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In order to describe the local orientation of a macroscopic medium with broken rotational sym-
metries, an orientational field that consists of three orthonormal vectors is introduced. Next, the
deformation free-energy density is constructed and a detailed account is given of the form and num-
ber of the appearing surface terms. It appears that the general expression involves 39 bulk elastic
constants and 24 surface elastic constants for nonchiral materials, whereas the property of chirality
introduces an additional number of six bulk elastic constants and three surface elastic constants.
The influence of discrete and continuous symmetries on the independence of these elastic constants

is considered.

PACS number(s): 61.30.—v, 03.40.Dz

I. THE ORIENTATIONAL FIELD

The forms of the free-energy densities of orientational
deformations in nematic liquid crystals with uniaxial
[1-5] and biaxial symmetry [6-10] and in smectic liquid
crystals [11,12] are well known. All these deformation
free-energy densities are derived from a priori symmetry
considerations. The aim of the present paper is to for-
mulate a theory of orientational elasticity without any a
priori symmetry considerations, i.e., a theory analogous
to the theory of positional elasticity [13]. The advantage
of such a theory is that all possible effects of biaxial-
ity, polarity, and chirality are taken into account. The
deformation free-energy density of a material with any
symmetry group is then obtained by a posteriori sym-

metry requirements. As opposed to the theories of Liu
[8] and Trebin [9] the present approach makes use of the
instrument of tensor calculus in order to facilitate the
analysis of the form and number of the appearing bulk
and surface terms. Their approach also differs from the
present one in some results concerning the surface terms.

The orientation of a given material point is fixed with
respect to a space-fixed frame (&, &y, €,) by defining
a local frame attached to that point. The axes of this
local frame are given by the three orthonormal vectors
l(r), m(r), and n(r). The orthonormality requirements
impose six constraints on the nine components of I(r),
m(r), and n(r). A suitable representation of these local
vectors is in terms of the three Eulerian angles ¢(r), 6(r),
and ¢(r):

]
I = (cos @ cos ¢ cos ) — sin ¢ sin 1, cosfsin @ cosy + cos psiny, —sinf cos ), (1a)
m = (— cosf cos psin1) — sinpcos ), — cos O sindsinp + cos pcos 1, sinfsin), (1b)

n = (sinf cos @, sinfsin ¢, cos ).

The local body-fixed frame and the space-fixed frame are
connected by an orthogonal transformation, whose ma-
trix elements R;, with¢ =1,2,3 and a = z, y, z are given

by

l=R,.é.,, (2a)
m = Ry,é,, (2b)
n = R3,é€,. (2¢)
It follows directly that
Rla = laa (33.)
R2a = Mgy, (3b)
R3, = ng,. (3¢c)

The orthonormality of the vectors I, m, and n is repre-
sented by
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RiaRjo = bi; (4)
and the completeness by
RiaRiﬂ = Jag. (5)

N.B. Repeated indices imply summation. For the sake
of clearness, Roman indices denote 1, 2, or 3, whereas
Greek indices stand for z, y, or z.

II. THE DEFORMATION FREE-ENERGY
DENSITY

The deformation free-energy density fi(r) of an arbi-
trary orientational field is defined as the difference be-
tween the free-energy density f(») of the spatially vary-
ing orientational field (I(r), m(r), n(r)) and the free en-
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ergy density fo of the uniformly oriented medium:
fa(r) = f(r) = fo. (6)

Consequently f4(r) is a function of the spatial derivatives
of the orientational field. If the distortion of the orien-
tational field is sufficiently small, the free-energy density
fa(r) can be approximated by

fa(r) = Aap(r)0alp(r) + Bapys(T)0ala(r)0y1s(r)
+Capys(r)0ala(r)0yms(r)
+Dapy(r)0,03ly(r) + (additional terms), (7)

where the additional terms are obtained by cyclic per-
mutations of the letters I, m, and n. The appearing
tensors such as Asg, Bagys, Cagys, and Dyg, must be
constructed from the available tensors ., m,, and n,.
Note that any appearing Kronecker tensor d,g can be
expressed in terms of these three vectors, since they sat-
isfy the completeness relation (5).

In order to determine the total number of linearly in-

Dll = lamgaaﬂﬁ, D12 = langaalg,

dependent terms of the distortion free-energy density,
i.e., the number of elastic constants, the three appear-
ing classes of terms are considered seperately.

(i) The class of linear first order terms. These terms
have the form

aabgdacg (8)

with a,b,c € {l, m, n}. It follows from the orthonor-
mality of [, m, and n that

aaaﬁba = 85(aabﬁ) - baagaa
= —b,0paa, (9)
and, in particular,
aadaq = 0. (10)
The expression (8) is antisymmetric in b and c. Conse-

quently the class of linear first order terms consists of the
following invariants:

D13 = lalgaamg,

D21 = mamﬁ(?ang, Dzz = manﬁ(‘?alg, D23 = mal,gaamﬁ, (11)

D31 = namgaang, D32

These nine invariants can also be expressed as
Dij = j¢ejriRia RipOaRig, (12)
where the Levi-Civita symbol is defined by
1 if jkl = 123, 231, 312

-1 if jkl = 132, 321, 213 (13)
0 otherwise.

Ejkl =

The invariants D;; are just the negative of the compo-
nents of the so-called contortion tensor [9] with respect
to the local frame given by the three orthonormal vectors
l, m, and n.

(ii) The class of quadratic first order terms. These
terms have the form

aabﬂc.ydgaaegavf(; (14)

with a,b,c,d,e, f € {l, m, n}. These terms are noth-
ing but the linearly independent products of the nine
invariants given in (11). Therefore this class contains 45
different terms.

(i1i) The class of linear second order terms. These
terms have the form
1
§(aabg + baag)c78Q85d7 (15)

with a,b,¢,d € {l, m, n}. Consequently this class con-
sists of 54 terms.
A number of terms appearing in the distortion free en-

nangOals, Dizz = nalgdamg.

f

ergy density can be expressed as the sum of other terms
and surface terms. The latter have the form of diver-
gences and thus only contribute to the surface free energy
according to Gauss’s theorem. In the thermodynamic
limit their contribution to the total free energy is negli-
gible compared to the contribution of the remaining bulk
terms. These surface terms appear in all three classes.

(1) The class of linear first order terms contains three
surface terms. These terms are obtained from the follow-
ing relations between six of the nine invariants:

Oala = 6aplals
= (lalg + mamg + nang)dals
= D35 — D>3, (16a)
Oamg = D13 — D3,
Oang = Doy — Dys.

(ii) The class of quadratic first order terms appears to
contain six surface terms. This can be shown by starting
from the general form of a surface term being a linear
combination of the terms in this class. The relevant term
reads

S = aa(Aaﬂwaﬁd'v)’ (17)

where d € {l, m, n} and Aagy = —Aga~- It should be
remarked here that the tensor A,g,, which is symmetric
in @ and 3, can be expressed as a linear combination of
terms belonging to the class of linear second order terms.
As the tensor A,g, must be composed of the local axes
it follows directly that
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Aopy = (aabg — baag)cy. (18)

Consequently the surface terms belonging to this class
can be expressed as

S = 0a((aabp — baap)cyIpdy) (19)

with a,b,c,d € {l, m, n}. It follows directly that .S de-
pends on the quadratic first order terms in the following
way:

S = anbgOuc,03dy — agba8ucy0gdy + bgc,0qa003d,
—ag3Cy0aba05d, + ancy0,bg0ady
—bacyOaag03d,. (20)

It seems that there are nine surface terms. Three of them,

however, appear to be linearly dependent on the remain-
ing surface terms. The six independent surface terms are

S1 = 0a((nalg — ngla)nyoply)
= 801((50,7 — MaM~y — lal,y)lgalgl.y

—(8py — mpmy — lgly)la0ply)
= 0u(lg08la — 1a0pl3)

B ((lamp — lgma)l,0m.), (21a)
Sy = Ba((lamp — lgma )l Ipmy )
= Ba (mgagma - maagmﬁ)
—0a((mang — mgna)m+09gn,), (21b)
S3 = Oa((Mmang — mana)mdpn,)
= 3a(nﬁagna - naaﬁng)
—0a((nalg — npla)nydaly), (21c)
S4 = Oa((mang — mgna)ny0aly)
= aa(maaﬂlﬁ - mgaﬁla), (21d)
S5 = Oa((nalg — ngla)lyGam.)
= 04 (’naag’Inﬁ — nﬁagma), (21e)
S = Oa((lampg — lgma)myOany)
= aa(laagng - lgaﬁna). (21f)
The remaining three surface terms are
S7 = 0a((lang — lgna)nydgm,)
= 8a(laagmg - lﬁagma) = 54, (22&)
Ss = Oa((malp — mpla)ly9pny)
= Oo(maOsng — mgdgny) = Ss, (22b)

S9 = Oa((namg — ngma)m,0pl,)

= Ba(naaﬁlﬁ - ngagla) = Se, (22C)

as can be easily verified, e.g.,
aa(maaﬁlg - mﬁagla) - 8a(la85mﬂ - llgagma)
= aaag(malg — mgla) =0. (23)

Clearly the expressions for the surface terms can be sim-
plified by considering the linear combinations S; + Sz,
Sy + 53, and S3 + S; instead of Sy, S,, and S3. Then the
general expression for the surface terms appearing in the
class of quadratic first order terms can be summarized as

Sij = Oa(Rig0sRja — RiaOpR;jp)
= 84 Rip95Rje — OaRiadpRip
= (08+0as — 0apdys) OaRigOy Rjs
= (RkaRigOaRig) (Riy RisOy Rjs)
——(RkangaaRig)(Rl.waayRj5)
= (€kim€ljn — €lim€kjn)DimDin- (24)

This means that the six independent surface terms can
be written as

Oua(lg0la — 1a0plg) = 2 (D23D32 — D22D33),

(25a)

9a(mpdpma — maaﬂTﬁ) = 2(D31D13 — D33D11),
(25b)

0a(ngdsna — nadng) = 2(D12D31 — D11D33),
(25¢)
O0a(lg0gmeo — lo0gmg) = D12D33 + D31 D33 — D31 Dos
—D13D33, (25d)
Oa(mppna — madpng) = D23D11 + D32D11 — D12D3;
—D31Dss, (25e)
0a(ng0pla — nadplg) = D31D22 + D13D23 — D23 D1
—Dy>Ds1. (25f)

Summarizing the class of quadratic first order terms con-
sists of 39 bulk terms and six surface terms. Note that
these surface terms disappear for orientational fields that
only depend on one coordinate, because they are anti-
symmetric in the spatial derivatives as follows from (19).
(iii) The class of linear second order terms consists of
54 terms that can all be reduced to the sum of quadratic
first order terms and a surface term as follows from:

(aabg + baag)c76a65d7 = aa((a,abg + baa@)c,,c’)ﬁd.,) - aabﬁaac.,aﬂ@ — agbaaacvag@
—bﬂc.,aaaa8,3d7 - agc,.,aabaaﬁd.y - aac.,ao,bgaﬁd., - bac180a363d7. (26)

The general form of such a surface term can again be
expressed as

§ = Ba(AaprDpd,), (27)

where the tensor A,g, has the form

—
Aapy = (aabp + baag)cy, (28)

i.e., Aagy is now symmetric in a and B. It follows im-
mediately that there are 18 independent surface terms.
Their general form can also be expressed as

Sijk = Sjir = Oa(RiaDjr + RjaDit). (29)
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Summarizing the class of linear second order terms con-
sist of terms that can be related to the 39 bulk terms of
the class of quadratic first order terms with the aid of 18
surface terms.

Concluding the deformation free-energy density of an
arbitrary orientational field can be expressed as

fa(r) = ki;Dij + 3 KijDij Drt + LijkSijk, (30)

where the elastic constants satisfy the symmetry rela-
tions

Kijri = Ky,
Lk = Ljik.

(31a)
(31b)

The first contribution to the deformation free-energy den-
sity is due to the linear first order terms and contains
three surface terms. The second contribution originates
from the quadratic first order terms and the linear sec-
ond order terms and contains six surface terms, whereas
the third contribution consists of 18 surface terms that
are composed of linear second order terms and quadratic
first order terms. Consequently the general expression of
the deformation free-energy density of an arbitrary ori-
entational field consists of six chiral bulk terms and 39
quadratic bulk terms.

III. SYMMETRY AND THE NUMBER OF
INDEPENDENT ELASTIC CONSTANTS

The different cases of symmetry can be examined by
changing to new orthonormal local basis vectors I', m’,
and n'/ according to

UV=Tl+Tiom+Tisn, (32a)
m' =Tyl +Teym + Tozn, (32b)
n' =Ts51l 4+ Tsom + Tazn, (32¢)
or, shortly,
R, = TijRja- (33)

The orthogonal transformation matrix T;; satisfies the
relations

TirTir = TriTr; = 0ij (34)
and its determinant is denoted by T, where T' = +£1.
From the identity

Eijk Tt TimTen = T €imn, (35)

it follows that
€ijkTimTen = T €tmnTiu- (36)
This means that the nine attendant invariants D;; are
given by
D;; = T TixTj1Dy.- (37)

Consequently the new elastic constants kéj, K{jkl, and

, .
Li;, are expressed according to

kvlij =T TmiTnjkmn, (388.)
;jkl = TMiTankaqlenpqy (38b)
;jk =T TmiTanpkLmnp~ (38C)

Note that three elastic constants can always be made zero
by choosing a suitable set of local basis vectors. Clearly
the elastic constants do not change under a symmetry
operation. This means in mathematical terms that a
number of systems of local basis vectors lead to the same
elastic constants, i.e.,

k;j = kij, (39a)
ik = Kijas (39b)
Lijk = Lij. (39¢)

These symmetry requirements impose constraints on the
number of independent elastic constants, i.e., result in a
reduction of their number.

A. The effect of discrete symmetry

By analogy with Landau and Lifshitz [13] the results
for the seven crystal systems and their associated 32 crys-
tallographic point groups are discussed. Note that this
classification is only exhaustive for orientational fields in
crystals. First of all the elastic constants K;j are con-
sidered.

(i) Triclinic system. The point groups of this crystal
system are 1 and 1. No constraints on the elastic con-
stants K;ji; are imposed. Their number equals 39, but
three of them can be set equal to zero by making a suit-
able choice of the system of local basis vectors.

(it) Monoclinic system. The point groups are 2, m,
and 2/m. Choose n as the twofold axis or the normal to
the mirror plane. Then the symmetry requirement reads

Kiji = (=1)N Ky, (40)

where N is the number of indices with value 3 in {ijkl}.
This means that all the K;j,; with odd N vanish, i.e.,
the following 25 constants remain:

Kii11, Ka222, Kazzs, Kii22, Kaass,
K311, Ki212, K2121, K221, Kaszes,
K3232, Kaasz, K3zi31, Kisiz, Kissi, (41)
K112, K121, Kaz12, Kaz21, Kasziz,
K331, Kaisz, Ksi23, Kissz, Kiszs.

By a suitable choice of I and m one of these constants
can be set equal to zero. Note that only 21 bulk terms
appear due to the relations (25a), (25b), (25¢), and (25d).

(iiz) Orthorhombic system. The point groups are
222, 2mm, and 2/mmm. Choose I, m, and n as twofold
axes or normals to the mirror planes. Using symmetry
requirements of the type (40) the following 15 constants
remain:

K111, Ki122, Ki212, Ka3z3, K331,
K322, Ka2ss, Kz121, K323z, Kizis, (42)
K333z, Kssi1, Kiz21, Koaszz, Kiasi-

Due to the relations (25a), (25b), and (25c) only 12 bulk
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terms appear in the deformation free-energy density.

(i) Trigonal system. Before discussing the number of
independent elastic constants of the crystal system it is
convenient to introduce a new system of basis vectors,
namely,

_ L

3 ﬁ(l + im), (43a)
1 .
n= _\/_i—(l —im). (43b)

The third basis vector n remains untouched. The nine
attendant invariants are defined as

D¢e = ianpdalp , (44a)
Dye = inanglaép , (44b)
D,_g = inangaafg y (44C)
D¢, = i€anp0ang , (44d)
Dy = inangdang , (44e)
D,, =in.ngdung , (44f)
D¢, = i€ap0ans , (44g)
Dy, = ina€pBang , (44h)
D,, =inaégdamng - (441)

Consequently the elastic constants will now be labeled by
&, 1, and z instead of by 1, 2, and 3. The advantage of
the present procedure is that arbitrary rotations around
the m axis can be easily dealt with. A rotation through
an angle o around the n axis results in the vectors

6’ = e—iag, (453)
n' = ey, (45b)
n' =n, (45c¢)

whereas a reflection in a plane perpendicular to m gives

¢'=mn, (46a)
n'=§, (46b)
n' =n. (46¢)

The point groups of the trigonal system are 3, 3, 32, 3m,
and 3m. Consider the first two point groups and choose n
as the threefold axis. Then only elastic constants remain
having three indices with value £ or three indices with
value 7 or having the same number of indices with value
£ and 7. These 15 constants are

Kzzzz7 Kzznfa Kzzfna Kznz{a Kzn{zy
Knzgzy Knzze, Knene, Kneen, Kengns (47)
Kegnn, Konen, Keegz, Kegae-

nnmz:

Here one constant can be set equal to zero by a suitable
choice of I and m. Next the last three point groups are
considered. Choosing the twofold axis or normal to the
mirror plane along m the following five relations between
the 15 elastic constants hold:

Kz'q{z = Kzfnzv (483.)

Koing = Kazgn, (48b)
Koene = Kenen, (48¢)
Kpnen = Kegze, (48d)
Komnz = Kege:- (48e)

The number of independent elastic constants of the point
groups 32, 3m, and 3m is thus reduced from 15 to 10 by
the additional symmetry. These constants do not only
concern bulk terms but surface terms as well. In order
to determine the number of relevant surface terms the
relations (25) are rewritten in terms of the new represen-
tation:

0a(€p088a — £a0p€p) = 2 (Dgg D — D¢ Dy¢), (49a)
0a(ng98Na — NaOpnp) = 2 (DyyD.. — Dy.D.y), (49b)
0a(nglpna — nalpnp) = 2 (Dgg¢Dny — DyeDey),  (49c)

aa(fﬂaﬁna - §aaﬂnﬁ) = Dnzng + Dangz - anDzz
—D¢,D,,, (49d)

0a(np0pna — MaOpnp) = Dy, Dgy + D,y D¢ — D, Dpy
_DzﬁDnm (49&)

0a(np0p€a — nadp€p) = Dy¢Dg, + DenDzg — DopDee
—D;,Dee. (49f)

Because of symmetry only two surface terms are left,
namely, (49c) and (49d). Consequently the number of
bulk terms equals 13 and 8, respectively.

(v) Tetragonal system. The point groups are 4, 4,
4/m, 422, 4mm, 42m, and 4/mmm. Choosing n as the
fourfold axis the point groups 4 and 4 are described in
terms of the following 13 elastic constants:

Kzzzza Kzzﬁn, Kzzrlfy Kznz£7 Kzn{zv
Kpgzy Knzzgy Kngne, Kneens Kenens (50)

Keenn, Keeee, Knmn-

One of these constants can be set equal to zero by a
suitable choice of I and m. With the choice of I and m
as the twofold axes or the normals to the mirror planes,
the additional symmetry of the remaining point groups
imposes the following relations between these 13 elastic
constants:

Kone: = Kagna, (51a)
Koimg = Kazgn) (51b)
Kene = Kenen, (51c)
Kommn = Keeee- (51d)

Consequently only nine independent elastic constants re-
main. The symmetry gives rise to the same surface terms
as those for the trigonal system. Thus the number of in-
dependent elastic constants that are required to describe
the distortion free-energy density of the bulk is given by
11 and 7, respectively.

(vi) Hezagonal system. The attendant point groups
are 6, 6, 6/m, 622, 6mm, 62m, and 6/mmm. The 11
constants of the first two point groups are

Kzzzza Kzz&n, Kzznﬁszr)zEa Kznﬁza an§z7

52
anz£7 ann57 Kﬂfffl? Kff'l"l' ( )

Kfnem



1488 S. STALLINGA AND G. VERTOGEN 49

One of them can be set equal to zero by a suitable choice
of l and m. The additional symmetry imposes the three
relations

Kznﬁz = Kzf’qu (533)
K. one = K¢, (53b)
Kngng = Kengn- (53c)

Consequently the number of independent elastic con-
stants of the last five point groups is equal to 8. The
same surface terms as those for the trigonal and tetrago-
nal systems are found meaning that the number of bulk
terms equals 9 and 6 respectively, i.e., nine and six elas-
tic constants, respectively, are required to describe the
distortion of the bulk.

(vii) Cubic system. The point groups are 23, m3,
432, 43m, and m3m. Cubic crystal systems have or-
thorhombic symmetry so it suffices to consider the ef-
fect of the additional symmetry on the elastic constants
of the orthorhombic system. The threefold axis of the
cubic system is then parallel to (I + m + n)/v/3. This
symmetry imposes the following relations between the
elastic constants:

K111 = Kooz = Kssas, (54a)
K122 = Kaozz = Kaaii, (54b)
K212 = Kasaz = K331, (54c)
(54d)
(54e)

54e

Kji121 = K323z = K313,
K321 = K333z = K3113.

Consequently the first two point groups lead to five elas-
tic constants. The additional fourfold axes of the other
three point groups impose the relations

Ki212 = Ka121, (55a)
K323 = K332, (55b)
K3131 = K313 (55¢)

This means that these point groups have four indepen-
dent elastic constants. Only one surface term remains.
Consequently the number of independent bulk elastic
constants is given by 4 and 3, respectively.

Next the elastic constants k;; are considered. Clearly
only the crystal systems without inversion symmetry
need to be considered as all the chiral elastic constants
are zero for systems with inversion symmetry.

(a) Triclinic system. The point group 1 has nine chiral
elastic constants. The three surface terms (16) lead to six
bulk terms.

(b) Monoclinic system. Consider the point group 2
and choose n along the twofold axis. The chiral elastic
constants are

k127 k217 k117 k227 k33" (56)

Only the surface term (16c) remains, i.e., four bulk terms
appear. Next consider the point group m and take n
along the normal to the mirror plane. The remaining
constants are

le, k317 k237 k32- (57)

Now the two surface terms (16a) and (16b) are left. Con-
sequently the point group m has two chiral bulk terms.

(c) Orthorhombic system. The point group 222 has
three chiral elastic constants as follows directly from
choosing I, m, and n along the twofold axes. These
constants are

kllv kZZa k33- (58)

There are no surface terms to reduce the number of bulk
terms. The point group 2mm has two chiral elastic con-
stants, as follows directly by choosing I and m as the
normals to the mirror planes. These constants are

kiz, ka1. (59)

One surface term is relevant, namely the one given
in (16¢), i.e., there is one chiral bulk elastic constant.

(d) Trigonal system. The surface terms read in terms
of the basis vectors €, n, and n,

acxga =1 (Dzn - Dnz)7 (603')
aana =1 (DEZ - sz)v (60b)
OaqNa = 1 (DTIE - DEU)' (60(‘)

The point group 3 has the following three chiral elastic
constants:

kTIE’ k&m k.., (61)

where 7 is taken along the threefold axis. Only the sur-
face term (60c) remains, i.e., two chiral bulk terms ap-
pear. The additional symmetry of the point group 32
leads to the relation

kne = kﬁn (62)

whereas the surface term is absent, i.e., also here two
chiral bulk terms are found. On the other hand, the
additional symmetry of the point group 3m imposes the
relations

kzz =0,
kne = —ken.

(63a)
(63b)

Moreover the surface term remains, i.e., no chiral bulk
terms appear in systems with point group 3m.

(e) Tetragonal system. The point group 4 with n along
the fourfold axis has the following three chiral elastic con-
stants:

knﬁv kEr]a ksz. (64)

Only the surface term (60c) is relevant leaving two chiral
bulk constants. The additional symmetry of the point
group 422 leads to the relation

kne = ken, (65)

whereas the surface term disappears, meaning that two
chiral bulk terms are present. The symmetry of the point
group 4mm leads to the additional relations

k,, =0, (66a)
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kne = —ken, (66b)
whereas the surface term does not disappear here, i.e.,
this point group has no chiral bulk terms.

(f) Hezxagonal system. The point group 6 with n along
the sixfold axis has the following three chiral elastic con-
stants:

kne, ken, kzz- (67)

Further the surface term (60c) is relevant, i.e., two in-
dependent chiral bulk constants are present. The point
group 622 has the additional relation

kne = ken, (68)

whereas the surface term is absent, i.e., this point group
also has two independent chiral bulk terms. The symme-
try of the point group 6mm only allows:

k.. =0, (69a)

kng = —ken, (69b)
whereas only the surface term remains, i.e., there are no
chiral bulk terms here.

(g9) Cubic system. The point group 23 has orthorhom-
bic symmetry. The threefold axis parallel to (I + m +
n)/+/3 imposes the relation

kll = k22 = k33- (70)

Further the surface terms disappear. Consequently one
chiral bulk term appears. The point group 432 leads to
the same result.

Finally the elastic constants L;;, of the remaining 18
surface terms are considered.

(i) Triclinic system. This symmetry does not impose
any constraints, i.e., there are 18 elastic constants.

(it) Monoclinic system. Choose n as the twofold axis
or normal to the mirror plane. Then the following elastic
constants appear:

L113, L3323, L33zz, Las, (71)
Ly31, L3z1, Laiz, Laas.

Consequently there are eight surface terms of the consid-
ered type, i.e., due to the linear second order terms.
(i1t) Orthorhombic system. Choose l, m, and n as the
twofold axes and/or normals to the mirror planes. This
means that the following elastic constants are found:

L1323, L331, L3z, (72)

i.e., there are three elastic constants.
(iv) Trigonal system. Choosing n as the threefold axis
the following elastic constants appear:

Ln£zv Ln2€7 Lﬁzvla L.z, erm L€E£' (73)

Consequently the point groups 3 and 3 give rise to six
surface terms of the considered type. The additional
symmetry of the point groups 3m, 32, and 32m leads
to

L... =0, (74a)
L¢y. =0, (74b)
Lyz¢ = —Lgzn, (74c)
Lygn = —Lege- (74d)

Therefore these point groups have two independent sur-
face terms.

(v) Tetragonal system. Choose n as the fourfold sym-
metry axis of the point group 4. Then the following in-
dependent constants are found:

Lnfz» L'nz£7 L&zn, Lzzz- (75)

The same result holds for the point groups 4 and

4/m. The additional symmetry of the point groups
422, 42m, 42m, and 4/mmm leads to
L,,,=0, (76a)
L¢y. =0, (76b)
Lyze = —Lgzn, (76¢)

meaning that only one independent surface term appears
here.

(vi) Hexagonal system. Choosing n along the sixfold
axis it is found that the point groups 6, 6, and 6/m lead
to the independent constants

Lr]fza anﬁa L{zny Lzzu (77)

i.e., their symmetry reduces the number of independent
surface terms of the considered type to 4. The addi-
tional symmetry of the point groups 622, 6mm, 62m, and
6/mmm imposes the further conditions

L,,.=0, (78a)
L¢y, =0, (78b)
Lyze = —Lgzn, (78c)

meaning that only one independent surface term remains.

(vit) Cubic system. It suffices to consider the effect
of the threefold axis on the results of the orthorhombic
system. Clearly it follows that

Ly33 = L33y = L3js. (79)

This means that only one independent surface term is
present.

B. Continuous symmetries

Choose n along the axis of continuous rotation sym-
metry. This symmetry requires that the invariants
D;j, D;;Dy;, and S;jr do not depend on the Eulerian
angle v and its spatial derivatives d,%. Consequently
all the terms that are forbidden by hexagonal symmetry
are also forbidden here, as these excluded terms depend
on 3. From the remaining terms, those terms that are
composed of the invariants D;, are also excluded, for the
invariants D;, depend on 8,%. The independent chiral
elastic constants are
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knﬁv kfnv (80)

and the surface term (60c) is relevant, i.e., one chiral bulk
term is present. The bulk elastic constants are

Kznzﬁv Kﬁnfm Kﬂf’)ﬁ’ Krmﬁ& Knﬁén' (81)

Only the surface term (49c) appears to be relevant, i.e.,
there are four bulk elastic constants. The remaining elas-
tic constants relating to surface terms are

L,.¢e, Leoy. (82)

The additional symmetry of a twofold rotation axis per-
pendicular to n leads to

kng = ken, (83a)
Kogne = Kenen» (83b)
an€ = ”szn- (83C)

As is well known these are the elastic constants of chiral
nematics. Two independent surface terms appear, one

concerns the quadratic first order terms and the other
the linear second order terms. In case a mirror plane
perpendicular to n is present, the chiral constant k,
equals zero. Finally the additional symmetry of a mirror

plane with normal perpendicular to n is considered. Here
it holds that

kne = —ken, (84a)
Knene = Kenen, (84b)
Ly .e = =Ly (84c¢)

In this case a third surface term is present originating
from the linear first order terms.

IV. CONCLUSION

Macroscopic media with broken rotational symmetries
have to be described by an orientational tensor field. Us-
ing tensor analysis the general form of the elastic de-
formation free-energy density is derived. The general

TABLE I. The number of independent elastic constants for discrete symmetry. The number of
surface elastic constants for the linear first order and quadratic first order classes are indicated
separately. The international short notation is used to label the different crystallographic point

groups.
Crystal system Point group Kijr kij Lijk
bulk surface bulk surface

triclinic 1 39 6 6 3 18
1 39 6 18

monoclinic 2 21 4 4 1 3
m 21 4 2 2 8
2/m 21 | 8

orthorhombic 222 12 3 3 3
2mm 12 3 1 1 3
2/mmm 12 3 3

trigonal 3 13 2 2 1 6
3 13 2 6
32 8 2 2 2
3m 8 2 1 2
3m 8 2 2

tetragonal 4 11 2 2 1 4
i, 4/m 11 2 4
422 7 2 2 1
4mm 7 2 1 1
42m, 4/mmm 7 2 1

hexagonal 6 9 2 2 1 4
6, 6/m 9 2 4
622 6 2 2 1
6mm 6 2 1 1
62m, 6/mmm 6 2 1

cubic 23 4 1 1 1
m3 4 1 1
432 3 1 1 1
43m, m3m 3 1 1
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TABLE II. The number of independent elastic constants
for the three appearing classes of in case of continuous sym-
metry. The number of bulk and surface elastic constants for
the first two classes are indicated seperatively. The different
symmetry groups are denoted by the Schoenflies symbols.

Point group Kijkl k,’j L,’jk
bulk surface bulk surface
Coo 4 1 1 1 2
Cooh 4 2
Coov 3 1 1 1
Do 3 1 1 1
Doon 3 1 1

expression appears to involve 39 bulk elastic constants
and 24 surface elastic constants. In addition the chiral-
ity of the medium introduces six bulk elastic constants
and three surface elastic constants. By a suitable choice
of the local basis vectors of the orientational field three of
the elastic constants can be set equal to zero. Symmetry
requirements reduce the number of independent elastic
constants. The effect of discrete and continuous sym-
metries are summarized in Tables I and II, respectively.
Some of these results have also been found by Liu [8] and
by Trebin [9]. There are, however, some discrepancies
with their results. According to Liu the general form of
the deformation free-energy density consists of 45 invari-
ants, namely, 36 bulk terms and nine surface terms. This
means that Liu claims 36 bulk elastic constants. How-
ever, a careful analysis of his surface terms shows that
this claim is unjustified, as only six of the nine surface
terms are mutually different. On the other hand, Trebin
only finds the first three of the six surface terms (25).
Further it should be remarked that neither Liu nor Tre-
bin discusses the surface terms originating from the lin-
ear second order terms and that Liu does not consider
the chiral terms. In the Appendix it is shown that the
present results agree with the known results for systems
with uniaxial and orthorhombic or biaxial symmetry, i.e.,
nematic liquid crystals.

Finally it should be mentioned that in cases where
translational symmetries are also broken, e.g., the smec-
tic mesophases, the deformations of the orientational and
positional tensor field do not need to be independent.
Consequently some orientational deformations can be ne-
glected as being of higher order in the positional defor-
mation variables than the elastic terms of the positional
deformations.

APPENDIX: SOME EXPLICIT VECTOR
EXPRESSIONS

1. The case of uniaxial symmetry

The deformation free-energy density of an orienta-
tional field with uniaxial D, symmetry reads

fa= knE(Dn£ + DEn) + %KﬂﬁﬂE(DﬂﬁDﬂE + Danén)

+Kynge DynDee + KngenDneDen + Kianzg D2y Dog

+Lnz¢[0a(aD2¢ + noDne)

—0a(§aDzn + naDey))- (A1)
From the following relations:
Dn¢ + D¢n = D11 + D2, (A2a)

1 1
DyeDpe + DenDey = §(D11 + Dpp)? - §(D12 — Dx)?,
(A2b)

1 1
DynDee = Z(Dn —D3)? + Z(Dm + D2;)?,
(A2¢)

1 1
DyeDey = Z(Du + Djp)? + Z(Du — Dj)?,

1
fa= knf(Dll + D22) + 1 [—Knﬁnf + KnEEn + Krmfﬁ] (DIZ - D21)2

1

+Kuynee (D12D21 — D11D22) + iLinz¢Ba [la D3z — MmaD3y + na(D12 — Da21)] -

The appearing terms can be expressed in vector notation by

1
+Z [Knﬁnf + Kﬂiin + Krm&E] (Dll + D22)2 + 5K26zn(D312 + D322)

(A2d)
D,,D, = %D;;lz + %D322, (A2e)
NaDz¢ — €aDzn = 1(laD31 — maD3y), (A2f)
NaDne — naDeqy = ing (D12 — Day), (A2g)

it follows that
(A3)
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Dyy + D2y = (lamg — lgmy)0ang = €a84Ny0ana

=n-(V xn), (Ada)
D1y — Dyy = 1ang0alg — mampOang = —(lalg + mampg)Oang

= —(0ap — Nanp)Oang = —O0qNq
-V . n, (A4b)
D312 + D322 = (namg(‘)ang)z + (nanﬁaalg)2 = nan.,(lﬁlg + mgmg)@anga.yng

= NNy 0angOyng = (Nadgng — Nadang)(n,dsny, — ny0,ng)

= (50505uvana6unl/) (ExBrEpurnyOuny,)

=[nx (V x n))%, (Adc)
1
Dy2D31 — D11 Doy = *2“8a(nﬁaﬁ"la — nadgng)
:%V-[(n'V)n—n(V~n)], (Add)

O [laD32 — MmaD31] = 04 [langn,dgly — mangm.,dan,|

= =0 [(bay = nany)n30s] = —0a [nadpnal
-V -[(n-V)n], (Ade)
-V [n(V-n)], (A4f)

Il

O [na(Dlz - Dzl)]

where a right-handed space-fixed frame is used, while (A4d) immediately follows from Eq. (25c). Defining the chiral
elastic constant, the elastic constants for splay, twist, and bend, and the two surface elastic constants by

k= kne, (A5a)
K, = _%Knﬁnﬁ + %Knéfn + %Knnﬁﬁ (A5b)
K, = %Kniné + %Knﬁﬁn + %Knn&: (A5c)
K3 = I(zﬁzna (A5d)
K4 = Konee, (ASe)
K5 = —2iL, ¢, (A5f)

respectively, the well known Frank expression for chiral uniaxial nematics follows:
1 1
fa=kn-(V xn)+ %KI(V ‘n)? 4+ §K2[n (Vxn))+ §K3{’n. x (Vxn)>+ 1KV - [(n-V)n—-n(V-n)
+31KsV - [(n-V)n+n(V-n). (A6)

The present choice of the elastic constants seems preferable to the existing one [3,4], as the given expression reflects
the proper antisymmetry and symmetry in the spatial derivatives of the surface terms originating from the quadratic
first order and the linear second order terms, respectively.

2. The case of orthorhombic symmetry

The deformation free-energy density of an orientational field with orthorhombic 222 symmetry reads
1 1 1 1
fa = k11D11 + ka2 D22 + k3zDas + §K1111D112 + §K2222D222 + §K3333D332 + §K1212D122

1 1 1 1 1
+'2“K2323D232 + §K?,131D$12 + §K2121D212 + §K3232D322 + §K1313D132 + K1122D11D22

+K2233D22 D33 + K3311D33D11 + K1221D12D21 + Ka332D23D32 + K3113D31 D13 + L12300(la D23 + maD13)
+L23104(maD3s1 + ngDa21) + L31204(na D1z + 1o D3z). (AT)

[

Vector expressions for Dqy, D23, and D33 are obtained Then it follows that
by using (A4a) and the analogous relations

B |

Dz + D3z =1-(V x 1), (A8a) Diy=-m - (Vxm)+n-(Vxn)-1-(VxIl)],
Dz + D1y = m - (V x m). (A8b) (A9a)



D22=%[’nn(v><n)+l-(Vxl)—m-(me)],

(A9Db)
Das = %[z-(vX1)+m-(vXm)—n-(vXn)].
(A9c)
The remaining six invariants can be expressed as
Dlg = l,,n,gc’)alﬁ = (la’ng - lgna)aalg
= —€a8yM~yO0alg = —m - (V x 1), (A10a)
D23 = -n- (V X m), (AIOb)
D31 =-1- (V X n), (AlOC)
Dyy=-1-(Vxm)=V-n—-m-(Vxl), (A10d)
Dy =—-m- (Vxn)=V.l-n-(Vxm), (AlOe)
Dis=—n-(Vx1l)=V.-m-1-(V xn), (A10f)

where use is made of (A4b) and analogous relations. Vec-
tor expressions for the three surface terms due to the
quadratic first order terms as given by Egs. (25a), (25b),
and (25c) follow immediately from

1
D23D32 d D22D33 = §V . [(l . V) l - l (V . l)] ) (Alla)

1
D31D13 — D33D11 = EV . [(m . V) m—-m (V . m)] ,
(A11b)

1
Di32D2 — D11 D3y = EV ‘[(m-V)n—-n(V-n)].
(Allc)

The relevant three linear second order terms can be eas-
ily rewritten in terms of vector notation using the expres-
sions (A10):

Oa (MmaD31 + noD21)

9 {mi (9 xn)
+nll-(V x m)]}, (A12a)
8 (naD1z + laDsy) = —V-{n[m-(V x 1)]
Hlm-(V x n)]}, (A12b)

8o (laDas + maDy3) = —V - {z [n-(V x m)]

+mn-(V x l)]} (A12¢)
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Define the three chiral elastic constants, the 12 quadratic
first order bulk elastic constants, the three quadratic first
order surface elastic constants, and the three linear sec-
ond order surface elastic constants according to

ky =

1
2

—1
ky =3

(k22 + k3z — k11),
(

k3s + k11 — k22),

ks = %(ku + ka2 — ka3),

K1 = (K3222 + K333z — K1111) — 2K2233 — 2K 2332,
K> = 3(K33s3s + Ki111 — Ka222) — 2K3311 — 2K3113,
K3 = 3(K1111 + K222 — K3333) — 2K1122 — 2K1221,
K, = %(Kzzzz + K333z — K1in),
Ks = $(Kssss + K111 — Ka222),
Ke = 3(K1111 + Ka222 — Kasas),

K7 = K323 + 2K3233 + 2K2332

—3(K3222 + K3333 — K1111),
Kg = K331 + 2K3311 + 2K3113

—3(K3333 + K1111 — K2222),
Kg = K1212 + 2K1122 + 2K1221

(A13)

—3 (K111 + Ka222 — K33as),
K10 = K3232 + 2K2233 + 2K 2332
—3(Ka2222 + K333z — K1111),
K1 = Ki313 + 2K3311 + 2K3113
—3(Kssss + K1111 — Ka222),
Kis = Ko121 + 2K1122 + 2K1291
—1(K1111 + K2222 — K3333),
K3 = (K222 + K33z — K1111) — K2a3s,
K14 = 3(Kssss + Ki111 — K2222) — K3,
K15 = 3(K1111 + Ka222 — K3333) — Ki122,
K6 = —La3,
Ki7 = —L31a,

KIS = _L123'

Use the vector expressions (A9) and (A10) for the invari-
ants and (A11) and (A12a) for the surface terms. Then
it follows that the deformation free-energy density of an
orientational field with orthorhombic symmetry can be
expressed as
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fa=kil - (Vx1)+kom-(Vxm)+ksn-(Vxn)+ %Kl(v.z)2 + —;—KZ(V~m)2 + %K:;(V-n)z

1
2

FoK4l(V x D2+ %Ks[m- (V x m)]? + %Ks[n (V x n))?

+%K7[n (Vxm)]? + %Ks[l (Vxn)?+ %Kg[m- (V x 1)]?

+%K10[m- (V xn))? + %Kn['n,- (V x D)]* + %Klg[l (V xm)]?
YKV (- V)L L(V 1)) + KV - [(m- V) m — m (V -m)]
+K15V - [(n-V)n—n(V -n)]+ KisV-{m[l- (V xn)|+n[l-(V xm)]}

+K17V-{nm - (VxD]+lm - (Vxn)]}+ KizsV-{I[n-(Vxm)]+mn-(VxI)]}.

(A14)

Except for the surface terms equivalent expressions can be found in the existing literature.
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