RELAXATION METHODS FOR HYPERBOLIC
CONSERVATION LAWS

BRAM VAN LEER* AND WILLIAM A. MULDER**

Abstract. A class of unconditionally stable integration schemes
for finding steady solutions to the time-dependent Euler equations
is discussed. The schemes are time-accurate for small time-steps
and turn into a relaxation method for large time-steps; the spatial
discretization is upwind biased. Examples of these switched
evolution/relaxation (SER) schemes, and a numerical comparison, are
presented. Some attention is given to the standard ADI and AF
methods, which do not belong to the SER family.

1. Introduction. Numerical methods for solving problems of
steady compressible flow often are based on the time-dependent flow
equations. In marching toward the steady state it is useful to
distinguish two phases [1].

In the first or searching phase the numerical solution follows a
path to the steady state with reasonable time-accuracy, a safeguard
against selecting an unphysical solution. In the second or converging
phase the numerical solution feels the attraction of the steady state
and converges to it rapidly.

It is possible to go through both phases with a single numerical
method. The paragon is Euler's method “backward"; for the equation

u, = R(u) , D)

with R(u) some nonlinear finite-difference expression, it reads

n_n+l
A u™ = "R H (2)
here T = t -t ,Au Zu "-u . If R(u) is continuously differen-

tiable, with
K(u) = dR(u)/du , (3)
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linearization of (2) is possible:

(11K A" = TR (4
In the present paper we study a class of methods that includes (4),

namely,

(I-t™M™) Atun = "%, (5)

where M(u) is a linear operator providing numerical stability for
arbitrary values of T.

For small T scheme (5) is time-accurate, with truncation error in
n
Atu of the order O(Tz) or better; for large T it reduces to the
relaxation scheme

- MnAtun = r" . (6)
This is Newton's method if M = K, in which case the right-hand side
of (6), the residual, converges quadratically to zero. While this
type of convergence is highly desirable, achieving it usually
involves a lot of work. The matrix K may be costly to form and too
costly to invert by direct methods. The classic way out, represented
by scheme (5), is to replace K by a simpler matrix M, usually one
with a narrower bandwidth. The utmost simplification is to replace
K by a scalar.

A convenient choice of the time-step is

n n
o= el W IR (7
where € is a number determining the temporal accuracy. If the
residual is large, as in the searching phase, (7) ensures that

Ha T~ e (8)

that is: the relative change of the numerical solution per time-step
is of the order of €. (In [2] the same accuracy constraint was
enforced by a posteriori checking, reducing Tn in case of violation,

and recomputing Atun). Upon entering the converging phase the

residual drops sharply and T rises correspondingly, switching the
scheme from (5) to (6).

Schemes of the form (5) that allow switching through (7) will be:
called Switched Evolution/Relaxation (SER) schemes. The aim of this
paper 1s to indicate matrices M suitable for SER schemes approxima-
ting hyperbolic systems of conservation laws (82), compare these in
a numerical experiment (§3) and make recommendations about their
use (84).
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Before getting to the main subject (§2.3 ff) we discuss two schemes
that do not belong to the SER category but are very popular in
aerodynamics, namely, Alternating Direction Implicit (ADI) and
Approximate Factorization (AF) schemes.

2. Relaxation methods for hyperbolic equations.

2.1 General considerations. When solving flow problems in one
dimension using a three-point discretization we have no excuse for
not choosing Newton's method as the relaxation method. TFor example,
the Jacobian K associated with a first-order-accurate upwind-differ-
ence approximation of the Euler equations is block-tridiagonal, and
the main block-diagonal of -K is semi-dominant within a margin 0(Ax).
Thus, the matrix I-1K in (4) is block-diagonally dominant for all but
the largest values of T, and its block-LU decomposition requires
no pivoting [1].

For one-dimensional upwind-biased schemes of a higher order of
accuracy the formation and direct solution of the linear system
(4) is more cumbersome but, possibly, worthwhile; for two-dimensional
schemes of even the first order of accuracy the direct solution of
(4) is out of the question. In this paper we choose to abandon
(4) in favor of (5).

Nevertheless, it is fully legitimate to use a relaxation scheme
of the type (4) in solving the more complete system of equations
(5). The relaxation scheme may serve as a preconditioner, in
conjugate~gradiesnt methods, or as a '"smoother," in multigrid
methods; the latter possibility is briefly discussed in §2.5.

All classic iterative methods exploit that R is the sum of two
one-dimensional expressions,
R(u) = Rx(u) + Ry(u) s (10)

each with its own Jacobian

K(u) = Kx(u) + Ky(u). (11)

This suggests relaxation schemes with

M(u) = MX(u) + My(u) H (12)

we shall restrict ourselves to these from §2.3 onward. First we
discuss two different ways to benefit from (10), not leading to SER
schemes.

2.2 Alternating Direction Implicit and Approximate Factorization
schemes. The ADI scheme commonly used for relaxation 1is a sequence
of two different time-steps, each unstable by itself:

(x-r“@ Atun = "r% (13.1)
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(I—Tn+lM;+l) Atun+l - Tn+an+1 , (13.2)
+1
o = T (13.3)

The original intention of ADI [3] was to combine unconditional
stability with second-order accuracy in time through the choice
M =%K ,M =%K.

X y y

The related, more modern AF scheme [4] is a nesting of similar
steps, without intermediate updating:

(z-r“M§)<1-T“M§) Atun = ot "R ; (14)

here o is a parameter which, for the present purpose, may take the

value 1 or 2. With a = 1 and MX = Kx’ My = Ky’ scheme (14) obviously

approximates the backward Euler scheme (4) within a margin 0(t3)!

(I—TnKn+(Tn)2K2K;)Atun = 'R . (15)

It is equally obvious that this is not an SER scheme, since

lim Atun =0, (16)

n
T =

regardless of the magnitude of R".

With o = 2 the one-step scheme (l14) advances as far in time as
the two-step scheme (13). Inserting MX = KX, My = Ky in both (13)
and (14) and assuming that R(u) is linear in u, e.g. RX = KXu,

Ry = Kyu, we may rewrite these schemes as

n+2
u

(ADI) (I—TnKy)—l(I+TnKX)(I-TnKX)_l(I+TnKy)un , (16.1)

(AF,a=2) u™T!

(I—TnKy)'l(I—THKX)“1(1+THKX)(1+rnKy)un , (16.2)

showing their identity. Eq. (16) also reveals why ADI and AF are
such effective relaxation methods for discretized parabolic
equations like the scalar diffusion equation. 1In this case the
eigenvalues of KX and Ky are negative real, and the corresponding

eigenvectors can be efficiently removed from the solution by cycling
the value of 1/7 through the spectrum of eigenvalues; see Wachspress

[5].
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For discretized hyperbolic equations the eigenvalues of Kx and KV

are complex or purely imaginary; therefore, time-step cycling is
useless if done with real values of T. One must resort to complex
arithmetics, a fact that was well understood by the authors of [3]
(J. Douglas, private communication, 1983) but seems to have fallen
into oblivion. A correct implementation of time-step cycling for
the Euler equations is due to Liu and Lomax [6].

The eigenvalues of Kx and Ky’ whether complex or real, usually

are obtained from a Fourier analysis, i.e. under the assumption that
the eigenvectors are harmonics. When this assumption breaks down,
e.g. for strongly variable coefficients and/or strongly nonuniform
grids, time-step cycling becomes hard to implement and ADI and AF
methods lose their appeal.

Abarbanel, Dwoyer and Gottlieb [7] have succeeded, for the linear
diffusion equation, in reducing the sensitivity of AF to the choice
of the time-step, by adding to the right-hand side of (15) a term
that roughly balances the factorization error on the left-hand side:

n n, 2 n_ n,. 0N n
(I=-TK+(T1) KXKy) Atu = T (I+yT KXKy)R . 7

For the parameter Yy they derive an optimum value. One observes,
however , that for large Tn this scheme reduces to

KXKyAtun = vy KXKan , (18.1)

which is a hard way to implement the explicit scheme with time-step

‘s
Atu“ =y RS, (18.2)

An SER scheme of the form (5), with M = -I/v, would achieve the same.

We conclude that ADI and AF do not have special properties that
makes these schemes advantageous in finding steady solutions to
hyperbolic equations.

2.3 SER schemes of first-order accuracy. It is surprising how
well the classic relaxation schemes for the discretized diffusion
equation,i.e. Jacobi, Gauss-Siedel and line relaxation, are suited
for discretized hyperbolic equations. Block versions of these
methods may be applied, in all possible combinations, to any first-
order upwind discretization of the Euler equations, for an arbitrarv
number of space dimensions. The more powerful combinations also
apply to second-order upwind discretizations.

To fix our thoughts, let us examine the possibilities in two
dimensions, with flux splitting providing the upwind logic, as
in [1]. The Euler equations in a Cartesian frame read
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wom - E@), - W) (19
here u is the state vector of conserved quantities and the vectors
f(u), g(u) contain their fluxes in the x-, y-direction. The fluxes
can be split in forward fluxes f+(u), g+(u) and backward fluxes
f (u), g (u) that are continuously differentiable [sj.
Now define a cbmputational grid of adjacent rectangular volumes;
the volume centered on (xi,yj), measuring Axi by ij, is referred

to by a subscript ij. The operators causing a shift over one volume
in the forward x-, y-direction are called TX, Ty' In this notation

the first-order flux-split upwind discretization of the right-hand
side of (19) becomes

n _ + + - - \n
REZ = (Fyy - Fyy g F fan g~ gy /0%
+ + - - \n s
We may write the full backward-Euler scheme as
n n _ ,I n n n
= L _ - .2
11°%¢%13 (Tn Kig) Beugy = Ryy o (20.2)
with
K2 = = % 4aY Y v oY T ), (20.3)
ij i3 7ij Tiitx TijTy ij7x dii’y
+ -
= (= - == > 1.1
Aiy (Ga du )ij/AXi 0 ( )
y dg+ dg”
= (2o _ > 21.2
Ay Go ™ )ij/ij 0, ( )
+
X df
= —_— = 21.3
Biy = G )i-1 3/8% =0 (21.3)
y dg+
= A > (21.4)
By = Qi g-1/By =0
X df~
= - (&5 21.5
€y Gu a1 3705 =90 (21.5)
vy - _ (dg Ay, =0 . 21.6
¢y = - (g 4y /iy, =0 (21.6)

Owing to the upwind differencing in (20.1), the main-diagonal blocks

of -K" are comfortably large: if the matrix elements
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(21.1)-(21.6) vary smoothly with i and j, K" is semi-dominant within

a margin 0(Ax). The matrix L will actually be block-diagonally

dominant for a bias I/T" that is sufficiently large, but still only
0(Ax). Nevertheless, we shall not attempt to solve (20.2) directly
by Gaussian elimination.

The classic relaxation schemes for the linear system (20.2) may

be thought to arise from one particular way of approximating K": in
(20.3) one or more shift operations are replaced by scalar multi-
plications. This is common practice in Fourier analysis, where, for
a single mode with spatial frequencies £ and n, we have

+ +1 + +1
1o e ot Jging (22.1)
X y
or
n __fif n
Atuiil I e Atuij . (22.2)
n _ #in n
Atuijil e Atuij . (22.3)
However, we wish to avoid complex arithmetics and complete dependence

+ +
on Fourier analvsis; sgee§2.2.. In replacing T;l, T;l we shall restrict

+

+
ourselves to real-valued multipliers s;, sy:

+ + + +
o, -t (23.1)
X X v v
or
aou ., = sTau” (23.2)
t il j x t ij °?
A u® = siA o (23.3)
t%ig+1 yoetiy
There are three important values: s = -1, 0 and 1. The approxi-
+ +
mation of T_l by s = =1 is exact for a saw-tooth component in Atun.

It is seen from (20.3) and (21) that this choice makes the main-
diagonal blocks more strongly dominant, leading to underrelaxation
for long waves. The longest waves would be best represented by

s = 1, but this value makes scheme (20) unstable. The stability
condition on s, as shown in the Appendix, is

s< 0. (24)

The value s = 0 will be considered the standard value. It is compu-
tationally attractive: an off-diagonal block multiplied by zero
need not be computed at all, and does not influence the main
diagonal.
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In simplifying the right-hand side of (20.3), it is useful to
distinguish the five cases listed below.

(i) All four shift operators replaced.
The block version of point/Jacobi relaxation. If the volumes
with i+j even and i+j odd are updated alternatingly, checker-
board relaxation results.

(ii) Three shift operators replaced.
A combination of Jacobi and Gauss-Seidel relaxation. If, for

. -1, .

instance, TX is the one operator that is not replaced, the

Gauss-Seidel process requires sweeps in the forward x-direction.
(iii) Two shift operators replaced that work along different coordi-

nate axes. -1 1
Full Gauss-Seidel relaxation. 1If, for instance, TX and T

are retained, one must make sweeps in the forward x-direction
and the forward y-direction.

(iv) Two shift operators replaced that work along the same coordinate
axis. -1
Line/Jacobi relaxation. If, for instance, Ty and 'I‘y are

retained, the line relaxation is in the y direction; updating
the volumes with i even and i odd alternatingly yields zebra
relaxation.

(v) One shift operator replaced.
Line/Gauss-Seidel relaxation. If, for instance, TX is the one

operator that is replaced, the line relaxation is in the
y-direction and the Gauss-Seidel sweep goes in the forward
x~-direction.

It is generally recommended in the cases (ii)-(v) to cycle through
all shift operators when replacing one or more. Gauss-Seidel relax-
ation should not be used in the direction of a cyclic coordinate,

as this causes a long-wave closure error which is hard to remove.
Pattern relaxation (checkerboard, zebra) does not have this drawback.

A nonlinear variant of the Gauss-Seidel scheme results when the

fluxes at tn+1, needed in the original backward Euler scheme (2),

are not all approximated linearly,
+

+
n+l _ *n df \n n
(£7) = (7)) + (EE—) Atu , (25.1)

but are actually updated,

+ . n+l

(g5t o fi(un+Atun) , (25.2)
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in any volume where Atun is already known. Implemented this way, the
scheme no longer includes the off-diagonal blocks of K",

A very radical simplification, one that significantly reduces the
relaxation power of the schemes, is achieved in replacing any of the

blocks of K replaced by its spectral radius. Particularly well-

. . e . . . + x
known is the simplified point/Jacobi scheme with s, = sy = 0 , that
is,
n

(1/t%0°,1) A W, = BT, (26.1)
13 t ij 1]

AT, = 1 n
t 14 — R, . (26.2)
4R, i3
ij

where D?j is the spectral radius of (AX+Ay)2j. The factor multiplying

Rij may be interpreted as a locally adjusted time-step value,which for
-1

™ s approaches the local stability limit (Q?j)

2.4 SER schemes of second-order accuracy. The upwind spatial
discretization of second-order accuracy, described and tested by
Mulder and Van Leer [1] for the one-dimensional flow equations,
applies in a straightforward way to the two-dimensional equations.
In a Cartesian grid the two dimensions completely decouple, owing
to property (10).

The relaxation schemes are essentially those of §2.3, but with
the Jacobians in (20) evaluated at (i¥%,3), (i,j¥%), rather than
(1,37, (4*1,3), (i,3%1); for details see [1]. Except for this
adjustment, the second-order terms in the scheme are not accounted

. n
for in Mx or M?. The second-order SER schemes therefore deviate

more strongly from the full backward Euler scheme than the corres-
ponding first-order schemes.

The stability analysis in the Appendix reveals that Jacobi
relaxation is no longer stable, pattern relaxation is stable with
sufficiently strong underrelaxation, whereas Gauss-Seidel relaxation
is stable only when forward and backward sweeps are alternated
(symmetric Gauss-Seidel). In demanding computations, e.g. on
strongly non-uniform grids, with strong oblique shocks in the
solution, without a preferential flow direction, it is recommended
to use the best possible relaxation methods, i.e. symmetric line/
Gauss-Seidel and symmetric point/Gauss-Seidel.
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2.5 Multigrid relaxation. Any of the SER schemes of 82.3 or
§2.4 may be used as the "smoother" in a multigrid cycle, with the
symmetric Gauss=~Seidel scheme as the first choice. The nonlinear
version is suited for use in a "full-approximation-storage scheme'
(FAS; for a review of multigrid concepts see {9]), while the
linearized version is appropriate for a "correction scheme." The
latter combination was successfully applied to the test problem of
§3 by Mulder [10]. The FAS scheme for the Euler equations implemented
by Jameson [11] does not include an SER scheme; relaxation is provided
by a four-stage Runge-Kutta method with local time-step values.

3. A numerical comparison. The SER schemes of §2.3 and §2.4,
and also the ADI and AF schemes of §2.2, were used to compute the
steady transonic flow through a straight channel with a circular
bump on the lower wall. The inflow Mach number was 0.85, the
thickness of the bump was 4.2% of the chord length. The steady flow
exhibits a shock almost choking the channel.

In marching toward the steady state, the isenthalpic Euler
equations were used. At the walls reflection conditions were imposed
with the help of mirror-image zones; the arc was described according
to small-disturbance theory (thickness ignored, flow angle pre-
scribed). Total pressure and cross-flow velocity (=0) were given
at the inlet, static pressure at the outlet. The details of the
equations and the boundary conditions can be found in [10], where
the same problem was used for a multigrid experiment; for numerical
solutions to this problem by other authors see [15].

Figure 1 shows the distributions of the pressure coefficient on
both walls, obtained from solutions with first-order (a) and second-
order (b) spatial accuracy, on a uniform grid of 32x16 zones.

In Table 1 and Table 2 are listed some of the many data gathered
on the convergence speed achieved by the various schemes. The
convergence process was monitored by the quantity RES defined by

n | ‘Rnt 1
RES™ = max Tk s (27.1)
k,1i,] n;,.n
\’uki+hk‘ij

where k=1,2,3 indicates the different conservation laws and h is a
bias vector preventing division by zero. The time-step for SER
schemes was chosen according to

" = g/rES" (27.2)

which is similar to Eq. (7).

As a rule, the number of iterations needed to reduce the residuals

by a factor of 10 " is smaller when a scheme deviates less from
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Exper— Kind of Order One Number of Number of Cpu-time
iment relaxation of cycle iterations iterations spent
number approx. involves per cycle till (minutes)
imation convergence
1 line/GS 1 line(x),GS(+y), 2 123 1.2

line(x),GS(-y);
line(y),GS(+x),
line(y),GS(-x)

2 line/GS 1 line(x),GS(+y), 1 174 1.7
line(y),GS(+x)

3 line/GS 1 line(x),G5(+y), 1 204 1.7
line(x),GS(~y)

4 line/GS 1 line(y),GS(+x), 1 92 0.83
line(y),GS(-x)

5 line/GS 1 line(x),GS(+y) % 243 2.1

6 line/GS 1 line(y),GS(+x) % 162 1.4

7 line/GS 2 see nr. 1 2 183 2.4

8 line/GS 2 see nr. 3 1 221 2.6

9 line/GS 2 see nr. 4 1 313 3.8

10 zebra 1 line(x),pat(y) S 243 2.0

11 zebra 1 line(y),pat(x) % 162 1.4

12 zebra 2 line(y), E 796 9.3
pat(x;s=-0,23)

13 zebra 2 line(y), % 575 6.8
pat(x;s=-1,0)

14 line/Jacobi 1 line(x),Jac(y) 5 466 3.5

15 line/Jacobi 1 line(y),Jac(x) % 294 2.2

16 line/Jacobi 1 line(x),Jac(y), 1 234 1.8
line(y),Jac(x)

17 ADT 1 line(x),line(y) 1 486 3.7

18 AF(a=1) 1 line(x),line(y) 1 452 2.3

Table 1. Data on the convergence speed achieved by the line-
relaxation schemes (SER and other) in solving the transonic flow
problem of §3, on a grid of 32 x 16 zones. Problem parameters: M, =
0.85, arc thickness = L.2% of chord length. The iteration count is
based on a unit including two line relaxations (regardless of their
direction), making comparisons more or less meaningful. The cpu-time is
given in minutes on an Amdahl V7B computer. The value of ¢ in the time-
step formula (27.2) was 1.0 for all SER schemes. With ADI and AF the
time-step, based on € = 0.5, was frozen at the start, fixing the free-
stream Courant number at a value of L4.13 for both experiments. Under-
relaxation was applied only in the second-order zebra scheme
(s = =0.25, -1.0), for the sake of stability.
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Figure 1. (a) Pressure coefficient on lower (+) and upper (x) wall for

Mach 0.85 flow in a channel with a circular arc of 4.27%

thickness on the lower wall, as computed from a solution on a

32x16 grid with first-order accuracy. Boundary conditions on

the arc according to thin-airfoil theory. (b) As before, but

computed with second-order accuracy.

Exper- Kind of Order One Number of Number of Cpu—-time

iment relaxation of cycle iterations iterations spent

number approx. involves per cycle till (minutes)

imation convergence

19 point/GS 1 Gs(+x,+y); 2 557 2.6
GS(-x%,-y)

20 point/GS 1 GS(+x,+y); 2 597 2.8
GS(+x,~y)

21 point/GS 1 GS{(+x,+y); 2 606 2.6
GS(-x%,+y)

22 point/GS 1 GS(+x,+y) 1 713 3.0

23 point/GS 2 see nr. 19 2 575 4.0

24 point/Jacobi 1 Jac(x,y) 1 1367 4.4

Table 2. Convergence data for the point-relaxation schemes (SER only).
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the backward Euler scheme. This rule applies, too, when comparing
schemes of the first order of accuracy to those of the second order.

Among the schemes bearing the same name there is a considerable
spread in performance which is hard to explain in detail, especially
because it appears to be very sensitive to the precise implementation
of the boundary conditions. Line/Gauss-Seidel relaxation, for
instance, seems to solve the present test problem most efficiently
with the line in the y-direction and symmetric sweeps in the
x~-direction. This result was obtained, however, by ignoring at the
solid walls the contributions from the mirror-image zones to the
relaxation matrix. If these contributions are included, as they
should be in the full backward Euler method, the relaxation process
does not even converge, in flagrant disagreement with our rule-of-
thumb. Obviously, an analysis of the interference of numerical
boundary conditions with relaxation schemes is due; meanwhile we
chose to use the less complete linearization for all line relaxations
in the y-direction.

Zebra relaxation, while second best for the first-order scheme,
slows down considerably when used for the second-order scheme; this
is due to the strong underrelaxation needed for stability or for
convergence.

The performance of the ADI and AF schemes is found to depend
critically on the value of the time-step; when regarded as relaxation
methods these cannot be called robust. Attempts to optimize the
choice of the time-step were not uniformly successful and therefore
did not make the schemes more robust. In the present experiments

a fixed time-step was used, determined by RESO and € = 0.5, The
choice € = 1.0 leads to divergence for ADI and to non-convergence
for AF.

When comparing the number of iterations till convergence to the
cpu~-time spent, one must realize that the block-elements of the

. n . .
matrix L= used in the relaxation schemes were not computed at every
. . n
time level. Their values, and the value of T, were updated omnly

when RES™ dropped below some control level and remained frozen until
the next lower level was reached. TFor these levels the following

- -2, -2 -3
sequence of fractions of RESO were used: 10 1, 3x10 2, 6 -, 10 °,
107", 107%. Freezing has no significant effect on the relaxation
process, except for AF, where it may change slow convergence into
non-convergence (observed for € = 1.0).

Along with the blocks of Ln, all blocks derived from these were
frozen, i.e. the inverses of the main diagonal blocks needed for
point relaxation, or the block elements of all line-wise LU-decompo-
sitions needed for line relaxation. This strategy leads to large
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savings on cpu-time; its weakness lies in the prerequisite that lots
of storage spaco he available. In practice one will have to trade
the upper limit to storage space for a lower limit to cpu-time;

the trade-off is highly computer-dependent. Consider, for example,
point/Jacobi, checkerboard and symmetric nonlinear point/Gauss-Seidel
relaxation, each requiring the storage of only one block: the
inverse of the main-diagonal block. While the Gauss-Seidel scheme
offers the strongest relaxation per iteration, it may finish last
when implemented on a supercomputer, since its update step does not
vectorize.

Figures 2 through 7 show the convergence histories of some of the

experiments compiled in Tables 1 and 2; RES stands for RESn/RESO.

In most cases the residual norm does not decrease monotonically;
various periodic and quasi-periodic fluctuations can be discermed.
These correspond to the sequencing of sweep directions (as in Figure
6) or line directions (as in Figure 2b) and to the bouncing of
disturbances from wall to wall (as in Figure 4).

4. Conclusions and recommendations. In the preceding sections
it has been demonstrated that Switched Evolution/Relaxation schemes
incorporating a classic relaxation method are robust means to compute
steady discontinuous solutions of hyperbolic systems of conservation
laws such as the Euler equations. It is crucial that the spatial
discretization be upwind biased. If storage space is not restricted,
the most complex relaxation methods are also the most efficient,
owing to the possibility of keeping the coefficient blocks frozen
during many iteration steps. Alternating-Direction Implicit and
Approximate-Factorization methods are less efficient than equally
complex SER methods, and not at all robust.

It is not surprising that other advocates of upwind differencing,
independently or through interaction, have come to the same con-
clusions. Chakravarthy [12] has applied the point/Gauss-Seidel
scheme to a variety of aerodynamic problems, with remarkable success;
Dadone and Napolitano [13] recently turned from using AF to using
SER schemes.

All SER schemes allow of underrelaxation, which improves short
wave damping. Tt turns out that overrelaxation, a standard routine
for the iterative solution of second-order elliptic equatiomns, does
not work for first-order equations (see the Appendix).

We recommend the further development of and experimentation with
SER schemes requiring only one block evaluation and inversion.
Neither the complexity nor the storage requirements of such schemes
are extravagant, so that their application, even to three-dimensional
flow problems, is within the capacity of today's computers. This
view differs somewhat from Jameson's [ 11}, who puts more emphasis
on the storage aspect and therefore excludes any blocks from his
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ece lig. (27.1). (a) Fxperiments nr. 3 (slowgr convergenco) and nr. 4 (faster

convergence); (b) nr. 1 (15 order, fast) and nr. 7 (22° order, slow).
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Figure 3. Convergence histories for zebra

relaxation, experiments nr. 11 (lSt order,
fast) and nr. 13 (204 order, slow).
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Jacobi relaxation, experiments nr. 1L
(slow) and nr. 15 (fast).
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Figure 6. Convergence histories for point/

Causs-Seidel relaxation, experiments nr. 19

(fast)

and nr. 22 {(slow).
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relaxation schemes. A modification of his technique proposed by
Turkel [14] indeed introduces a coefficient block, for the sake of
efficiency.

Appendix: Stability of SER schemes. A necessary condition for
the stability of the schemes of §2.3 and 82.4 is that plane waves
moving in a coordinate direction shall not be amplified. Any such
wave can be described by the scalar linear convection equation

q, +aq, = 0 (A1.D)
starting from the discrete initial-value distribution

qg = qgelix. (A1.2)
In practice it appears that, in the special case of the Euler
equations, this condition is also sufficient; the proof remains to
be given. The present stability analysis is still based on the
initial-value problem (Al). Pattern relaxation requires a more
elaborate analysis; we shall only state some results.

In the case of first-—order upwind differencing, the one-dimensional
SER scheme including line relaxation is identical to the backward
Euler scheme, hence is stable. With Gauss-Seidel relaxation it still
is identical to the backward Euler scheme if the sweep direction is
the same as the wave direction. A wave travelling against the sweep
direction is accounted for in the relaxation matrix only by a main-
diagonal element, just as in Jacobi relaxation. It therefore
suffices to study Jacobi relaxation; introducing the Courant number

at
Ag

the SER scheme for Eq. (Al.1l) reads

o= = 0, (A2)

{140(1-8) } 2 - O(l—T_l)qE. (A3)

n =
£
As explained in §2.3, a scalar s has taken the place of the shift

-1
operator T ~. The amplification factor gz(§, C,s) of this scheme
follows upon inserting (ALl.2):

{1+o(1-s) Hg~1) = = G(l—e—ig) , (A4.1)
or
- o ~-i¢
g=1- T o(1-8) (l-e ) . (a4.2)

This corresponds to the forward Euler scheme with effective Courant
number O/ {1+0(l-s)}, which for first-order upwind differencing is
stable upn to a Courant-number value of 1. It follows that
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(A5.1)

n
A
Q=

for stability; if we insist on stability for arbitrarily large O we
find

s =0, (A5.2)

which is Eq. (24). This condition also suffices to stabilize pattern
relaxation, which is closer in performance to Gauss/Seidel than to
Jacobi relaxation.

Overrelaxation, meant to damp efficiently the longest waves
(¢~ 0, T =1I), cannot be achieved through the approximation (23.1).

+1
In approximating T~ , two diagonals must be involved:

o a1 4 (-7t . (A6)

The scheme for adverse waves, e.g. with T_l expressed in I and T
during a backward sweep, becomes

n -1y n
- T- = - T
{1+o(1-8) (I-T) }A, 9, o(I-T Dy » (A7)
with amplification factor
-if
g= 1 _____.L:_e-__‘ (A8)

1/o+(1-8) (1-e %)
For small o this reduces to

1640 (€%
: = > (A9)
1/o-(1-8)i£+0(£%)

and if we choose ¢ much larger than the largest spatial frequency

2
that can be represented on a finite grid, e.g. 1/g = 0(£7), we
finally get

1
g= 145+ 08 . (410)
For s = 2, g is of the order of ¢, which is precisely the aim of
overrelaxation. From (A6) we see that this choice means to replace
backward differencing by forward differencing and vice versa, i.e.

I - T_l =T -1. (All)

Unfortunately, s = 2 leads to violent growth of the shortest waves
for all but the smallest values of O; e.g., £ = T and 0 = } make
the denominator in (A9) vanish while the numerator remains finite.
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We may therefore conclude that overrelaxation with first-order
upwind SER schemes is not possible.
It is tempting to investigate if underrelaxation may be improved

through the use of two diagonals. If we approximate T—l according
to

R (1+s) rtl s (A12)
which is satisfied by the shortest waves (a = T, T = -1), the scheme
for adverse waves becomes

- N n -1, n

[L+OK1—S;I—(1+S)T}]Atqk = - 0(I-T )q , (A13)

with amplification facter
1 -ié
g=1- -e (A14)

1/0+{(1-8) = (14s)e ¥}

Inserting £= T-¢, vith ¢ small, we get

1/0-1(2+8)0+0(82)
1/0+2-1 (148) 40 ($2)

R (A15)

(6]

. for large enough 0, i.e. 1/0 = 0(¢2),this leads to
g = ~i(1+5s)0 + 0(47) , (A16)
indicating extra strong damping if
s = =2, (A17)

Inserting (Al7) into (Al2) yields

T+1t-- (I+1T , (A18)

which, for the shortest waves, is as good an extrapolation as (All) is
for the longest waves.

It is easily verified that scheme (Al3) with (Al7) is uncondi-
tionally stable.

With second-order upwind differencing the SER schemes including line
relaxation or downwind Gauss-Seidel sweeping deviate from the back-
ward Euler scheme, as the second-order terms are not treated
implicitly. TFor Eq. (Al.1l) these schemes read

{Tro(-1"H Ml = - oC-T"H (-1 h )5 (A19)

n
t 9%




RELAXATION FOR HYPERBOLIC LAWS 331

their amplification factor is

l—g(l—e_la)-%sing

g = T
l+g(1-e 15 (A20.1)
2 2 €
1+ 20 sin2 & cos’ éi— i0 siné sin 7
= = 5 g s (A20.2)
1 + 20 sin §-+ io siné
with modulus not exceeding l. For 0 -+ © we have g = - %sing, hence

lgl = 4.

With Jacobi relaxation, or upwind Gauss-Seidel sweeping, the
second-order SER scheme becomes unstable for any value of g. Like
scheme (A3) it is equivalent to the forward Euler scheme, used with
an effective Courant number ¢/{1+0(l-s)}. The locus of the Fourier
transform of the spatial-differencing operator in the complex plane
now has fourth-order contact with the imaginary axis for «=0, whereas
the stability domain for the forward Euler scheme has only second-
order contact. To match the stability domain with the spectral
locus, a two-step technique would have to be used.

The instability is insuperable for pure Jacobi relaxation, but
can be suppressed for pattern relaxation by taking negative values
of s (down to /7 if necessary), and for Gauss-Seidel relaxation by
alternating between upwind and downwind sweeps. 1In the worst case,
o =+ «, the amplification factors are

- 1 -i¢ i,
Supwind = 1 T Togiime ) (Mgsing) (A21)
i,
Sdovnwind 551n§, (A22)

and the modulus of their product remains safely below 1, for s =0.

Underrelaxation through the use of two diagonals works as well in
the second-order case as in the first-order case. Inserting (Al2)
into scheme (Al9) yields, for small ¢ = g-§¢,

l/G—i(3+s)>+O(¢2; , : (A23)
1/g4+2-1 (1+s8)9+0 (")

from which it is seen that, for sufficiently large o, extra strong
damping results when

s = =3 . (A24)

With this value of s the second-order scheme for the adverse waves
is unconditionally stable.
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It is worthwhile to mention that underrelaxation makes a scheme,

whether first-order or second-order accurate, a good smoother for
use in a multigrid strategy.
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