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ABSTRACT
The finite-difference method on rectangular meshes is widely used for time-domain
modelling of the wave equation. It is relatively easy to implement high-order spatial
discretization schemes and parallelization. Also, the method is computationally effi-
cient. However, the use of finite elements on tetrahedral unstructured meshes is more
accurate in complex geometries near sharp interfaces. We compared the standard
eighth-order finite-difference method to fourth-order continuous mass-lumped finite
elements in terms of accuracy and computational cost. The results show that, for sim-
ple models like a cube with constant density and velocity, the finite-difference method
outperforms the finite-element method by at least an order of magnitude. Outside the
application area of rectangular meshes, i.e., for a model with interior complexity and
topography well described by tetrahedra, however, finite-element methods are about
two orders of magnitude faster than finite-difference methods, for a given accuracy.
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INTRODUCTION

The finite-difference method has become the workhorse for
time-domain modelling of the wave equation, with applica-
tions in acquisition optimization, development and testing of
seismic processing algorithms, reverse-time migration and full
waveform inversion. Its advantages are the relative ease of
coding and parallelization, the use of high-order spatial dis-
cretization schemes and explicit time stepping, and its compu-
tational speed. Common opinion and experience is that finite-
difference methods perform well in rectangular domains with
smooth velocity variations. However, in the case of an irreg-
ular free surface or sharp contrast in the properties of the
medium, finite-difference methods lose accuracy when using
a Cartesian coordinate system. If the interface does not fol-
low the grid, the staircasing effect generates local first-order
errors. Because the solution is continuous but not differen-
tiable across an impedance contrast, a local second-order er-
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ror will be incurred as well. The standard finite-difference
method can be modified to avoid the staircase approximation
of the free surface in topography (Hestholm and Ruud 1994;
Lombard et al. 2008; Tarrass et al. 2011) and to avoid loss of
accuracy across sharply dipped subsurface interfaces (Preston
et al. 2008; Sofronov et al. 2012). However, more work on
high-order finite-difference schemes for boundaries in these
approaches is still required.

Finite-element methods have some advantages over finite-
difference methods because they can easily handle geometric
or property discontinuities by using unstructured meshes and
spatial local refinement. Finite elements that follow sharp in-
terfaces do not suffer from loss of accuracy. Moreover, they
offer flexibility in mixing discretization orders and element
geometries and deploying hybrid discretizations. The choice
of a suitable time discretization scheme enables explicit time
stepping. If the standard finite-element approach is used, a
large sparse linear system of equations has to be solved at
each time step, and this has a negative impact on performance.
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Figure 1 Continuous mass-lumped finite element of degree 2 in (a) 2D and (b) 3D. Black nodes mark the discretization nodes of the standard
finite element of second degree and red nodes mark the augmented nodes required for mass lumping without loss of accuracy.

There are several finite-element techniques for avoiding the
inversion of the large sparse matrix, for example, spectral el-
ements, continuous mass-lumped finite elements and discon-
tinuous Galerkin finite elements.

The spectral finite-element method employs Gauss–
Lobatto nodes for discretization on hexahedra, leading to a
diagonal mass matrix (Orszag 1980; Patera 1984; Rønquist
and Patera 1987; Maday and Rønquist 1990; Komatitsch and
Vilotte 1998; Komatitsch and Tromp 1999; Komatitsch et al.

1999; Mulder 1999; Tromp et al. 2008). However, hexahedral
grids are less flexible than tetrahedral meshes, for instance,
near pinch-outs. To overcome this problem, Taniguchi et al.

(1996), Owen (1998) and Charara et al. (2011) suggested
dividing each tetrahedron into four hexahedra, increasing the
number of nodes per tetrahedron. According to Owen (1998),
the resulting hexahedral meshes tend to be of poor quality.

A spatial discretization using any of the various discon-
tinuous Galerkin methods leads to a block-diagonal system of
equations that can be solved explicitly. There are two main ap-
proaches among several discretization schemes (Arnold et al.

2002). The first reformulates the wave equation into a first-
order system of equations, using the velocity–stress formula-
tion. Schemes using this approach include the central fluxes
used by Etienne et al. (2010), the upwind fluxes based on
a Riemann solver used by LeVeque (1990) and the ADER-
DG scheme, which maintains the same accuracy in space and
time (Dumbser and Käser 2006). The second formulation is
an interior penalty method based on the second-order for-
mulation of the wave equation, with pressure in the acoustic
case and displacement for the elastic case. This class of meth-
ods includes symmetric interior penalty, non-symmetric and
incomplete interior penalty methods (Rivière 2008).

Continuous mass-lumped finite elements allow for ex-
plicit time stepping at the expense of requiring additional de-
grees of freedom to maintain spatial accuracy. In this case, the
linear system of equations has a diagonal form that is triv-
ial to invert. This technique is straightforward for piecewise
linear elements but requires particular quadrature rules and
additional discretization nodes for higher-order schemes, in
order to preserve accuracy (Fried and Malkus 1975; Cohen
et al. 1995; Tordjman 1995; Mulder 1996; Chin-Joe-Kong
et al. 1999).

Various authors have made comparisons between the dif-
ferent methods (Fornberg 1987; Pasquetti and Rapetti 2004;
Chaljub et al. 2007; De Basabe and Sen 2007; Wang et al.

2010; Moczo et al. 2011). Minisini et al. (2012) compared
continuous mass-lumped and discontinuous Galerkin finite
elements in terms of accuracy, stability and computational
cost. Experiments on a three-dimensional problem showed
that both methods are similar in terms of stability, accuracy
and computational time required to obtain a result with a
given accuracy.

Here, we compare the continuous mass-lumped finite-
element method on tetrahedral unstructured meshes with the
finite-difference method on uniform rectangular meshes. In
2D, Mulder (1996) showed that higher-order mass-lumped
finite elements outperform the finite-difference method in
terms of the computational time required to obtain a solu-
tion with a given numerical accuracy as soon as the velocity
model has some non-trivial structure. In spite of the additional
complexity of the finite-element method and the more restric-
tive stability limit for the time step, the use of larger triangles
where the velocity is higher allows it to be more efficient than
the finite-difference method. In 3D, it is less obvious whether
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finite elements are superior in efficiency, since the 3D mass-
lumped tetrahedral elements have a relatively large number
of nodes compared with the standard element (Mulder 1996;
Chin-Joe-Kong et al. 1999). To answer the question of effi-
ciency, we consider several examples, from a simple homo-
geneous velocity model in a cube suitable for both methods
to a fairly complex model with rough topography, which is
outside the application area of high-order finite differences
on rectangular meshes. This paper focuses on comparisons
between the two methods in terms of their performance for
a given accuracy. The stability analysis is covered by Zhebel
et al. (2012).

The paper is organized as follows. The first two sections
describe the continuous mass-lumped finite-element and stan-
dard finite-difference methods, respectively. Then, we define
how the methods are compared in terms of accuracy. A set
of numerical examples for problems of increased complex-
ity is considered next and the two methods are compared in
terms of accuracy and performance. Then, the scalability of
the methods is considered. Finally, the conclusions are sum-
marized.

F INITE ELEMENTS

We consider the constant-density acoustic wave equation,

1
c2

∂2u
∂t2

− �u = f, (1)

on a bounded domain � ⊂ R
3 with velocity c(x), pressure

u(t, x) as a function of time t and position x = (x, y, z) ∈ �

and source f (t, x). The Laplace operator � consists of the sum
of second derivatives in each space direction. If the domain
� has topography, then the free surface can have reflecting
(zero pressure) or natural (zero normal derivative) boundary
conditions. Absorbing boundary conditions are imposed else-
where. The source term f (t, x) = w(t)s(x − xs), with wavelet
w(t) and spatial source function s, is typically a delta function
that peaks at the source position xs.

To discretize with finite elements, the initial wave
equation (1) has to be modified. By multiplying (1) with a
suitable test function v and integrating by parts (or using the
divergence theorem), the weak formulation for the continuous
finite elements is obtained as

∫
�

c−2v
∂2u
∂t2

d� +
∫

�

∇u · ∇v d�

−
∫

�

(n · ∇u)v d� =
∫

�

v f d�, (2)

for all test functions v(x) in the Sobolev space H1(�), t ∈
[0, T]. Note that n denotes the outward-directed normal on
the outer boundary � = ∂� of the domain �.

The domain � can be partitioned into tetrahedral ele-
ments τm, m ∈ N. Advantages of tetrahedral elements are their
flexibility to follow geological interfaces and topography ac-
curately and their ability to provide meshes that scale with
velocity. This latter advantage is similar to the requirement
of having a certain number of points per wavelength in finite-
difference modelling. With tetrahedra, we require the diameter
of the inscribed sphere to scale with the dominant wavelength,
and hence with the local velocity. A meshing approach with
this property has been described by Kononov et al. (2012).

Here, we discretize (2) into continuous mass-lumped fi-
nite elements (Chin-Joe-Kong et al. 1999). This method, com-
bined with an explicit time-stepping scheme, leads to a fully
explicit method, since it produces a linear system of equa-
tions in diagonal form that is trivial to invert. The procedure
of obtaining a diagonal matrix is called mass lumping. To
avoid loss of accuracy after lumping, these elements have to
be enriched with additional discretization nodes in the inte-
rior, which support polynomials of higher degree that van-
ish at the edges (Fried and Malkus 1975). At present, 2D
elements on triangles are known for degrees 1 to 6 (Fried
and Malkus 1975; Tordjman 1995; Cohen et al. 1995, 2001;
Mulder 1996; Chin-Joe-Kong et al. 1999; Mulder 2013).
The 3D extension to the tetrahedron (Mulder 1996) required
higher-degree polynomials in the interior of the faces and of
the tetrahedron and resulted in an element of degree 2 at
the edges and degree 4 in the interior of the faces and ele-
ments. Chin-Joe-Kong et al. (1999) found two types of ele-
ment with degree 3 at the edges. Figure 1 depicts a continu-
ous mass-lumped finite element of second degree in 2D and
3D. The black nodes denote the same discretization nodes as
for standard finite elements. The red nodes denote the aug-
mented nodes needed to preserve accuracy during mass lump-
ing. Lesage et al. (2010) and Zhebel et al. (2011) presented
3D applications of these elements.

Table 1 lists the number of discretization nodes per ele-
ment. The first column presents the polynomial degree of an
element. The second column lists the number of nodes for a
single mass-lumped element of given degree. Since nodes on
edges and faces are shared, the effective number of nodes that
needs to be stored per element is smaller than the number of
nodes required during the computations, assuming that the
stiffness matrices are assembled on the fly at each time step
to save storage. This effective number of nodes is listed in
the third column. It is obtained by dividing the total number
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Table 1 Degrees of freedom for mass-lumped finite elements. The
second column represents the number of nodes per element required
for calculations. The third column shows storage requirements per
element obtained by dividing the observed number of degrees of free-
dom by the number of elements. The last column shows the number
of nodes per element for standard finite elements.

Mass-lumped

Degree p Compute Store Standard

1 4 0.17 4
2 23 8.4 10
3 50 25 20

of degrees of freedom by the number of elements for some
of the finer meshes used in the computations. For reference,
the last column lists the number of nodes for a single standard
tetrahedral element. Table 1 clearly shows a trade-off between
memory storage and computational time.

Let xi , i = 1, . . . , N, denote the discretization nodes of
a mass-lumped element of degree p, where N is given in the
second column of Table 1. The solution u and a test func-
tion v can be expressed as a linear combination of basis
functions φ j ,

v(x) = φi (x) (i = 1, . . . , N), u(t, x) =
N∑

j=1

uj (t)φ j (x). (3)

The basis functions are the same for each element and are
defined as Lagrangian polynomials with the property that
φ j (xi ) = 1 if i = j and zero otherwise. The polynomials are
chosen in such a way that mass lumping can be applied.
To avoid loss of spatial accuracy compared with the origi-
nal scheme, polynomials of higher degree that vanish at the
edges have to be included in 2D (Fried and Malkus 1975),
except for the lowest degree, p = 1. The corresponding ba-
sis functions for the faces are polynomials of degree pf that
vanish at the edges. In 3D, we need additional polynomials of
degree pi in the interior of the tetrahedron that vanish on the
faces (Mulder 1996).

More precisely, the following requirements should be
met. The elements should be conforming and have nodes
that obey the symmetry of the tetrahedron. They must not
lose accuracy due to lumping, and they must be unisolvent
and have positive weights after lumping. Conforming means
that the shape functions are continuous across elements. The
spatial accuracy is preserved if polynomials up to degree
q = p + max(p, pf, pi) − 2 are integrated exactly by numer-

Figure 2 Mapping from an element to the reference element.

ical quadrature, for shape functions of a maximum degree p

and additional degrees pf and pi. Unisolvency refers to the
requirement that the Lagrange interpolating polynomials can
be uniquely determined without any degeneracies. Positive in-
tegration weights are necessary for the stability of the explicit
time-stepping scheme. The construction of the basis functions
for mass-lumped tetrahedral elements has been described in
detail by Chin-Joe-Kong et al. (1999).

By inserting the representation (3) in (2), we obtain a
system of second-order ordinary differential equations

Mutt + Ku = f, (4)

where M and K are the global mass and stiffness matrices,
respectively. Both matrices are symmetrical due to the con-
struction. The spatial operator is then given by

L = M−1K. (5)

Lumping of the mass matrix produces a diagonal matrix that
is easily inverted, without the need to solve a linear system of
equations.

Consider the reference tetrahedron τ̃ that is located at
the origin of a Cartesian coordinate system (Figure 2). Let
ξi , i = 0, . . . , 3, with ξ0 = 1 − ξ1 − ξ2 − ξ3 , be the barycen-
tric coordinates on the reference tetrahedron. An arbitrary
element τm in the mesh can easily be transformed to the ref-
erence element using the Jacobian of the coordinate transfor-
mation. Then, the contribution of each element τm to the mass
matrix M is c−2

m det(Jm)A, where cm is the local velocity in τm,
Jm is the Jacobian of the coordinate transformation as shown
in Figure 2 and

Ak,l =
∫

τ̃

φkφl dξ1dξ2dξ3 (6)

is evaluated on the reference element τ̃ with basis func-
tions φk, k = 1, . . . , N. If mass lumping is used, the matrix
A is replaced by a diagonal matrix obtained from row sums
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Āk,k = ∑N
l=1 Ak,l . These values match the numerical integra-

tion weights.
The contribution to the global stiffness matrix K for each

tetrahedron τm is
∑

k,l Cm
k,l B

k,l , where

Bk,l
i, j =

∫
τ̃

∂φi

∂ξk
· ∂φ j

∂ξl
dξ1dξ2dξ3 (7)

and Cm
k,l are the entries of Cm = det(Jm)J −1

m J −T
m . The matri-

ces Bk,l on the reference tetrahedron remain fixed and are
hard-coded into the programme. Note that Bk,l

i, j = Bl,k
j,i , which

together with the symmetry of Cm can be used to reduce the
number of operations. The contribution then becomes

Ā−1
i,i

3∑
k=1

⎡
⎣Cm

k,k

∑
j

Bk,k
i, j u j +

3∑
l=k+1

Cm
k,l

∑
j

(
Bk,l

i, j + Bl,k
i, j

)
uj

⎤
⎦ . (8)

If the stiffness matrix is computed on the fly to save
storage, the cost of assembly per element will depend on the
number of nodes per element, as given in column 2.

For the simplest element, p = 1, which only has the four
vertices as nodes, it is more efficient to evaluate the contribu-
tion of the stiffness matrix directly for each element than to
use precomputed matrices Bk,l . In that case, we end up with a
contribution of the form (6 det(Jm))−1GmGT

mu per element τm,
where GT

m is a matrix containing outer products as columns:

GT
m =

(
(x3 − x1) × (x2 − x1) (x2 − x0) × (x3 − x0)
(x3 − x0) × (x1 − x0) (x1 − x0) × (x2 − x0)

)
(9)

and xi , i = 0, . . . , 3, denote the vertices of the element τm. By
choosing a symmetrical time-marching scheme, for example
‘leapfrog’, we obtain a fully algebraic system:

un+1 = 2un − un−1 − �t2 (Lun − M−1fn). (10)

The only unknown is the vector un+1. The values of the solu-
tion at the previous time steps n and (n − 1) are known. The
storage space of un−1 can be reused for un+1. For computa-
tional efficiency, the inverse mass matrix is computed before
starting the time steps. It requires the same amount of storage
as the solution at one time instance, of which we need 2. To
save storage, the stiffness matrices can be recomputed in each
time step. Higher-order time-stepping methods can be readily
implemented (Dablain 1986).

The time step is chosen according to the stability
condition

�t ≤ CFL min
τm

(
dm

cm

)
≤ 2√

ρ(L)
, (11)

where dm and cm are the diameter and velocity in the ele-
ment τm, CFL denotes the Courant–Friedrichs–Lewy number

Table 2 Estimated values of CFL, determining the time-stepping sta-
bility limit, for mass-lumped elements of degree p. Note that there
are two types of third-degree element. Three different measures of the
element diameter are considered: the diameter of the inscribed sphere
(di), a measure based on the sum over the eigenvalues (db) and a mea-
sure based on the spectral radius of the spatial operator L (de) for the
element of degree p = 1 on a single tetrahedron with homogeneous
Neumann boundary conditions and unit velocity.

CFL

p Type di db de

1 0.72 1 0.77
2 0.062 0.079 0.063
3 1 0.036 0.048 0.034
3 2 0.066 0.088 0.065

Table 3 Values of CFL for 3D finite differences with order of dis-
cretization M and second-order time stepping.

M 2 4 6 8 10 12 14 16
CFL 0.57 0.50 0.47 0.45 0.44 0.43 0.43 0.42

(Courant et al. 1928). The spectral radius of the spatial oper-
ator, which is its largest absolute eigenvalue, is denoted ρ(L).

Zhebel et al. (2012) analyzed the time-stepping stability
for the continuous mass-lumped finite-element method. There
estimates of the CFL values were based on the spectral radius
ρ(L) of the spatial operator for a particular case. They consid-
ered two cases: a single reference element with homogeneous
Neumann boundary conditions for mass-lumped elements of
arbitrary shape and a distorted unit cube packed with six
tetrahedral elements with periodic boundary conditions. Note
that, to avoid too strong distortions, the ratio of the diameter
of the circumscribed sphere to the diameter of the inscribed
sphere was chosen to be smaller than 100 in that paper. We
assume that a mesh generator is able to produce such meshes.
Moreover, three different measures of the element diameter
were analyzed: the diameter of the inscribed sphere (di), a
measure based on the sum over the eigenvalues (db) and a
measure based on the spectral radius of the spatial operator
L (de) for the element of degree p = 1 on a single tetrahe-
dron with homogeneous Neumann boundary conditions and
unit velocity. The resulting CFL for a given diameter mea-
sure is then the minimum over all distortions of the reference
element and the periodic cube. Mass-lumped elements of de-
gree p = 1, 2 and 3 were considered. Table 2 summarizes the
results of that study. Among the three diameters, db produced

C© 2014 Shell Global Solutions International B.V., Geophysical Prospecting, 62, 1111–1125



1116 E. Zhebel et al.

Table 4 With time-stepping of order Mt , the values of CFL from Ta-
ble 3 must be multiplied by σt . For large Mt , these estimates approach
either π/2 or π in an alternating fashion.

Mt 2 4 6 8 10 12 14 16
σt 1 1.73 1.38 2.32 1.54 2.77 1.57 3.04
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Figure 3 (a) Errors for problem P1 as a function of 1/h = N1/3,
where N is the number of grid points for the finite-difference method
(FD) or the number of degrees of freedom for the finite-element
method (FE). Dashed lines represent the maximum norm; solid lines,
the 2-norm. The blue line marks the theoretical spatial convergence
rate for the finite elements. Second-order time stepping was used. (b)
Errors as a function of computational time on 12 cores.

the smallest spread in stability limit as a function of distortion
and is therefore the most attractive measure. Later numerical
experiments, however, still used a time step based on di, the
diameter of the inscribed sphere.

F INITE DIFFERENCES

The standard finite-difference method is given on a regular
Cartesian grid and uses central finite differences. In this case,
the domain � is given by

� = {(xi , yj , zk) | xi = i�x, yj = j�y,

zk = k�z, i, j, k ∈ N},

where �x, �y, �z are grid sizes in the x, y and z directions,
respectively. A second derivative of M-th order in the x direc-
tion at the point xi is equal to

∂2u
∂x2

∣∣∣∣∣
i

� − 1
�x2

(
w0ui +

M/2∑
k=1

wk

(
ui+k + ui−k

))
(12)

=: (Dxxu)i ,

where

w0 =
M/2∑
j=1

2
j2

, wk = (−1)k
M/2∑
j=k

2
j2

( j!)2

( j − k)!( j + k)!
,

for k = 1, . . . , M/2. We refer to, e.g., Fornberg (1988) for de-
tails of this scheme and to Holberg (1987), Kindelan et al.

(1990), and Tam and Webb (1993) for alternative ways of
calculating the finite-difference coefficients. Derivatives in the
other coordinate directions follow the same pattern. By dis-
cretizing the second-order derivative in time with the explicit
leapfrog scheme (second-order central differencing) and in
space with (12), equation (1) becomes

un+1
i, j,k = 2un

i, j,k − un−1
i, j,k + �t2c2

i, j,k

(
(Dxxun)i, j,k + (Dyyu

n)i, j,k

+(Dzzu
n)i, j,k + f n

i, j,k

)
, (13)

or in vector form,

un+1 = 2un − un−1 − �t2C2 (Lun − fn), (14)

where L denotes the spatial finite-difference operator and C is
a diagonal matrix containing velocity. The solutions at differ-
ent time steps are denoted by the superscript n for time tn =
Tmin + n�t, with n = 0, . . . , NT and �t = (Tmax − Tmin)/NT.
Sponge absorbing boundary conditions (Cerjan et al. 1985)
allow for the simulation of non-reflecting boundaries. The
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Figure 4 (a) Velocity model for problem P2. The source is denoted by a white star and receivers by white triangles. (b) The signal recorded at
one of the receivers.

stability condition for time stepping, similar to (11), is
expressed by

�t ≤ CFL
d

cmax
≤ 2√

ρ(L)
, (15)

where CFL denotes the Courant–Friedrichs–Lewy number and
cmax is the maximum velocity over the whole computational
domain. The diameter d is taken as

d = (
1/�x2 + 1/�y2 + 1/�z2

)−2
. (16)

Standard Fourier analysis provides the spectral radius of the
spatial operator on a periodic grid:

ρ(L) ≤ c2
max

(
ρ(−Dxx)

�x2
+ ρ(−Dyy)

�y2
+ ρ(−Dzz)

�z2

)
. (17)

If the grid spacings in all three coordinate directions are the
same, we can take CFL = 2/(

√
3ρ(−Dxx)), where

ρ(−Dxx) =
M/2∑
k=1

4k

k2
(

2k−1
k−1

) . (18)

This is the truncated series of 4 arcsin2(
√

ξ ) around ξ = 0,
evaluated at ξ = 1. The result approaches π2 with increasing
order M. The resulting estimates for CFL for different orders
of the discretization in three dimensions are given in Table 3.

Higher-order time stepping can be obtained by the
Cauchy–Kovalewski or Lax–Wendroff procedure (Lax and
Wendroff 1960), which replaces higher time-derivatives with
spatial derivatives using the partial differential equation. This

approach is also known as the modified equation approach
(Shubin and Bell 1987) or Dablain’s scheme (Dablain 1986).
Higher-order time stepping enlarges CFL by a factor σt, which
depends on the time-stepping order Mt, which should be an
even number. Estimates for σt are considered elsewhere (Chen
2009; De Basabe and Sen 2010; Mulder et al. 2014). Table 4
lists the results. For the second-order time discretization, the
factor σt equals one, meaning that the value of CFL is taken
from Table 3. CFL for arbitrary order M in space and Mt in
time obeys

CFL(Mt, M) = σtCFL(2, M).

In the numerical examples, we have only presented results
for second-order time stepping, as the time-stepping errors
only started to show up at very small spatial errors.

Having the stability estimates in Table 2 and 3, let us
have a look at the time step for finite elements and finite
differences. On the one hand, by comparing values of CFL

for finite differences with those of finite elements, we can see
that the latter is at least 5 times smaller than the CFL for finite
differences. On the other hand, the ratio of the diameter of the
element to the velocity is larger in the case of finite elements,
since the mesh scales with the velocity. With the acoustic wave
equation, the time step for finite differences is comparable
with that for finite elements, assuming the variation of the
velocity in the model is more than a factor 5. However, with
the elastic wave equation, where the shear velocity can be
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Figure 5 (a) Errors for problem P2 as a function of 1/h = N1/3,
where N is the number of grid points for the finite-difference method
(FD) or the number of degrees of freedom for the finite-element
method (FE). Dashed lines represent the maximum norm; solid lines,
the 2-norm. The blue line marks the theoretical spatial convergence
rate for the finite elements. Second-order time stepping was used. (b)
Errors as a function of computational time on 12 cores.

much smaller than the P-wave velocity, the situation can turn
in favour of finite elements.

COMPARISONS

As has been shown by Zhebel et al. (2011), the higher-degree
elements are more efficient for a given accuracy than those of

lower degree. Therefore, for our comparisons, we consider the
mass-lumped element of degree 3, type 2 (Chin-Joe-Kong et al.

1999), which has a more favourable time-stepping stability
limit than type 1, as can be seen from Table 2. The element
is enriched with polynomials of degree 5 in the interior of
the faces and of degree 6 in the interior of the tetrahedron,
leading to a total of 50 nodes for each element. It will result
in a fourth-order spatial error.

For the finite-difference method, we chose the eighth-
order spatial discretization. Formally, it has an eighth-order
spatial error. However, in the case of large contrasts, the
finite differences are expected to have a reduced accuracy
of first- or second-order (Brown 1984; Symes and Vdovina
2009). Large finite-difference stencils allow us to choose fewer
points per wavelength, leading to smaller computational grids
(Alford et al. 1974).

To simulate topography in the finite-difference code, we
took the approach of Bartel et al. (2000). We added an extra
layer on top of the computational domain to make it rectangu-
lar, taking the velocity of the top layer of the solid model, but
a low density of 0.0013 g/cm3. In the solid part of the model,
the density was set to 1 g/cm3. To avoid instabilities, an ex-
tra point with a density of 0.1 g/cm3 was added just above
the free surface, as recommended by Bartel et al. (2000). We
preferred to simulate the topography with a density contrast
rather than with a velocity contrast, to avoid air wave artefacts
in the seismic data. Another advantage of this approach is the
reduced size of the computational grid, since the spacing in
each direction depends on the minimum velocity in the model.
The disadvantage of the large density contrast is a reduction
of the CFL stability bound below the usual von Neumann sta-
bility estimate listed in Table 3. The source was represented
as a tapered sinc function, a variant of the one proposed by
Hicks (2002).

We need an estimate of the numerical errors produced
by the codes as a function of the elapsed time. If the ex-
act solution is known, the L2-error is computed for one
receiver by

‖e‖L2
=

⎛
⎝(NT + 1)−1

NT∑
n=0

[
un − un

exact
]2

⎞
⎠

1/2

maxn |un
exact|

, (19)

where n denotes the time and NT is the maximum number of
time steps. For the maximum error, we take

‖e‖max = maxn

∣∣un − un
exact

∣∣
maxn

∣∣un
exact

∣∣ . (20)
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Figure 6 (a) Velocity model for problem P3. The source is denoted by a red star and receivers by yellow triangles. (b) Snapshot of the wave
field.

If the exact solution is unknown, the absolute error can
be estimated from the relative errors, obtained by comparing
the differences between solutions on a sequence of grids of
various mesh sizes. Wang et al. (2010) presented an example
of this approach in a geophysical context. Let h be a measure
of the grid spacing. Instead of the spacing, we take h = N−1/3,
where N is the number of grid points of the finite-difference
mesh or the number of degrees of freedom of the finite-element
discretization. We expect the spatial error to behave as some
power q of h:

uh − uh
exact � ahq, (21)

where a is a constant depending on position and time, uh

is the numerical solution on a given mesh and uh
exact is the

projection of the exact solution to the same mesh. The relative
error on two meshes with h1 and h2 will then behave as

∥∥uh1 − uh2
∥∥ � ‖a‖ |hq

1 − hq
2|. (22)

For the norm, we will consider the maximum norm and the
standard L2 norm. Given runs on four different grids, we can
estimate ‖a‖ and q with a nonlinear fit, assuming that the
spatial error dominates over the time-stepping error. Since
the error behaviour is only an asymptotic estimate, additional
runs may be useful to assess the quality of the result.

R E S U L T S

In this section, we compare finite differences and finite ele-
ments on several problems starting with simple ones and later
including models with topography and complex geometries.
In all cases, we discretize the subsurface either using tetrahe-
dral meshes that scale with the velocity for the finite-element
method or using a uniform Cartesian grid for the standard
finite-difference method.

The first model, P1, represents a homogeneous cube of
size [0, 2] km×[0, 2] km×[0, 2] km with a constant velocity
c = 1.5 km/s and with reflecting boundary conditions. The
source is taken as a 12-Hz Ricker wavelet and is located at
(1, 1, 1.5) km. A single receiver is placed at (1, 1, 0.5) km.
The maximum time of the experiment is 1.2 s. We discretized
this problem with continuous mass-lumped finite elements of
degree p = 1, 2 and 3 on a sequence of unstructured tetra-
hedral meshes with decreasing diameters of the tetrahedra. A
sequence of finite-difference grids had spacings of 20, 10 and
5 m and grids of sizes 1013, 2013 and 4013, and the time
steps were 2, 4/3 and 2/3 ms, respectively. The finite-element
meshes had values for N1/3 of 211.8, 264.6, 317.3, 370.1 and
422.9, with N the total number of degrees of freedom. The
time steps were 1.25, 1, 0.8, 0.7 and 0.625 ms, respectively.
Figure 3 displays the results. Note that for finer meshes, the
second-order time-stepping error starts to appear. It is ob-
vious that for this cube with constant velocity and density,
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finite differences beat finite elements by at least one order of
magnitude in speed.

Next, we take the homogeneous cube, rotate it by 30◦,
drape an air layer around it and project it on a grid in the
original coordinates. The resulting model is denoted P2 and
is illustrated in Figure 4. This problem is simple enough to
allow for an exact solution of the wave field inside the rotated
cube, but at the same time it is complex enough to simulate
the effect of the topography. The air is simulated by a density
contrast, as described in the previous section, with the val-
ues 0.0013, 0.1, 1 g/cm3, the latter being the density inside
the cube. The density contrast has only been used for the fi-
nite differences, since the topography is naturally embedded
in the tetrahedral finite-element meshes. Source and receivers
are close to the boundary of the rotated cube and are shown
as the white star and white triangles in Figure 4(a). The sig-
nal recorded at one of the receiver positions is presented in
Figure 4(b). The wavelet is affected by the surface ghost and
the later arrival is the reflection from the left boundary of the
rotated cube.

Figure 5 shows the errors for data recorded at the central
receiver as a function of the degrees of freedom Nand the com-
putational time for the model problem P2, using either the
p = 3 type 2 continuous mass-lumped finite-element method
or the finite-difference scheme with an eighth-order approxi-
mation of the second derivatives in each coordinate direction.
The finite-difference code was run with a time step of 0.5 ms
on a 301 × 201 × 301 grid, 0.4 ms on a 382 × 251 × 382,
and 0.18 ms on a 758 × 501 × 758 grid. The finite-element
code ran with time steps of 0.9, 0.72, 0.6, 0.5, 0.45 ms for
problems with 384 000, 750 000, 1 296 000, 2 058 000 and
3 072 000 elements. The convergence for the mass-lumped fi-
nite elements is close to the theoretical order 4, whereas the
finite-difference method has problems in converging in this
setting.

The third model, P3, is the dipping interface shown in
Figure 6(a). We consider a 3D domain of size [0, 2] km × [0,
2] km × [0, 2] km with two half spaces having velocities of
1.5 and 3.0 km/s. The interface runs at a depth from 0.7 to
1.3 km for x of 0 and 2 km, so the dip angle is 16.7◦. A shot is
located at (779.7, 1000, 516.3) m, 350 m above the interface
in the shallow low-velocity part of the model. The receivers
are located 250 m above the interface and have offsets from
100 to 700 m with a 25-m interval, parallel to the interface in
the down-dip direction of the source.

Figure 7 shows the errors as a function of the degrees of
freedom N and the computational time, using either the p = 3
type 2 continuous mass-lumped finite-element method or the
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Figure 7 (a) Errors for problem P3 as a function of 1/h = N1/3,
where N is the number of grid points for the finite-difference method
(FD) or the number of degrees of freedom for the finite-element
method (FE). The dashed lines represent the maximum norm; the
solid lines, the 2-norm. The blue line corresponds to a spatial fourth-
order error. Second-order time stepping was used. (b) Errors as a
function of computational time on 12 cores.

finite-difference scheme with an eighth-order approximation
of the second derivatives in each coordinate direction. The
finite-difference code was run at 83% of the stability limit,
with a time step of 1 ms on a 2513 grid, 0.5 ms on a 5013 grid
and 0.25 ms on a 10013 grid. The finite-element code ran with
time steps of 0.5, 0.35 and 0.2 ms at about 0.93 to 0.97%
of the stability limit on the meshes with 294 508, 567 071
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Figure 8 Vertical cross section at y = 2 km through the tetrahedral
mesh for the model problem P4.

and 2 320 289 elements, respectively. For both finite differ-
ences and finite elements, the direct wave was modelled on the
same mesh but with a constant velocity of 1.5 km/s and then
subtracted to leave only the reflected or refracted event. The
exact solution was computed in the frequency–wavenumber
domain and then transformed to time and space. It is obvi-
ous that, asymptotically, the continuous mass-lumped finite
elements are more accurate than the finite differences because
the mesh follows the interface. However, finite differences
show better performance when the desired accuracy is not
very high.

Figure 8 depicts a section through a tetrahedral mesh used
in the finite-element computations for our fourth model prob-
lem, P4, with xmin = 0 m, xmax = 2000 m, ymin = 0 m, ymax =
2000 m, zmin = −819.398 m and zmax = 1800 m. Again, the
finite-element mesh was generated in such a way that the
element sizes would scale with the local velocity. Figure 8
shows a vertical cross-section of the somewhat unrealistic ve-
locity model. A shot was placed in the centre of the model,
at xs =2000 m, ys =2000 m and 10 m below the surface. Re-
ceivers were placed from xr =1012.5 m to 2987.5 m at 25-m
intervals, yr =2000 m and a depth of 10 m below the sur-
face in the vertical direction. The continuous mass-lumped
finite-element method of degree 3, type 2 was run on the
problems with 641 746, 795 500 and 918 626 elements. In
all cases, the time step was equal to 0.31 ms because the ra-
tio of the diameter of an element to the velocity in this ele-
ment was kept the same. The runs for finite differences were
performed on grid sizes of 201 × 201 × 136, 401 × 401 ×
271 and 801 × 801 × 541, with time steps of 0.5, 0.25,
0.125 ms, respectively.

Figure 9(a) shows estimates of the absolute error, ||a||hq,
in the trace data for finite differences and finite elements as a
function of the degrees of freedom N to the power 1/3, us-
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Figure 9 (a) Estimated errors for problem P4 as a function of 1/h =
N1/3, where N is the number of grid points for the finite-difference
method (FD) or the number of degrees of freedom in the finite-element
method (FE). Dashed lines represent the maximum norm; solid lines,
the 2-norm. (b) Estimated errors as a function of computational time
on 12 cores.

ing three runs for each, on the model problem P4. Although
the finite-difference method formally has an eighth-order spa-
tial error, the estimated error lies somewhere between first-
and second-order, as expected, because the position of the
interface is not known within the distance of a grid spacing,
yielding a local first-order error, and because the solution has
a discontinuous derivative across the interface, resulting in a
local second-order error.
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Figure 10 Section through the tetrahedral mesh for the model
problem P5.

The experimentally estimated power for the asymptotic
spatial error in the finite-element method is better than 5,
but was set to its theoretical value of 4, giving less opti-
mistic and more conservative estimates. However, Figure 9(b)
demonstrates that the efficiency of the finite-element method
is superior. To achieve, for instance, an accuracy of 1%, the
finite-element method is about two orders of magnitude faster
than the finite-difference method. Results were obtained on
12 cores on a single board, using MPI for the finite-difference
code and OpenMP with multi-threading for the finite-element
code.

Figure 10 shows a vertical section of the fifth model
problem, P5, with xmin = 0 m, xmax = 4460 m, ymin = 0 m,
ymax = 4440 m, zmin = −919.642 m and zmax = 3300 m. In
addition to the mountainous topography, we inserted some
high-velocity geological structures: a chalk layer marked in
red and a salt body, in cyan. A shot was placed at the top mid-
dle of the domain with coordinates xs =2089 m, ys =2150 m,
at a depth of 100 m below the surface in the vertical
direction.

The accuracy and performance estimates for problem P5
are given in Figure 11. The results are similar to problem P4.
To achieve 1% accuracy, the continuous mass-lumped finite-
element method is two orders of magnitude faster than the
standard finite-difference method.

Of course, the timings depend on implementation de-
tails, code optimization, compilers and hardware. It should
be mentioned that the finite-element method uses local assem-
bly of the stiffness matrices on the fly at each time step to
save storage. We have observed that global assembly of the
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Figure 11 (a) Estimated errors for problem P5 as a function of
1/h = N1/3, where N is the number of grid points for the finite-
difference method (FD) or the number of degrees of freedom for
the finite-element method (FE). Dashed lines represent the maximum
norm; solid lines, the 2-norm. (b) Estimated errors as a function of
computational time on 12 cores.

matrix M−1K will speed up the code by a factor of about 3,
far less than can be expected by considering the number of
floating point operations. This is due to memory access and
cache misses. The element of degree 1 was an exception. It
allowed for more than one order of magnitude speed-up. We
want to emphasize that these results should be taken only as
crude indications of performance.
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SCALABIL ITY

With constantly developing computational architectures, es-
pecially with multi-core processors, there is a need to adapt
existing algorithms. Some algorithms have a better scalability
than others, indicating how efficient an algorithm is when us-
ing an increasing numbers of cores. There are several ways to
measure parallel performance; see Sun and Ni (1993) for an
overview. For our experiments, we chose the strong scalabil-
ity or fixed-size measure, where the problem size stays fixed
but the number of cores is increased. Since the problems we
are trying to solve are very large, so that they barely fit in
the memory, the question arises: ‘What is the performance
of an algorithm applied to a given data set if more proces-
sors are used?’ By performance, we mean the elapsed time of
the time stepping without the preparation phase that involves
reading the velocity model and constructing the discretization
operators.

The finite-difference method is often considered easy to
parallelize, because each point in space at a given time step can
be treated independently of its neighbours. However, the com-
putations require information about a number of neighbour-
ing nodes, which is equal to the length of the finite-difference
order M in (12). Basically, to calculate a value at one point in
space, we need to perform 3(M + 1) + 4 reads from memory
and 3(M + 4) + 6 arithmetic operations.

As mentioned before, the finite elements are also easily
parallelized: the computation of values for one element at a
given time step is independent of that for its neighbours. It
only requires information about the discretization nodes of
an element; information about the neighbours is not needed
during the assembly on the fly. Assuming a mass-lumped el-
ement of degree 3, type 2, we need to treat 50 nodes per
element (see Table 1), which requires six matrix–vector mul-
tiplications. The size of the matrices is 50 × 50. Therefore,
finite elements are computationally more intensive than finite
differences. Also, there are many more arithmetic operations
than memory fetches.

Here, we compare the finite-difference method and con-
tinuous mass-lumped finite-element method in terms of effi-
ciency. We define efficiency as the ratio of measured elapsed
time on a single core to N times the elapsed time on N cores.
Ideally, the efficiency equals one, meaning that running on N

cores provides speed-up by a factor of N.
Table 5 lists the observed efficiency for finite differ-

ences and finite elements for problem P3. It is clear that the
finite-element method scales better than the finite-difference
method. This is because it is more computationally intensive

Table 5 Efficiency of finite differences (FD) and finite elements (FE)
on multi-core architectures.

N cores FD FE

4 0.86 0.96
6 0.79 0.95
8 0.71 0.92
12 0.58 0.88

and less memory-bound. However, the more cores used, the
more memory-bound the code will be.

CONCLUSIONS

We have compared a fourth-order mass-lumped continuous
finite-element method on tetrahedral unstructured meshes
with a standard eighth-order finite-difference method on uni-
form rectangular meshes in terms of performance and accu-
racy, by which we mean the elapsed computational time it
takes to obtain a numerical solution at fixed accuracy. For
a model with constant velocity, the finite-element method
is inefficient compared with the finite-difference method. At
the other extreme, a model with sharp interfaces and to-
pography, this particular type of finite-element method eas-
ily wins. We have also considered both methods in terms of
scalability on the multi-core architectures. The finite-element
method shows better scalability with the number of cores than
the finite-difference method.
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