formulation for Joint Market-Clearing of Energy and
Reserves Based on Ramp Scheduling,” IEEE Transactions on Power Systems, vol. 29, no. 1, pp. 476–488, 2014

13G. Morales-España, C. Gentile, and A. Ramos, “Tight MIP formulations of the power-based unit commitment
problem,” OR Spectrum, vol. 37, no. 4, pp. 929–950, May 2015
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Conclusions & Collaboration?

Conclusions (I)

Beware of what matters in good MIP formulations

Tightness & Compactness
↑ Binaries ⇒ ↑ Solving time False myth

Use the convex hull of some set of constraints

Minimum up/down times14

Unit operation in Energy-based UC15

Unit operation in Power-based UC16

⇒ ↓ solving time by simultaneously T&Cing the final UCs17,18

14D. Rajan and S. Takriti, “Minimum Up/Down Polytopes of the Unit Commitment Problem with Start-Up Costs,”
IBM, Research Report RC23628, Jun. 2005

15C. Gentile, G. Morales-España, and A. Ramos, “A tight MIP formulation of the unit commitment problem with start-up
and shut-down constraints,” en, EURO Journal on Computational Optimization, vol. 5, no. 1, pp. 177–201, Apr. 2016

16G. Morales-España, C. Gentile, and A. Ramos, “Tight MIP formulations of the power-based unit commitment
problem,” OR Spectrum, vol. 37, no. 4, pp. 929–950, May 2015

17G. Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and Compact MILP Formulation for the Thermal Unit
Commitment Problem,” IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 4897–4908, Nov. 2013

18G. Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and Compact MILP Formulation of Start-Up and Shut-Down
Ramping in Unit Commitment,” IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 1288–1296, 2013
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Conclusions & Collaboration?

Conclusions

Better UC core in stochastic UCs ⇒

Critical solving time reductions

If convex hulls are not available ⇒

Create simultaneously tight and compact models
by reformulating the problem, e.g., CCGTs19

Key hint: start removing all big-M parameters

19G. Morales-España, C. M. Correa-Posada, and A. Ramos, “Tight and Compact MIP Formulation of Configuration-Based
Combined-Cycle Units,” IEEE Transactions on Power Systems, vol. 31, no. 2, pp. 1350–1359, Mar. 2016
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Stochastic UC dealing with intra-period uncertainty
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Conclusions & Collaboration?

Possible collaboration?

With PhD Students (papers envisioned)

Convex hull for variable SU costs

Almost there (just one constraint needs to be added)

Stochastic UC dealing with intra-period uncertainty

Based on power-based UC

Master theses at Uniper Benelux

Stochastic optimization of combined heat and power plants
Long term investment model for combined heat and power systems

Master theses with Jedlix

Robust smart charging of EVs
Aggregated EV models to deal with uncertainty
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Questions

Thank you for your attention

Contact Information:
g.a.moralesespama@tudelft.nl
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