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Characteristic Based Finite Volume
Method for the Solution of Transport
Equations in Groundwater

M. Putti,! W. W-G Yeh,! W. A. Mulder?

Abstract

A finite volume method based on triangular cells is proposed for the nu-
merical discretization of the general two-dimensional transport equation
in groundwater systems. The scheme combines the flexibility of finite
elements in the treatment of complex geometries and general boundary
conditions with the simplicity, robustness, and efficiency peculiar of finite
difference methods. High-resolution upwind schemes are adopted in or-
der to maintain accuracy when the equation is dominated by advection.
The preprocessing approach is employed: the dependent variables are first
monotonically interpolated and then used for the calculation of the exact
solution of the Riemann problems at the interfaces between the cells. The
method i1s non-oscillatory and globally second order accurate in space and
time. The scheme automatically introduces small amounts of numerical
viscosity depending on the smoothness of the solution: when the solution
is smooth enough, no numerical dissipation is visible. Numerical experi-
ments show good agreement with analytical solutions for a full range of
cell Peclet numbers.

1 Introduction

Numerous finite element and finite difference schemes have been proposed
for the numerical simulation of convective-diffusive problems. Preference
to the finite element method is usually given when geometrically complex
domains and general boundary conditions are to be modeled. On the
other hand, finite difference schemes are preferred when the equations
are defined on regular domains because of their computational efficiency.
However, when advection dominates the process, the application of both
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formulations requires the use of special techniques in order to damp the
spurious oscillations that are introduced by the numerical scheme in the
presence of sharp fronts.

The method of characteristics in conjunction with finite element and fi-
nite difference techniques (Neumann 1984, Farmer 1985) (mixed Eulerian
Lagrangian formulations) has been used as a technique to reduce oscil-
latory behavior at sharp fronts. Discontinuities are tracked throughout
the domain using Lagrangian techniques, while the dispersive fluxes are
solved using Eulerian formulations. The resulting scheme is accurate but
computationally expensive and non-conservative.

Alternatively Eulerian formulations encompassing both the dispersive and
the advective terms offer greater efficiency, but with the result that nu-
merical solutions often display either spurious oscillations or fronts that
are not as steep as expected {Richtmeyer and Morton 1967, Sun and Yeh
1983, Wang and Yeh 1986). To damp the non-physical oscillations, up-
wind and upstream weighted schemes are commonly used for both finite
difference and finite element methods. This is achieved at the expense of
accuracy: it can be proven that a scheme which is strictly non-oscillatory
cannot be of order of accuracy greater than one (Roe 1986).

Van Leer (1977) introduced upwind schemes which are second order accu-
rate almost everywhere. Since then, a family of ‘high resolution shock cap-
turing’ schemes has been developed which combine non-oscillatory prop-
erties and global high order of accuracy (Chakravarthy and Osher 1985,
van Leer 1985) The idea that enables these schemes to be oscillation-free
and accurate, is interpreting the numerical scheme as a description of an
integral rather than a differential equation, thus allowing the presence of
discontinuities. Finite volumes techniques naturally arise as substitutes
for finite differences. Second order of accuracy is achieved by utilizing
solutions to local Riemann problems (Godunov-type schemes (Godunov
1959)) as follows: first the concept of ‘monotone interpolation’ is used to
automatically change the dependent variables when non-oscillatory crite-
ria are violated, and then the theory of characteristics is used to locally
solve pure advective problems at the interfaces between control volumes.
Extensions of these schemes to more than one spatial dimension are usu-
ally based on the solution of local Riemann problems along directions that
are orthogonal to the faces of the control volumes.

Chakravarthy and Osher (1985) describe a method for the implementa-
tion of such schemes on triangular control volumes, over which the depen-
dent variables are integrated. This finite volume technique is used and
extended in the present research. The scheme is applied to the advective-
dispersive equation governing the motion of contaminants in groundwater
systems. Because of its definition on generally shaped triangular elements,
the procedure is particularly attractive for these problems. It combines the
flexibility in the description of complex geometries and general boundary
conditions characteristic of finite element methods with the computational
efficiency and accuracy achievable by ‘high resolution shock capturing’ fi-
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Figure'a 1: Triangular Control Volumes: Notations for the Derivation of
the Discrete Convective and Dispersive Fluxes

nite difference discretizations.

2 The Finite Volume Approach

The finite volume approach is based on discrete representation of the de-
pendent variable as volume integral averages. The derivation of the nu-
merical scheme will be done using the following general model problem
for the contaminant transport equation in groundwater:

Jdc v

En +V.F=V.DVc (1)
wher.e c is the concentration of the contaminant in the water, V is the
gradxent operator, and F' = v c is the vector flux. The derivation is
carried out over triangular control volumes as shown in figure 1.

After integratign over the triangle ABC, interchanging the time-derivative
and the space integration operators, equation 1 can be rewritten as:

2 1
e = A—TD[_/TOV-M:B +/T°v-Dvcdm] (2)
1
Cipe = ———4T /Tcd:c

The variable c, . will be the new dependent variable that will be used in

the numerical formulation. Application of the divergence theorem to the
preceding equation, gives:
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0 1 . st [ ] -
5Camc = ——X’E{{ T0F~nwds+/T0F fi,.ds + TOF i ds
li DVe| -fi ds+ | DVe| g ds+
Ty AB To BC
DV -ﬁ“ds]} (3)
To CA
where:
F,,F,.,F_., are the convective fluxes along the sides of triangle
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DV¢| gy, DVe|g. , DVc|;, are the dispersive fluxes,

Ay, Aye, M, are the unit outward normal vectors for each side of

Tu .

The semi-discrete version of the preceding equation for the triangle under
consideration can be written as:

7] 1 s 5 " _ — —
'a?c,mczﬁ{" [f.w +f5c+fc,,] + [DAB+DBC+DCA]} (4)
0
where f and D are the space discretizations of the convective fluxes and
of the dispersive fluxes across the sides of Ty respectively.

2.1 Discretization of Convective Fluxes

The convective numerical flux across side BC can be written as:
£ _ ~in  xout 5
foc =npcf (CBc7cgc) (5)

where f(-,-) is a Riemann problem solver. The superscripts “in” and
“out” refer to quantities calculated just inside and just outside of.trlangle
To across side BC. In the present linear case equation 5 can be written as:

BC " ABC ABC (6)

~out ., out 3 in
BCvABC Npe if vABC <0

2 ot g, ifvt >0

foc =
This corresponds to the solution of a Riemann problem ACrogs side BC,
assuming all coeflicients to be constants in the two neighboring control

volumes.

The value of ¢ is calculated so that second order accuracy is achieved.
Define the differences

. .out in
Qg =Cp AB
. pout _ in 7
Upe = Che — Cpo (M)
. out in
Qca = €4 cA
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and let

(ac)'“ minmod[BCch,A a, M, Ay +CAa,. R, A
on

BC Ar,
where:
minmod(z,y) = sign(z) - max {0, min [|z|, y sign(z)}} (9)

Then &7 is written as the value of ¢ averaged over Ty and ascribed to the
centroig, but transferred to the side BC and limited by eg. 9:

‘~in + in (86)"‘ (10)
& =Cupe + S —
BC A BC 6" BC
where s is the distance between the side BC and the centroid of To.
Note that: é:“C‘ = ¢, that is the value of & outside T} through side BC is
computed as the vaiue of ¢ inside T3, contiguous to T} through side C' B.

This formulation introduces smail amount of first order numerical viscosity
only when the solution front is steep. In this manner the scheme does not
produce numerical oscillations when the solution is discontinuous, and
adds second order artificial viscosity in smooth regions of the solution.
Any other flux limiter beside ‘minmod’ can be employed (Roe 1986).

2.2 Discretization of the Dispersive Flux

The dispersive fluxes on triangle Ty are represented by the second term
of the right hand side of equations 3 and 4. For each side of the control
volume a normal derivative, c/9n, and a tangential derivative dc/ds. can
be defined. For example for side BC in figure 1, the normal derivative can

be discretized as:
(80) g -¢ (11)
an BC b1 bo

The tangential derivatives can be approximated numerically using areal
averages at the vertices of the control volume:

1 s
Cg = ZN"A ZAT;C-'

=1 Oy izl

!

N¢
! A
¢ Ne T; ~j
=1 A 1 !

ol

T; J=

where N and N, are the numbers of elements sharing respectively node
B and node C, and ¢;, and c; are the averaged values on such triangle.
Then the tangential derivative can be written as:

8c) €y — Ce
AT = —mm=— (12)
(as BC BC
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The derivatives along the coordinate axes : (8¢/dz) 5 and (c/Iy) gc, can
be easily evaluated by projections.

The dispersive flux in equation 4 for side BC can be approximated by:

D,e = DV| -7 BC (13)

0%, |(32), (3.

This is a consistent approximation to the dispersive flux for equation 1.
Actually, as will be described in section 3, it has been shown numerically
to be a second order accurate discretization, as long as the triangulation
does not become too irregular.

where:

2.3 The Time-Discretization

For the discretization of the time-dependent part of the equation, Han-
cock’s scheme has been employed (van Albada 1982). This technique is a
two—step explicit scheme that can be shown to be second order accurate.
Denoting by F = f — D the total flux (convective and dispersive) the
scheme can be written as:

n+%

1 el n
" — —2-AtF (")

[

R N A Ciakd

the time-step so that T = NAt. In the first step F* = f* — D the
asterisk denotes that the convective flux is calculated using values inside
the control volume interpolated from the centroid to the boundary of
the cell. No Riemann problems are solved in this step and this makes
the scheme more efficient than the usual two-step second order accurate
technique.

where the superscript n denotes the time-stage (0 < n < N) and At

3 Numerical Experiments

A one-dimensional problem has been simulated on a two-dimensional grid.
The domain is represented by a rectangle with unit length and small width
to enable preservation of one-dimensional flow characteristics. All the ex-
amples where carried out using two different triangulations of the domain,
with equilateral and rectangular triangles (figure 2a,b). No differences are
visible in the numerical solutions calculated on the two different grids.
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Figure 2: Triangulations Used for the Numerical E i i
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3.1 Purely Hyperbolic Case

To test the non-oscillatory behavior and the accuracy of the scheme at the
sharp fronts. a pure hyperbolic equation is solved with constant unitary
velocity and periodic boundary conditions. Two different initial conditions

are considered in the experiments: a smooth sin?-wave and a discontinuous
square wave.

Results indicate.the scheme performs quite satisfactorily. The numerical
solution never displays oscillations, validating the theoretical results that
the scheme is 'leD. Small amounts of artificial viscosity are visible only
in the case of discontinuous initial data (fig. 3). ’

The'asyrnrr}et_ry noted in the square-wave case is a consequence of the
particular hmxt‘er adopted in the formulation (minmod). Other limiters
may prpduce shightly different results which may be more or less accurate
depending on the problem. The accuracy however will always remain of
second order in smooth regions of the flow both in space and time. It
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Figure 4: Purely Diffusive Example. Concentrations at a) h=1/32 and b)
h=1/64
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Figure 5: Purely Diffusive Example. Residuals at t=0: a) h=1/32; b)
h=1/64

is interesting to note that the scheme reproduces the exact solutions for
the examples mentioned when the CFL number is set to one, even when
working on a two—dimensional grid.

3.2 Purely Diffusive Case

A pure diffusive problem with constant coefficients is solved to test the
accuracy of the discretization of the second order term. The numerical
and analytical solutions are plotted in figure 4 for different mesh-sizes. To
determine the accuracy of the space discretization the residual at t = 0 is
calculated. Figure 5 shows the graph of the residual vs. x. The resulting
plot is of the shape of the fourth derivative of the solution, suggesting that
the method is globally second order accurate in space.

To test the overall accuracy the norms of the solution errors (difference
between exact and numerical solutions) and of the residuals are plotted vs.
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Figure 6: Purely Diffusive Example. Natural Logarithm of the Norms of:
a) Residuals. and b) Solution Errors. Compared with the A*-Line.

the celi-size (figure 6). The results show that both the norms of the errors
and of the residuals are described by functions that decrease quadratically
as the mesh-size decreases. This implies that the overall accuracy of the
finite volume formulation is second order.

3.3 Comparison with MCB approach of Sun and
Yeh

The last series of test has been performed on the convection-diffusion
equation. whose analytical solution can be found e.f. in Bear (1979). The
example 1s taken from Sun and Yeh (1983) so that results of the present
formulation can be compared with those of the Multiple Cell Balance
(MCB) finite element approach. The simulation was performed with three
different sets of coefficients:

a) v=1, D=10, which gives Pe=0.5;
b} v=1, D=0.05, which gives Pe=100;
c) v=1, D=5 x 1073, which gives Pe=10000.

The results are plotted in figures 7 and 8. They show a good agreement
with the analytical solution for a wide range of Peclet numbers. Compar-
isons with the MCB finite element approach suggest that the two methods
are more or less equivalent when the Peclet number is small. However
when the Peclét number increases the finite volume approach becomes
more accurate, introducing smaller amounts of numerical viscosity. This
can be easily seen by evaluating the width of the front for the analytical
solution and for the numerical solutions obtained with the two methods
(table 1).
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Figure 7: Convective-Dispersive Example. a) Pe=0.5, b) Pe=30
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Figure 8: Convective-Dispersive Example. a) Pe=100, b} Pe=10000

analytic | finite | MCB finite

solution | volume element

width of
front (m) 15 20 30

Table 1: Width of the Front in the Case Pe=100: Comparison among
Different Solutions
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4 Conclusions and Future Research

Results from numerical experiments, suggest that the finite volume ap-
proach, together with high resolution upwind scheme, is a promising tech-
nique for the solution of the transport equations in groundwater contami-
nation problems. The solutions obtained show that the method is second
order accurate in space and time: numerical calculations compare very fa-
vorably with analytical expressions for a full range of Peclét numbers. The
triangular shape of the control volumes allows great flexibility in handling
complex geometries and is well suited for localized mesh refinements. The
finite volume approach is very simple as compared to the finite element
method and allows for the use of high resolution upwind schemes to treat
steep fronts. All these factors make the technique efficient as far as the
space discretization is concerned.

Ongoing research includes testing of the scheme with more challenging
two—dimensional problems, with eventual application directed toward the
solution of the coupled equations describing multiphase flow. Also the pos-
sibility of improving the efficiency of the scheme by means for example of
implicit time-stepping techniques could be explored. The method in fact
should give rise to system matrices that are reasonably well-conditioned
and suitable to be solved numerically (van Leer and Mulder 1985).
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Characteristics of the Flow of a Gravity
Well in a Crossflow
1 2
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and Helmi S. Hathoot 3

ABSTRACT

Using the finite element method,a three dimensional
model has been designed to study the
characteristics of flow near a gravity well in a
steady crossflow. The effects of the vertical
velocity near the well and the height of the
seepage face have been studied. Previous studies by
others did not take into consideration these
factors. Determination of the height of the seepage
face, the discharge, the position of the stagnation
point and the corresponding head in terms of the
drawdown in the well and the initial slope of the
groundwater are made and all are presented
graphically in chart forms suitable for practical
use.

INTRODUCTION

A fundamental assumption on which the behaviour of
the flow toward a pumping well is based is that the
initial water table is horizontal and hence that no
movement of groundwater exists prior to the time
that the well is pumped. Such a condition is not
generally found in nature especially in the case of
steep crossflow, where the area of influence
surrounding a gravity well is not circular and the
water particles take a more circuitous path as
shown in figure 1.

Only analytical studies have been made to
investigate this problem, based on the Dupuit
assumptions (1863) where the vertical velocity near
the well was neglected. Therefore an inaccurate
position of the free surface near the well is
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