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The multigrid convergence factors of several relaxation schemes for the linearised upwind-
differenced Euler equations are estimated by two-level local-mode analysis. Strong align-
ment, the flow being aligned with the grid, causes the failure of schemes that use only local
data, such as Point-Jacobi, Red-Black, and Block-Jacobi relaxation. Damped collective
symmetric Gauss-Seidel relaxation and an undamped version of Gauss-Seidel relaxation,
with sweeps in all four directions, are both global relaxation schemes and can overcome
this problem in the case of pure convection. However, they still fail for the full system of
equations. This is confirmed by numerical experiments for the nonlinear Euler equations.

1. Introduction
The multigrid method is an eflicient numerical technique for solving elliptic equations. It
provides solutions within the truncation error for an amount of work proportional to the
number of points or cells in the computational domain. Moreover, only one or a few multigrid
iterations are required for regular elliptic problems. The theory for these kind of problems
is well established. For details, the reader is referred to the textbook by Hackbusch [3].

Several attempts have been made to use the multigrid technique for the computation of
steady solutions to hyperbolic partial differential equations, specifically the Euler equations
that describe the flow of an inviscid compressible gas. Ni [15] was the first to obtain a signif-
icant acceleration with respect to a single-grid Lax-Wendroff scheme by using multiple grids.
He employs explicit time-stepping as a relaxation scheme, which is hardly efficient. Jameson
[6] uses central differencing, a four-stage Runge-Kutta time-stepping scheme, residual aver-
aging, and enthalpy damping. Multigrid accelerates his scheme significantly. Jespersen [7]
adopts a different approach, that is closely related to the standard multigrid technique for
elliptic equations. Upwind differencing by means of flux-vector splitting [19] is used for the
spatial discretisation and Symmetric Gauss-Seidel (SGS) for relaxation. Both the Correction
Scheme (CS) and the Full Approximation Storage scheme (FAS) are studied. In the first, a
global linearisation of the residual is computed, and the multigrid technique is applied to the
linear system. In the latter, the nonlinear equations are used directly during the multigrid
cycle.

In early 1983, without being aware of the work just mentioned, I implemented a multigrid
method after reading a paper by Brandt [2], and found grid-independent convergence factors
for a transonic test problem with a shock [11]. A flux-vector-splitting version by van Leer
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[22] is used for the upwind differencing of the isenthalpic Euler equations. This approximate
Riemann-solver is continuously differentiable, a property shown to be desirable in [10]. Grid
transfer is based on the finite-volume residual operator, resulting in Galerkin coarsening.
Symmetric Gauss-Seidel is chosen as the relaxation scheme, based on earlier work in [23]. The
CS scheme is used to solve the linear system arising from a Switched Evolution/Relaxation
(SER) method. The latter can be viewed as a global Newton method. It is derived from
a "backward Euler” implicit time-discretisation, with a “time-step” inverse proportional
to some norm of the residual. Thus, if the solution is far away from the steady state, the
residual is large, and a more or less time-accurate integration is carried out. Once the solution
approaches the steady state, the scheme switches to Newton’s method. The inclusion of the
finite ”time-step” is necessary in the case of a singular residual to avoid divergence. With
this method and for the specific transonic test problem, grid-independent convergence factors
are found both for a first-order- and second-order-accurate spatial discretisation. For the
latter, a version of the Defect Correction Method [3:Eq.(14.3.1)] is used with a second-order-
accurate residual and a linear system based on a first-order discretisation. Second-order
accuracy is obtained by van Leer’s technique [20,21]. The nonlinear generalisation of this
method is sketched at the end of [11], but no experimental results are presented.
In hindsight, this method turns out to be very similar to Jespersen’s. The main diflerence
is the finite-volume approach leading to volume-averaging for restriction and zero-order in-
terpolation for prolongation, rather than the nodal point approach of Jespersen that requires
full weighting for restriction and bilinear interpolation for prolongation.
Following the work in [7} and [11], several authors have experimented with the multi-
grid method for the upwind-differenced Euler equations, using either the Correction or the
FAS scheme. Hemker and Spekreijse [4] incorporate first-order upwind differencing, Galerkin
coarsening, and nonlinear SGS relaxation in a FAS scheme. Osher’s scheme {16] rather than
van Leer’s flux-vector splitting (FVS) is used for the upwind differencing. This scheme is
continuously differentiable, just as FVS, but more accurate (at a higher cost). The higher ac-
curacy allows for overspecification at the boundaries, in contrast to FVS where characteristic
boundary conditions are required. Apart from this and the nonlinear implementation, the
fundamental difference between their and my approach is the omission of the "time-step”.
This will cause their method to diverge in case of a locally singular residual, whereas the
insertion of a "time-step” would at least guarantee stability. This issue will be discussed
in more detail in §7. In spite of this, their method provides grid-independent convergence
factors for a test problem similar to the one in [11]. Second-order-accurate results with Os-
her’s scheme for the upwind differencing, van Leer’s technique [20,21] for the second-order
accuracy, and the Defect Correction technique for computing the solution, are presented in
5,9].
{ ]An application with strong shocks can be found in [12]. There, the relaxation scheme is
symmetric line Gauss-Seidel, with the line relaxation in the periodic direction of the 1?01;\1'
grid. Grid-independent convergence can not be observed, as the computations are restricted
to relatively coarse grids. Three-dimensional computations with the FAS scheme and' flux
vector splitting have been carried out by Anderson [1]. The relaxation scheme is Approm_mat«‘
Factorisation and the results suggest grid-independent convergence factors. An extension of
the work in [11] to the Navier-Stokes equations is reported in [17]. Here grid-independent
convergence factors are obtained as well. A later example is [18]. ‘
In summary, there is experimental evidence that the combination of upwind differencing
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and Symmetric Gauss-Seidel or another type of relaxation scheme is capable of producing
grid—independent convergence factors. It should be stressed, however, that none of the studies
mentioned above are extended to very fine grids. Also, there are practically no theoretical
results to support the claims of grid-independent convergence rates.

An attempt to predict multigrid convergence factors for purely convective equations can
be found in [13]. There the one-dimensional scalar inviscid Burgers’ equation is considered.
Of course, it does not make much sense to use the multigrid method for one-dimensional
problems. However, some interesting results were found. First of all, it turns out that
optimising the smoothing rate of the relaxation scheme does not necessarily imply a good
multigrid convergence rate. Secondly, the discrete equations become singular at the shock.
This is is consistent with the differential equations. With a special treatment of shocks after
prolongation, a good agreement between experimental and predicted convergence factors is
obtained. Otherwise, convergence is slower than predicted, but still acceptable for some
relaxation schemes. Damped Point-Jacobi relaxation appears to be the most attractive
schieme.

In this paper we extend the two-level local-mode analysis to two dimensions. Only the
lincarised Euler equations with constant coefficients and periodic boundaries are considered
(§2). Nonlinear effects are not addressed in this paper. The upwind discretisation is described
in §3. The coarse-grid correction operator is evaluated in §4. It describes the result of
restriction to a coarser grid, solving the coarse-grid equations exactly, and prolongating the
coarse-grid correction back to the fine grid. Several relaxation schemes are considered in §5.
As in the one-dimensional case [13], we would prefer to have a scheme that uses only local
information, as these schemes are easily vectorised and are more convenient to use on parallel
architectures. Also, their flexibility makes them better suited for applications with adaptive
grid-refinement. Investigated are: Point-Jacobi relaxation, a Multi-Stage scheme, Red-Black
or checkerboard relaxation, and Block-Jacobi. As global relaxation schemes, Gauss-Seidel
relaxation and its symmetric variants are considered.

Multigrid convergence factors are estimated in §6. The schemes just mentioned fail
because of strong alignment, the flow being aligned with the grid, which is a well-known
problem for elliptic equations with strongly anisotropic coefficients [2,3]. For pure convection,
this problem can be overcome by damped symmetric Gauss-Seidel (SGS) or by a version of
(lauss-Seidel with sweeps in all four directions (S2GS). However, these global relaxation
scheme still fail for the full system of Euler equations.

Because the Fourier modes are not the proper eigenfunctions of the GS relaxation op-
crator, some numerical experiments on the nonlinear Euler equations are carried out (§7).
The failure of $2GS and damped SGS is confirmed.

The main results are summarised in §8. Some alternatives for obtaining uniformly good
convergence rates are discussed.

2. Model equations

The two-level local-mode analysis [2] will be carried out on a linearised form of the Euler
equations. These equations are given below.
The Euler equations in conservation form, describing the dynamics of an inviscid com-
pressible gas, are
ow'  Of Oy _

W-l—a-{— By =0. (2.1a)
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The vector of states w’ and the fluxes f and g are

P pu pv
2
r_ | ou _ | puttp _| ew
=l T e | 9T et | (2.1b)
pE putl pvH

Here p is the density of the gas, and u and v are the z- and y-component of the velocity,
respectively. The energy F, total enthalpy H, pressure p, and sound speed ¢ are related by

B=— Priqueav?), H=E+p/p, & =1p/p. (2.2)
(r=1p
Linearising (2.1) and applying a similarity transform based on
0 0 1c ~1/y
—,| 0w —u/y 9
P=» 0 1 v/c —v/y ’ (23)
v v Hle —i(u®+v?)/y
we obtain
dw dw ow
el Ae— 4+ B— =10, 2.4a
o T Ty (2:4a)
with the symmetric matrices
u 0 ¢ O v 0 0 0
aof 0 u 0 O _1 Og 0 v ¢ 0
=Pl P = =Pl = p= 2.1b
A_Paw’P_c()uO’Bpaw’P 0 ¢c v 0 (2.48)
00 0 wu 00 0 v
The vector w obeys
bu
Sw=P6w = | Y (2.5)
w= =1 Lep|>
pc
58

where the specific entropy S = log(p/p”). The fourth equation of the system (2.4) describes
the convection of the entropy along streamlines. The remaining 3 x 3 system represe.nts the
combination of convection and sound waves. In the isentropic case, the fourth equation can
be dropped and the third component of w (2.5) becomes 2¢/(y — 1).

The matrix x;A + k3B, with &3 + &% = 1, can be diagonalised:

k1A + k2B = QAQTY, (2.6a)
where K ke 0w
_ Kg —K1 0 &« 26b)
Q= -1 0 0 1§ (
0 0 1
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and

K1 + KoV — ¢ O
Kiu + Kov
O K1U + KU

A= (2.6c)

K1u + &ov 4 €
In the following sections we will consider the linear system (2.4) with constant coefficients
and periodic boundary conditions.

3. Discretisation
The spatial discretisation of (2.4) is obtained by upwind differencing. The upwind differ-
encing is carried out separately for the x- and y-direction. For each characteristic variable,
the upwind direction is determined from the eigenvalues of A or B. The resulting residual
operator is given below. The singularities of its symbol are listed as well.

For the upwind differencing in the z-direction, the matrix A is diagonalised by

A=QMQT, Q=Qr =1,k =0), A =A(s, =1,r,=0), (3.1a)
where A, is the diagonal matrix. For the y-direction we have
B = Q,0,Q7", Qy=0Q(x, = 0,k =1), Ay=A(r; =0,5,=1). (3.18)

We define A* and A~ as the matrices that contain the positive and negative elements of A,
respectively. This implies
AY+AT=A, AT —AT=|A| (3.2)
Now define

A® = QUATQYY, B = Q,A7Q5" (33)

It follows that
A= AT+ A7, |Al= QA Q" = AY - 47

B=B*+B", |B|=Q,A,lQ;" = B* - B

The upwind-differenced linear residual operator

(3.4)

1 1
h= E—[A*(l -+ A (T, - D))+ h—[B+(1 -T,')+ B~(T, - 1)]. (3.5)
= v
The shift operators T, and T, are defined by ToWiy ey = Wp 1 by DyWiy iy = Wy 4y 4q. Only
a uniform grid will be considered (h, = h, = k). '
The steady state problem is written in terms of the error v* = wW" — w", where w" is the
stationary solution. The Fourier transform of v* for a N, x N, grid is

z

1 MzlNa-1
“h h .
oy, = —N1N2 klgﬂ k22=0 Vg, &y XD [ 7 (klex + k20y)] y (3.6a)

where the frequencies

= (L ly= —(AN, = 1),...,IN,. (3.6b)
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The symbols of the shift-operators T, and T, are
T, = exp(i6,), Ty =exp(if,), -7<0 <7 -—w<O < (3.7)

Lemma 3.1. The linearised residual operator It is singular only in each of the following

cases: N ~
G T,=1,7,=1

() T,#1,T,=1:u
(i) T,=1T,#1:
(iv) T.#1,T,#1: u=v=0.

—coru=0o0ru=c

il

(3.8)

v=—corv=00rv=c¢

Proof, In the first case, the lincarised residual operator [F = 0. In the sccond case we have
hif = AT =TT+ AT - 1), (3.9)

This expression can be diagonalised by @, yielding eigenvalues
A1 = cos8,) + Xy sind,, I=1,...,4 (3.10)

This expression only vanishes if A, = 0, i.e., if one of the eigenvalues of A vanishes. The
third case is proven in the same way. For case (iv) we write the linearised residual operator

as
RER = A1 — cos8,) + B|(1 — cosf,) + i(Asing, + Bsind,). (3.11)

A necessary condition for 1" to be singular is that its real part have a zero eigenvalue. The
matrix

AL+ | Bly gy >0, py >0 (3.12)

is singular only for u = v = 0. It is easily seen that I* is also singular for this choice. 0

4. Coarse-grid correction operator

An estimate of the multigrid convergence rate for a given residual operator can be obtained
by considering 2 grids, a fine and a coarse. The multigrid convergence factor is determined
by the combination of relaxation on the fine grid and corrections to the solution from the
coarse grid. Here we will describe the latter. Attention is given to the singularities of the
coarse-grid equations, and the stability of the coarse-grid correction operator.

The coarse-grid correction (CGC) operator K describes the effect of the following se
quence of operations. First the fine-grid residual L*v" is restricted to the coarser grid. The
restriction operator is written as I}, where H = 2h. Next it is assumed that the steady-
state problem on the coarser grid is solved exactly. Finally, the coarse-grid correction is
prolongated back to the fine grid. The prolongation operator is denoted by Ify. The CGU
operator is given by

K=1-1Iy (L") 1. (.

Here I is the identity operator. Volume-averaging is adopted for the restriction operator,
and zero-order interpolation is used for prolongation [11].
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The restriction operator introduces a coupling between the frequencies on the fine grid:
0, is coupled with 0, + 7, and 0, with 0, + =. For brevity we define

§ f’iJr = f)h( ) y)= ~h(9z aay )7

o, = oh(— , :{*y): 0, +m0, ) (4.20)
3 ph_=oh( T,-T)=0"0, .6,+7) '
oh = oh(—T,,~T,)= 0"(0, + 7,0, + ).

a vector with 4 % 4 elements.

Let the fine grid be numbered by indices (ky, k,), with k, running from 0 to N, -1, and k,
[rom 0 to N;—1. On the coarse grid we can use the same indices, but now k; =0,..., iV -1
and k, = 0,..., 2N, — 1. The restriction operator coarsens an arbitrary discrete variable a”
B [Hh

toa according to

H  _1/h h k h
afl 4 = 3(abi, 2k + 820 F 9B 2t F BB 11 2k00) (4.3)

‘The Fourier transform of the restricted fine-grid residual in terms of waves on the fine grid
is given by

ik (4.40)

where

B, = RT,.T)=30+T)0 +T). (4.4b)

ere the convention (4.2a) is used. The coarse-grid residual operator

P At =T + AT@2 - ) + B - T + B(I) - 1), (4.5)

which can be obtained by Galerkin coarsening (1 L*7%) or by direct evaluation. We ignore
the singular behaviour of L7 for a moment. The coarse-grid correction operator
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where

. . . , et
Py =2+ + TN, E= (BF) Ruylys (4.6b)

Note that the prolongation operator is the conjugate transpose of the restriction operator in
Fourier space. The identity matrix I in (4.6a) has a size 16 x 16. The CGC operator should
be applied to the vector V*. Because K operates on 4 waves simultaneously, we only have
to consider half the frequency domain in each direction, i.e., 0 < 0, <mand0< Oy < 7.

1f L¥ is singular, its pseudo-inverse should be used. To justify this, we assert the follow-
ing.
Lemma 4.1. Let the coarse-grid residual LH and the restriction R:{:i of the fine-grid residual
be of the form given above. Then the linear system

P, =Ry by =30 T+ T,)E4, (4.7

is consistent.

Proof. If [:H is not singular, then this is trivial, The singularities of LH correspond to those
of I*, it (T,,T,) in the latter is replaced by (17,T). The singularities in L are listed in
Lemma 3.1. In the first case, Tzz = T: = 1 implies Riii’ii = 0, so the linear system (4.7)

is consistent. In the second case, Ri, i@:— = (. What remains reduces to
(I72AY + AYZ,, = (£T77AY + A7), {4.80)

Diagonalisation by Q) yields
N A AQT 2y Q) = TSN+ X, I=1004 (4.8b)

This is singular only if A,, = 0, for which (4.8b) is consistent. Case (iii} is proven in a
similar way.

In case (iv) we have to consider u = v = 0. Then the fourth row and fourth column of
the left-hand and right-hand side of (4.7) have zeroes, implying consistency. The remaining
3 x 3 matrix on the left-hand side has a determinant

(e/2m)P(1 — THO = T7HA - TH( -T2 #0, (4.9)

and is therefore non-singular. 0

Lemma 4.2. If m is the rank of L#, then the coarse-grid correction operator has m zero
eigenvalues, and 16 — m eigenvalues equal to 1.

Proof. Let the matrix

P, 000 1P, 000

|P, 100 | =P /Py, 1 00 430

@=1p" 0 1 0| “xT|_p /P 010 (410)
P_ 001 —P_jP, 0 0 1
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Note that Qg is a regular matrix for 0 < 8, < x and 0 < 6, < 7. Because Qy does not

contain A* or BE, we can carry out a similarity transform as if K was just a 4 x 4 matrix
with scalar entries rather than 4 X 4 blocks. The result is

1»(L")‘1iH -2, -, -Z_

K'= Q2 KQy = 0 1 0 0
K'= Qi KQg 0 0 . o | (4.11)

0 0 0 1

l‘?or a regﬁu}lar LM we obviously have 12 eigenvalues equal to 1, and 4 equal to 0. For a
singular LY of rank m < 4, the use of the pseudo-inverse causes [1 — (L#)1L¥] to have m
cigenvalues 0 and 4 — m eigenvalues 1. O

5. Relaxation

.In this sec'tion several relaxation schemes are considered. They are presented in a form that
is compat‘ﬂ)le with the coarse-grid correction operator. A relaxation scheme is constructed
by replacn.ng the residual operator L" by an operator L* that can be easily inverted. Then
the error is updated according to

LA™ — vh) = —Lhoh, (5.1)
In the following, we set h = h, = h, = 1. Some useful definitions are:

LF = My— M, — M,, M, = AYT 4 BYT)Y

(5.2)

M, = Al + B, M,=-A"T,- BT,
The general form of a relaxation operator, acting on V* (4.2b), is
g1,++ Govy Cis,++ C?«1,++
[ I Gay Gy (5.3)
Q3,+— Cf4,+4 q1,+— q2.+— .
Gioe Gyl G, _ Gy

We start \.Nith schemes fqr which G, = Ga =@, =0, ie., there is no coupling of frequencies.
The simplest relaxation scheme is Point-Jacobi. It updates the error according to

o= 1 - ML v, (5.40)

implying

Gy =1-8Mz LY, (5.4b)

The other G{{ follow by the convention (4.2a). The parameter A describes the amount of
under- or overrelaxation. Standard Point-Jacobi is obtained for B = 1. The scheme is stable
for 0 < B < 1, so overrelaxation is excluded. The matrix M, is positive semi-definite. It
becomes singular for « = v = 0. In that case the pseudo-inverse should be taken for Mt
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Note that this is only done for the purpose of analysis. A different approach is adopted for
the numerical experiments in §7.

A Multi-Stage method with two stages is obtained by first performing a PJ-step to an
intermediate level, and then using the residual at the intermediate level to make the full step
from the old to the new level:

o = ot B M LM,

T = o~ fM LR,

This implics
GMS =1 - ML (1 B, MG LYY (5.56)

Now we have two parameters 8, and g,.

We proceed with the schemes that introduce a coupling between frequencies. Red-Black
or checkerboard relaxation is a schieme that first performs a PJ-step on the cells with indices
(2k,,2k,) and (2k, + 1,2k, +1). Then new residuals are computed, and the cells with indices
(2k, +1,2k,) and (2k,, 2k, + 1) are updated by a PJ-step. This variant will be denoted by
RB1. The variant that relaxes in the opposite order will be called RB2. For RB1:

Gidh =1- Mg LY, — G2,

. . . . . s (5.6)
GRBL = GEBL — 0, GREL = LM (M, __ + M, YMGTLA_
For RB2 we have
Gifi =6k, Gl =Gifi=0 GIE =-GiL (.7

The distinction between RB1 and RB2 becomes important if the relaxation scheme is used
in combination with the CGC operator (as in [13]).

Another relaxation scheme is obtained if the 4 cells contained within one coarse-grid cell
are relaxed simultaneously, ignoring the contributions from outside the 4 cells. This method
is called Block-Jacobi. In physical space we have

L. Yo
—_— O - ~ h
[} Ak - R 58
o 0wy, an |-V =8 o Ve B
0 —Bt —A* M, L*
where
Vok, 2k
Vi [ Vebrize | (5.8h)
Uky  \2k2+1

Voky 41,2k +1

In Fourier space R
Ik
++

5B — 1 gH™! -+ . (5.9)
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Iere £ has the same structure as S in (5.3), with elements

f]l»++ = MO - %(1\;11 + Mz)ﬂ f{2'++ = _%(A+T;1 + A_Tz)v (5 9b)
Hy o= -YB*T 4+ BT, H,,., =0
Finally, consider Gauss-Seidel relaxation. This is a global relaxation method, in contrast
to the schemes mentioned above. In two dimensions there are four sweep directions. The
relaxation operators for each direction are
pven N N ” -1 .
north-cast (/) G =14 [L'l - AT, - B‘Ty ] N

south-west (/) GeSt=1-8 [1:" + A*‘T;] + B*T;ll_l Lh,

) . ) v (5.10)
south-east (\) GO =1-pg[Lt - AT, + BT ir,

north-west () GO =1 g [Lh 4 AT — BT, |7 LM

Here pseudo-inverses should be used if necessary. There are two variants for Symmetric
Gauss-Seidel (SGS), namely &,6, and G,G,. The variant that sweeps in all four directions
will be denoted by S?GS: . .
G965 = G,G,G,G,. (5.11)
It should be noted that this is not the correct way to carry out the analysis. The reason
is the well-known fact that
exp [27”' (klar + kzﬂy)} s (5.12)

is not an eigenfunction of the relaxation operator. Therefore, the Fourier analysis is not
valid, although reasonable estimates may still be obtained for all but the longer waves.

6. Multigrid convergence factors
The multigrid convergence factor, also known as the asymptotic convergence rate, is given
by

X=max M0,,0,), A0..0,) = (&K 5). (6.1)
The maximum is taken over the entire spectrum. The spectral radius is denoted by p(-) The
operator describes v, pre-relaxation sweeps on the finest grid, restriction to the next coarser
grid, exact solution of the coarse-grid equations, prolongation of the coarse-grid correction
to the finest grid, and, finally, v, post-relaxation sweeps. In this section we will only consider
the choice v, =1, v, = 0. _

For a singular residual operator, A can become 1 for waves that are not seen by the
operator, hence are not damped. In that case one better considers the multigrid convergence
factor of the residual

X, =max),(6,.6,), A\(0,.0,) = p(Lr52 K& (LM (6.2)

This quantity can be observed in numerical experiments (cf. [13]). If L* is regular, (6.1) and
(6.2) provide the same result.

The evaluation of A_ is considerably simplified by the following theorem, which is moti-

vated by remarks on strong alignment, the flow being aligned with the grid, in [2] (see also
(3:510.1.1]).
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Theorem 6.1. Given an arbitrary linear residual operator with constant coeflicients and a
restriction operator of the form (4.3). Then the multigrid convergence factor for the shortest
wave in the g- or y-direction can not be better than the convergence factor for this wave of
the relaxation scheme used.

Proof. Consider the shortest wave in the y-direction (6, =, Ty = —1). In physical space
this wave is described by

'UI}:,,ZI:; = —‘v::;,Zkﬂ—] = U21,2k2+')7 k =0,1,.. SN = k= 0,1,..., %Nz —~1. (6.3)

The restriction operator I* causes this wave to vanish on the coarser grid
= I,zl"vh =0 (0,= ). (6.4)
For an arbitrary linear residual operator L* with constant coefficients we have
I,::'Lthh = th;‘:hvh, (6.5)

which implies that the coarse-grid residual vanishes. As a result, the coarse-grid correction
operator K (4.1) has no effect: K = I. The convergence factor of the multigrid scheme for
this specific wave is therefore completely determined by the relaxation scheme used. The
same is true for the shortest wave in the z-direction. 0

This theorem has a rather unplecasant consequence for the application of any multi-
grid method to the differential equations under study, as pointed out by Brandt [2: §2.1,
§3.3]. The rule of thumb in designing relaxation schemes is that they must remove the
high-frequency part of the error. The coarse-grid correction operator will take care of the
low frequencies. However, we run into problems for a purely convective equation like the
fourth component of (2.4). Because convection is a locally one-dimensional phenomenon, a
differential operator for pure convection will not depend on the structure of the flow field
perpendicular to a streamline. Any good discretisation of this operator will have the same
property. Suppose that a streamline is aligned with one of the grid-lines, say the z-direction.
According to the rule of thumb, the relaxation scheme must remove the high frequencies, also
the ones perpendicular to the streamline. But the residual corresponding to the convection
operator will not depend on waves in this direction, so they can not be removed directly by
relaxation. They actually must remain unaffected. However, for problems with boundaries,
the boundary data will require the error-components in the perpendicular direction to vanish.
This information can be communicated to the discrete solution only by a relaxation scheme
acting along the z-direction (for those waves that have a high frequency in the y-direction
and can not be represented on coarser grids). This will require O(N,) single-grid iterations
for any relaxation scheme that uses only local data. Thus, a grid-independent convergence
factor can never be obtained.

We will now determine lower limits of X, for the relaxation schemes of the previous
section. Only the fourth component of (2.4) is considered, with u >0 and v =0, i.e,

I = ]3(1 —TY, (6.6)
3

which describes one-dimensional flow along the z-axis. We assume 0, = 7, and derive p(S)

for the various relaxation schemes.

\lulder
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Fig. 1. Multigrid convergence factor A.(8;,8,) for one sweep of Red-Black re-
Jaxation followed by a coarse-grid correction. Parameters used are u = v = 0.5,
¢ =1, and 8 = 1. The instability occurs at A0, 37) = A(37,0) = 1.074. The
local maximum in the center of the figure )\,(%w,%x) = 1. The figure is periodic
modulo .

For Point-Jacobi with 0 < # <1, we obtain an cigenvalue A for which

[Al2 =1-28(1 - B)(1 —cos 0.). (6.7)
This implies X, > 1 —2728(1 — BN? =1~ O(h?). Tor the Multi-Stage scheme, we find

X, > 1 — O(h?) in the same way.
The operator 578 for Red-Black relaxation has two double eigenvalues

N =1 - B4 4007 [ £ B+ TR0 - 5. (6.80)

For # =1 this results in

A=0, A =177 (6.80)
implying X, > 1 for all ,. For 0 <8 <1 and for the long waves (6, < 1) we find
Pl=1-0062), M= =8+0e) (6.9)

Thus, X, > 1 — O(h?). Red-Black is therefore not a suitable relaxation scheme if grid-
independent convergence is desired. The situation for Red-Black is actually worse. As a
single-grid scheme, RB is stable for 0 < B < 1. Figure 1 shows that it becomes unstable in
combination with the CGC operator for 8 = 1, just as in the one-dimensional case [13].
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Block-Jacobi relaxation for the simplified residual (6.6) has two double eigenvalues
A=1=8, A =1-p0-177). (6.10a)
‘or # =1 we have the same result as in (6.8b). Otherwise
Il =10= 81, gl =1 - 2801 = A)(1 = cos 20, )] (6.100)

For the long waves |\, ~ 1 —28(1 — 8)0%, implying X, > 1 — O(h?). Again we have a useles
relaxation scheme.

Tt is clear that relaxation schemes that use only local data can never provide a good
multigrid convergence factor with the restriction and prolongation operator considered here

Gauss-Seidel relaxation, which is a global scheme, may be expected to give better results,
as indicated by the numierical experiments mentioned in the introduction. Indeed, GS is a
natural scheme for purely convective equations, if the sweep direction coincides with the flow
direction. If this is not true, then GS fails. To illustrate this, consider the fourth equations
of the system (2.4), with u > 0 and v > 0, but not u = v = 0. The corresponding discrete
residual operator is

. v .
he =T+ -1, (61
Then, for =1,
&8st — g oS _ ul 4ol
) Tt
N . 6.1
ol - G84 ul? (B

GGSS - —

w(l =Ty + o u+v(l - 'IA’y"‘)'

GS1 follows the flow and is an exact solver. For the other 3 schemes, we obtain an estimated
multigrid convergence factor X, > 1 by setting cither u = 0 and TI = —1, 0or v =0 and
T = —1. The same is true for 0 < # < 1. Consequently, GS is not an appropriate relaxation
scheme for arbitrary flows.

A better performance might be expected for Symmetric Gauss-Seidel, given the exper
imental results mentioned in the introduction. For the residual (6.11) and 8 = 1 we have
(19523361 = 0, but the other combination GFS4GES results in X, = 1, e.g., for Tx =1 and
v — 0, given T = —1. This can be improved by underrelaxation, using # = 1. Still better
results are obtamed by the following form of underrelaxation:

north-cast (/) GO =1-|Lh—A-(1+T, )-B-(1+1, )| i

south-est (/) GO =1— [+ A*Q+T7Y) + BT(1 + | 7 o)
south-east () GO =1 [Lh— A+ T, )+ BHO+ T IR '
north-vest (\) GO =1 [I* 4+ A1+ T7) - B-(1+ T, )] i,

These expressions are obtained by subtracting the blocks of L* that are ignored in the relax-
ation matrix L* for GS, from the main-diagonal of the relaxation matrix. For the residual

Aulder

Fig. 2. Multigrid convergence factor X,{u,v) for damped Symmetric Gauss-Seidel
relaxation on a 64 x 64 grid (e = 1,v =1).
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Fig. 3. Single-grid amplification factor (v, v) for $*GS, showing the instability.
The values shown are obtained for Ny = Ny = 64,¢=1,and v = 1.
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Fig. 4. Multigrid convergence factor X, (u,v) for S*GS, obtained for Ny = Ny =

64, ¢ = 1, and v = 1. Bad convergence factors are obtained near or at the
singularities of the residual.

(6.11) it turns out that X, (u,v) < L. Multigrid convergence factors based on GESEGEST for
the full system (2.4) are displayed in Fig. 2. Bad convergence is obtained near the singu-
larities of the residual operator (3.8), but on the whole the convergence factors are fairly
good.

There remains the combination of four sweeps denoted by S2GS (undamped). This is au
exact solver for the fourth component of the system (2.4). Also, if both the horizontal and
vertical component of the velocity are supersonic, i.e., [u| > ¢ and |v| > ¢, $2GS is exact
for the full system (2.4). The convergence factor will therefore be determined by the first
3 equations of (2.4) for |u| < ¢ and/or |[v] < ¢. Figure 3 shows the amplification factor for
S2GS without the use of multigrid. The quantity

7. = max 5,(0,,0,), %,(0,,0,) = p(LPS(IMY). (6.14)
Surprisingly, this scheme is unstable, in contrast to SGS. The instability does not disappear
for damped versions of S2GS. Because the instability occurs for the longer waves, it can be
overcome by the CGC operator, but only if » = 1, + v, = 1. Applying the relaxation scheme
more than once per grid per cycle causes the instability to appear in the multigrid scheme.
Figure 4 shows the multigrid convergence factor for a 64 x 64 grid. Bad convergence factors
are obtained near the singularities of the residual, namely for u =~ 0 and |v| < ¢, for |u]| > ¢
and |v| < ¢, and for similar expressions with « and v interchanged.

Thus we find that damped SGS and S2GS do not provide uniformly good convergence
rates. However, the validity of this conclusion may be questioned, as Fourier modes are not
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{he proper eigenfunctions of the Gauss-Seidel relaxation operator. Therefore, some numerical
experiments have been carried out.

7. Numerical experiments o
The experiments are performed for flow through a straight .channel, W1t_h mﬂow at t.he 1Fft
<de and outflow at the right. The grid is square and um{.orm. Upwind d1f7ferencmg or
\he full system of nonlinear Fuler equations (2.1) is accomplished by van Leer.s ﬂux—vectgr
oplitting [22] or the P-variant of Osher’s scheme [4.1,16]. For the ﬂux—veqor splitting (FV )
characteristic boundary conditions are used at the inlet and outlet, that is, the char.acterl.stlc
ariables corresponding to z-direction are computed from the fr.ee-stream values for incoming,
and from the computational domain for outgoing characteristics. From these, the b.ound'ary
values and the full flux are determined. For Osher’s scheme we can use overspecification.
‘The reason for this different treatment is the fact that van Leer’§ FVS does not have th'e
correct eigenvalue structure. It is not a very good approximate Rlemann—solver, bec.ausz? it
does not recognise slip-lines. Osher’s scheme automatically provides the correct switching
between incoming and outgoing characteristics at the inlet and outlet. ’lj}{e lower and upper
walls are simulated by adding an extra zone with reflected state quantities (cf. [11]). The
free-stream values are chosen to be

Poo =1 V=0, ¢, =1, (7.1)

0

and different values of u,, are considered. The gas constant -y is set to 14 As ir'litial
conditions, we take the free-stream values and add random noise with an relative amplitude
of 0.1%. ) )

We consider both the Correction Scheme (CS) and the Full Approximation Storage (FAS)
scheme, with a coarsest grid of size 1 x 1. The CS is used to solve the linear system arising
from the application of the Switched Evolution/Relaxation (SER) method [10,23] to the
residual. This is the method described in {11]. The linear system is given by

Es )@ = ) = = -2 (720)

11 ax( [, o )7 (7.2b)
oo

m
At egpp b (w0, kil + Pry et

changes the "backward Euler” scheme (7.22) into a SER scheme. The constant egpp (.:ontro¥s
the relative change per iteration of the solution, and can usually be set to 1. The bias h; is
given by hy = h, = 0, hy = hy = pc, and prevents division by zero. .

A nonlinear version of (7.2) has also been described in [11]. At the begm of.a FAS
nultigrid cycle, the ”time-step” (7.2b) is computed. Gauss-Seidel relaxation is carried out
using a relaxation matrix that is computed locally on each grid and destroyed once used.
This matrix is a modification of M, (5.2):

and the choice

1 1 Brk: k2

o ' 73
Ai+M0 or Mgk, = A; Qwy, 4, -

My =

After the local linear system has been solved, the residual is updated nonlinearly. .A genu.inely
nonlinear relaxation scheme can be obtained by using (7.3) several times per point until the
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Fig. 5. Multigrid convergence factor X (w,0) for STCS on a 64 X 64 grid with
¢=1and v =1, using van Leer’s flux-vector splitting.

local nonlinear residual vanishes. Here we will consider only one iteration per point. Mor
iterations may be needed near shocks and sonic lines (cf.[13]).

The multigrid scheme described by Hemker and Spekreijse [4] is similar to the nonlinea:
one proposed in [11] but for the "time-step” (7.2b). We have included this scheme in th
experiments by leaving out the 1/At term. In all cases, W-cycles are used, with one pie
relaxation sweep (v, = 1, v, = 0).

Apart from channel flow, periodic boundaries conditions on all four sides of the domain
are considered as well. In that case, a stationary solution can generally not be reached by
time-accurate integration from arbitrary initial data. The artificial viscosity provided be
the upwind differencing allows for convergence 1o a not necessarily unique numerical steads
state. For the examples presented below, FVS converges to the free-stream values if glob!
conservation of the initial date js imposed. In the FAS scheme this is carried out on the
coarsest 1 x 1 grid; for the Correction Scheme this is done on the finest grid at the end o
every multigrid cycle. Osher’s scheme does not provide a unique solution for the examples
considered, but the convergence factor of the residual can still be monitored.

The matrices of [q.(3.3) can be used to predict the convergence factor for Osher’s scheme,
but, not for van Leer’s flux-vector splitting. For the latter, two-level estimates of X, now have
to be computed from the matrices

af* dg*
AF=p = p Br=p

duw' Jw’
It |u| < ¢ (or |v| < ¢), these matrices are different from those in Eq.(3.3). The corresponding
residual operator has the same singularities as listed in Lemma 3.1 with the exception of the

P. (7.0
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ome ab w = 0 in case (ii), the one at v = 0 in case (iii}, and v = v = 0 in case (iv). FVS does
1wt recognise the eigenvalue u {or v) going through zero. The result is a considerable amount
. numerical viscosity around slip-lines, which actually helps to improve the smoothing factor
hecause the effect of strong alignment is reduced. The multigrid convergence factors for S2GS
e shown in Fig. 5. The additional smearing at v = 0 or v = 0 removes the problem of
arong alignment, but convergence is still bad near the remaining singularities.

We procecd with the numetical experiments. Convergence factors are based on the
f.,-norm of the residual. First consider the single-grid instability of $*GS. Table 1 shows
(b single-grid amplification factor &, for 1/c = 1.005. The instability can be seen in the
.wperiments with Osher’s scheme, but it is not as strong as predicted. For 'VS, the instability
i less pronounced and does not show up in the numerical experiments. It is likely to appear
. still finer grids, or for other velocities. The SER option has been not been used for
‘he results of Table 1 (egpp — ©0). Applying the SER scheme (sgzr = 1) suppresses
he instability, although convergence is not obtained. Results for the linear and nonlinear
Lelaxation scheme, the Jatter with only one linear ileration per cell, are practically identical

for this simple test problem.

Next we study the effect of the singularity (iii) of Lemma 31forv=0and 0 < |u| ¢,
+ case of strong alignment. Ouly Osher's scheme is affected. FVS is not singular for the
siven velocities. Table 2 shows the results of the numerical experiments, using damped SGS
\laxation. Convergence factors with the CS and FAS approach are practically identical,
with ot without the SER scheme.

Another singularity is the one at u = ¢ and v = 0. Here Osher’s scheme and FVS have
practically the same convergence factors, around 0.90. The results are again almost identical
for the lincar and nonlinear multigrid scheme, without or with the SER option. However,
Jiere is one exception. For Osher’s scheme and channel flow, the FAS scheme without the
SER option produced negative densities, causing the computer program to stop. Including
‘he SER option removed this problem. The Correction Scheme converged normally. The
divergence of the FAS scheme is caused by the coarsest grid (1 x 1), where the relaxation
aatrix becomes singular. The SER option suppresses this. The Correction Scheme does not
recognise negative densities or energies during the multigrid cycle, and can therefore handle
fairly large changes in the solution, as long as the final corrections to the state quantities
semain reasonable.

Finally, consider the singularity at u = v = 0. The differential equation does not
lave a unique steady state in this case. Van Leer's FVS still provides a unique nurnerical
wlution because of the additional numerical viscosity. Table 3 shows convergence results on
w128 x 128 grid. The computer program stopped in several instances because of negative
densities or strong divergence. No problems were encountered with the SER scheme.

The numerical experiments confirm the failure of damped SGS near the singularities
of the residual operator. Similar results are found for $2GS. In practical applications, the
singularitics, such as a shock or sonic line, will occur only an a small subset of the computa-
tional domain, so the overall convergence rate will be fairly good. However, the singularity
at v = 0 will still result in slow convergence if the flow is aligned with the grid over a large
part of the computational domain.
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8. Conclusions and discussion
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uler equations, if both the horizontal and vertical velocity-component are

ropresents the E
problem of strong alignment.

rsonic. Therefore, one would expect $2GS to overcome the
r, local-mode analysis shows ihat there are still waves that give rise to bad conver-
seuce factors near the singularities of the residual operator, both for damped SGS and $?GS.
This is confirmed by the numerical experiments on the nonlinear Fuler equations described
in 47, where the nonlinear upwind differencing is accomplished by Osher’s scheme ot van
1eor’s flux-vector splitting.

For practical purposes, damped SGS can still be useful, depending on the kind of sin-
enlarities in the flow field. Even 5%GS can be used, although its instability as a single-grid
<heme will not make it robust. The singularity at the sonic line will usually be confined to
+ small subset of the computational domain, so that the overall convergence factor will be
faitly good. The singularity at v =~ 0 (or u =~ 0) will cause problems if the flow is aligned
with the grid over a large part of the domain. Such a situation is bound to occur in channel
llow. Indeed, Koren [8] observes slow convergence in precisely this setting. FVS does not
affer from this problem, at the expense of a lower spatial accuracy.

The numerical experiments show that the lincar or nonlinear SER multigrid scheme
proposed in [11] is more robust than its non-SER variant advertised by Hemker and Spekreijse
[1]. Two of the relaxation schemes suggested in their paper, Red-Black and S$*GS, are
wnstable according to the analysis of §6. Red-Black is stable as a single-grid scheme, but
Lecomes unstable when used in a multigrid code, whereas the opposite happens for $2GS.

We will now discuss some alternatives that may lead to a uniformly good convergence
in ideas can be found clsewhere, in various contexts [2:§3.3, 3:810.5].

o remove the one-dimensional character of the
approach is recommended by Brandt {2]. It is

residual operator for pure convection. This

expected that a fairly large amount is required, causing a degradation of the spatial accuracy.
I'he latter may be avoided by Brandi’s double discretisalion. Tt should be noted that upwind
«hernes have a built-in amount, of artificial viscosity, which here turns out to be insufficient
More viscosity is added implicitly by van Leer’s flux-vector
is not a very good approximate Ricmann solver, but this still

supe
Howevel

rate. The ma
First, artificial viscosity can be added t

for good convergence rates.
splitting [22], as this scheme
does not suffice to obtain uniformly good convergence rates.

Secondly, one could cousider more powerful global relaxation schemes. Several options
can he considered, such as Line-Jacobi, Line-Gauss-Seidel, zebra relaxation, Incomplete LU
decomposition, or its line-variant. Some of these schemes have been studied for single-
erid relaxation in [23]. Tt may be possible to design a scheme that provides a good grid-
independent convergence factor at O(N) cost even without multigrid (N = Ny N, being the
total nunber of cells or points). In [14] it is shown that damped Alternating Direction Line-
Jacobi has a multigrid convergence factor ‘)\_T(u,v) < 0.526. For most values of u and v, we
have X(u,v) ~ L. The damping is obtained in the same way as in (6.13). The relaxation

agonal of the linearised residual operator and 2

matrix is obtained by taking the main di
olf-diagonals in one direction. The 2 other off-diagonals are then subtracted from the main
R "time-step” must be added to

diagonal, thus leaving a tridiagonal systern. Tinally, a SE
the main diagonal. Here a diagonal element is understood to be a 4 x 4 block.

As a third alternative, a different type o
one-dimensional character of convection. Instea
thereby doubling the number of grid-levels. The direct
when going to progressively coarser grids. The last o

{ coarsening can be considered that reflects the
d of 4 cells, or points, we can combine 2,
ion of coarsening can be alternated

plion remains to be explored. Hopefully,
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grid-independent convergence rates can be obtained without global relaxation schemes iy, this
setting. Conceptually, it should not be nccessary to use these global schemes, because e
coarser grids must take care of global errors. As a first result we mention that, daniped
Line-Jacobi and semi-coarsening result in an two-level multigrid convergence factor § - L

for

the linearised Euler equations with constant coeflicients. The line relaxation must e

carried out in one direction and the coarsening, of 2 cells at the time, in the other direction

The eflects of nonlinear singularities, such as shocks, have not been considered mn e

paper. They may give rise to additional complications, just as in [13]. At this point, however,
is appears to be difficult enough to find a good scheme for the lincar case.

References

(1

W. K. Anderson, Implicit Multigrid Algorithms for the Three-Dimeunsional Flux Split Euler
Equations, Ph. D. Thesis (1986), Mississippi State University
AL Brandt, Guide to Multigrid Development, Lecture Notes in Mathematics 960 (1981), pp.
220-312.

W. Hackbusch, Multi-Grid Methods and Applications, Springer Series in Computational Mat |,

ematics 4 (1985), Springer Verlag, Berlin/Heidelberg,

P.W. lemker and S. P. Spekreijse, Multiple grid and Osher’s scheme for the efficient solution
of the stcady Fuler equations, Appl. Num. Math. 2 (1986), pp. 175-193.

P.W. Hemker, Defeet correction and higher order schemes for the multigrid solulion of i
steady Euler cquations, Lecture Notes in Mathematics 1228 (1986), pp. 119-165.

AL Jameson, Solution of the Eulcr equations for two dimensional transonic Slow by o multiyrit
method, Appl. Math. Comp. 13 (1983), pp. 327-355.

D. C. Jespersen, Design and Implementation of o Multigrid Code for the Euler Ioquations.
Appl. Math. Comp. 13 (1083), pp. 357-374.

B. Koren, Luler flow solutions for « transonic windlunnel scetion, (CWI Report NM-R&G01
(1986).

B. Koren, Evaluation of sccond order schemes and defect correction Jor the multigrid compu

tation of airfoil flows with the steady Fuler equations, CWI Report NM-R8616 (1986).

W. A, Mulder and B. van Leer, Ezperiments with Implicit Upwind Methods Jor the Fules
Equations, J. Comp. Phys. 59 (1985), pp. 232-246.

W. A, Mulder, Multigrid Relazation for the Euler Equations, ). Comp. Phys. 60 (1985), pp
235-252.

W. A. Mulder, Computation of the Quasi-Sleady Gas Flow in a Spiral Galary by Means of o
Multigrid Method, Astron. Astrophys. 156 (1986), pp. 354-380.

W. A, Mulder, Multigrid for the one-dimensional inviscid Burgers’ cquation, (1986), sabmilted
to SIAM J. Sci. Stat. Comput.

W. A. Mulder, 4 nolc on the use of Symmelric Line Gauss-Scidel Jor the upwind diffcreneced
Euler equations, Manuscript CLaSSiC-87-20 (1987).

R. H. Ni, A multiple grid scheme for solving the Euler equations, AIAA J. 20 (1982), pp.
1565-1571.

S. Osher and F. Solomon, Upwind difference schemes for hyperbolic systems of conservation
laws, Math. Comp. 38 (1982), pp. 339-374.

W. Schréder and D. Hinel, A comparison of scveral MG-methods for the solution of the tim:

dependent Navier-Stokes equations, Lecture Notes in Mathematics 1228 (1986), pp. 272-281.

G. Shaw and P. Wesseling, A multigrid method for the compressible Navier-Stokes equations,
Report 86-12 (1986), Delft University of Technology.

J. Steger and R. Warming, Fluz Vector Splitting of the Inviscid Gas Dynamics Equations with
Applications to Finite-Difference Methods, J. Comp. Phys. 40 (1981), pp. 263-293.

489
s leder

1| B. van Leer, Towards the Ultimate Conservative Difference Scheme. IV. A New Approach to
" Numerical € ' 276-299.

Numerical Convection, J. Comp. Phys. 23 (1_977),‘pp. )

i Hu::n Leer, Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel
e Todunov’s Method, 3. Comp. Phys. 32 (1979), pp. 101-136. ] ]

) ;;’ f’}l‘,:l Leer, Flug-vector splitting for the Fuler equations, Lecture Notes in Physics 170 (1982),
T pp. 507-512. o . B
II’KP vim Leer and W. A. Mulder, Relazation Methods for Hyperbolic Conservation Law:s, in
,\"umoriral Methods for the Enler Equations of Fluid Dynamics, eds. F. /'\flgraud, A. Dervieux,
,l]A A. Desideri, and R. Glowinski, STAM, Philadelphia (1985), pp. 312-333.

A




