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ABSTRACT

Explicit time stepping techniques are seldom employed for the mumerical solution
of transport equations. Severe limitations on the size of the time step are in fact
imposed by stability requirements. Using concept drawn from the theory of
the Multigrid method, together with localized mesh refinements, an algorithm
is described that allows the use of large time steps in explicit schemes without
violating any stability criterion.

Starting from a fine grid, the solution after few time steps is interpolated to
coarser grids where larger time steps can be used. An estimate of the local time-
discretization error is then obtained by comparison of the solution at different
grid levels and different times. To maintain fine grid accuracy, the solution
is interpolated back to finer grids only in the parts of the domain where the
time-discretization errors are deemed too large. The scheme therefore progresses
simultaneously on different levels in different parts of the domain. Time stepping
on fine grids is performed only over small subsets of the domain where accuracy
is low. On most part of the domain very coarse grids, and consequently large
time steps, can be used. In this manner, time steps that are on the average
comparable to those used in implicit schemes can be employed, and fine grid
accuracy is maintained throughout the entire domain.

INTRODUCTION

In the numerical solution of advection-dispersion equations by means of finite
difference or finite element methods the time derivatives are usually discretized
using explicit or implicit schemes. Explicit techniques do not require the solution
of systems of algebraic equations, so that each time evolution step is computa-
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tionally cheap. However, numerical stability imposes severe limitations on the
size of the admissible time step. The procedure becomes therefore extremely ex-
pensive when solutions relatively far from initial data are required. On the other
hand, implicit schemes do not have to satisfy any dynamic stability requirement:
the size of the time step is dictated only by accuracy considerations. A system
of algebraic equations has to be solved in this case in order to advance in time.
Each step is computationally expensive especially when nonlinear equations are
to be solved.

Stability constraints usually depend on the size of the grid spacing: for small
grid spacing small time steps must be used. For example, with first order ex-
plicit time stepping (forward Euler) and second order central differencing for
viscous terms, the admissible time step, according to the von Neumann analysis,
is proportional to the square of the minimum grid spacing employed [1]. This
fact suggests that if the computations are performed on sufficiently coarse grids,
large time steps may be used.

The goal of these notes is to describe an algorithm based on the multigrid
approach which, overcoming stability constraints, allows for the use of large time
steps in conjunction with explicit schemes. The multigrid method is a general
procedure for the solution of difference equations coming from the discretization
of differential problems. It is widely used in conjunction with finite differences
or finite elements as a solver for elliptic problems [2]. With an appropriate use of
information gathered on computational grids with different spacings, the method
achieves great efficiency. The multigrid, as a solver for time dependent problems,
is usually employed for the solution of the discrete equations arising at each time
step [3]. The idea of using coarser grids in order to achieve larger time steps
without incurring in instabilities has been exploited in [4], where a multigrid
algorithm which uses typical V-cycles is derived. However the results obtained
are not very promising: the solution deteriorates rapidly as time progresses and
as the number of grids increases. A few other examples of applications to time
dependent equations can be found in [2].

THE TIME-ACCURATE MULTIGRID

The algorithm, whose ideas were first proposed by Brandt ([5]), starts from the
following fundamental observation. The use of explicit time differences is lim-
ited by the size of the time step dictated by stability conditions especially when
parabolic-type equations, like the ones governing the transport of contaminants
in groundwater, have to be integrated in time. In this case, high frequency
components of the solution change rapidly and reach steady state much sooner
than low frequencies. This means that after an initial transient phase, the solu-
tion changes smoothly until steady state is reached and low frequencies can be
considered the dominant features of the problem.

Numerically this implies that after a few time steps performed on a fine grid,
accurate computations can be obtained on increasingly coarser grids by neglecting
the changes in the high frequency components of the numerical solution. As a
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consequence, large time steps can be employed without violating the stability
conditions required by explicit time differencing on finer grids. Whenever the
high frequencies cannot be neglected, they must be updated by performing time
steps on the finer level.

The problem of deciding when to compute on finer grids is solved by esti-
mating the time-discretization error (TDE) by comparing the results obtained
at different times on different levels. When the TDE is larger than a prefixed
tolerance, high frequency changes cannot be neglected and computations on finer
levels are necessary. Since fine-grid accuracy in space is maintained throughout
the calculations by using a coarse-grid correction-type scheme ([6]), the effects
of the spatial discretization errors (SDE) can be subtracted from the total dis-
cretization error. Accuracy checks are performed for each grid at each time step.
To achieve better efficiency this last phase can be done locally, and zones of the
computational grid where refinement is needed can be isolated. Adaptive mesh
refinement is therefore easily implemented.

THE ALGORITHM

Given a partial differential equation:
% = r(u) 4]

where r(u) will be called the residuel, a numerical scheme can be written as:

u(xivt‘n-}'l) - u(zi,tn) _ rl(u)

= T (u(:l}i, tn)y Ty, tn)
tn+1 —1n

(2

= T(uv T, 7tn) + U(U»zi,tn)

where r{ is the discrete residual operator, T is the total discretization error, 7 is
the spatial discretization error, o is the temporal part of T', h is the grid spacing,
and k is the time step. If 7 = O(hP) and o = O(k?) the scheme is said to be of

order (p, q) [T].

Some notational conventions must be now defined. The grids (or levels) are
identified by numbers. To simplify the notation it is assumed that the coarser
grids are all subsets of the finest. This, however, does not have to be absolutely
observed and the different grids can in principle be completely different. The
finest level is indicated by £ and the coarsest by 1. The residual on grid £ is
denoted by rl, the numerical solution by u!. The local estimate of the space
truncation error is Te, and -1 represents the relative truncation error obtained
from calculations performed on grids £ — 1 and ¢.

Intergrid transfer functions must also be defined as follows. The restriction
operator moves the information from level £ to level £ — 1, and it is indicated by

Ig‘l if it acts on the numerical solution u, and by ff’l if it acts on the numerical

residual +{. The prolongation operator, denoted by I 1{1, interpolates the values
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from grid £ — 1 to grid £, and acts always on the solution: ul = ;_lut‘l. Both
these operator are defined in terms of the space discretization scheme, so that
they are consistent with the SDE.

An estimate of 7(z,t) can be obtained using standard multigrid techniques,
namely by the use of the coarse-grid correction scheme ([6}). The algorithm for
the determination of the estiinate of o(x,t) starts with the calculation of the

residual on the finest grid at the initial time ¢,: rl(tn). Then the solution uf
on grid £ can be interpolated to the coarser grid £ — 1, and the residual can be
calculated as:

uf-1 (te) = I;‘l u((tn)
(3)
rl—l(tn) — rf——l [ul—l(tn)]

The local spatial truncation error due to the transfer of information from grid ¢
to grid £ — 1 is:

() = 1 (tn) - If 1) (4)
A modified residual can be now introduced at level £ - 1:
#ol(t,) = 01 () + 7f 1 (20) (5)

Note that in #¢-! only the effects of the spatial discretization are copensated.
With similar steps the modified residual can be evaluated also at level £ — 2:

F2(tn) = 072 (1) + rf R () (6)
where now rl“l(tn) = Tf__f + I.f:lz'r;_l. The procedure neglects the temporal

part of the truncation error: this approximation is acceptable as long as o remains
small.

The estimation of o proceeds as follows. Let S be the discrete evolution op-
erator. Let @ denote the numerical solution integrated with the modified residual

| (tar1) = T(tn) + (tasr — ta)7(2) (1)

Starting with (3),(4), (5), and (6), we obtain:
w2 tgn) = S (uf2(00), F 2 (1), 7 (1))

(8)
@ tagn) = S (W1 (t), P (1), 7 (1))
The relative temporal truncation error is estimated as:
-2 141
. T2 (ty1) — I[— Tt + 1)
U[,f(tn""l) - ! (9)

tn-H - tn
{2

The calculation can continue on coarser levels if %, remains smaller than a
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fixed tolerance e¢. If after k time steps 05:12

the truncation error, that was neglected in (5) and in (6), must be updated by
performing the calculations at the finest level £.

> €, then the temporal part of

It is easy to see now how the same algorithm can be applied with more levels.
If 05:12 is smaller than a tolerance, (desired accuracy), the scheme can progress

-3
J4

on the coarser grid £ — 3 and accuracy checks can be performed on o, » instead

of af:f, and so on. If the solution change remain smooth enough, grids that are
many times coarser than the original can be used, so that considerable time is
saved in the calculations. However if the solution is not smooth in certain part of
the domain the algorithm forces the calculations always at the finest level. Since
generally the non smooth part of the solution is localized, the problem is solved
identifying the parts of the domain where o is too large, and performing local
refinements on those areas. In this manner time stepping takes place on the finer
grids only over small subsets of the numerical domain, while the computations
are performed mostly on coarser levels in such a way that, on the average, large
time steps can be used. Hence the scheme uses more than one grid at the same
time and adaptively chooses the appropriate levels performing the calculations
on the smallest set of nodes compatible with the desired accuracy.

IMPLEMENTATION OF THE ALGORITHM

The algorithm has been implemented for the solution of the advection-dispersion
equation in one dimension. The standard three point stencil is used for the dis-
persive fluxes while central differences are used for the advective terms. The
forward Euler scheme is implemented to advance in timne; the stability condition
is therefore the classical von Neumann criterion 2Dk/h% < 1, where D is the
dispersion coefficient. Coarsening or refinement of the grids is performed locally,
only in those part of the computational domain where crg:f of equation (9) ex-
ceeds a fixed tolerance ¢. At any level the local grids are prevented from being
too small, i.e. the parts of the grids that are formed by less than a predetermined
number of nodes are collapsed into the next finer grid. If ag:f is smaller or larger

than prefixed tolerances, respectively coarsening or refinement is performed.

A few numerical examples are run to demonstrate the applicability of the
proposed algorithm. The problem that is simulated is a purely diffusive case
with constant diffusion coefficient and a unit pulse at z = 0.5 as initial conditions.
The boundary conditions are of the Dirichlet type, and their numerical values
correspond to the analytical solution to the same problem at corresponding times.
The finest grid is discretized with 27 + 1 = 129 nodes. The maximum number of
levels that is used is 4 and 5 so the coarsest grids have respectively 24 + 1 = 17
and 23 4 1 = 9 nodes. The results are compared with those obtained with a one
grid code using the same finite difference scheme. In table 1 are shown the values
of the average time step size used by the two codes and of the Lo, and L, norms
of the errors (difference between numerical and analytical solutions). In figure 1
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n. of levels

n. of nodes

average Lo norm of | Ly norm of
TDMGM code | 1 grid code k errors errors
- 129 0.18x 1073 [ 0.14 x 10~* [ 0.93 x 10°
- 17 0.12x 107! | 0.54 x 1072 | 0.25 x 107!
- 9 047 x 107! | 0.13 x 1077 0.10
4 - 0.59 x 1072 | 0.43 x 107* | 0.18 x 1071
5 - 0.16 x 10~ | 0.61 x 10~* | 0.35 x 10~*

Table 1: Comparison between the TDMGM code and the one-grid code

0.40 —~
] grid 1 t=0.05
= 0.20
1 grid 4 grid 4
e O i e ENRREN UMM = S S —
0.00 0.20 0.40 0.60 0.80 1.00
X

Figure 1: Numerical solution as calculated from the TAMGM code. The effect
of the automatic refinement algorithim is visible.

the results of the calculations are plotted at t = 0.05. It can be noted that the
TAMGM scheme uses the finest level (129 nodes) to calculate the solution where
more accuracy is required. In the two parts of the domain close to the boundaries
where the solution is smoother the algorihm uses the coarser grids. Note also
that the time step required by the multigrid code is many times bigger than that

required by the one grid code. The accuracy deteriorates slowly as the number
of levels increases.

CONCLUSIONS

The use of large time steps in conjunction with explicit schemes has been obtained
by an appropriate utilization of concepts drawn from the multigrid method. Nu-
merical results show that the algorithm, while maintaining the desired accuracy,
is able to use time step sizes that are many times bigger than those admissible
for the one-grid code. Because of the complexity of the adaptive refinement tech-
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nique, the TAMGM does not improve the efficiency of the one-grid scheme in
terms of CPU time. However, in more than one spatial dimension, the scheme
should improve its efficiency since the number of nodes decreases more substan-
tially in passing form fine to coarse levels. Furthermore, the use of explicit
schemes avoids the solution of systems of algebraic equations. This feature can
dramatically improve the efficiency of the scheme in the solution of nonlinear

problems.
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