• Two color super-resolution imaging of two proteins running partially along each other (in green and red). Blue coloring indicates the amount of co-orientation, i.e. where both protein are close to each other and run in the same orientation. Image from our publication Nieuwenhuizen et al. PLoS ONE 10 2015. Click.
  • Overlay of data fusion from fluorescence super-resolution data of several hundred nuclear pore complexes (NPC) and the negatively stained nuclear envelope of a Xenopus laevis oocyte (sub-sahara frog). Fluorophore Alexa647 is immunostained to the nucleoporin (inner ring 41 nm diameter) and gp210 in the nuclear envelope (outer ring with eight-fold symmetry and 164 nm diameter). The image is generated from data of our publication Löschberger et al. Journal of Cell Sciences 2012. Click.
  • Infographics of TU Delft logo for super-resolution microscopy. It exemplifies one of the main conclusions from our publication Nieuwenhuizen et al. Nature Methods 2013 where we show that localization uncertainty and density of localizations together determine the interpretable resolution in images beyond the diffraction limit.


Prof.Dr. Bernd Rieger
Department of Imaging Physics
Faculty of Applied Sciences
Delft University of Technology
Lorentzweg 1
2628 CJ Delft, The Netherlands

Phone: +31 (0)15 27 88574
Fax: +31 (0)15 27 86740
Email: B.Rieger@tudelft.nl
Room: F266
Building 22, Campus map

Watch our youtube animation about 350 years light microscopy in Delft! It shows the relation of our current research and future direction to the beginns with Antonie van Leeuwenhoek.