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Short-term Planning (UC)  Unit Commitment

Day-ahead Planning
GENERATION AND CONSUMPTION
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The system has to respond to instantaneous variations of the demand
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Short-term Planning (UC)  Unit Commitment

Unit Commit for Short-term Planning

m Objective:

m To schedule generating units (thermal, nuclear, hydro, etc.) at
minimum cost (bids) over the study period subject to:

m Meet system demand for electricity
m Satisfy the system constraints (e.g., technical, environmental)
m Provide a level of flexibility (reserves) to accommodate RES energy
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Short-term Planning (UC)  Unit Commitment

Unit Commit for Short-term Planning

m Objective:

m To schedule generating units (thermal, nuclear, hydro, etc.) at
minimum cost (bids) over the study period subject to:

m Meet system demand for electricity
m Satisfy the system constraints (e.g., technical, environmental)
m Provide a level of flexibility (reserves) to accommodate RES energy

m Planning:
m the physical operation

® To make Startup and shutdown decisions
m To obtain hourly schedules (production) for all generating units

m the economic issues

m Give market signals (prices)
m Forecast operational cost
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= Why MIP?
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Why is UC an MIP?
m Why do we need 0/1 variables?
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Short-term Planning (UC)  Why MIP?

Why is UC an MIP?

m Why do we need 0/1 variables?

m Non-linear generation range
m MinGeneration - u < p < MaxGeneration - u

m where u is an on/off decision
m and p is the unit generation output
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m Non-linear operating costs
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m CCGTs, line switching, dynamic ramping

<3
TUDelft 7/46



Short-term Planning (UC)  Why MIP?

Why is UC an MIP?
m Why do we need 0/1 variables?

m Non-linear generation range

m MinGeneration - u < p < MaxGeneration - u
m where u is an on/off decision
m and p is the unit generation output

m Non-linear operating costs
m FixedCost - u 4+ VariableCost - p
m Startup and shutdown costs, e.g.,

m suc > SUcost (us — ug—1)
m suc >0

m Other cases:
m CCGTs, line switching, dynamic ramping

m MIP: Global optimum or within a tolerance
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Solving MIPs: Perceptions end 1980s

m Many fields:

m “MIP is NP-hard. Really the only choice is to use heuristics.”
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Short-term Planning (UC)  Why MIP?

Solving MIPs: Perceptions end 1980s

m Many fields:
m “MIP is NP-hard. Really the only choice is to use heuristics.”

m Electrical Power:

m EPRI GS-6401, June 1989: Mixed-integer programming (MIP) is
a powerful modeling tool, “They are, however, theoretically
complicated and computationally cumbersome”.

l.e., MIP is an interesting “toy”, but it just doesn't work in practice.
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Short-term Planning (UC)  Why MIP?

Solving MIPs: Perceptions end 1980s

m Many fields:

m “MIP is NP-hard. Really the only choice is to use heuristics.”

m Electrical Power:

m EPRI GS-6401, June 1989: Mixed-integer programming (MIP) is
a powerful modeling tool, “They are, however, theoretically
complicated and computationally cumbersome”.

l.e., MIP is an interesting “toy”, but it just doesn't work in practice.

m California 7-day (UC) model:
48939 constraints, 25755 variables (2856 binary)

m Reported results 1989 — machine unknown
m 2 day model: 8 hours, no progress
m 7 day model: 1 hour only to solve the LP
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Cplex MIP Speedups 1991-2008

Test set: 1852 real-world MIPs (default solver's settings)
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Short-term Planning (UC)  Why MIP?

Cplex MIP Speedups 1991-2008

Test set: 1852 real-world MIPs (default solver's settings)
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Perceptions Have Changed

m California 7-day (UC) model:
48939 constraints, 25755 variables (2856 binary)

m Reported results 1989 — machine unknown

m 2 day model: 8 hours, no progress
m 7 day model: 1 hour only to solve the LP
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Short-term Planning (UC)  Why MIP?

Perceptions Have Changed

m California 7-day (UC) model:
48939 constraints, 25755 variables (2856 binary)

m Reported results 1989 — machine unknown

m 2 day model: 8 hours, no progress
m 7 day model: 1 hour only to solve the LP

m California 7-day model (on a desktop PC)

m CPLEX 6.5 (1999): 22 minutes, optimal
m CPLEX 11.0 (2007): 71 seconds, optimal
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MIP Speedups 1990-2014

m Improvement 2009-2014: Gurobi ~ CPLEX: 29.4x
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Short-term Planning (UC)  Why MIP?

MIP Speedups 1990-2014

m Improvement 2009-2014: Gurobi ~ CPLEX: 29.4x
m Overall Improvement 1990 to 2014:
Algorithms: 870 000x
Machines: 6 500x
Net: Algorithm x Machine 5 600 000 000x
(180 years / 5.6B ~ 1 second)
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Short-term Planning (UC)  Why MIP?

MIP Speedups 1990-2014

m Improvement 2009-2014: Gurobi ~ CPLEX: 29.4x
m Overall Improvement 1990 to 2014:
Algorithms: 870 000x
Machines: 6 500x
Net: Algorithm x Machine 5 600 000 000x
(180 years / 5.6B ~ 1 second)

m ~ 3x faster year-to-year
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Specific MIP-based UC Examples

m EDF (main electricity producer in France)

m 58 nuclear units
m 47 thermal units
m 448 hydro power plants
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Specific MIP-based UC Examples

m EDF (main electricity producer in France)

m 58 nuclear units
m 47 thermal units
m 448 hydro power plants

m All US ISOs using MIP for their

m UGCs: Day-ahead market, residual UC, real-time look-ahead market
m Since MIP implementation, savings:

= PJM (2004): ~100 Million $/year
m CAISO (2009): ~52 Million $/year

m Euphemia: Pan-European Electricity Market Integration Algorithm

m Electricity market for 23 European countries

7
TUDelft 12/ &



Short-term Planning (UC)  Why MIP?

Specific MIP-based UC Examples

m EDF (main electricity producer in France)

m 58 nuclear units
m 47 thermal units
m 448 hydro power plants

m All US ISOs using MIP for their

m UGCs: Day-ahead market, residual UC, real-time look-ahead market
m Since MIP implementation, savings:

= PJM (2004): ~100 Million $/year
m CAISO (2009): ~52 Million $/year

m Euphemia: Pan-European Electricity Market Integration Algorithm

m Electricity market for 23 European countries

m So, what is left to do?
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UC and MIP

m Although significant breakthroughs in (MIP),
UCs are also getting more demanding:

m To deal with uncertainty (renewables),e.g.,

m Stochastic, Robust
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Short-term Planning (UC)  Why MIP?

UC and MIP

m Although significant breakthroughs in (MIP),
UCs are also getting more demanding:

m To deal with uncertainty (renewables),e.g.,
m Stochastic, Robust
m To guarantee security, e.g.,
m N-1 criterion
m To better exploit the system flexibility, e.g.,
m CCGTs, dynamic ramping, line switching
m The time to solve UC is still a critical limitation
m How to reduce solving times?

m Computer power (e.g., clusters)
m Solving algorithms (e.g., solvers, decomposition techniques)
= Improving the MIP-Based UC formulation = | solving times
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Short-term Planning (UC) Improving MIP Formulations
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Short-term Planning (UC)

m Improving MIP Formulations
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Short-term Planning (UC) Improving MIP Formulations

Convex Hull: The Tightest Formulation

[}
5 [ objective

Smallest convex feasible region
containing all feasible integer
points

Feasible
solutions=e
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Short-term Planning (UC)  Improving MIP Formulations

Convex Hull: The Tightest Formulation

[}

5 Tobjective
Smallest convex feasible region
containing all feasible integer

points Feasible

solutions=e

m The convex hull problem solves an MIP as an LP

m Each vertex satisfies the integrality constraints
m So an LP optimum is also an MIP optimum

m Unfortunately,
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Short-term Planning (UC)  Improving MIP Formulations

Convex Hull: The Tightest Formulation

[}

5 Tobjective
Smallest convex feasible region
containing all feasible integer

points Feasible

solutions=e
m The convex hull problem solves an MIP as an LP

m Each vertex satisfies the integrality constraints
m So an LP optimum is also an MIP optimum

m Unfortunately, the convex hull is typically too difficult to obtain

m To solve an MIP is usually easier than trying to find its convex hull

7
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Short-term Planning (UC)  Improving MIP Formulations

Concepts: Tightness and Compactness

m Tightness: defines the search space (relaxed feasible region) that
the solver needs to explore to find the solution

m Compactness (problem size): defines the searching speed (data to
process) that the solver takes to find the solution
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Short-term Planning (UC)  Improving MIP Formulations

Concepts: Tightness and Compactness

m Tightness: defines the search space (relaxed feasible region) that
the solver needs to explore to find the solution

m Compactness (problem size): defines the searching speed (data to
process) that the solver takes to find the solution

m Convex hull: The tightest formulation = MIP solved as LP
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Tightening an MIP Formulation

®m The most common strategy is adding cuts

m In fact, this is the most effective strategy of current MIP solvers
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Short-term Planning (UC)  Improving MIP Formulations

Tightening an MIP Formulation

®m The most common strategy is adding cuts

m In fact, this is the most effective strategy of current MIP solvers

m They should be added during the B&B =] Time
m and not directly to the model, huge number of inequalities = 1 Time

m Trade-off: Tightness vs. Compactness

m Improving the MIP formulation

m Provide the convex hull for some set of constraints
m f available, use the convex hull for some set of constraints
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Tight and Compact (TC) Formulation

m Let's focus on the core of UC formulations:

= Min/max outputs
m SU & SD ramps
m Minimum up/down (T'U /T D) times
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Short-term Planning (UC)  Improving MIP Formulations

Tight and Compact (TC) Formulation

m Let's focus on the core of UC formulations:

= Min/max outputs
m SU & SD ramps
m Minimum up/down (TU/T D) times, convex hull already available!

m The whole formulation can be found in the paper TC-UC? and the
convex hull proof in gentile et al.3

1D. Rajan and S. Takriti, “Minimum Up/Down Polytopes of the Unit Commitment Problem with Start-Up Costs,”
IBM, Research Report RC23628, Jun. 2005

26, Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and Compact MILP Formulation for the Thermal Unit
Commitment Problem,” [EEE Transactions on Power Systems, vol. 28, no. 4, pp. 4897-4908, Nov. 2013

3C. Gentile, G. Morales-Espafia, and A. Ramos, “A tight MIP formulation of the unit commitment problem with start-up
and shut-down constraints,” cn, FURO Journal on Computational Optimization, vol. 5, no. 1 pp. 177-201, Apr. 2016
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Short-term Planning (UC)

Improving MIP Formulations

Formulation for a generating unit (1)

m Generation limits taking into account:

pr < (ﬁ — E) Up — (ﬁ — SD) Wi —max (SD—SU,0) vy Vt

(1)

pr < (ﬁ —E) up — (ﬁ - SU) vy —max (SU—-SD,0) w1y Vt

Total generation = P - uy + py.

()

Variables

Parameters

p:  Energy production above P
u;  Commitment status

v Startup status

wy  Shutdown status

=l o

S
S

U
D

Minimum power output
Maximum power output
Startup ramp

Shutdown ramp
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Short-term Planning (UC) Improving MIP Formulations

Formulation for a generating unit (I1)

m Logical relationship:

Ut — Ut—1 = V¢ — Wt Vit (3)
Ut < Ut Vit (4)

where (4) and (5) avoid the simultaneous startup and shutdown.

m Variable bounds

>0 Vi (6)
0 S U, Vg, Wi S 1 Vi (7)

<3 /
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Short-term Planning (UC) Improving MIP Formulations

Tightness of the Formulation

Let's study the polytope (1)-(7) using PORTA%:

m PORTA enumerates all vertices of a convex feasible region

4T. Christof and A. Lobel, “PORTA: POlyhedron Representation Transformation Algorithm, Version 1.4.1,”
Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, Germany, 2009
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Short-term Planning (UC)  Improving MIP Formulations

Tightness of the Formulation

Let's study the polytope (1)-(7) using PORTA%:
m PORTA enumerates all vertices of a convex feasible region
m Example: 3 periods and P = 200, P = SU = SD = 100 for:

mCasel: TU=TD=1
mCase2: TU=TD =2

4T. Christof and A. Lobel, “PORTA: POlyhedron Representation Transformation Algorithm, Version 1.4.1,”
Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, Germany, 2009
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Case 1: Providing The Convex Hull

PORTA results for (TU=TD=1)

Formulation:

<(P-P)ur— (P —SD) wi

—max (SD—SU,0) v (1)
e < (P P)u,— (P—SU)w

max (SU SD 0) Wi41 (2)
Ut — Ut—1 = UVt — Wt (3)
v < ue (4)
Wt S 1-— Ut (5)
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Case 1: Providing The Convex Hull

Formulation: PORTA results for (TU=TD=1)
U1, U2, U3, V2, V3, W2, W3, P1, P2, P3:
ptg(P—B) u — (P — SD) wita DIM = 10
max (SD—SU, 0) vy 1) CONV_SECTION

(1) 0000000 0 0 O
(p p) (?—SU)fut ( 220010100 0 0 0
- (31000010 0 0 O
—max (SU-SD,0)w;41 (2) ¢ 0101001 0 0 0
( 50111000 0 0 O
_ ( 60111000 0 0100
e = tem1 = e = W ® ¢ 1100001 0 0 o0
v < up (4 (8110000110 0 0
- (991110000 0 0 O
we <1 —wy (5) (1001110000 0 0 100
(11) 1110000 0100 O
(12) 1110000 0 100 100
(13) 1110000100 0 O
(14) 1110000100 0 100
(15) 1110000 100 100 0
(16) 111000 0 100 100 100
(171010110 0 0 0

END
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Short-term Planning (UC)  Improving MIP Formulations

Case 1: Providing The Convex Hull

Formulation: PORTA results for (TU =TD=1)
ui,u2,u3,v2,v3, w2, w3, p1, p2, pP3:
pe < (F —P)us — (P = SD) wita DIM = 10

max (SD—SU,0) v 1) CONV_SECTION
_ ( 1)0000000 0 0 O
(p p) (P—SU)vt ( 220010100 0 0 O
= (31000010 0 0 0
—max (SU—SD, 0) wi41 (2) ( 4990101001 0 0 O
( 50111000 0 0 0
_ o ( 60111000 0 0 100
Ut = Wi—1 = Up — Wt B ( H1100001 0 o0 o
v < up (4) ( 81100001100 0 0
- ( 91110000 0 0 0
wy <1 —wuy (5) (10) 1110000 0 0 100
(11) 1110000 0100 0
(12) 1110000 0 100 100
All vertices are integer (13) 1110000100 0 0
(14) 1110000 100 0 100
U (15) 111000 0 100 100 0O
(16) 111000 0 100 100 100
Convex Hull (171010110 0 0 O

END

7
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Case 2: Providing and Using Convex Hulls (I)

Formulation + T'U/T'D Convex hull: PORTA results for (TU =TD=2)

pr < (P=P)ur — (P~ SD) wess
— max (SD—-SU, 0) v: (1)
Dt S(F—B)Ut— (F—SU)Ut
—max (SU-SD,0) we+1 (2)
Up — Up—1 = Uy — Wy 3)
t
Z i< ug 4
i=t—TU+1
t
Z wi<1—uy (5)
i=t—TD+1
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Short-term Planning (UC)  Improving MIP Formulations

Case 2: Providing and Using Convex Hulls (I)

Formulation + T'U/T'D Convex hull: PORTA results for (TU =TD=2)

_ — Uy, u2, U3, V2, V3, W2, W3, P1, :
ptS(P_B)Ut_(P_SD)wt+1 1,U2,U3,v2,V3, W2, W3, P1, P2, P3
DIM = 10
— max (SD—-SU, 0) v: (1)
- _ CONV_SECTION
<(P—P)lus— (P—-SU) v (1) 00 0 000 O 0 0 O
pe < (P=B)u—( ) v ( 2)1/211/21/2001/2 0 50 0
—max (SU-SD,0)wsr1 (2) ¢ 3) 1/211/21/200 1/2 0 50 50
( 4) 1/211/21/2001/2 50 50 0
( 5) 1/211/21/2 00 1/2 50 50 50
Up — Up—1 = Vg — Wy (3) (6 00 1 010 O O 0 O
(7 10 0 001 O O O O
t (8 01 1 100 O O O O
Z 0i< (4 (9 01 1 100 0 0 0100
(10) 11 0 000 1 0 0 O
i=t=TU+1 (11) 11 0 000 1100 0 O
¢ (12) 11 1 000 O O 0 O
<1 (13 11 1 000 O O 0100
Z wis L —ut (5) (14) 11 1 000 O 0100 O
i=t—TD+1 (18) 11 1 000 O 0 100 100
(16) 11 1 000 0100 0 O
. (17) 11 1 000 0100 0 100
How to remove the fractional (18) 11 1 000 0100 100 ©
2 (19) 11 1 000 0 100 100 100
vertices’ D

7
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Short-term Planning (UC)  Improving MIP Formulations

Case 2: Providing and Using Convex Hulls (II)

Reformulating (1) and (2) for TU > 2:

PORTA results for (TU=TD=2)
U1, U2, U3, V2, V3, W2, W3, P1, P2, P3:

—max S PD—SE0) v, (1) DIM = 10

Pr= ( —) r ( € ) T CONV_SECTION

D JaB N
=17 £y I O W T

2 ¢ 10000000 0 0 0
e {SH—S Db ey ( 220010100 0 0 O
_ _ ( 31000010 0 0 O
pe < (P=P)us— (P SU) v ( 490111000 0 0 O
_ ( 550111000 0 0 100
— (P-SD) wita ® (61100001 0 0 0
( 71100001100 0 O
_ ( 891110000 0 0 O
Ut = Ut—1 = Ut W ® (1110000 0 o100
¢ (101110000 0100 0
, (11) 1110000 0 100 100
Z vi S ut ¥ (12)111000010 0 0
i=t—TU+1 (13) 1110000 100 0 100
. (14) 1110000 100 100 0O
(15) 111000 0 100 100 100
Y owi<i-w ®) e
i=t—TD+1
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Short-term Planning (UC)  Improving MIP Formulations

Case 2: Providing and Using Convex Hulls (II)

Reformulating (1) and (2) for TU > 2:

PORTA results for (TU=TD=2)
U1, U2, U3, V2, V3, W2, W3, P1, P2, P3:

—max S PD—SE0) v, (1) DIM = 10

Pr= ( —) r ( € ) T CONV_SECTION

D JaB N
=17 £y I O W T

2 ¢ 10000000 0 0 0
e {SH—S Db ey ( 220010100 0 0 O
_ _ ( 31000010 0 0 O
pe < (P=P)us— (P SU) v ( 490111000 0 0 O
_ ( 550111000 0 0 100
— (P-SD) wita ® (61100001 0 0 0
( 71100001100 0 O
_ ( 891110000 0 0 O
Ut = Ut—1 = Ut W ® (1110000 0 o100
¢ (101110000 0100 0
, (11) 1110000 0 100 100
Z vi S ut ¥ (12)111000010 0 0
i=t—TU+1 (13) 1110000 100 0 100
. (14) 1110000 100 100 0O
(15) 111000 0 100 100 100
Y owi<i-w ®) e
i=t—TD+1

= Convex Hull

7
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Case Studies Deterministic Self-UC
Outline

Case Studies
m Deterministic Self-UC
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Self-UC case Study

m Case Study: Self-UC for 10-units, for 32-512 days time span
m Basic constraints: max/min, SU/SD and TU/TD
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Case Studies Deterministic Self-UC

Self-UC case Study

m Case Study: Self-UC for 10-units, for 32-512 days time span
m Basic constraints: max,/min, SU/SD and TU/TD

m Formulations tested —-modeling the same MIP problem:

m TC Tight & Compact: a 23*10%512 combinatorial problem

m 1bin® 1-binary variable (u): 2'0*°12 combinations

m 3binTUTD": 3-binary variable version (u,v,w) + TU /T D convex
hull: 23*10>512 combinations

5G. Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and Compact MILP Formulation for the Thermal Unit

Commitment Problem,” |EEE Transactions on Power Systems, vol. 28, no. 4, pp. 4897-4908, Nov. 2013

SM. Carrion and J. Arroyo, “A computationally efficient mixed-integer linear formulation for the thermal unit
commitment problem,” [EEE Transactions on Power Systems, vol. 21, no. 3, pp. 1371-1378, 2006

7). Ostrowski, M. F Anjos, and A. Vannelli, “Tight Mixed Integer Linear Programming Formulations for the Unit

Commitment Problem,” [EEE Transactions on Power Systems, vol. 27, no. 1, pp. 39-46, Feb. 2012
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Case Studies Deterministic Self-UC

Self-UC case Study

m Case Study: Self-UC for 10-units, for 32-512 days time span
m Basic constraints: max,/min, SU/SD and TU/TD

m Formulations tested —-modeling the same MIP problem:

m TC Tight & Compact: a 23*10%512 combinatorial problem
m 1bin® 1-binary variable (u): 2'0*°12 combinations
m 3binTUTD": 3-binary variable version (u,v,w) + TU /T D convex

hull: 23*10%512 combinations

m All results are expressed as percentages of 1bin results

5G. Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and Compact MILP Formulation for the Thermal Unit

Commitment Problem,” |EEE Transactions on Power Systems, vol. 28, no. 4, pp. 4897-4908, Nov. 2013

SM. Carrion and J. Arroyo, “A computationally efficient mixed-integer linear formulation for the thermal unit
commitment problem,” [EEE Transactions on Power Systems, vol. 21, no. 3, pp. 1371-1378, 2006
7). Ostrowski, M. F Anjos, and A. Vannelli, “Tight Mixed Integer Linear Programming Formulations for the Unit
IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 39-46, Feb. 2012

Commitment Problem,”
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Case Study: Self-UC (1)

Results presented as percentages of 1bin:

3binTUTD (%) TC (%)

Constraints <78 <48
Nonzeros 89 72
Real Vars 33.3 33.3
Bin Vars =300 =300

N3

TC is more Compact
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Constraints <78 <48
Nonzeros 89 72
Real Vars 33.3 33.3
Bin Vars =300 =300
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Case Study: Self-UC (1)

Results presented as percentages of 1bin:

3binTUTD (%) TC (%)

Constraints <78 <48
Nonzeros 89 72
Real Vars 33.3 33.3
Bin Vars =300 =300
Integrality Gap 34 =0
MIP runtime (speedup) 4.9 (20x) 0.107 (995x)
J

TCis Tighter and Simultaneously more Compact

7
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Case Study: Self-UC (II)

Results presented as percentages of 1bin:

3binTUTD (%) TC (%)

Constraints <78 <48
Nonzeros 89 72
Real Vars 33.3 33.3
Bin Vars =300 =300

Integrality Gap 34 =0
MIP runtime 49 0.107
LP runtime 80 49.8

J

The TC formulation describe the convex hull
then solving MIP (non-convex) as LP (convex)

7
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Stochastic UC: Case Study

m 10 generating units for a time span of 2 days

m 10 to 200 scenarios in demand
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Stochastic UC: Case Study

m 10 generating units for a time span of 2 days
m 10 to 200 scenarios in demand

m Comparing TC, 1bin, 3binTUTD and Two additional formulations
Sh8 and 3bin®

8T, Li and M. Shahidehpour, “Price-based unit commitment: A case of Lagrangian relaxation versus mixed integer
programming,” |EEE Transactions on Power Systems, vol. 20, no. 4, pp. 2015-2025, Nov. 2005

9. Arroyo and A. Conejo, “Optimal response of a thermal unit to an electricity spot market,” FPower Systems, [EEE
Transactions on, vol. 15, no. 3, pp. 1098-1104, 2000
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Stochastic UC: Case Study

m 10 generating units for a time span of 2 days
m 10 to 200 scenarios in demand

m Comparing TC, 1bin, 3binTUTD and Two additional formulations
Sh8 and 3bin®

Different Solvers

m Cplex 12.6.0
m Gurobi 5.6.2
m XPRESS 25.01.07

Stop criteria:

m Time limit: 5 hours or
m Optimality tolerance: 0.1 %

8T, Li and M. Shahidehpour, “Price-based unit commitment: A case of Lagrangian relaxation versus mixed integer
programming,” |EEE Transactions on Power Systems, vol. 20, no. 4, pp. 2015-2025, Nov. 2005

9. Arroyo and A. Conejo, “Optimal response of a thermal unit to an electricity spot market,” FPower Systems, [EEE
Transactions on, vol. 15, no. 3, pp. 1098-1104, 2000
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Case Studies  Stochastic UCs: Different Solvers

Stochastic: Cplex

a
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Case Studies  Stochastic UCs: Different Solvers

Stochastic: Cplex

10*

T

r
——T1C
—— 3binTUTD
—b— 3bin
—e—sh
—&— 1hin

| I | I I |
20 40 60 80 100 120 140 160 180 200
Demand Scenarios

TC deals with 200 scenarios within the time that others deal with 40
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Stochastic: Gurobi

10 :
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TC deals with 200 scenarios within the time that others deal with 50
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Stochastic: XPRESS

10 T T
——TC
—%—3binTUTD
—A— 3bin
3 sh D
10" { —&— 1bin

Time [s]

L I I I

I I I I I I
0 20 40 60 80 100 120 140 160 180 200
Demand Scenarios

TC deals with 200 scenarios within the time that others deal with 80
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Case Studies

m Stochastic UCs: IEEE-118 Bus System
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Case Studies  Stochastic UCs: IEEE-118 Bus System

IEEE-118 Bus System

m 54 thermal units; 118 buses; 186 transmission lines; 91 loads

m 24 hours time span
m 3 wind farms, 20 wind power scenarios
m Stop Criteria in Cplex 12.6.0

m 0.05% opt. tolerance or 24h time limit

7
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Case Studies  Stochastic UCs: IEEE-118 Bus System

UC performance comparisons (1)

Traditional
Energy-Block Scheduling
3binTUTD™ TC
o.f. [k9] 829.04 829.02
opt.tol [%] 0.224 0.023
IntGap [%] 1.27 0.58

m Compared with 3binTUTD, TC:
m lowered IntGap by 53.3%

10FERC, “RTO Unit Commitment Test System,” Federal Energy and Regulatory Commission, Washington DC, USA,
Tech. Rep., Jul. 2012, p. 55
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Case Studies  Stochastic UCs: IEEE-118 Bus System

UC performance comparisons (1)

Traditional
Energy-Block Scheduling
3binTUTD™ TC
o.f. [k9] 829.04 829.02
opt.tol [%] 0.224 0.023
IntGap [%] 1.27 0.58
MIP runtime [s] 86400 206.5

m Compared with 3binTUTD, TC:

m lowered IntGap by 53.3%
m is more than 420x faster

10FERC, “RTO Unit Commitment Test System,” Federal Energy and Regulatory Commission, Washington DC, USA,
Tech. Rep., Jul. 2012, p. 55
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Case Studies  Stochastic UCs: IEEE-118 Bus System

UC performance comparisons (I1)

Traditional
Energy-Block Scheduling

3binTUTD! TC

o.f. [k9] 829.04 829.02
opt.tol [%] 0.224 0.023
IntGap [%] 1.27 0.58
MIP runtime [s] 86400 206.5
LP runtime [s] 246.76 22.03

m T7C solved the MIP before 3binTUTD solved the LP
= within the required opt. tolerance (0.05%)

EERC, “RTO Unit Commitment Test System,” Federal Energy and Regulatory Commission, Washington DC, USA,
Tech. Rep., Jul. 2012, p. 55
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Case Studies  Stochastic UCs: IEEE-118 Bus System

UC performance comparisons (I11)

Traditional Power-Based

Energy-based UC ucC

3binTUTD TC P-TC

o.f. K9] 829.04 829.02 818.13

opt.tol [%] 0.224 0.023 0.049
IntGap [%] 1.27 0.58
MIP runtime [s] 86400 206.5
LP runtime [s] 246.76 22.03

m P-TC'? has a more detailed and accurate UC representation

12, Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, “An MIP Formulation for Joint Market-Clearing of Energy and
Reserves Based on Ramp Scheduling,” /EE£E Transactions on Power Systems, vol. 29, no. 1, pp. 476-488, 2014
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Case Studies  Stochastic UCs: IEEE-118 Bus System

UC performance comparisons (I11)

Traditional Power-Based

Energy-based UC ucC

3binTUTD TC P-TC

of. [kS] 829.04 829.02 818.13
opt.tol [%] 0.224 0.023 0.049
IntGap [%)] 1.27 0.58 0.74
MIP runtime [s] 86400 206.5 867.9
LP runtime [s] 246.76 22.03 38.1

m P-TC'? has a more detailed and accurate UC representation

m it solved 100x faster than 3binTUTD
m its UC core is also a convex hull*3

12, Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, “An MIP Formulation for Joint Market-Clearing of Energy and
Reserves Based on Ramp Scheduling,” /EE£E Transactions on Power Systems, vol. 29, no. 1, pp. 476-488, 2014

g, Morales-Espafia, C. Gentile, and A. Ramos, “Tight MIP formulations of the power-based unit commitment
problem,” OR Spectrum, vol. 37, no. 4, pp. 929-950, May 2015
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Conclusions & Collaboration?

Conclusions (1)

m Beware of what matters in good MIP formulations

m Tightness & Compactness
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m 1T Binaries = 1 Solving time False myth
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m Tightness & Compactness
m 1T Binaries = 1 Solving time False myth

m Use the convex hull of some set of constraints

<3 /
TUDelft 0/A40



Conclusions & Collaboration?

Conclusions (1)

m Beware of what matters in good MIP formulations

m Tightness & Compactness
m 1T Binaries = 1 Solving time False myth

m Use the convex hull of some set of constraints

® Minimum up/down times!*

= Unit operation in Energy-based UC®
= Unit operation in Power-based UC1®

m = | solving time by simultaneously T&Cing the final UCs!"-18

14p. Rajan and S. Takriti, “Minimum Up/Down Polytopes of the Unit Commitment Problem with Start-Up Costs,”
IBM, Research Report RC23628, Jun. 2005

15¢C. Gentile, G. Morales-Espafia, and A. Ramos, “A tight MIP formulation of the unit commitment problem with start-up
and shut-down constraints,” cn, EURO Journal on Computational Optimization, vol. 5 no. 1 pp. 177-201, Apr. 2016

16, Morales-Espafia, C. Gentile, and A. Ramos, “Tight MIP formulations of the power-based unit commitment
problem,” OR Spectrum, vol. 37, no. 4, pp. 929-950, May 2015

176, Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and Compact MILP Formulation for the Thermal Unit
Commitment Problem,” [EEE Transactions on Power Systems, vol. 28, no. 4, pp. 4897-4908, Nov. 2013

18G. Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and Compact MILP Formulation of Start-Up and Shut-Down
Ramping in Unit Commitment,” /EEE Transactions on Power Systems, vol. 28, no. 2, pp. 1288-1206, 2013
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m Critical solving time reductions
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Conclusions & Collaboration?

Conclusions

m Better UC core in stochastic UCs =
m Critical solving time reductions
m If convex hulls are not available =

m Create simultaneously tight and compact models
m by reformulating the problem, e.g., CCGTs!®
m Key hint: start removing all big-M parameters

196G Morales-Espafia, C. M. Correa-Posada, and A. Ramos, “Tight and Compact MIP Formulation of Configuration-Based
Combined-Cycle Units,” /EEE Transactions on Power Systems, vol. 31, no. 2, pp. 1350-1359, Mar. 2016
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Conclusions & Collaboration?

Possible collaboration?

m With PhD Students (papers envisioned)
m Convex hull for variable SU costs
B Almost there (just one constraint needs to be added)
m Stochastic UC dealing with intra-period uncertainty

m Based on power-based UC
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Conclusions & Collaboration?

Possible collaboration?

m With PhD Students (papers envisioned)
m Convex hull for variable SU costs
B Almost there (just one constraint needs to be added)
m Stochastic UC dealing with intra-period uncertainty
m Based on power-based UC
m Master theses at Uniper Benelux

m Stochastic optimization of combined heat and power plants
m Long term investment model for combined heat and power systems
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Conclusions & Collaboration?

Possible collaboration?

m With PhD Students (papers envisioned)
m Convex hull for variable SU costs
B Almost there (just one constraint needs to be added)
m Stochastic UC dealing with intra-period uncertainty
m Based on power-based UC
m Master theses at Uniper Benelux

m Stochastic optimization of combined heat and power plants
m Long term investment model for combined heat and power systems

m Master theses with Jedlix

m Robust smart charging of EVs
m Aggregated EV models to deal with uncertainty

7
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Conclusions & Collaboration?

Questions

Thank you for your attention

Contact Information:
g.a.moralesespama@tudelft.nl
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