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Summary

The accuracy of a model obtained by full-waveform inversion can be estimated by analysing the sensitiv-

ity of the data to perturbations of the model parameters in selected subsurface points. Each perturbation

requires the computation of the seismic response in the form of Born scattering data for a typically very

large number of shots, making the method time consuming. The computational cost can be significantly

reduced by considering the point where the subsurface parameters are perturbed as a Born scatterer.

Instead of modelling each shot separately, reciprocity relations provide the Green functions from the

sources to the scatterer in terms of Green’s functions from the scatterer to the sources. In this way, the

Born scattering data from a single point in the isotropic elastic case for a marine acquisition with pres-

sure sources and receivers can be expressed in terms of the Green functions for force and moment tensor

sources located at the scatterer and only a small number of forward runs are required. A 2-D example

illustrates how the result can be used to determine the hessian and local covariance matrix for the model

parameters at the scatterer at the cost of 5 forward simulations.
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Introduction

Proper characterization of the underground conditions including uncertainty quantification is required

in applications such as seismic exploration, monitoring of existing hydrocarbon reservoirs, storage of

CO2 or H2, and geothermal energy. The subsurface is described by a set of model parameters which are

reconstructed by minimising the misfit between the observed and the simulated data. The accuracy of the

reconstruction depends on the sensitivity of the data to perturbations of the model parameters, commonly

characterized by the second derivatives, or hessian, of the misfit function at the global minimum. The

pseudo-inverse of the hessian is proportional to the covariance matrix of the model parameters in the

maximum likelihood estimator (Backus and Gilbert, 1970; Tarantola, 2005).

One cost-effective way to estimate the hessian in a finite-difference code is to put perturbations in the

model parameters on a sparse set of grid points and treat them all at once by de-migration or modelling

followed by migration (Rickett, 2003). In the acoustic case with a diagonally dominant hessian, the

resulting point-spread functions can be cut out of the migration image and interpolated to all grid points

as an approximation to the hessian. In the elastic case, however, we sometimes observed severe cross

talk caused by the difference between P- and S-wave velocities and mixing of events. An alternative

approach is to treat one model perturbation at the time, but simultaneously for a collection of points

instead of single points to reduce cost. With the same relative perturbation for a region or geological

unit, this provides an estimate of the hessian and at the same time suppresses null-space components

(Mulder and Kuvshinov, 2023).

In target-oriented applications, we can treat one model perturbation at the time for a limited number of

points, which are considered as Born scatterers. For each perturbation, we compute the Born scattering

data for an entire survey without modelling the actual shots. Instead, we simulate only a few shots with

different source characteristics at each position of a Born scatterer. Seismic data for the full survey and

for each parameter are synthesized by applying reciprocity. Ikelle and Amundsen (2000) used a similar

approach, but in our formulation, we model water as an elastic solid with zero shear-wave velocity and

adopt the second- instead of first-order form of the equations, leading to different, simpler expressions

for the Born data. The results enable the construction of a local subset of the hessian, describing the

conditional uncertainty for the model parameters at the selected set of subsurface points.

(xr,zr)(xs,zs)

(x,z)
Figure 1 How reciprocity is applied.

Figure 1 sketches the idea in 2D. A source at (xs,zs)
generates the incoming field, indicated by the red arrow,

which is scattered at (x,y) towards a receiver at (xr,zr),
indicated by the green arrow. Reciprocity enables the re-

placement of a Green function from source to scatterer

(red arrow) by another Green function from scatterer to

source, indicated by the blue arrow. In this way, a source at the scatter point can generate the Green func-

tions for all shots and receivers at once. In the constant-density acoustic case, this can be accomplished

by a single shot. In the elastic case, several shots with different source characteristics are required. Next,

the method will be described for the isotropic elastic case with an explosive source and pressure data,

followed by a 2-D marine example.

Method

The least-squares misfit functional for observed data dobs, modelled by an operator F (m) with param-

eters m, has the form J(m) = 1
2
‖F (m)−dobs‖2. The hessian of J(m) at its minimum equals H = FTF

with Fréchet derivative F = ∇mF (m) and can be computed by perturbing one model parameter m j at

the time by δm j, determining the associated scattering data for a full seismic survey, and cross corre-

lating these data. Earlier, we have applied relative perturbations that are constant in large regions or

geological units to estimate the hessian for uncertainty quantification (Mulder and Kuvshinov, 2023).

Alternatively, for target-oriented applications, model parameters can be perturbed for each grid point in

a small subset of the model. Uncertainty analysis involves simulations of all shots in a seismic survey

for each perturbation. The computational cost is significantly reduced by using reciprocity and the Born
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approximation. This requires simulating a small number of shots with different source characteristics at

the location of the perturbation. From the recorded data at the original shot and receiver positions, we

synthesize Born data and use those to compute a subset of the hessian.

The elastodynamic equations in the frequency domain, in terms of the displacement u(x,ω) at position

x and angular frequency ω , are

−ω2ρui −
3

∑
j=1

∂x j
(σ ji +Tji)− fi = 0, i = 1,2,3, (1)

with density ρ(x), force source f(x,ω), and symmetric moment source tensor T(x,ω), which may be

rewritten as a force source. The components of the stress tensor σ in the isotropic case are σ ji = σi j =

(ν2 −2ν3)ϕδi j +2ν3εi j. Here, εi j =
1
2

(

∂xi
u j +∂x j

ui

)

is the strain tensor, ϕ(x,ω) = ∑ j ε j j = ∇ ·u is the

volumetric strain, and δi j is the Kronecker delta. The model parameters are taken as ν1 = ρ , ν2 = ρv2
p,

ν3 = ρv2
s , for P- and S-wave velocities vp and vs, respectively. The Born approximation with incoming

fields u and scattered fields δu can be expressed as

−ω2ν1δui −∂xi
[(ν2 −2ν3)δϕ ]−∑

j

∂x j
(2ν3δεi j) =

ω2δν1 ui +∂xi
[(δν2 −2δν3)ϕ ]+∑

j

∂x j
(2δν3 εi j) ,

(2)

with δϕ = ∑ j δε j j and δεi j =
1
2

(

∂x j
δui +∂xi

δu j

)

for i, j = 1,2,3. The scattered data follow either from

solving the two coupled systems (1) and (2) or by a Taylor-series approximation (Fichtner, 2011, e.g.).

In the last case, the background data are determined once for the system (1) and only one similar system

has to be solved for each perturbation, reducing the cost by almost a half if many perturbations are

considered, but at the expense of robustness. The data will be noisy if the scale of the perturbation is too

small and will be contaminated by multiple scattering and nonlinear effects if the scale is too large.

We consider three types of delta-functional forces with components f
(0)
j (x,xs)= ∂x j

δ (x−xs), f
(α)
j (x,xs)=

δ jαδ (x− xs), and f
(αβ )
j (x,xs) = δ jα∂xβ

δ (x− xs)+ δ jβ ∂xα δ (x− xs). Here, f(0) is the force due to the

pressure gradient, a force in the α-direction is denoted by f(α), and f(αβ ) is the momentum force caused

by a stress tensor with two non-diagonal components Tαβ = Tβα = δ (x− xs) or with a single diago-

nal component Tαα = 2δ (x− xs). An explosive source f(0) = 1
2 ∑α f(αα). The related Green functions

are labelled in the following way: the superscript denotes the physical field, the subscript before the

semicolon denotes the field component(s) or is empty if the field is scalar, and the subscript after the

semicolon is the label of the force that the Green function represents. For example, the Green func-

tions Gu
i;α(x,xs), G

ϕ
;α(x,xs), and Gε

i j;α(x,xs) define the displacement ui(x), the volumetric strain ϕ(x),

and the strain tensor εi j(x) for a delta-function force source f(α). Reciprocity hinges on the symmetry

properties of the spatial operator together with Green’s second identity that relates volume integrals with

divergence operators to surface integrals with normal derivatives. The symmetry of the elasticity tensor

implies ∑i j(σ jiε
′
ji −σ ′

jiε ji) = 0, given two states u and u′ driven by forces f and f ′, respectively. With

zero initial values for the displacements and their time derivatives, this gives (Achenbach, 1975, Theo-

rem 3.2)
∫

Ω(f ·u
′− f ′ ·u)dx = 0, either for zero traction at one part of the boundary of a domain Ω, or,

if another part of the boundary is located at infinity, for wavefield decays sufficiently fast. Substituting

f j = f
(0)
j = ∂x j

δ (x−xs) in the above equation, we obtain
∫

Ω
f ′ ·udx =−ϕ ′(xs), (3)

where ϕ ′ is the volumetric strain generated by force f ′. The reciprocity relations are obtained by setting

in eq. (3) f′ = f(0)(x,x′), f′ = f(α)(x,x′), and f′ = f(αβ )(x,x′):

G
ϕ
;0(x

′,xs) = G
ϕ
;0(xs,x

′), Gu
α;0(x

′,xs) =−G
ϕ
;α(xs,x

′), Gε
αβ ;0(x

′,xs) =
1
2
G

ϕ
;αβ (xs,x

′). (4)

The last expression is slightly different from eq. (A-27) of Arntsen and Carcione (2000) because we

combine the stress components Tαβ and Tβα for α 6= β in a single force f(αβ ).
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In the example later on, we will consider explosive sources at xs and volumetric-strain or ‘pressure’ data

ϕ at xr. According to eq. (2), the Born data can be expressed as

ϕ(xr;xs)=
∫

dx
{

δν1(x)ϕ
(1)(xr;x;xs)+[δν2(x)−2δν3(x)]ϕ

(2)(xr;x;xs)+2δν3(x)ϕ
(3)(xr;x;xs)

}

, (5)

with the scattering Green functions

ϕ(1)(xr;x;xs) = ω2 ∑
i

G
ϕ
;i (xr,x)G

u
i;0(x,xs) =−ω2 ∑

i

G
ϕ
;i (xr,x)G

ϕ
;i (xs,x), (6a)

ϕ(2)(xr;x;xs) = G
ϕ
;0(xr,x)G

ϕ
;0(x,xs) = G

ϕ
;0(xr,x)G

ϕ
;0(xs,x), (6b)

ϕ(3)(xr;x;xs) = ∑
j≥i

G
ϕ
;i j(xr,x)G

ε
i j;0(x,xs) =

1
2 ∑

j≥i

G
ϕ
;i j(xr,x)G

ϕ
;i j(xs,x). (6c)

Synthesis of Born data involves several delta-function sources at x: force sources in each of d coordinate

directions and d(d + 1)/2 moment sources for each coordinate combination. The Green functions for

an explosive source follow from the latter by G
ϕ
;0(x,xs) =

1
2 ∑i Gε

ii;0(x
′,xs). For a single scattering point,

this requires d(d+3)/2 isotropic elastic simulations, 5 in 2D and 9 in 3D, followed by data correlations.

If the simulations for the Green functions are carried out with a wavelet, a deconvolution is required

in the correlation step, combined with two time derivatives in eq. (6a). The computational cost is still

substantially lower than that of separately simulating all shots of a seismic survey.

-1

-2
-3

-4

0 2 4 6 8

0

1

2

3

4

0

20

40

60

80

100

Figure 2 Model index map.

Numerical example

To validate the method, we consider an earlier 2-D isotropic elastic

marine subsurface model (Mulder and Kuvshinov, 2023). The mate-

rial properties were defined by an index map, repeated here as Fig-

ure 2. The negative values refer to four reservoirs, zero is used for sea

water, and positive values for various layers with piecewise constant

elastic properties, shown in Figure 1 of the reference. Three Born

scattering data sets were generated with a finite-difference code for

a unit perturbation of νk (k = 1,2,3) at the scatter point x = 3280m,

z = 2460m, close to the centroid of the reservoir with index −1. From 5 shots at the scatter point,

3×199 shots were synthesized with xs from −2.9 to 7.0km at a 50-m spacing at depth zs = 10m and

with receiver offsets from xr−xs = 100 to 6000m with a 25-m spacing at a depth zr = 8m. A direct Born

computation would require 3×199 shots at twice the cost, or (1+3)×199 shots with a series approach.
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Figure 3 (a) Born data for a unit perturbation in one point of ν1 = ρ clipped at 25% of the maximum

amplitude. (b) Difference between synthesized Born data and those of (a) at the same scale. (c) Com-

parison of the shortest-offset trace with Born scattering data (blue) and synthesized Born data based on

reciprocity (red, dashed).

Figures 3–5 display a comparison of Born data for one shot at xs = 0 and zs = 10m computed directly

with the two coupled systems, in panels (a), the difference between the Born data synthesized for 5

different source types at the scatter point and the directly computed data (b), and the shortest-offset trace

for each approach, with the directly computed and synthesized Born data. There is a good agreement,

bearing in mind that reciprocity for the finite-difference solutions only approximately holds. Finally,

Figure 6 shows the normalized covariance matrix at the selected scatterer obtained from the hessian

based on synthesized Born data for all 199 shots.
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Figure 4 As Figure 3, but for a unit perturbation in one point of ν2 = ρv2
p.
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Figure 5 As Figure 3, but for ν3 = ρv2
s .
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Figure 6 Scaled covariance.

Conclusions

The computational cost of uncertainty estimation based on a hessian ob-

tained from Born scattering data can be significantly reduced in target-

oriented applications where the model parameters of only a small number

of subsurface points are considered. Instead of simulating Born data for

an entire seismic survey, only those subsurface points have to be taken as new source positions and all

shot and receiver positions of the survey as new receiver positions. For each new source positions, sev-

eral shots with different source characteristics have to be simulated, for each force and moment tensor

component.
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