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Although very simple to prove, the handshaking lemma can be a powerful

tool in the hands of a combinatorialist. Here, I will show you some

colourful applications and pose some challenges to you, dear reader.

Let me start by posing a simple question. Perhaps you already know the answer.
If not, take a minute or two to see if you can solve it!

There are seven people at a party. Is it possible that each of them
shakes hands with exactly three others?

In the language of graph theory, we are asking for a graph1 with 7 nodes in
which every node has degree 3. The following simple observation will be a
central idea in this article.

Lemma 1 (handshaking lemma). Let G be a graph. Then G has an even
number of odd degree nodes.

The proof is not hard. For all nodes u, count the edges incident to u. The
total count equals the sum of the degrees of the nodes. It also equals twice
the total number of edges, since every edge is counted twice. Hence, the sum
of the degrees must be even. Therefore, the number of odd degree nodes must
be even.

Hamiltonian paths
By a Hamiltonian path in a graph G, we mean a path that visits every node
exactly once. Here, we will be interested in Hamiltonian paths between to
given nodes s and t (we ignore the direction in which the path is traversed
and only consider the set of edges on the path). Not every graph has a Hamil-
tonian path, and it is NP-hard to decide if a given graph has a Hamiltonian
path between two given nodes. However, if we have one such path, we can
sometimes conclude that there must be another.

Theorem 1 (Smith). Let G be a graph. Suppose that s and t are the only
nodes of even degree. Then, the number of Hamiltonian paths between s and t

is even.

Proof. Make an auxilary graph H. The nodes of H are the Hamiltonian paths
in G that end in node s. Given a Hamiltonian path P between s and node
u, its neighbouring Hamiltonian paths in H are defined as follows. Take any
of the d(u) − 1 edges incident to u that are not in the path P , say edge e.
Adding e to P will create a circuit. There is a unique edge f ̸= e in the circuit
such that after removing f , we obtain a new Hamiltonian path Q = P +e−f

between s and a node v. Now Q is declared to be a neighbour of P in the
graph H. Clearly, if Q is a neighbour of P , then also P is a neighbour of Q.
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1All graphs will be finite and undirected

Observe that the number of neighbours of a Hamiltonian path P between s

and u is equal to d(u) − 1. It follows that such a Hamiltonian path has odd
degree in H if and only if u = t. By the handshaking lemma, H has an
even number of odd degree nodes, which means that G has an even number
of Hamiltonian paths between s and t.

As an example, consider the graph in Figure 1. Nodes s and t have degree 2

and all other nodes have degree 3. One Hamiltonian path between s and t is
indicated. By Smith’s theorem, there are an even number of such paths, hence
there must be at least one other such path. Can you find it?
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Figure 1: Find the second Hamiltonian s–t path.

The case that s and t have degree 2 and all other nodes have degree 3 is
particularly interesting. Indeed, the degrees of the auxilary graph H will be
either 1 or 2. The nodes of degree 1 correspond to Hamiltonian s–t paths.
Hence, H just consists of disjoint paths linking nodes that correspond to
Hamiltonian s–t paths. Simply following such a path from one end to the
other gives an algorithm for finding a second Hamiltonian s–t path!
The catch is, that the graph H may be huge and the path we are following
may have length exponential in the number of nodes of G. The theoretical
complexity of this problem is unknown, but it belongs to a class of similar
problems called PPA [2].

Sperner’s lemma
Consider a triangulation of a triangle such as in Figure 2 (left). We want to

Figure 2: A triangulation (left) and a possible Sperner colouring (right).

colour the nodes with three colours (say red, green, and blue). A colouring is
a Sperner colouring if the following are satisfied:

(i) The three vertices of the large triangle have different colours.

(ii) The colour of a vertex of the large triangle does not occur on the opposite
side of the triangle.



In Figure 2 (right), you see a Sperner colouring. Three of the smaller triangles
are shaded because they are complete, meaning that their vertices have three
different colours. Can you find a Sperner colouring with fewer than three com-
plete triangles? How about a Sperner colouring with no complete triangles?

Lemma 2 (Sperner, two-dimensional case). Given a triangulation of a triangle,
every Sperner colouring has an odd number of complete triangles.

Proof. Make a graph G as follows. The nodes of G are the small triangles in
the triangulation. We connect two nodes of G by an edge if the corresponding
triangles share a side with a red and a blue vertex. Now we add one special
node t corresponding to the large triangle. In G we make a edge from t to
every small triangle that has both a red and a green vertex on a side of the
large triangle.

t

Figure 3: The graph corresponding to a Sperner colouring.

It is easy to check that a small triangle corresponds to a node of degree 0, 1,
or 2. A small triangle has degree 1 if and only if it is complete. The degree
of node t equals the number of colour changes along the red-green side of the
large triangle. Hence, the degree of t is odd. By the handshaking lemma, G
must have an even number of odd degree nodes. So besides t it must have
an odd number of odd degree nodes. That is, the triangulation has an odd
number of complete triangles.

The general case of Sperners lemma deals with an n-simplex divided into small
n-simplices and colouring the vertices with n + 1 colours, concluding that
there is an odd number of complete simplices (i.e. simplices with vertices of
n+1 different colours). The proof is almost the same as in the two-dimensional
case presented above.
Sperner’s lemma can be used to prove Brouwer’s fixed point theorem:

Theorem 2 (Brouwer’s fixed point theorem). If f : Bn → Bn is a continuous
map from the closed ball to itself, then f(x) = x for some x.

See the wonderful Proofs from THE BOOK[1] for a proof.
The many other applications of Sperner’s lemma include fairy splitting rent and
the possibility of dividing a birthday cake among n people in such a way that
nobody prefers someone else’s piece over their own. Here people may have
different likes and dislikes regarding chocolat, marzipan, whipped cream and
various pieces of fruit on the cake, of course [3].

Some puzzles
Now that we have seen some examples, the picture should be clear. To use
the handshaking lemma, we first make a suitable auxilary graph. This graph
should be such that the odd degree nodes correspond to the objects we are
looking for. Here are three puzzles for you that can all be solved using the
handshaking lemma. If you want to share a nice solution or other problem
involving the handshaking lemma, don’t hesitate to contact me!

Problem 1.
In Figure 4, you see a graph related to the board game Hex. The nodes N and
S are coloured blue, the nodes E and W are coloured red. Suppose that we
colour each of the other nodes blue or red. Prove that there is either a path
from N to S using only blue nodes, or a path from E to W using only red
nodes.
Hint. Consider the nodes that can be reached from N by a blue path, or from
E by a red path. Colour those nodes green.
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Figure 4: A graph related to the famous board game Hex.

Problem 2.
Let G be a graph. A set D of nodes is called dominating if every node of G
has a neighbouring node in D, or is itself in D. Prove that G has an odd
number of dominating sets.

Problem 3.
Let f : [0, 1] → R be a piecewise linear function such that f(0) = f(1) = 0,
and f(x) > 0 for 0 < x < 1. Two points (mountaineers) Alice and Bob are
moving, in a continuous fashion, along the graph of f (a mountain). Alice
starts at (0, 0), and Bob starts at (1, 0). At any moment in time, Alice and
Bob must be at exactly the same height. Show that they are able to meet
somewhere on the mountain.

Alice Bob
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