Topics: Gomory-Chvátal cutting planes

Book: Chapter 5.2.1, 5.2.2

Summary

Cutting planes

Often, we can describe combinatorial objects as the integral points in a polyhedron $P = \{x : Ax \leq b\}$. The integer hull of P is the convex hull of the integral points in P, and is denoted P_I . A cutting plane (or cut for short) for P is a linear inequality $cx \leq d$ that is valid for all points in P_I (and typically not valid for P). In Chapter 5.2, a general class of split cuts for mixed integer programs is treated. We will only consider pure integer programs and focus on an interesting subclass of cuts called Gomory-Chvátal cuts (Chapter 5.2.1 and 5.2.2).

We will always assume that our polyhedra P are rational. That is, we assume

$$P = \{x \in \mathbb{R}^n : a^i x \le b_i, \quad i = 1, \dots, m\}$$

where the a^i and b_i are integral. Given an inequality $cx \leq d$ that is valid for P, with c integral, the inequality $cx \leq \lfloor d \rfloor$ is a cutting plane for P called a Gomory-Chvátal cutting plane (or GC-cut for short). Note that if $cx \leq d$ is valid for P, then there exist nonnegative numbers y_1, \ldots, y_m such that $c = y_1 a^1 + \cdots + y_m a^m$ and $d' = y_1 b_1 + \cdots + y_m b_m$ for some $d' \leq d$. So relevant valid inequalities for P (and hence their GC-cuts) can be derived by considering nonnegative combinations of the defining inequalities.

Chvátal closure and Chvátal rank

If we add all Gomory-Chvátal cuts for P, the resulting feasible region is a subset P^{CH} of P that contains P_I . It is called the *Chvátal closure* of P. Although we possibly add infinitely many inequalities, P^{CH} is again a polyhedron (Theorem 5.14). This is because it suffices to add cuts $cx \leq \lfloor d \rfloor$ with c integral that are obtained as a nonnegative combination of the defining inequalities using only coefficients y_i in [0,1). Since $\{\sum_i y_i a^i : y \in [0,1)^m\}$ is bounded, this yields only finitely many GC-cuts (see Lemma 5.13).

In general, P^{CH} may strictly contain the integer hull P_I . This motivates to define the t-th iterated Chvátal closure:

$$P^{(0)} := P, \qquad P^{(t+1)} := (P^{(t)})^{\text{CH}} \quad \text{for } t = 0, 1, 2, \dots$$

The Chvátal rank of a polytope P is the smallest t for which $P_I = P^{(t)}$. The fact that such a t always exists is the content of Theorem 5.18.

Example. Let G = (V, E) be a graph and consider the system

$$x \ge 0$$
, $\sum_{e \in \delta(v)} x_e \le 1$ for every node v

defining a polytope $P \subseteq \mathbb{R}^E$. If G is bipartite, we have seen that $P = P_I$ since the defining system is of the form $Ax \leq b$ with A TU and b integral (Corr. 4.19). For non-bipartite graphs P strictly contains P_I . Indeed, if C is an odd circuit then setting $x_e = \frac{1}{2}$ for every edge e on C and $x_e = 0$ for all other edges gives a non-integral vertex of P. However, adding the inequalities

$$\sum_{e \in E[S]} x_e \le \frac{1}{2}(|S| - 1) \quad \text{for } S \subseteq V \text{ with } |S| \text{ odd}$$
 (1)

gives a perfect formulation of the matching polytope (Thm 4.2.4). We have seen that these inequalities can be obtained as GC-cuts from P. So the Chvátal rank of P is 0 if G is bipartite and 1 otherwise.

Cutting plane proofs

A cutting-plane proof from the system $Ax \leq b$ for an inequality $cx \leq d$ is a sequence of inequalities $c^i x \leq d_i$, (i = 1, ..., k) with the following properties:

- (i) every c^i is integral,
- (ii) $c^k = c$ and $d_k = d$,
- (iii) for every i there is a number d_i' satisfying $\lfloor d_i' \rfloor \leq d_i$, such that $c^i x \leq d_i'$ is a nonnegative combination of the inequalities $Ax \leq b$ and $c^1 x \leq d_1, \ldots, c^{i-1} x \leq d_{i-1}$.

This way, a cutting-plane proof gives a proof of the validity of an inequality for the integer hull of P. The fact that $P_I = P^{(t)}$ for some t implies that any cut for P has a finite cutting plane proof showing that it is indeed a valid inequality for P_I .