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Summary 
 
Multi-parameter inversion of linear systems appears in many problems. The focus here is on isotropic 
elastic iterative reverse-time migration for three position-dependent subsurface model parameters, 

which amounts to data fitting of processed seismic data with synthetics from the Born approximation 

of the elastic wave equation. In that case, the matrix of the linear system is the hessian. As it is 
impractical to form, a matrix-free formulation is needed, which is readily derived for the gradient 

descent method. For single-parameter inversion, the conjugate-gradient (CG) method is generally more 

efficient than simple descent. However, the multiple-parameter CG method has a significantly higher 

cost than the descent method. Here, first a matrix-free data-domain reformulation is derived. Then, its 
performance is compared to the simple descent method to see of its faster convergence justifies the 

higher cost. A comparison on a marine 2-D toy problem with a salt body and sea-bottom receivers shows 

that the multiple-parameter descent method wins in terms of efficiency if the number of iterations is 
limited and that the single-parameter CG method is even faster. 
 

 



A matrix-free reformulation of the multi-parameter descent and conjugate-gradient method for

isotropic elastic iterative reverse-time migration

Introduction

In multi-parameter inversion, the unknown model parameters are divided into subsets. Examples are
impedance and density for the inversion of seismic data with the acoustic wave equation or P- and
S-impedance and density for the isotropic elastic case. Here, the focus is on iterative reverse-time
migration, which amounts to inversion for three sets of subsurface parameters, each dependent on
subsurface position, given seismic data and a sufficiently accurate background model. The governing
equations are the Born approximation of the isotropic elastic system of wave equations. Issues such as
the best choice of parametrization and the limited validity of the Born approximation will be ignored.
Instead, two methods for linear inversion are considered: multi-parameter descent and its conjugate-
gradient (CG) version. For the latter, Brezinski (1999) showed that the latter requires multiple search
directions, equal to the number of parameter sets. This increases the cost of the method.

In the single-parameter case, the CG method is usually more efficient than simple descent. To see if this
is also true in the multi-parameter case, a test on a 2-D marine toy problem is performed. Because it is
usually impractical to compute the hessian of the inverse problem, a matrix-free reformulation of both
methods is derived in the next section.

Theory

Data fitting with least-squares migration amounts to minimization of a cost functional � = 1
2 ‖3‖

2
2, where

the L2-norm measures the data error 3 = Dobs−D between observed data Dobs and modelled data D. The last
depends on =2 model components <: through D =

∑=2
:=1 �

:<: . The linear operator � describes forward
modelling with the Born approximation of the wave equation and can be split into the contributions
of the =2 position-dependent model parameters <: . In the acoustic case, for instance, the two model
components can be chosen as perturbations of the impedance and density. In the elastic case, one may
opt for perturbations in P- and S-impedance and density or other combinations thereof.

Migration of the data error produces an update of the model components: A = �T3, where the transpose
of the Born modelling operator is involved. The result can be formally split into contributions to the
model components according to A: = (�:)T3. In practice, these are computed simultaneously via the
correlation of forward and reverse-time wavefields, without forming the matrix � or �T.

The minimum of the error functional � is obtained for a zero gradient 6 =∇<� =−�T(Dobs−�<) = �<−1,
where the hessian � has blocks �:,ℓ = (�:)T�ℓ , corresponding to the model components, and the initial
residual 1: = (�:)TDobs is the migration image for component : . For small problems, the application of
a singular value decomposition, which takes care of the large null-space of �, provides a direct solution
of 6 = 0. For larger problems, an iterative method is often more suitable. The simplest approach is a
descent method. Let the residual be defined as minus the gradient for the current model, with components
A: = (�:)T3, and take that equal to the search direction: ?: = A: . The optimal step lengths _: for each
component follow from the minimization of the functional

�̄ = 1
2 Dobs −

=2∑
:=1

�:
[
<: +_: ?

:
] )2

. (1)

Setting the derivatives w.r.t. _: to zero leads to

�:,ℓ_ℓ = g: , �:,ℓ = E: · Eℓ , g: = E: · (Dobs −D) = E: · 3, (2)

where E: = �: ?: are the modelled data for a search-direction component ?: . The dot denotes a scalar
product over all data. The functional after the model update, with 3 = Dobs − D still the previous data
error, becomes

�̄min =
1
2 ‖3‖

2
2 +

1
2,

T�,−3
T
, =

1
2 ‖3‖

2
2 −

1
23

T
, =

1
2 ‖3‖

2
2 −

1
2,

T�,. (3)
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The last term on the right-side can be expressed as 1
2,

T�, =
1
2

∑
:,ℓ (_:a

:) · (_ℓa
ℓ) = 1

2@ · @ with @ =∑=2
:=1_:a

: , showing that �̄min ≤ �, i.e., the functional will not increase. Note that the right-hand
side 3 of the small =2 × =2 problem in equation (2) can be expressed in terms of the residual A: =

1: −
∑=2

ℓ=1 �:,ℓ<
ℓ
= (�:)T3 as g: = (E:)T3 = 3T�: (�:)T3 = (A:)TA: . The method is summarized as

Algorithm 1. The matrices � and �T are symbolic references to the modelling and migration operators,
respectively, and are not formed in practice. Apart from the usual convergence criteria, the singularity of
�, for instance indicated by its condition number, can signal that the method has reached the noise level
and should be stopped.

Algorithm 1: Matrix-free descent method for =2 model components.

initialize: 9 = 1, 3 = Dobs −
∑=2

:=1 �
:<: , � =

1
2

∑
|Dobs |2

iterate until convergence or a limit on 9

� = 1
2

∑
|3 |2, check convergence on �/�

A = �T3, check convergence on A · A

Eℓ = �Aℓ , �:,ℓ = E: · Eℓ , g: = E: · 3 = A: · A: , solve �, = 3

3 := 3 −
∑=2

:=1_
:E: , <: := <: +_:A: , 9 := 9 +1

As is well known for single-component inversion, the conjugate-gradient (CG) method is more effi-
cient that the descent method, by imposing orthogonality of the residuals and �-orthogonality of the
search direction (Hestenes and Stiefel, 1952). The generalization to multiple sets of parameters is not
straightforward and requires =2 instead of one search direction (Brezinski, 1999).

Algorithm 2: Preconditioned multi-parameter CG method.

initialize

A = 1− �<, ' = PA, % = / = "', ) = /T'

iterate until convergence

� = %T�%, solve �Λ = )

& = �%Λ, ' := '−&, / := / −"&, A = '4, < := < +%Λ4

)old
= ) , ) = /T', solve )old� = ), % := / +%�

Algorithm 3: Matrix-free preconditioned multi-parameter CG method.

initialize: 9 = 1, 3 = Dobs −
∑=2

:=1 �
:<: , � =

1
2

∑
|Dobs |2

iterate until convergence or a limit on 9

� = 1
2

∑
|3 |2, check convergence on �/�

if 9 = 1
1 = �T3, ' = P1, % = / = "', ) = /T'

else
&ℓ

= �TEℓ , ' := '−&, / := / −"&

)old
= ), ) = /T', � = ()old)−1), % := / +%�

check convergence on A = '4 or )
Dℓ =

∑=2
:=1 �

:%ℓ
:
, �:,ℓ = D: ·Dℓ , solve �Λ = ), E: =

∑=2
ℓ=1 D

ℓ
Λℓ,:

3 := 3 −
∑=2

:=1 E
: , < := < +%Λ4, 9 := 9 +1

A partitioning operator P applied to A scatters the =2 components of A over =2 columns, filling the rest
with zeros:

' = PA =
©«
A1 0 . . .

0 A2 . . .
...

ª®®¬
(4)

The zeros should be read as column vectors with a length equal to the total number of points in the
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migration volume. Its effect can be undone by A = '4 with 4 = (1,1, . . .)T, which amounts to taking row
sums of PA. Note that the partitioning (4) into one component per column is not unique if only A = '4

is required. Algorithm 2 starts with a search direction equal to the partitioned residuals ' or to "',
given a symmetric preconditioner " that is a low-cost approximation of the inverse of the hessian �,
for instance, the estimated block diagonal of the hessian. Note that, in general, "P' ≠ P"A. Without
preconditioner, " = � and / = %. The reformulation of Algorithm 2 without reference to the matrix � is
aided by the matrix-free version of the descent method listed as Algorithm 1. The result is Algorithm 3.
&ℓ should be read as column ℓ and %ℓ

:
as the row-subset of column ℓ of % that corresponds to model

component : .

Results
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Figure 1 Convergence on a log-log scale for the

single- (D) and multi-component descent (mD)

and the single- (CG) and multi-component

conjugate-gradient (mCG) methods.

To set the scene, Figure 1 displays convergence re-
sults for the single- and multi-component descent and
CG methods when applied to a linear problem with 18
data values and 3 solution components, each having
15 unknowns. The solution consists of random num-
bers, as does the modelling operator. The latter has a
different scale factor for each solution component and
the preconditioner is a diagonal matrix that divides by
the squares of those three scale factors. The multi-
component methods require less iterations than the the
single-component versions. The same holds for the
conjugate-gradient methods compared to the descent
methods. In the early stages, however, the CG and de-
scent methods are close. Also, the multi-component CG method requires more operations than the
single-component version, making the latter more efficient for the current problem if the functional does
not have to decrease that much.
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Figure 2 Background model for (a) density, (b) P-wave velocity and (c) S-wave velocity.
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Figure 3 Scatterers represented as perturbations of (a) density, (b) _+2` = dE2
? and (c) ` = dE2

B.

To assess the performance of the methods on a less abstract example, an isotropic elastic 2-D marine
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toy problem with a salt body is considered on a domain 6km wide and 3km deep. The 57 receivers
are placed 100m apart on the sea bottom, at a depth of 800 m between G = 200 and 5800m and only
the vertical component is used. The 59 explosive sources are fired at 10-m depth between G = 100 and
5900m at a 100-m interval. Figure 2 shows the background model. A free-surface boundary condition
is imposed, contrary to the common approach in migration. The sediment part of the model is smoothed
and two reflectors are added. The salt body is not smoothed, nor is the sea bottom. Figure 3 shows
the perturbations that act as scatterers in the Born approximation. The chosen representation is as a
perturbation in density d, _+2` = dE2

? and ` = dE2
B, where E? and EB are the P- and S-wave velocities,

respectively, and _ and ` the Lamé parameters. Other parametrizations may be better, but these are the
natural ones from an implementation point of view. A time-domain finite-difference code generated 3.5
seconds of ‘observed’ data for 10-Hz Ricker wavelet, although in 2D, a frequency-domain code would
have been more efficient (Mulder and Plessix, 2002). The preconditioner for the inversion consisted in a
spatial low-cut filter.
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Figure 4 Reconstructed scattering model for (a) X(d)/d, (b) X(dE2
?)/(dE

2
?) and (c) X(dE2

B)/(dE
2
B).
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Figure 5 Convergence on a log-log scale for the

single- and multicomponent descent (D, mD)

and CG (CG, mCG) methods.

Figure 4 displays the reconstructed scattering model.
Figure 5 compares the convergence of the descent and
the CG methods. The CG methods produces smaller
residuals than the descent methods after a few iterations
and the same is seen for the multi-component versions
compared to the single-component versions. In terms of
compute cost to reach a given level of convergence �/� ,
however, the two descent methods come close, whereas
the single-component CG method performs better than
the others. The multi-component CG method is initially
the slowest and only starts to become more efficient
than the descent methods after about 20 iterations in
this example.

Conclusions

Application of the multi-parameter descent and conjugate-gradient methods to elastic reverse-time mi-
gration shows that latter convergence faster. In a 2-D toy problem, the gain in convergence speed only
started to compensate for its higher cost after 10 iterations and the single-component conjugate-gradient
method was the most efficient.
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