Chapter 20

Multigrid, Alignment, and Euler’s Equations™
Wim A. Mulidert

Abstract. The multigrid technique can be used to compute stationary solutions to Euler’s
equations of gas dynamics. To obtain some insight in the convergence behaviour, only the linearised
equations with constant coefficients are considered in this paper. The spatial discretisation is ob-
tained by first-, second-, or third-order upwind differencing. Convergence to the steady state can
be hampered by alignment, the flow being aligned with the grid. A number of approaches to deal
with this problem are described. Acceptable convergence rates can be obtained for a first-order
discretisation. Two-level analysis shows that higher-order schemes will hardly or not converge. This
is caused by waves perpendicular to stream-lines. Because the exact operator vanishes for these
waves, the poor convergence rates are due to the truncation error. It is shown that convergence
to the level of the the truncation error can be easily obtained by defect correction, at least for the
linear constant-coeflicient case.
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1. Introduction. A problem in computing steady inviscid flow with the multigrid
method is alignment, which occurs if a stream-line coincides with a grid-line [2,4]. This
makes it difficult to remove oscillatory iteration errors (deviations from the steady state)
perpendicular to the stream-line. Such waves cannot be removed by smoothing, because
there is no coupling in the perpendicular direction, nor can they be removed by a coarse-grid
correction, because their oscillatory character does not allow their representation on coarser
grids. The result is slow convergence.

One way to overcome alignment is the use of global relaxation schemes such as line
relaxation or Gauss-Seidel. Note that the latter, although implemented as a local scheme,
strongly affects the long waves, and is therefore classified as a global scheme. An alternative
is the use of semi-coarsening, which allows for the construction of an O(N) method that
provides a nonlinear alternative for line relaxation [11]. This approach is reviewed in §2.
An O(Nlog N) variant is presented as well. These two methods cannot handle alignment
at 45°, but that is not a problem for the first-order upwind discretisation.
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Linear two-level analysis can be used to gain insight in the convergence behaviour of the
multigrid method. Here we will compute two-level convergence rate for the linear constant-
coefficient case. Although this is a major simplification with respect to the nonlinear case,
the study can identify bottlenecks for fast convergence.

The upwind differencing of the linearised Euler equations with constant coefficients
is described in §3, and is used for the two-level convergence analysis in §4. It turns out
that second-order schemes will not convergence at all, and third-order schemes only barely.
However, convergence to the level of the truncation error can be easily obtained by defect
correction, as demonstrated in §5.

2. Alignment. The multigrid method allows the computation of solutions to certain
partial differential equations in O(NN) operations. Its three basic ingredients are: smoothing,
coarse-grid correction, and successive grid-refinement. Smoothing removes high-frequency
components of the iteration error, that cannot be represented on coarser grids. Because
these high frequencies are related to the local structure of the solution, they can often
casily be removed. The low frequencies are accounted for by corrections to the solution
computed on coarser grids. The lower frequencies appear as high frequencies on sufficiently
coarse grids, and can be removed easily as well. This leads to a convergence rate independent
of grid size. Successive grid-refinement is required to obtain a good initial guess on each
currently finest grid. Otherwise, O(log N) iterations would be required to reduce an initial
0(1) iteration error to the size of the discretisation error. With successive grid-refinement,
the complexity becomes O(N) [2,4].

Alignment is one cause of failure for the multigrid method. This occurs if the equa-
tions become decoupled in one of the coordinate directions. In thLat case, a high-frequency
iteration error cannot be removed by smoothing, because there is no coupling, nor by the
coarse-grid correction, because high frequencies cannot be represented on coarser grids. This
phenomenon is well known, and occurs for instance for strongly anisotropic elliptic equa-
tions [2,4]. For flow problems, it is the rule rather than the exception, because stream-lines
are one-dimensional in nature.

An obvious remedy against alignment is the use of global relaxation schemes. The
term “global” refers to the effect of the relaxation scheme: here it is called “global” if
the long waves are affected, and “local” otherwise. Thus, line relaxation and Gauss-Seidel
relaxation are both global schemes, despite the fact that the latter is implemented as a local
operation. For the first-order upwind-differenced Euler equations, Gauss-Seidel relaxation
is not good enough as global solver, as is demonstrated in {8] by linear two-level analysis
and nonlinear experiments. The problem of alignment disappears only for the hyperbolic
component of the equations. Damped Alternating Direction Line J .cobi relaxation is able
to provide uniformly good convergence rates, according to the linear two-level analysis in
[10]. A convergence rate of 0.526 was found. It still remains to be seen if a comparable
figure can be obtained in the nonlinear case.

A nonlinear alternative to line relaxation is described in [11]. This method uses semi-
coarsening in two or three coordinate directions simultaneously. An example of the data-
structure for the two-dimensional case is shown in Fig. 1, where the finest grid is 8 x 8 and
the coarsest 1 x 1. The number of cells involved is 24N, if the number of cells on the finest
grid is N in a d-dimensional problem. The cost of a V-cycle is proportional to this number,
that of an F-cycle is a factor (d + 1) larger. For W-cycles, the O(N) complexity is lost. It
is clear from Fig. 1 that the usual restriction and prolongation operators must be modified
if data from more than one grid are combined. A simple method is proposed in [11]. Equal
weighting is used for the restriction of data from more than one grid. For prolongation, the
Correction to the solution on the current fine grid is computed with respect to the latest
solution available rather than the one at the begin of the multigrid cycle. This allows for
smoothing parallel to the computation of the coarse-grid correction, if desired.
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Fig. 1. Arrangement of finest (8 x 8) and coarscr grids, that leads to an O(N)

the right. The arrows indicate how the grids are linked by restriction (downward)
and prolongation (upward).

The extension of this method to three dimensions is obvious, as is its formulation in a
finite-difference instead of a finite-volume context. The approach is not tied to a specific
type of equation, although in [11] it is only studied for the two-dimensional Euler equations.
In that case, linear two-level analysis for the constant-coefficient case provides a two-grid
convergence factor that is at worst 0.5 if first-order upwind differencing is used. Experiments
with the nonlinear equations show multi-level convergence rates that are slightly better. It
should be noted that this method cannot handle alignment at 45°, which is obviously not
a problem here.

A variant of the method that requires only 2N cells rather than 24N, can be obtained by
semi-coarsening in a sequential fashion. First a coarse-grid correction based on coarsening
in one coordinate direction is computed and the fine-grid solution is npdated. Then the
same is done in the other coordinate direction. Here it is assumed that the problem is
two-dimensional. With this approach, the restriction and prolongation operator do not
have to be modified to handle data from more than one grid at the time. A disadvantage
is its complexity. Two coarse-grid corrections have to be computed with respect to each
grid during the multigrid cycle, which leads to at least O(N log N) operatious per cycle.
Two-level analysis for the linear constant-coefficient case provides a worst-case two-level
convergence rate of 0.5, although the overall performance is somewhat better than with the
previous method.

Both the original O(N) method and the O(N log N) variant have the potential to be
considerably accelerated by pruning the data-structure. This requires adaptivity based on
flow direction and convergence speed and remains to be investigated. In the following, we
will only consider the O{N) method and not its O(N log N) variant.

In summary, steady solutions to Euler’s equations can be computed in a straightforward
manner if first-order upwind differencing is used, at least according the two-level analysis
in the linear constant-coefficient case. The numerical experiments reported in [11] sugges!
that this conclusion extends to the nonlinear case. In the remainder of this paper, we will
focus on second- and third-order upwind discretisations of Euler’s equations.
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3, Upwind differencing. The Euler equations of gas dynamics that describe the flow

i3 perfect inviscid compressible gas are:

(3.14)

iore the vector of states w and the fluxes f and g are given by

pu pv

p
2
| pU _tput+p _ puv
w= PRE f= puv s 9= i tp | (3.18)
pE pul mwH

rhe density is denoted by p, and u and v are the z- and y-component of the velocity. The
mergy E, total enthalpy H, pressure p, and sound speed ¢ are related by

2 = ~E, (3.1C)

1
P+%(u2+vz>’ H:E+§’ c .

Ty-1p
The spatial part of the system is discretised by upwind differencing. The discrete residual

)
1 Y i : ; i

- rog = = = e e ) - e ) (@)
ition iy . z (3.22)
a specit. + - + -

e — o [otwla ) wle5)) ~ awlalt_y)wig))]
qualion - Y

t“_'”*‘“": ffere f{wy,w,) and g{w;, w,) are numerical fluxes that provide an exact or approximate
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betier. | ‘olution e Riemann problem. The expression w(g) denotes a one-to-one transformation
oush ;_H ) from a set of state quantities ¢ to w. The quantities q:f and qf:Jt are values at the cell-

: houndaries obtained by interpolation from the state ¢; ; = g{w; ;). A first-order-accurate
stained he ~cheme is obtained if the interpolated vai.ues simply equal the interior values. Second-
RSO der accuracy is obtained by using van Leer’s kappa-scheme [1,14], which lets, in the
Th;‘n ““ r-direction,
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or do 67 = a5~ 3s(855,A%) [(1 - AT + (1 + m)AL] .

ct to eacl, Here

per cyc AT =g~ Givgy AL = i — gige (3.35)

s two-leviy )

nowith the The function s(A~, A") is a limiter that prevents numerical oscillations and takes values
between 0 and 1. It is 1 in smooth regions of the solution, and tends to smaller values near

ntial to b discontinuties. Expression similar to (3.3) are used for the y-direction.

y based on The standard second-order upwind scheme (Fromm’s scheme) is obtained for & = 0

Jowing, w» Central differencing is obtained for x = 1, if the limiter is not used (s(A~,At) = 1).
The choice k = —1 provides a fully one-sided upwind scheme. The limiter may cause the

ghtforwird

accuracy to reduce to first-order at isolated points. For « = 1/3, we obtain third-order
accuracy in a point-wise sense, but not in a volume-averaged sense. The reason is that

there is a second-order difference between point-values and volume-averages. Also, the flux

vel analysi

11} suggest

ver, wo will of the average state is not equal to the average of the flux over one part of the cell boundary.
Alocal O(1) error occurs if a steady discontinuity is smeared out over a number of cells.

Thus, we have at most second-order accuracy in large regions of the flow, and first-order
or even zero-order accuracy at isolated points or lines. For this reason, the discretisation
is referred to as a high-resolution scheme. An additional problem occurs if the grid is not

AT i Ay
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locally Cartesian or if cell-sizes vary strongly from one cell to another. Then the one-
dimensional interpolation (3.3) should be corrected for stretching and curvature. Here we
have assumed that the grid is Cartesian without stretching from cell to cell. Note that the
aspect ratio hy/h; of the cells is not involved in this discussion: it may be far away from 1.

In the next section, we will attempt to construct a multigrid method for the high-
resolution scheme described above. In order to obtain estimates for the convergence rate,
we make the following simplifying assumptions. The nonlinear scheme is replaced by alinear
with constant coefficients. We assume that the grid is Cartesian with a fixed cell-size h,
in the z-direction and h, in the y-direction. The effect of the limiter is ignored. Boundary
conditions are assumed to be periodic. We only consider the finest grid and one or two
grids on the next coarser level. It is assumed that the coarse-grid problem is solved exactly.
In this setting, we can use Fourier analysis. Although the assumptions have brought us
quite far from the original problem, the idealized case can nevertheless reveal the strength
and weaknesses of the multigrid method, and provide some numbers which can serve as a
reference for the nonlinear case.

The following linearised version of (3.1) is adopted:

ow’ ow' ow'’

where
v 0 ¢ 0 v 0 0 O bu
[0 »w 0 O 16 v ¢ O ' év .
A= c 0 u 0} B= 0 ¢ v 0)’ buw' = dp/{pc) |- (3.4b]
0 0 0 u 0 0 0 v 88

Here S = log(p/p”) is the specific entropy. The fourth equation describes the convection
of entropy along stream-lines. The remaining 3 x 3 system represents the combination of
convection and sound waves. In the isentropic case, the fourth equation can be dropped
and the third component of w’ becomes 2¢/v;. For the steady-state problem, we consider
the linear residual operator

7] i)
L=A—+B— 3.5)
Oz oy’ (
with constant coeflicients and periodic boundary conditions. This operator is elliptic in the
subsonic and hyperbolic in the supersonic case. The fourth equation, considered by itself.
is hyperbolic.

To accomplish the upwind differencing, the matrix A is diagonalised by @1, according

to
1 0 0 1
A=Q, A Q7Y A, =diaglu—cu,u,utc), Q = _(1) _(1) g (1) (3.6ai
0 010
For B we have:
6 1.0 0
B=Q,A,Q7", A, =diag(v—c,v,v,04+¢), Q= _i g 8 1 (3.60)
0 010

The matrix Ag (k = 1,2) is split into A} and A7, which contain the positive and negative
elements of Ay, respectively. This implies

A+ AL = A, A -AD = A (3.1
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Now define
A% = G AEQTY, BT =Q,AFQ5". (3.8)
It follows that
A= AT+ A7, |Al=Q|A)Q7" = 4T - A7;

3.9
B=B*+ B, |Bl=Q,|A,0Q;" =B* - B". )
The discrete linear residual operator becomes
Lrh(To, Ty) = Lir(Te) + L3 (1), (3.10a)
where 1
L (T,) = (AT D(Ts, 50,%) - AT D(T;, 84, 8)],
N (3.100)
LM(T,) = E[Bﬂ)(:ry, sy, K) = BTD(T, Y, sy, 0)],
and
D(T,s,k)=(1-T71) [1 +3s{(A-r) (=T )+ (1+x)(T~- 1))] . (3.10¢)

tere Ty and T are shift operators: Tovi; = viy1,;, Ty¥i,; = vij+1. We have assumed that
‘ne grid is Cartesian with a constant aspect ratio hy/hz. First-order accuracy is obtained for
.= 8y = 0. For s; = sy, = 1 and |k| < 1, we have a high resolution scheme. The scheme
'« third-order for k = 1/3 in a point-wise sense. Other values of k lead to second-order
ccuracy.

The analysis will be carried in Fourier space. We consider Fourier modes of the form

exp [~1(ib; + 78,)], (3.11a)
where the frequencies on a Ny X N, grid are
I lp
91;:271'—]\71, 91122777\7—2, 11=0,...,N1—1, 1220,...,N2—1. (311b)

“iie symbols of the shift operat~=s : e T, = exp(if,) and Ty = exp(if,). The symbol of the

~»idual operator is obtained from (3.10) by replacing T, and T, with T, and 7. In that
4se, we have

Re D(T,s,6) = 2([1 — s+ s(1 - )¢}, ¢ =sin?(18), (31
Im (T, s, &) = sin(8) [1 + s(1 ~ k)(]. '
..o singularities of the linear operator L?=" are listed in the Appendix.

4. Linear two-level analysis. We will attempt to extend the method of §2 to higher-
rier discretisations. The fact that the exact operator vanishes for waves perpendicular to

“ieam-lines may cause stability problems. In addition, the coarse-grid correction operator

- which should remove the longest waves, will behave as I — (‘rzh)‘1 TI’; for long waves
¢ cause the exact operator to vanish. Here 7 = O(RP) is the truncation error of the
ter-order scheme. This leads to a lower bound for the two-grid convergence rate of 1— %—p.

4.1. Two-grid operators. The convergence of the O(V) multigrid method described
2 can be studied by two-level analysis [2,4]. As mentioned before, we consider the linear
~tant-coefficient case with periodic boundary conditions. Only two levels are considered,
e and a coarse; it is assumed that the equations on the coarse grid are solved exactly.
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This leads to the coarse-grid correction operator, which describes how the exact solution on
the coarser level affects the convergence on the finest grid. Note that we make a distinction
between “grid” and “level”, as the method described in §2 may involve more than one grid
on a given level. Here we have one finest grid and 2 coarser grids on the next level. The
finest grid has a size Ny x N2, Ny and N, even. Semi-coarsening in the z-direction leads
to a (N1/2) x Ny grid. The corresponding coarse-grid correction operator will be denoted
by KR An N; x (N,/2) grid is obtained by semi-coarsening in the y-direction, and
the corresponding operator is K#. We will also consider the usual coarse-grid correction
operator K 7H that is obtained by coarsening in both the z- and y-direction.

In the Fourier domain, coarsening causes aliasing between frequencies: 8, is coupled to
8 + 7 by coarsening in z, and 4, is coupled to 8, + 7 by coarsening in y. Therefore, we
consider 4 frequencies at once, using the following notation:

Dyt 'T)Eex , 0y g

A ?A)—+ - P 91‘ + 7 agy 1 L

V= I G+ |’ [z] < 57, 1,] < 37 (4.1)
b YWl +7 ,0,+7)

which consists of the symbols of a vector v for 4 waves. The conresponding symbol for a
linear operator G will have the structure

Giys Gopy Gayr Gayy
. Ga-y Gioy Gi—y G3y :
G=1] > 4.2
Gsy- Gay- Gry- Gago )’ (42)
Gy Gz Go_ Gi__

where each entry corresponds to a 4 X 4 block. The residual operator on the fine grid

CINC

LM = diag(Lhaty, phahe phot pRetsy, (4.3)

For the restriction operators, we consider either first-order or third-order coarsening:
Ry(T)=3(1+7T), (4.4a)
Ry(T) = T~ Y(1+ T)° (4.4b)

The three restriction operators, corresponding to the three different types of coarsening
mentioned above, are:

R(T.) R(-T.) o 0 R(L) 0 R(-T,) o0
el 0 0 0 0 | g | 0 RT) 0 R-T)
0 0 R(T,) R(-T,) 0 0 0 0
0 0 0 0 0 0 0 0
(4.50)
and
RHH — RHthH — RhHRHh. (4.5[))

For R(T), either of the opertors in (4.4) will be considered. The prolongation operators P#*,
PhH and PHH, equal the conjugate transposes of the corresponding restriction operators.

To obtain the two-level coarse-grid correction operators for each of the three types of
coarsening, we need the residuals on the coarser grids:

L* = diag(L?*=m (T2, T,),0, L=k (T2 —T) 0),
LM = diag(Lhe?s(T,, T2), Lh=29 (- T, T.2),0,0), (4.6)
U”=m@u%”%z,ﬁ&mw

The coars:

the approg
the pseudc
in §2 and |

where

""he smoot
smoothing,
be the sam
smoothing «
convergence

4.2. St
grid converg
good low-fre
than one m:
waves. Here

where p(-) de
mask out the
considered he¢
hyfhg, and t
parameters, 1
To deter:
matrix

is carried out,

Q")

The stars denc -
find that

If the residual
we have LHH .



solution on
distinction
an one grid
level. The
action leads
be denoted
ection, and
1 correction

s coupled to
herefore, we

(4.1)

symbol for a

(4.2)

the fine grid

(4.3)

sening:
(4.4a)
(4.4h)

of coarsening

) 0
R(-Ty)
0

0
(4.5a)

(4.5b)

perators Pt
ion operators.
three types of

(4.6)

MUILTIGRID, ALIGNMENT, AND EULER’S EQUATIONS 355

The coarse-grid correction operators K 7" K*H and KHH, H are defined by
K =I- P(LY)IRLM, (4.7)

the appropriate substitutions being obvious for each of the three cases. The dagger denotes
the pseudo-inverse. The two-grid matrices, corresponding to the O(N) method described
in §2 and [11], are

MO = Sug[Kv(I) i (I-—- PHhRHh)(I— PhHRhH)(Sup _ I)]SVl,

4.8
M3 = SV2[I((2) + (I _ PhHRhH)(I _ }")HhRHh)(SVP _ I)]Syl, ( a)

where -y =
KO = gHr 4 (1 - PHRRHRY (KM _ ),

K (2) _ Ith (I PhHRhH)(Ith I)

The smoothing operator § is applied v; times for pre- smoothmg, vp times for parallel
smoothing, and v, times for post-smoothing. The operators R and P may or may not
be the same as the R and P used for the coarse-grid correction operator. Because the
smoothing operator will in general be inefficient for the long waves (§ ~ I), the multigrid
convergence for these waves is mainly determined by K1) and K.

(4.8)

4.2. Stability of the coarse-grid correction operators. To obtain a good multi-
grid convergence, we require the coarse-grid correction operators to be stable and have a
good low-frequency damping. Stability requires K|l < 1, although a bounded norm larger
than one may be allowed if smoothing can compensate the growth of the corresponding
waves. Here we use the seminorm

1G]l = max{p (Lh=hv G (Lr=ho)1) s uje, v/e, hyfhe, 62,0, ) (4.9)

where p(-) denotes the spectral radius. A similarity transform based on Lh=hy is included to
mask out the effect of singularities. The dagger indicates the pseudo-inverse. The matrices
considered here depend on 5 parameters: the velocities u/c and v/c, the grid aspect ratio
hy/hy, and the frequencies 8, 8,. For the norm we will use the maximum over these five
parameters, unless specified otherwise.

To determine the stability of KHH a similarity transform based on the non-singular
matirix

PHE 0 0 0
g | PE I 0 0
Q™ = PHEH o0 I 0 (410)
PAH 0 0 T
is carried out, yielding
(f;{{lH)T(RHHIZhhf“HH)M * ok *
AHHy-1 > HH\QHH 0 0 00
I-K = .
0 0 06 0

The stars denote elements which are irrelevant in the present discussion. We immediately
find that

K| = max(1, |17~ (LI RIFLMPAA, ). (412)

If the residual on the coarser grid is identical to the one obtained by Galerkin coarsening,
we have LHH = RHHLMPHH 14 the coarse-grid correction operator is stable. For the
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first-order restriction and prolongation operators, this happens for the first-order residual,
and for the second-order residual if & = 1. The same result is found for K#* and K"¥.

For the higher-order residual with s # 1, and the first-order restriction and prolongation
operators, we find that K is unstable. To demonstrate this, we only consider the fourth
equation of (3.4), so that K becomes a 4 x 4 matrix with scalar entries. For s, = s, = 1,
v/hy = ufhgy, K # 1, and 8, = —8,, we obtain

IR = max(, (L + T/ - T27)), (4.13a)
and
IRFH] = M) =
max(1, | 3(1 - R)(1+ T2)? ) (4.13b)
(- TR - T+ 2002+ (1= 30)(1 4 3T2 + 322 - T

These norms blow up if §, approaches zero, i.e., for the long waves. The same happens to
KM = KA.

At first sight, this is a surprising result. The general rule for the orders m, of the
restriction and m, of the prolongation operator is [2,4}:

me +my > m, (4.14)

where m is the order of the differential equation. This is supposed to guarantee stability, or
at least boundedness of the coarse-grid correction operator. In this case m = 1, so the rule
is obeyed, but the coarse-grid correction operator is unstable. However, closer inspection
reveals that the rule is not violated. What happens is that the above choice of parameters
describes a situation where the exact residual operator vanishes, so one basically looks at
the truncation error. Since the truncation error can be viewed as a discretisation of a
higher-order differential equation, we effectively have a value m > 1 for certain waves.

This can be illustrated by considering the Taylor expansion around 8, = 0, 8, = 0. For
the fourth equation on the finest grid, with « > 0, v > 0, and s, = 5, = 1, we have

Lhety o (8, + 90,) + Li(k — k)(063 + 963) + L(1 ~ k)(a6% + 962, (4.15a)

where

&

=ulhy, P=v/hy (4.15b)
The first-order term represents the exact operator. The second-order term vanishes and we
have second-order accuracy. If, in addition, & = 1/3, the third-order term vanishes as well,

and third-order accuracy is obtained. For the special choice @8, = —%8,, the exact operator
vanishes. What remains is due to the truncation error:

Lhehy o Li(L — k)u6,(62 — 62) + L(1 ~ K)26,(62 — 63). (4.16a)

For 8, = ~0,, we find
L1 - k)uog, (4.16b)

which can be considered as the discretisation of a fourth-order differential equation. Thus,
the rule (4.14) is violated for this special wave.

A stable coarse-grid correction operator can be obtained with the third-order restriction
(4.4b). If this one in used in combination with the first-order prolongation operator, the
rule (4.14) is obeyed, and we expect boundedness of the coarse-grid correction operators.
Indeed, numerical computations suggest that [[K#H]] < 1 for x = 1, 1/3, 0, and —1.
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However, JKHM| = ||KM || and KM = ||K@)|| still are unbounded, except for k = 1/3.
To illustrate the problem, we consider
K72 = max(1,|I — (LAY RIPLAPEN) (), (4.17)

For the long waves, we can examine the Taylor expansion around 8, = 0, 8, = 0. Both for
PH% and (R hihhpHR )1,1, the dominant term will be the exact operator, unless the latter
becomes small. If we consider the fourth equation with @ > 0, ® > 0, and the choice of
parameters U, = — 06y, then the exact operator vanishes and what remains is

(RERLARPHRY, | o Li( — 1)a6, (62 — 02),

LHR ~ Li(k ~ Ly, (62 — 462), (4.18)

The residual on the coarser grid vanishes for 6, = +26,, whereas the residual obtained by
Galerkin coarsening vanishes in the same way as the fine-grid residual, namely for §, = +6,.
This mismatch cause the instability: if 8, ~ £26;, the norm (4.17) blows up. The instability
cannot be removed by using higher-order restriction and prolongation operators (with an
order larger than 3), but disappears if Kk = 1/3.

The instability for the second-order scheme can be removed by returning to the first-
order restriction operator for the residual, and using a coarse-grid residual operator which
is first-order in the direction in which one has coarsened. Thus,

LHN = [¥e(T2 s, = 0) + LMo (T}, 5, = 1),
ChH  Shass coh (4.19)
LM = Dhe(Ty s, = 1) + L2 y(Tyz,sy:O),

and LHH is the first-order operator. For these choices, and for the fourth equation of the
system with 2 > 0, © > 0, we obtain

LPr ~ i(36, + 36,) + 462,
(RHRL AP HR) o % 1 =02 (4.20)
11 (@8, + 98y) + 5(1 — k)12,
and no problems occur if the exact operator vanishes, given |k} < 1.

In summary, we can obtain stable coarse-grid correction operators for the second-order
scheme if we use the first-order restriction and prolongation operators, and coarse-grid
residuals that are first-order in the direction one has coarsened. For the third-order scheme,
stability can also be obtained by using a third order coarsc-grid residual operator, and a
third-order restriction operator for the residual. The other restriction (R) and prolongation
operators (P, P) can still be first-order.

4.3. Low-frequency damping. Apart from stability, we also want a good damping
of the low frequencies. This can be measured by those elements on the main dia% nal of K
that correspond to the longest waves. In case of K#¥  we have to consider K iH for 6,
and §; close to zero. The subscripts refer to the left upper block of the matrix. We define

$(K) = lim sup {IR1al): 62+ 62 < €% u/e, /e, hy e} (4.21)

For the first-order (p = 1) scheme, we can use the first-order restriction and prolongation
operators. Then, %(K) = 1/2, for each of the operators KFH KHr K K1) and KO,
This number has been obtained by extenrsive numerical computations on the system of
equations, and analytically by considering the fourth equation only. This is the same value

i
Z
e
&
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as obtained for the two-grid operator of the method described in §2, using one smoothing
step with damped Point-Jacobi (see also [11]).

To illustrate this result for the first-order scheme in the case of K¥# and @ > 0, 2>0,
we use Taylor series to find

. L(u6? + 962)

HH ., 2 z Y

RIH ~ T RrETE (4.22a)
The numerator is the truncation error of the first-order scheme, the denominator the ezact
operator. If the latter is large enough, the right-hand side of (4.12) vanishes as f, and 8, go
to zero. On the other hand, if the exact operator becomes small, we can define o = /4 > 0,
let ; = €6, and 9, = —cb;/a + e1*+20, and consider small ¢ and §;. The result is:

K~ Lgilzolg e - iz(fja)();?eg. (4.22b)

We conclude that the value ¥(K) = 1/2 occurs when the exact operator becomes of the
order of the truncation error.

If the coarse-grid residual operators for p = 2 or p = 3 are first-order in the direction in
which the coarsening has been carried out, and the restriction and prolengation operators
are first-order, we find ¢¥(K) = 1 for each of the coarse-grid correction operators considered
in this section.

For the third-order (p = 3) scheme, the coarse-grid residual operator and the restriction
operator R for the residual are third-order, whereas the other restriction and prolongation
operators (R, P, 13) are first-order. In that case, 1/)(K) = 7/8 = 0.875. Again, this value
is based on analytical results for the fourth equation and numerical computations on the
system.

The values of ¥(K) are lower limits for the worst-case multigrid convergence rates.
Thus, the above shows that one cannot design a multigrid scheme with a uniformly good
convergence rate for a spatial discretisation based on second-order upwind differencing. For
a third-order scheme, one might be able to obtain a convergence rate of at best 7/8, which
is not very impressive. However, these conclusions are too pessimistic, as the values of
¥(K) are dominated by those waves for which the exact operator becomes of the order of
the truncation error. Because is does not make much sense to require convergence below
the truncation error, the numbers found are not representative for the performance of the

multigrid method.

The main problem is to find a way of measuring the convergence rate in comparison
to the truncation error. 1 have not found a simple and elegant way to accomplish this in

the framework of local mode analysis, but it can be easily done in the context of defect
correction.

5. Defect correction. The defect-correction technique can be used to solve a higher-
order problem with a first-order solver. For the present problem, the long waves for which
the exact operator vanishes, lead to a lower bound on the convergence rate, namely ||7 —
(r{‘)"lrg”. Here 7 is the truncation error of the first-order and T;} of the higher-order
discretisation (p > 2). The result is a convergence rate 1 — O(hP~1), which is too slow.
However, convergence to a residual comparable to the truncation error can be obtained
under certain conditions, as will be shown for the linear constant-coeflicient case.

5.1. Convergence properties. In the following, we will consider the linear higher-
order problem L7 = f, and attempt to solve it by applying an iterative method for the
first-order problem with operator Ly. If the iteration matrix for the first-order problem is
M, then the iterations for the second-order problem are described by

v = [I— (I = M)LILgJv;, i3> 0. (5.1)
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Here i is the iteration count, v; = T — u; the iteration error, and u; the current guess of the
solution.

There are several variants of the defect-correction technique (cf.[4]). In [7] and [8], a
second-order upwind discretisation of Euler’s equations is solved by a multigrid correction
scheme designed for the linearisation of a first-order discretisation. The technique is used in
combination with successive grid-refinement in [8], using second-order solutions during the
refinement sequence. A variant that starts with a first-order solution and uses a nonlinear
multigrid method as the first-order solver is described in [13] and [6]. The first-order solver
is presented in [5]. This method has O(N log N) complexity, as the iteration error has to
pe reduced from O(h), the accuracy of the initial first-order guess, to O(h?), the desired
accuracy. Because the solver is not exact, not even for the long waves, this will require
O(log N) iterations with the defect-correction technique. According to the authors, this
does not seem to be significant in practice. It should be noted that the first-order solver of
[5] cannot handle alignment in subsonic flow, and that relaxation based on an exact lineari-
sation of Osher’s scheme, as advertised in [5], can lead to rather ill-conditioned matrices.
A simple alternative is described in [11)].

Defect correction does not provide good asymptotic convergence rates for the problem
studied here. Even with an exact solver (M = 0), the expression [I — LILQ] can be close to
I for certain waves. These waves are the same as those that caused bad convergence rates
in the previous section. To illustrate this, consider the symbol of the fourth equation of
(3.4). For @8, = —%6,, cf. (4.15b), and & > 0, » > 0, we obtain

1—Ly/Ly > 1 -ik(k = $)(0: +6,). (5.2)

This shows that the defect-correction technique cannot provide a uniformly good conver-
gence tate for Euler’s equations. The problem here is the same as in the previous section:
if the operator becomes of the order of the truncation error, the convergence rate deterio-
rates. But at that point, convergence is no longer important because the iteration error has
become of the order of the discretisation error, which is accurate enough.

The framework of the defect-correction technique allows us to obtain estimates about
convergence to the level of the truncation error, in contrast to the approach of the previous
section. To show this, we first introduce some notation. Let the linear problem be Lu = f.
The discrete representation of the solution on a grid corresponding to level [ is ji,u, with an
order of accuracy p. The discrete operator is L;, and le) = Ifgf. We assume that we have
some iterative scheme M’ for sclving the problem with accuracy p = py. Let

MY =L MmN IDOE ) < N (5.3)

where the convergence rate A, should be well below 1. The similarity transform based on
Llp1 is introduced to allow for singular problems. Components of the solution that lie in the
null-space of Llpl, denoted by .N'(Llpl) are hereby ignored. Note that a necessary condition
for boundedness of (L}, )L} is: N(LL ) C N(LL).

The numerical solution @ of the problem with order of accuracy p; > p; obeys Linu"’ =
le,z = I;zf. We have not used the subscript py here for w!. Its discretisation error is
ei, = jll,u — @, and the corresponding truncation error of the residual is defined by Tzl’ =
L;e; = (Lij;,— I;L)u. The current guess of the solution is u}, where i is the iteration count.
The iteration error v} = @ — u!, and the total error is 2} = :Tzl,zu ~ ul. The current residual
rh= le>2 - Li)?ué = L;zvf, The equivalent of Eq.(5.1) for the residual is

iy = L [T = (I = MY, (L ), i > 0. (5.40)
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; I _ gl
Using r* = Lp2 m’ this can be rewritten as

L,y = Lo () [0 24 (1= BYyed, | + L, [~ (E)1EL,] 24 (5.4b)

The first term on the right-hand side in square brackets clearly allows for convergence down
to the truncation error. The last term may cause problems, though. If L;l is nonsingular or

if the null-space of Ll is a subset of the null-space of ! , the last term can be rearranged

p2?
as
(I = L (LD, 2 = L (L (L, — L2 (5.4c)
In a Full Multigrid code, it may be assumed that the initial guess of the solutlon has
an error of the order of the discretisation error. Therefore, we let HL 2| =~ H .|, Where

! is assumed to be O(1). Also, we assume that HL (L

T” < 021, where C21 is O(l) It
follows from (5.4c) that

20

bl € X Canadlimpll + (1 + X)Capllrg, | + Caall(Ly, ~ L)l (5.5)

The first term on the right-hand side decreases after each iteration if X,Ca; < 1. The
second term is of the order of the truncation error. The last term can be neglected if
(L}, = Ly)2 < 14, — Ll 125 = O(RPP2). (5.6)
This estimate is valid only if 2! is O(hP?) and sufficiently smooth. It will be violated, for
instance, if completely new details appear in the solution after grid-refinement, due to non-
smooth boundary conditions or singularities in the flow field. In that case, some additional
smoothing between defect correction cycles may help to remove locally large iteration errors.
Assuming that (5.6) holds and that |7} H = O(h¥?) # 0, which excludes certain trivial
solutions, and neglecting higher-order terms ir &, we find
i

- ; - ~ . N 1~
ol < (XCap)lah+ (1+ X,)C218(3,Caa,4), Blz,i) = T _3; .

(5.7)

Therefore, the defect-correction technique can provide a solution with a total error which
is at best a factor (1 + X,)nglﬂ(xrcm, i) times the truncation error.

Next consider the Full Multigrid method. We like to obtain an estimate of o for a
fixed iteration count. Given a solution ul ~1, we obtain an initial guess on level I through
interpolation: wh = I!_,u!™!. Here we assume that the order of interpolation is at least
(p2+1). If ||l |l = 272||r1-1|| we find that

L S (la? + ¢(Xrap23 02,1’ i9 l)a (580)

where

=272(X,C21)",  ¢(3r, P2, Ca1y0,0) = (1 + A)C21B(XCa1,9)B(C, D). (5.8b)

Here we have ignored terms of O(h) or smaller.
Note that the above does not represent a convergence proof. It merely describes con-

vergence of the residual to the level of the truncation error. The description is based on
§5.2, §14.2, and §14.3 in [4].

5.2. Example. To obtain quantitative estimates, we consider a second-order discreti-
sation (p; = 2) and a first-order solver (p; = 1) with a multigrid convergence rate X, = £.
Note that the multigrid convergence rate is usually larger than the two-level convergence
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K 02,1 ¢(%7 *’02,19 OO,OO) Z(< 10%)
1 1.00 (3.00) (6)
: 1.06 3.39 6,7
0 1.15 4.10 7
-1 2.00 - _

Table 1. The constant C,,, for various values of k, determines an
upper bound for the accuracy that can be obtained with the defect cor-
rection technique. This accuracy is measured by ¢(X,,p2, Ca,1,1,1) times
the norm of the truncation error. The third column gives the asymp-
totic values, which are independent of py, the order of accuracy of the
discretisation. The last column gives the number of cycles needed to
obtain this accuracy within 10% (this does depend on p;). The conver-
gence estimate for k = 1 can not be justified and is only included for
reference. The two values for k = 1/3 refer to ps = 2 and 3, respectively.
Other values of k result in second-order accuracy (p; = 2).

rate. The number 0.5 obtained for the method in §2 corresponds to the two-level rate.
However, the numerical experiments in [11] show a multigrid convergence rate well below
0.5, and this motivates the present choice for X,.

According to the Appendix, we have N(Ly) = N(L;) for £ < 1. If k = 1, the null-space
of Ly contains M(L;), but is larger. Eq.(5.4¢) still holds, but the estimate (5.6) may break
down because of the checker-board mode. This mode may result in an initial guess after
grid-refinement which is not smooth enough. Therefore, the use of a scheme with k = 1
(central differencing) is not recommended. We will nevertheless include it in our estimates.

Results are listed in Table 1. The values of Cy; are obtained numerically by using
the norm (4.9) on i{ig For the fourth equation of the system (3.4), we obtain Cp; =1
for k = 1, C27 = /9/8 for k = 1/3, Cy1 = V/4]3 for k = 0, and Cy; = 2 for k = —1,
which happen to agree with the numerical results. The best result one can obtain for
convergence of the residual in terms of the truncation error is asymptotically determined
by ¢>(%,*,C’2,1,oo,oo), if one assumes that the scluticn on the coarsest level (I = 0) is

determined exactly, i.e., @0 = 0. The zsterizk indicates that this asymptotic value is
independent of p;. It should be noted that the result for k = 1 cannot be justified, as
alread: mentioned. For x = —1, the product A,C2; becomes 1 and convergence is lost.

Applying 2 defect correction cycles without updating the second-order residual recovers
convergence, but this is not considered here. The last column of Table 1 list the number of
iterations required reach the asymptotic result within 10%. This, or a slightly larger value,
can be used as the number of cycles to be carried out in practical computations. The result
(< 10%) = 6 for K = 1/3 is obtained with p = 2. For p, = 3, we obtain i(< 10%)=7.

If the solution is not sufficiently smooth, the assumption {5.4c) will be violated because
of the high frequencies. This, however, can be easily repaired by some additional smoothing.
One or more smoothing steps can be applied to the higher-order residual between defect-
correction steps. A simple smoother is Point-Jacobi, but this scheme has a long wave

instability for the higher-order upwind discretisation. We therefore consider a Two-Stage
scheme:

Ur = U — IGJN-ITI',
-1
Uipr = U — FoaN 1.

Here N = |A| 4 |B|. The relaxation parameters 8; and B; can be chosen in such a way that
the Two-Stage scheme is stable and that the smoothing rate

7 = max{p(5MS) : I < |8,] < 7, Lx < |8,] < 7, ufe,v/e, hy/hs}, (5.10)

(5.9)
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is as small as possible. Here
SMS = [ — B;N"1L,, (I = BN L, (5.11)

is the symbol of the relaxation operator. Note that N~! should be read as Nf, as N
becomes singular for © = v = 0. An optimal choice for k = 0 is f1 = 2/5 = 0.400,
B2 = 10/13 = 0.769, resulting in a smoothing rate 7 = 9/13 = 0.692. For x = 1/3, a nearly
optimal choice is §; = 3/5 = 0.600, B, = 10/11 = 0.909, which lets @ = 25/33 = 0.758.

It should be noted that these values are not necessarily optimal in the presence of a
limiter. The use of limiters makes the scheme nonlinear, even if applied to linear equations
with constant coefficients. A Point-Jacobi scheme applied to the high-resolution scheme can
be TVD stable if limiters are used, in contrast to the result of linear local mode analysis
(cf.[3]}. On the other hand, nonlinearities as sonic lines and shocks may require values of 5
and (; smaller than those mentioned above to provide stability for the Two-Stage scheme,

6. Discussion. Some problems in the application of the multigrid method to Euler’s
equations of gas dynamics have been identified by local mode analysis for the linear constant-
coefficient case. Alignment can be overcome by line relaxation. A nonlinear alternative
based on semi-coarsening requires QO(N) operations per multigrid correction cycle. In this
way, acceptable convergence rates can be obtained for a first-order upwind discretisation.

For higher-order schemes, it appears difficult, if not impossible, to obtain good asymp-
totic convergence rates. This is mainly due to waves perpendicular to stream-lines. For
these waves, the exact operator vanishes and convergence is dominated by the truncation
error. Convergence to machine-zero will be very slow or impossible. However, convergence
to the level of the truncation error can be easily obtained by defect correction.

If one insists on convergence to machine-zero, the spatial discretisation of Euler’s equa-
tions must be improved such that the null-spaces for the discrete and exact operator coin-
cide. Central differencing provides this at 45°, but also intraduces the checker-board mode,
which is too much. The use of rotated differences may be an improvement, but it seems
impossible to match the null-spaces for angles other than some integer multiple of 45°.
Therefore, convergence to machine-zero be better abandoned. Note that this statement
refers to the worst case. In practical computations, convergence to machine-zero can be,
and has been, obtained.

The implementation of the method outlined on §5 for the nonlinear case is discussed in
[12]. Apart from technical difficulties, there do not appear to be any fundamental obstacles
for multigrid convergence, as long as one is willing to give up convergence to machine-zero.

Appendix. Here we will consider the singularities of the linear operator Lhahy,

LEMMA. The linearised residual operator Lh=*v, with 0 < s, <1, 0 < sy < 1, and
k < 1, is singular only in each of the following cases:

i) T.=1,T,=1

(i) To#1,T,=1: u=—-coru=0oru=c
(iii) T:lT#l:v:—corv:Oorv:c;
(iv) To#1,T,#1: u=v=0.

The corresponding null-spaces do not depend on s, sy, and &.

Proof. In the first case, the linearised residual operator L=y = 0. Its null-space
is clearly independent of s, sy, and k. In the second case we have Lhshv = [hs. This
expression can be diagonalised by ¢, yielding eigenvalues

1 o
h—)\l,I-D(TIa‘S-TyH)) l= 17"'74~ (Al)
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Because D(Tz,sr,n) # 0 for T}, # 1, this expression only vanishes if A\y; = 0, i.e., if one of
the eigenvalues of A vanishes. The third case is proven in the same way.

For case (iv) we consider the real part of the operator Lh=hy. Using the fact that
Re D(T,s,x) = Re D(T-1,s,k), we find that

. 1 . . 1 .
Re LPshv = 1| Al + | Bl, w1 = B—-Re D(T;,8z,K)y, po= E—ReD(Ty,sy,n). (A.2)
T 4

From (3.12) it can be seen that Re D(T, s, k) vanishes only if T' = 1 and is positive otherwise.
Thus, both gy and pg are positive. The expression ui|A|+ p2|B| has a zero eigenvalue only
if u = v = 0. In that case, the fourth equation vanishes. The corresponding null-space is
clearly independent of s, s,, and &.

For the remaining 3 X 3 system, that is obtained by dropping the fourth row and fourth
column of L*="hv | we obtain a non-zero determinant, implying that this part of the system
is not singular. To show that the determinant is non-zero, we consider, in addition to (A.2),
the imaginary part of L*=™. Using the fact that Im D(T,s,x) = —Im D(T 1, s, k), we
obtain

. . 1 o
Im L™ = A+ 1B, = hilm D(Tz, 82,K), Vo= B—Im D(Ty, 8y, K). (A3)
T Yy

For u = v = 0, the 3 X 3 system becomes

Hic 0 e
0 pac irge , (Ada)
ivic drge (p1 + p2)

which has a determinant
¢ (p(ud + v3) + palid +03)) (A.4b)

which is positive, because p1 and g are positive. Therefore, the 3 x 3 system (A.4a) is
non-singular.
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