IDR(s) MATLAB implementation manual.

Martin B. van Gijzen and Peter Sonneveld*

1 Introduction

IDR(s) was introduced in [5] as a family of iterative methods for solving large nonsymmetric linear systems

$$Ax = b$$

with $A \in \mathbb{C}^{N \times N}, x, b \in \mathbb{C}^N$. This manual describes the function idrs.m which is the MATLAB implementation of IDR(s)-biortho, the IDR(s) variant that is described in [6]. The features of idrs are illustrated with a test set of 11 examples.

The function idrs.m and the accompanying test set can be downloaded from http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html.

The file idrs_test.tgz contains all the necessary MATLAB files to run the test set. The command tar xzf test_idrs.tgz creates the directory TEST_IDRS. Typing test_idrs in this directory in a command window opens a menu that gives the choice between the 11 different tests.

idrs.m can also be downloaded separately. The file contains online help instructions that can be seen by typing help idrs (help idrs.m under MATLAB 7.5.0).

The codes have been tested under MATLAB 6.5.0, MATLAB 7.5.0, MATLAB 7.7.0 and under OCTAVE 3.2.3.

2 Description of the input and the output parameters.

The most basic call to idrs is:

$$[x] = idrs(A,b);$$

This call uses default values for all the input parameters that are not specified, and only returns the solution. The most general call to the function idrs is as follows:

[x,flag,relres,iter,resvec,repl] = idrs(A,b,s,tol,maxit,M1,M2,x0,options). This call makes it possible to set all the input parameters by user chosen values, and gives information about the iterative process as output. Input parameters that are empty or not specified take default values.

The names and the ordering of the parameters of idrs are analogous to the MATLAB built-in iterative solvers gmres, bicgstab, cgs, qmr, and bicg. Yet, there are some important differences. The next two subsections describe the input and the output parameters, and also indicate differences in definition of the parameters with the corresponding ones in the MATLAB built-in routines.

^{*}Delft University of Technology, Delft Institute of Applied Mathematics, Mekelweg 4, 2628 CD Delft, The Netherlands. E-mail: M.B.vanGijzen@tudelft.nl, P.Sonneveld@tudelft.nl

2.1 Input parameters

A: The parameter A defines the system matrix A. It can be a square $N \times N$ (complex or real) two dimensional array, or a structure if the action of A is defined by a function. In the latter case, the name of the function must be specified in the field A.name. Other fields can be used to pass parameters to the function that performs the matrix-vector multiplication v = Au. For example, if the name of this function is mv, then A.name = 'mv'. The parameter list of mv should be as follows: v = mv(u, A). See also example 2 in section 3. Note that the way a function is passed to idrs differs from the way functions are passed to the MATLAB built-in iterative solvers (these use function handles).

A must be specified.

b: The parameter b defines the right-hand-side vector. b must be a one-dimensional

b must be specified.

complex or real array of size N.

s: The parameter s specifies the dimension of the so-called shadow space in IDR(s). It must be a positive scalar integer.

The default is s = 4.

tol: The parameter tol specifies the tolerance that must be satisfied: $||r_i||/||b|| < \text{tol}$, where r_i is the (recursively computed) residual $b - Ax_i$. tol must be a positive real scalar.

The default is tol = 1e-8.

maxit: The parameter maxit specifies the maximum number of iterations. maxit must be a positive integer scalar. Each iteration corresponds to one matrix-vector multiplication. Note: if a residual replacement strategy is used it is possible that a few additional matrix-vector multiplications are performed, see options below.

The default is maxit = min(2*N,1000), with N the problem size.

M1: The parameter M1 defines the left factor of the preconditioner $M=M_1M_2$. If M2 is not specified or empty then M1 defines M. M1 can be a real or complex matrix of the same size as A, or a structure if the action of M_1 is defined by a function. In the latter case, the name of the function must be specified in the field M1.name. Other fields can be used to pass parameters to the function that performs the preconditioning operation $v=M_1^{-1}u$. For example, if the name of this function is m1, then M1.name = 'm1'. The parameter list of m1 should be as follows: v = m1(u, A). See also example 4 in section 3.

The default is $M_1 = I$, with I the identity.

- M2: The parameter M2 defines the right factor of the preconditioner $M=M_1M_2$. If M1 is not specified or empty then M2 defines M. M2 can be a real or complex matrix of the same size as A, or a structure if the action of M_2 is defined by a function. As for M1, this structure should have a field M2.name. See also example 4 in section 3. The default is $M_2=I$, with I the identity.
- x0: The parameter x0 specifies the initial guess x_0 . x0 must be a one-dimensional array of dimension N.

The default is $x_0 = 0$, the zero vector.

options: Some more advanced parameters can be set or changed via the structure options.

These are:

options.smoothing: The field options.smoothing must be a logical (or binary: 0 means false, 1 means true). Setting options.smoothing = 1 switches residual smoothing on. Residual smoothing results in monotonically decreasing residual norms at the expense of two extra vectors of storage and a few extra vector operations. Although monotonic decrease of the residual norms is a desirable property, the rate of convergence of the unsmoothed process and the smoothed process is basically the same. Residual smoothing is discussed in example 5 of section 3. The default is options.smoothing = 0: no residual smoothing.

options.omega: The field options.omega must be a real scalar. In IDR(s), a value for the iteration parameter ω must be chosen in every s+1th step. The most natural choice is to select ω to minimize the norm of the next residual. This corresponds with the parameter setting options.omega = 0. In practice, this may lead to values of ω that are so small that the other iteration parameters cannot be computed with sufficient accuracy. In such cases it is better to increase the value of ω sufficiently such that a compromise is reached between accurate computations and reduction of the residual norm. The parameter setting options.omega = 0.7 ("maintaining the convergence strategy") results in such a compromise. The effect of these different choices for ω is illustrated by example 6. The default is options.omega = 0.7: "maintaining the convergence strategy".

options.P: The field options.P must be a real or complex two-dimensional array of size $N \times s$. It makes it possible to pass a user-defined shadow matrix P. See also examples 7 and 11 for illustrations.

The default is P = randn(N,s): P random, normally distributed.

options.replace: The parameter options.replace is a logical that determines whether a residual replacement strategy is employed to increase the accuracy of the solution. This strategy is discussed in example 9 of section 3.

The default is options.replace = 0: no residual replacement.

2.2 Output parameters

If no output parameters are specified idrs will show the online help, i.e., typing idrs has the same effect as help idrs. Note: under MATLAB 7.5.0 this does not work as expected. To get online help under MATLAB 7.5 one should type help idrs.m.

- x The parameter x is an array of length N and gives the solution vector.
- flag The parameter flag is an integer scalar that gives information about the way the process was terminated:
- flag = 0: Successful termination. The tolerance was met within the maximum number of iterations.
- flag = 1: The process was terminated because the maximum number of iterations was reached.
- flag = 2: The computed solution does not satisfy the required tolerance. This can be caused by build-up of rounding errors. See examples 8-10 of section 3 for a discussion on causes and remedies.
- flag = 3: One of the iteration parameters became zero, causing breakdown.

relres: The parameter relres is a real scalar that gives the relative norm of the *true* residual, i.e. relres = ||b-Ax||/||b||. This value should be smaller than to1, but due to build-up of rounding errors it can be larger. In that case flag = 2.

iter: The parameter iter is an integer scalar that gives the total number of iterations that has been performed. Note that the meaning of iter is slightly different from the corresponding parameter in the MATLAB built-in iterative solvers, which gives the iteration number for which the residual norm was minimal.

resvec The parameter resvec is a real one-dimensional array of size iter+1 that gives for every iteration (starting with iteration 0) the norm of the recursively computed residual.

repl The parameter repl is an integer scalar that gives the number of residual replacements. This parameter can only be nonzero if options.replace = 1.

3 Examples

This section describes the 11 tests that are part of the distribution. To run the tests, type test_idrs in the command window.

The results that are presented in this section have been carried out using MATLAB 7.5.0 on a standard PC with an Intel Core 2 duo processor and 4 Gb of RAM that runs under LINUX. We remark that the results vary slightly (but not essentially) if a different computer or another MATLAB version or OCTAVE is used due to finite precision effects and due to differences in the random number generators.

3.1 Testproblem

We illustrate the features of idrs with the finite difference discretisation of the following convection-diffusion-reaction equation with homogeneous Dirichlet boundary conditions on the unit cube:

$$-\epsilon \Delta u + \vec{\beta} \cdot \nabla u - ru = F$$

The right-hand-side vector F is defined by the solution u(x,y,z)=x(1-x)y(1-y)z(1-z). The problem is discretised using central differences with grid size h=0.1. The resulting linear system consists of 729 equations. The physical parameters are chosen as follows: $\epsilon=0.02$ (diffusion), $\vec{\beta}=(0/\sqrt{5}\ 1/\sqrt{5}\ 2/\sqrt{5})^T$ (convection), and r=6 (reaction).

The test problem is generated using the following call to the function make_systems:

$$[A, b] = make \setminus system(eps, beta, r, h);$$

3.2 Example 1: unpreconditioned IDR(s).

The first example uses unpreconditioned IDR(s) and, except for s, default parameters. The call is:

Figure 1 shows the convergence for IDR(s), for s=1,2,4 and 8. All methods achieve the required accuracy, meaning that flag = 0 and that relres < tol, with tol = 1e-8 (default). Figure 1 also shows the convergence of GMRES and Bi-CGSTAB. The convergence curves of IDR(s) are in between the convergence curves of GMRES and Bi-CGSTAB, and are increasingly closer to the GMRES curve for higher s.

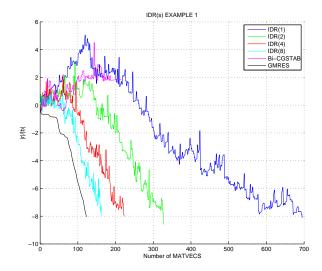


Figure 1: Convergence of unpreconditioned IDR(s).

3.3 Example 2: IDR(s) with SSOR-preconditioning using Eissenstat's trick.

The second example shows IDR(s) with SSOR-preconditioning. The matrix-vector multiplication and the preconditioning operation are combined using Eissenstat's trick. Let

$$A = L + D + U$$

where L, D, and U are the strictly lower triangular part, the main diagonal, and the strictly upper triangular of A, respectively. The SSOR preconditioner (more accurately Symmetric Gauss-Seidel preconditioner) is defined by

$$B = (L+D)D^{-1}(U+D) = (LD^{-1}+I)(U+D) .$$

The (two sided) preconditioned system now reads

$$D(L+D)^{-1}A(U+D)^{-1}y = D(L+D)^{-1}b,$$

$$x = (U+D)^{-1}y$$
(1)

In order to make multiplications with the preconditioned system matrix \tilde{A} more efficient we rewrite this matrix as follows

$$\tilde{A} = D(L+D)^{-1}A(U+D)^{-1}
= D(L+D)^{-1}(L+D-D+U+D)(U+D)^{-1}
= D((U+D)^{-1} + (L+D)^{-1} - (L+D)^{-1}D(U+D)^{-1})
= D(U+D)^{-1} + (LD^{-1}+I)^{-1} - (LD^{-1}+I)^{-1}D(U+D)^{-1}
= (UD^{-1}+I)^{-1} + (LD^{-1}+I)^{-1}(I-(UD^{-1}+I)^{-1}).$$

The multiplication $v = \tilde{A}u$ can then be efficiently performed as follows

$$t = (UD^{-1} + I)^{-1}u$$

$$v = t + (LD^{-1} + I)^{-1}(u - t) .$$

The above technique can be implemented as follows:

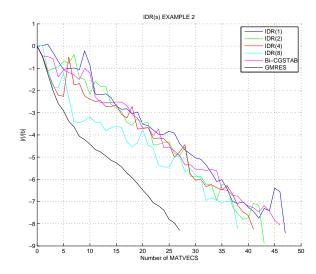


Figure 2: Convergence of IDR(s) with SSOR preconditioner, using Eissenstat's trick.

```
K.name = 'mv'; % name of the function that performs the matrix-vector multiplication K.D = diag(diag(A)); % field K.D contains D K.L = tril(A)/K.D; % field K.L contains (LD^{-1}+I) K.U = triu(A)/K.D; % field K.U contains (UD^{-1}+I) f = K.L\b; % right-hand side of preconditioned system [y, flag,relres,iter,resvec] = idrs( K, f ); % Note: the default s=4 is taken here x = KD\(K.U\y); % scale back
```

The function mv that performs the preconditioned matrix-vector multiplication is as follows

```
function v = mv( u, A );
t = (A.U\u);
v = t + (A.L\( u - t ));
return
```

Figure 2 shows the convergence for IDR(s), with s=1,2,4 and 8. As in the previous example, also the convergence curves of GMRES and Bi-CGSTAB are shown. Note that for this example IDR(s) does not give a significant gain over Bi-CGSTAB. The reason is that the convergence of Bi-CGSTAB is rather close to the optimal convergence of GMRES: there is not much room for much improvement. This is typical for well-conditioned (and well-preconditioned) problems.

For this example all methods terminate with flag = 0, which indicates that the required accuracy is achieved. Also, the parameter relres is always smaller than 10^{-8} , the default tolerance. However, if we check the scaled residual norm ||b - Ax||/||b|| we get a value that is much higher than the required tolerance. For example,

```
IDR(4) iteration Relative unpreconditioned residual norm: 9.0194e-05 |b - Ax|/|b| = 5.5186e-09
```

The reason for this is that relres (= ||b - Ax||/||b||) corresponds to the relative residual norm for the *preconditioned* system, which may differ considerably from the relative residual norm for the unpreconditioned system if left or two-sided preconditioning is

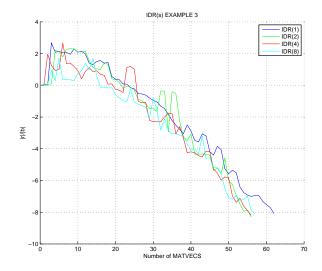


Figure 3: Convergence of IDR(s) with SSOR preconditioning, preconditioner passed as a factored matrix.

used. The next examples use implicit preconditioning, which is in IDR(s) equivalent with right-preconditioning. In this case the residual of the preconditioned system and of the unpreconditioned system are the same.

3.4 Example 3: SSOR-preconditioned IDR(s), preconditioner passed as a factored matrix

Example 3 shows how IDR(s) can be combined with implicit SSOR-preconditioning (in IDR(s) this is equivalent with right preconditioning). So in this case the preconditioned system reads

$$A((LD^{-1}+I)(U+D))^{-1}y = b,$$

$$x = ((LD^{-1}+I)(U+D))^{-1}y$$
(2)

The implementation in MATLAB is as follows:

```
s = 1;
tol = []; % use default
maxit = []; % use default

D = diag(diag(A));
M1 = tril(A)/D;
M2 = triu(A);

[x,flag,relres,iter,resvec] = idrs(A,b,s,tol,maxit,M1,M2);
```

Figure 3 shows the convergence of IDR(s) for four choices of s. Again all methods terminate with flag = 0, meaning that the required accuracy is achieved.

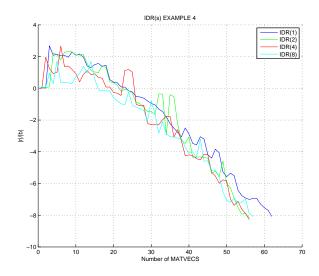


Figure 4: Convergence of IDR(s) with SSOR preconditioning, preconditioner specified using functions.

3.5 Example 4: IDR(s) with SSOR preconditioning, preconditioner specified using functions

Example 4 shows how the action of a preconditioner can be passed as a function. We illustrate this with the same preconditioner as in the previous example, where the matrix was passed via the parameter list in the form of a factored matrix.

The preconditioner can be passed in the form of functions that define the action of the preconditioner as follows.

```
s = 4; maxit = []; tol = [];
M1.name = 'm1';
M1.D = diag(diag(A));
M1.L = tril(A)/M1.D;
M2.name = 'm2';
M2.U = triu(A);
[x,flag,relres,iter,resvec] = idrs(A,b,s,tol,maxit,M1,M2);
The function m1 and m2 are defined by
function x = m1( y, M1 );
x = M1.L\ y;
return
function x = m2( y, M2 );
x = M2.U\ y;
return
```

The resulting convergence for the four different choices of s is displayed in figure 4. The convergence curves are the same as in figure 3.

3.6 Example 5: IDR(s) with residual smoothing

Example 5 shows the effect of residual smoothing.

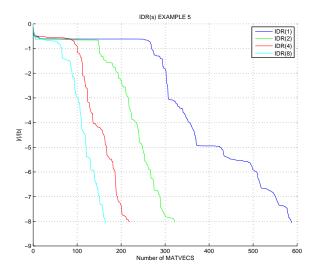


Figure 5: Convergence of IDR(s) with residual smoothing.

The residual norms in IDR(s) do not decrease monotonically. However, alternative residuals with monotonically decreasing norms can be obtained by combining IDR(s) with a residual smoothing algorithm. In IDR(s) so-called Schonauer-Weiss smoothing [2, 7] is implemented. In this smoothing algorithm, a linear combination of the smoothed residual \tilde{r}_{n-1} and the unsmoothed IDR(s)-residual is made in every iteration:

$$\tilde{\boldsymbol{r}}_n = \tilde{\boldsymbol{r}}_{n-1} - \sigma_n(\tilde{\boldsymbol{r}}_{n-1} - \boldsymbol{r}_n) \quad \tilde{\boldsymbol{r}}_0 = \boldsymbol{r}_0.$$

The parameter σ_n is determined such that the norm of the smoothed residual is minimised, which leads to

$$\sigma_n = \frac{(\tilde{\boldsymbol{r}}_{n-1} - \boldsymbol{r}_n)^H \tilde{\boldsymbol{r}}_{n-1}}{(\tilde{\boldsymbol{r}}_{n-1} - \boldsymbol{r}_n)^H (\tilde{\boldsymbol{r}}_{n-1} - \boldsymbol{r}_n)}$$

The approximate solution vector is updated consistently with the smoothed residual as follows

$$\tilde{\boldsymbol{x}}_n = \tilde{\boldsymbol{x}}_{n-1} - \sigma_n(\tilde{\boldsymbol{x}}_{n-1} - \boldsymbol{x}_n) \quad \tilde{\boldsymbol{x}}_0 = \boldsymbol{x}_0.$$

Residual smoothing can be switched on as follows:

```
% Other parameters (defaults):
maxit = []; tol = []; M1 = []; M2 = []; x0 = [];
s = 4;
% Switch on residual smoothing:
options.smoothing = 1;
% Call idrs:
[x,flag,relres,iter,resvec] = idrs(A,b,s,tol,maxit,M1,M2,x0,options);
```

Figure 5 shows the convergence of IDR(s) with smoothed residuals. This figure should be compared with figure 1 which shows the convergence of IDR(s) without residual smoothing. We remark that, although the smoothed residuals curves look nicer, the rate of convergence is essentially the same.

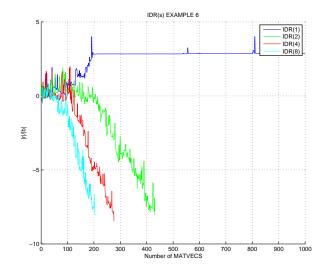


Figure 6: Convergence of IDR(s) with minimal residual choice for ω .

3.7 Example 6: IDR(s) with a minimum residual choice for ω

Example 6 illustrates what happens if the parameter ω is chosen to minimize the residual norm. Note that this is the standard strategy in Bi-CGSTAB. In IDR(s), the minimum residual strategy for computing ω is used if idrs is called as follows:

```
% Other parameters (defaults):
maxit = []; tol = []; M1 = []; M2 = []; x0 = [];
s = 4;
% Minimal residual choice for omega:
options.omega = 0;
% Call idrs:
[x,flag,relres,iter,resvec] = idrs(A,b,s,tol,maxit,M1,M2,x0,options);
```

Figure 6 shows the convergence of IDR(s) if the minimal residual strategy for ω is used. This figure should be compared with figure 1 where the same computation is performed with the "maintaining the convergence" strategy for ω [3, 6]. The "maintaining the convergence" strategy corresponds with the default value options.omega = 0.7. The convergence for small values of s is much worse for the "minimum residual" strategy. We have this behaviour consistently for problems that have eigenvalues on both sides of the imaginary axis. Note that IDR(1) does not converge within the maximum number of iterations. This results in flag = 1.

3.8 Example 7: IDR(s) with complex shadow vectors

Example 7 shows a different choice of the shadow vectors.

If A is real and strongly nonsymmetric, complex random shadow vectors may give a much faster convergence than real random shadow vectors. This effect is strongest for small values of s.

Complex shadow vectors can be defined and passed to idrs as follows:

```
s = 2; tol = 1e-8; maxit = 1000;
M1 = []; M2 = []; x0 = []; im = sqrt(-1);
```

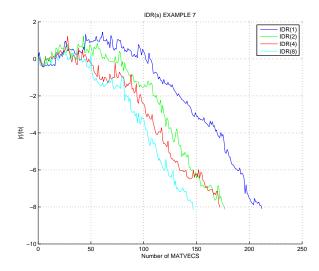


Figure 7: Convergence of IDR(s) with complex shadow vectors.

```
randn('state', 0); P = randn(n,s) + im * randn(n,s); P = orth(P); options.P = P;
[x,flag,relres,iter,resvec] = idrs(A,b,s,tol,maxit,M1,M2,x0,options);
```

The resulting convergence curves for the four choices for s are shown in Figure 7. Comparing Figure 1 and 7 shows that the complex choice for the shadow vectors gives considerably faster convergence for this example. The computations, however, have to be performed using complex arithmetic, which is more expensive than real arithmetic.

3.9 Example 8: IDR(s) with strict tolerance

Example 8 tries to compute the solution with a tolerance that is close to relative machine precision.

It is well known that high peaks in the initial phase of the iterative process may destroy the final achievable accuracy if the residuals are computed recursively [1]. An intuitive explanation of this is as follows. In every iterative step relative errors in the order of the machine precision ϵ are made. If the residuals are computed recursively, the errors from an earlier stage of the process propagate through all succeeding iterations and also pollute the later residuals. If a residual in an early stage is very large in norm, the roundoff errors made in this phase can therefore cause a large relative error in the final residuals that are small in norm. This usually manifests itself in a large difference between the recursively updated residual r_i and the true residual $b-Ax_i$. This so-called residual gap can be so large that the final true residual is above the required tolerance, although the recursively computed residual is below. To illustrate this we take a strict tolerance 10^{-12} , i.e., the iterative process is terminated if $||r_i||/||b|| < 10^{-12}$.

A sample call with s = 2 is

```
s = 2; tol = 1e-12;
[x,flag,relres] = idrs(A,b,s,tol);
```

The resulting convergence curves for the four choices for s are shown in Figure 8. Although the convergence curves look normal, and the norms of the recursively updated residuals divided by the norm of b drop below the required tolerance, the relative norms of the

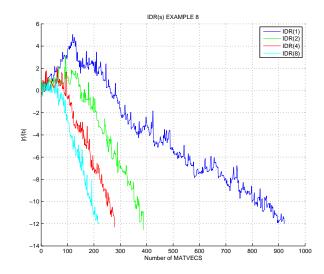


Figure 8: Convergence of IDR(s) with strict tolerance.

true final residuals are all above the tolerance. For example, for IDR(1) we get flag = 2, which indicates that the true relative residual norm is above the tolerance, and relres = 2.7328e-11. Note, relres is equal to the norm of the final residual divided by the norm of b, and should be smaller than tol.

In the next two examples we will show two possible solutions to this problem.

3.10 Example 9: IDR(s) with residual replacements

Example 9 shows the effect of a few replacements of the recursively computed residual by the true residual.

A possible cure to the loss of accuracy due to high peaks in the initial phase of the iterative process is to replace the recursively computed residual by the true residual once the residual norm has decreased to a sufficiently lower level after the peak. This moment has to be chosen carefully, since replacement of small residuals may negatively affect the rate of convergence, and the replacement of a residual that is too large in norm (to close to the peak value) may not result in a more accurate solution. Moreover, a residual replacement requires an extra matrix-vector multiplication. The number of residual replacements should therefore be limited for efficiency reasons. We refer to [4] for a detailed analysis and an advanced residual replacement strategy.

In idrs the following simple replacement strategy is implemented:

A peak is considered dangerously high if

$$||r_i||/||b|| > C(\mathsf{tol}/\epsilon)$$
.

with ϵ the relative machine precision. The factor tol/ϵ corresponds to the size of a finite precision number that is so large that the absolute round-off error in this number, when propagated through the process, makes it impossible to achieve the required accuracy. The factor C accounts for the accumulation of round-off errors. This parameter has been set to 10^{-3} . If such a dangerous peak has been encountered, the recursively computed residual is replaced by the true residual once the relative norm of the residual drops below 1 (i.e., when the residual is smaller in norm than b). We remark that the above residual

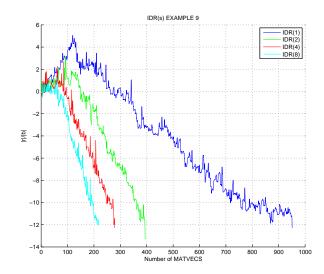


Figure 9: Convergence of IDR(s) if a residual replacement strategy is used.

replacement strategy improves the accuracy if high peaks occur, but it does not guarantee that the final true residual is below the required tolerance.

A sample call with s = 4 is

```
s = 4; tol = 1e-12; maxit = [];
M1 = []; M2 = []; x0 = [];
options.replace = 1;
[x,flag,relres,iter,resvec,repl] = idrs(A,b,s,tol,maxit,M1,M2,x0,options);
```

The resulting convergence curves are shown in Figure 9. Note that the rate of convergence is slightly negatively affected if the residual replacement strategy is used. The accuracy of the solution, however, has improved. For example for s=1 we get relres = 5.1644e-13 and flag = 0, whereas in the previous example we had relres = 2.7328e-11 and flag = 2.

3.11 Example 10: IDR(s) with a restart

Example 10 shows how to improve the final accuracy by restarting the process.

An alternative way to improve the accuracy if the required tolerance is not met, is to restart the process with the found solution as initial guess. A sample call with s=2 to implement this is:

```
s = 2; tol = 1e-12; maxit = []; M1 = []; M2 = [];
[x,flag,relres,iter,resvec] = idrs(A,b,s,tol,maxit);
if ( flag > 0 ) [x,flag,relres,iter,resvec] = idrs(A,b,s,tol,maxit,M1,M2,x); end;
```

The convergence curves are shown in Figure 10. After restart, all processes successfully terminate with flag =0 and an accuracy that is below the tolerance.

3.12 Example 11: equivalence of IDR(1) and Bi-CGSTAB

Example 11 shows that IDR(1) and Bi-CGSTAB are mathematically equivalent for a certain choice of parameters.

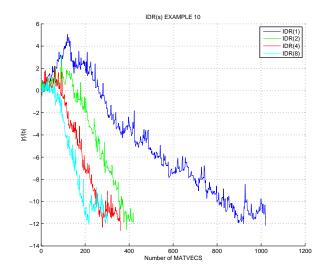


Figure 10: Convergence of IDR(s) with a restart.

It is well known, see [5] that Bi-CGSTAB and IDR(1) are mathematically equivalent if the shadow vector p is chosen the same in both methods, and if ω is computed in the same way. The classical choices for these parameters in Bi-CGSTAB are: $p = r_0$, and ω is computing via the minimal residual strategy.

The call to make IDR(s) mathematically equivalent to Bi-CGSTAB is therefore:

```
s = 1; tol = 1e-8; maxit = 40;
M1 = []; M2 = []; x0 = [];
options.P = b; options.omega = 0;
[x,flag,relres,iter,resvec] = idrs(A,b,s,tol,maxit,M1,M2,x0,options);
```

Figure 11 shows the convergence in the first 20 iterations of Bi-CGSTAB (Bi-CGSTAB performs 2 matrix-vector multiplications per iteration) and in the first 40 iterations of IDR(1) with the above choice of parameters. Clearly, the convergence curves coincide until finite precision effects start to play a role.

Acknowledgement: The authors are indebted to Marielba Rojas for her help and advise on many aspects of this work. In particular, the interface for passing functions for matrix operations using structures is her design.

References

- [1] A. Greenbaum. Estimating the attainable accuracy of recursively computed residual methods. SIAM J. Matrix Anal. Appl., 18(3):535–551, 1997.
- [2] W. Schönauer, Scientific Computing on Vector Computers, Elsevier, Amsterdam, 1987.
- [3] G.L.G. SLEIJPEN and H.A. VAN DER VORST. Maintaining convergence properties of BiCGstab methods in finite precision arithmetic, *Numer. Algorithms* 10(3-4):203–223, 1995.

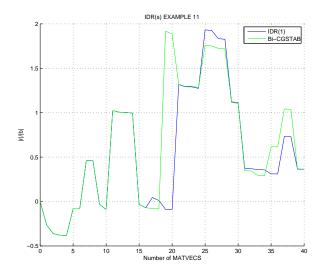


Figure 11: Equivalence of IDR(1) and Bi-CGSTAB.

- [4] G.L.G. Sleijpen and H.A. van der Vorst. Reliable updated residuals in hybrid Bi-CG methods. *Computing* 6:141–163, 1996.
- [5] P. Sonneveld and M.B. van Gijzen. IDR(s): a family of simple and fast algorithms for solving large nonsymmetric linear systems. *SIAM J. Sci. Comp.*, 31(2):1035–1062, 2008.
- [6] M.B. VAN GIJZEN and P. SONNEVELD, An elegant IDR(s) variant that efficiently exploits bi-orthogonality properties, Preprint 10-16, Delft Institute of Applied mathematics, Delft University of Technology, Delft, The Netherlands, 2010.
- [7] R. Weiss. Convergence Behavior of Generalized Conjugate Gradient Methods, PhD thesis, University of Karlsruhe, 1990.