1. Find the general solution of the differential equation
\[y''(x) + y(x) = \sin(x) + \sin(2x). \]

2. Find the sum of \(\sum_{n=2}^{\infty} \frac{n(n-1)}{2^n} \) through the following steps:

(a) Start with the geometric series \(\sum_{n=0}^{\infty} x^n \) and deduce from this the sum of the series \(\sum_{n=1}^{\infty} nx^{n-1} \) and the sum of the series \(\sum_{n=2}^{\infty} n(n-1)x^{n-2} \) for \(|x| < 1 \).

(b) Now find the sum of \(\sum_{n=2}^{\infty} \frac{n(n-1)}{2^n} \).

3. Consider the function \(f(x) = \sqrt{1 + x^3} \) for \(-1 < x < 1\).

(a) Use the formula for the binomial series to show that
\[f(x) = 1 + \frac{1}{2} x^3 - \frac{1}{8} x^6 + \frac{1}{16} x^9 + \ldots. \]

(b) Evaluate \(\lim_{x \to 0} \frac{1 - \sqrt{1 + x^3}}{x^3} \).

4. Consider the curve \(C \) given by \(\mathbf{r}(t) = 4t \mathbf{i} + 3t \mathbf{j} + 2t^2 \sqrt{t} \mathbf{k} \) with \(0 \leq t \leq \frac{1}{2} \).

(a) Show that the (arc) length of \(C \) is equal to \(5 \int_{0}^{\frac{1}{2}} \sqrt{1 + t^2} \, dt \).

(b) Use the first three terms of the series in part (a) of the preceding problem to find an approximation of this (arc) length of \(C \). Give your answer in the form of a (simplified) fraction.

5. Find an equation of the tangent plane to the surface \(z = 2xe^{xy} \) at the point \((2, 0, 4) \).