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ABSTRACT
Simulations of wave propagation in the Earth usually require truncation of a larger
domain to the region of interest to keep computational cost acceptable. This intro-
duces artificial boundaries that should not generate reflected waves. Most existing
boundary conditions are not able to completely suppress all the reflected energy, but
suffice in practice except when modelling subtle events such as interbed multiples.
Exact boundary conditions promise better performance but are usually formulated in
terms of the governing wave equation and, after discretization, still may produce un-
wanted artefacts. Numerically exact non-reflecting boundary conditions are instead
formulated in terms of the discretized wave equation. They have the property that
the numerical solution computed on a given domain is the same as one on a domain
enlarged to the extent that waves reflected from the boundary do not have the time to
reach the original truncated domain. With a second- or higher-order finite-difference
scheme for the one-dimensional wave equation, these boundary conditions follow
from a recurrence relation. In its generalization to two or three dimensions, a recur-
rence relation was only found for a single non-reflecting boundary on one side of the
domain or two of them at opposing ends. The other boundaries should then be zero
Dirichlet or Neumann. If two non-reflecting boundaries meet at a corner, translation
invariance is lost and a simple recurrence relation could not be found.
Here, a workaround is presented that restores translation invariance by impos-

ing classic, approximately non-reflecting boundary conditions on the other sides and
numerically exact ones on the two opposing sides that otherwise would create the
strongest reflected waves with the classic condition. The exact ones can also be applied
independently. As a proof of principle, the method is applied to the two-dimensional
acoustic wave equation, discretized on a rectangular domain with a second-order
finite-difference scheme and first-order Enquist–Majda boundary conditions as ap-
proximate ones. The method is computationally costly but has the advantage that it
can be reused on a sequence of problems as long as the time step and the sound speed
values next to the boundary are kept fixed.
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Modelling.
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INTRODUCTION

Modelling seismic wave propagation in a subset of the Earth
requires truncation of the computational domain to the region
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of interest. The resulting artificial boundaries should not gen-
erate reflected waves that were absent in the original problem.
The large number of papers on the subject suggests that this
cannot be considered a solved problem. Among the many re-
views and comparison papers are those byMittra et al. (1989),
Tsynkov (1998), Tourrette and Halpern (2001),Givoli (2004),
Hagstrom and Lau (2007), Bérenger (2015), Antoine et al.
(2017) and Gao et al. (2017). Most existing boundary con-
ditions are not able to completely suppress reflected energy,
but may still suffice in practice. In some cases, for instance,
when modelling interbed multiples, the reflected events may
be too strong and a better method is required.

A subset of these boundary conditions is exact. Some in-
volve an analytical solution in the region between the trun-
cated domain and infinity, which is feasible if the problem
is homogeneous or special enough that such a solution ex-
ists (Keller and Givoli, 1989; Deakin and Dryden, 1995;
Givoli et al., 1998). Others are based on Green’s second iden-
tity (Ting and Miksis, 1986; Deakin and Dryden, 1995; van
Manen et al., 2007). Givoli and Cohen (1995) showed that
the method of Ting and Miksis (1986) suffers from a weak
instability that can be suppressed by adding some dissipation.
Teng (2003) proposed a formulation based on boundary in-
tegrals, which after discretization becomes the local condition
of Engquist and Majda (1979).

Losing exactness after discretization can be avoided if the
partial differential equation (PDE) is discretized first and then
an exact boundary condition is formulated. The result can be
called a numerically exact non-reflecting boundary condition,
to distinguish it from the earlier analytical methods. Note that
on a computer, the finite number of digits for the representa-
tion of floating point numbers will produce round-off errors
and exactness does not exist. The term will nevertheless be
used with the silent assumption that the round-off errors are
orders of magnitude smaller than the discretization error of
the PDE.

Numerically exact non-reflecting boundary conditions
produce a solution that is the same as a subset of one ob-
tained on an enlarged domain with boundaries moved so far
away that their reflected waves do not have time to reach the
original domain. They were proposed in a preceding paper
(Mulder, 2020) for a rectangular domain. Earlier, Sofronov
and Podgornova (2006) considered a similar method for cir-
cular domains with polar coordinates and Fourier modes in
the direction parallel to the boundary. The non-reflecting con-
ditions are based on the boundary Green functions computed
for the discretized PDE, called elementary kernels by Sofronov
and Podgornova (2006).

In the one-dimensional case with a finite-difference ap-
proximation of second or higher order, the boundary condi-
tions obey a recurrence relation. This observation, made in
the preceding paper, significantly reduces the cost of comput-
ing the elementary kernels or boundary Green functions. In
the generalization to more than one space dimension and on
a rectangular domain, however, the derivation of a recurrence
relation seems only to be feasible for a single non-reflecting
boundary, or for two of them at opposing ends of the rect-
angular domain. The other boundaries should then be zero
Dirichlet or Neumann. The reason is the assumed translation
invariance in the direction perpendicular to the boundary.This
property is lost in the presence of a corner where two non-
reflecting boundaries meet. Then, a simple recurrence relation
no longer seems to exist.

The workaround proposed here combines the exact
boundary condition in one coordinate direction with a classic,
approximately non-reflecting boundary condition (Engquist
and Majda, 1979; Higdon, 1986, a.o.) in the other coordi-
nate direction(s). This restores translation invariance at the
expense of numerical exactness. Still, the method can be use-
ful if the approximately non-reflecting boundary conditions
produce too strong unwanted reflection events in one coordi-
nate direction. This can happen, for instance, when modelling
interbed multiples in marine examples with a shallow sea or
in land examples with strong surface waves.

The method is described for the simplest case of the
two-dimensional acoustic wave equation discretized with
the lowest-order finite-difference scheme, combined with the
lowest-order Enquist–Majda boundary conditions.Numerical
tests are included.

METHOD

Discretization

The acoustic wave equation in two dimensions is given by

1
ρc2

∂2u
∂t2

= ∂

∂x

(
1
ρ

∂u
∂x

)
+ ∂

∂z

(
1
ρ

∂u
∂z

)
+ f , (1)

with a solution u(t,x, z) depending on time t and po-
sition (x, z) in a given model with sound speed c(x, z)
and density ρ(x, z). The source term f (t,x, z) is typically
of the form w(t )δ(x− xs)δ(z− zs) for a point source at
(xs, zs) with wavelet w(t ). The rectangular computational do-
main is defined by [xmin,xmax] × [zmin, zmax] and discretized
on a grid with Nx ×Nz points: xi = xmin + (i− 1

2 )�x, i =
1, . . . ,Nx, and z j = zmin + (i− 1

2 )�z, i = 1, . . . ,Nz, with grid
spacings �x = (xmax − xmin)/Nx and �z = (zmax − zmin)/Nz,
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Figure 1 Enlarged domain with the grid points of the original domain drawn as open circles and those of the exterior as filled black circles.
The boundaries on the left, top and bottom are, for instance, zero Dirichlet, and are drawn in blue. The discrete boundary Green function is
the response in the exterior of a unit spike at time zero for a given grid point, marked as a filled red circle, on the non-reflecting boundary of
the interior, otherwise indicated by red open circles. For a second-order scheme, only the values at exterior grid points next to the boundary are
needed, as indicated by the arrows. With constant extrapolation of the material properties in the direction perpendicular to the boundary, the
boundary Green functions are translation-invariant when stepping towards the right.

respectively. The standard second-order finite-difference
scheme in space and time is

1
ρi, jc2i, j�t

2
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]
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(2)

The average specific volumes are ρ−1
i+1/2, j = 2/(ρi, j + ρi+1, j )

and ρ−1
i, j+1/2 = 2/(ρi, j + ρi, j+1) (Kummer et al., 1987; Moczo

et al., 2002; Vishnevsky et al., 2014). Time is discretized
by tn = t0 + n�t with a constant time step �t that should
obey the Courant–Friedrichs–Lewy (CFL) stability limit
�t

√
(�x)−2 + (�z)−2 maxi, j(ci, j ) ≤ 1.
The spatial derivatives in equation (2) involve values out-

side the domain, which should be provided by suitable bound-
ary conditions. In the examples in the next section, a free-
surface boundary condition is imposed at zmin = 0 by setting
uni,0 = −uni,1. The other boundaries are assumed to be non-

reflecting.At zmax, the lowest-order boundary condition of En-
gquist and Majda (1979), their equation (4.2), is imposed:

un+1
i, j+1 = uni, j + αi, j(uni, j+1 − un+1

i, j ), for j = Nz, (3)

where αi, j = (1 − νi, j )/(1 + νi, j ) and νi, j = ci, j�t/�z. This
represents a second-order implicit time discretization of
the equation ∂u/∂t = −c ∂u/∂z. Note that the lowest-order
Higdon condition (Higdon, 1986; Mulder, 1997) provides the
same expression. Similar conditions can be imposed at xmin

and xmax.

Numerically exact non-reflecting boundary conditions

An alternative to the classic boundary conditions are the nu-
merically exact ones. Here, only the one at one side of a rect-
angular domain, at x = xmax, is considered. For the moment,
assume that the other boundaries are, for instance, zero
Dirichlet. The original domain can be extended to the right
by constant extrapolation of the material properties in the di-
rection perpendicular to the boundary. The enlarged domain
consists of the original one, which also will be referred to as
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Figure 2 (a) Wavefield after 2 seconds for a random model on the domain extended at xmin and xmax but with Enquist–Majda at the bottom.
(b) The difference between the wavefield for numerically exact boundary non-reflecting conditions at xmin and xmax and the Enquist–Majda
condition at the bottom and the one in (a) consists in numerical round-off errors.

the interior, and the additional part or exterior. The exterior
should be sufficiently large that reflected waves from the new
boundary at the right do not have time to reach the origi-
nal domain.

The non-reflecting boundary condition hinges on the dis-
crete boundary Green functions.These describe, for each point
on the boundary, the response in the exterior of unit spikes in
time and space on the non-reflecting boundary of the interior.
Figure 1 sketches the idea. The domain is split into two parts,
the original domain with grid points marked as open circles
and the exterior that extends all the way to infinity with grid
points drawn as filled black circles. For each interior point on
the boundary, with one drawn as a red filled and the other
as red open circles, the initial-boundary value problem for the
discrete wave equation is solved in the exterior,with at the bot-
tom and top the same boundary conditions as for the interior.
At the far right, at infinity, ideally a non-reflecting boundary
condition is imposed, but a reflecting will do as well if the
simulation time is shorter than the time needed for reflected
waves to return to the interior. At the left, the boundary val-
ues of the interior are applied, which are set to zero except for
the unit spike at time zero at the selected boundary point. Re-
peating this for each point on the non-reflecting boundary of
the interior, marked by the red circles, produces the boundary
Green functions.

When convolved in space and timewith the actual bound-
ary values present in the interior, the solution in the exterior

is predicted for the next time step and at an arbitrary distance
from the boundary.With the lowest-order scheme above, only
the points next to the boundary in the exterior are needed, as
indicated by the arrows. Then, the discrete wave equation can
be evaluated in the interior for the current time step, using
the predicted values on the points just outside the boundary
as given. In this way, the computation of the response in the
exterior part of the domain, excluding the interior except for
the single boundary spike at time zero, is decoupled from the
simulation in the interior.

A second ingredient of the method is the computation of
the discrete boundary Green functions. Simulations in the ex-
terior for each boundary spike will provide them, but at a sig-
nificant cost. With the assumption of constant extrapolation
of the material properties in the direction perpendicular to the
boundary, recursion based on translation invariance in combi-
nation with the discretized wave equation in a small strip can
be applied to compute the boundary Green functions close
to the boundary. Their evaluation involves simple expressions
but is still costly because of the convolutions in space and
time.

Although constant extrapolation perpendicular to the
boundary is a reasonable choice, it may cause problems, for
instance, in the presence of dipping layers next to the bound-
ary. Horizontal or vertical extrapolation will then create a
strong diffractor on the boundary. It is therefore better if the
medium is changed to horizontally layered when approaching
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Figure 3 (a) Wavefield for a domain extended at zmax but with Enquist–Majda at the left and right. (b) Difference between the wavefield with
the exact condition at zmax and Enquist–Majda at the left and right and the one in (a).

the boundary, or smoothed to avoid large contrasts. Such
adaptations represent a research topic by itself and will not be
considered further. Instead, we continue with a brief review of
the boundary conditions.

The discrete boundary Green function Gn
i, j;Nx, j0

for xmax

is defined as the wavefield generated by a unit spike at time
zero (n = 0) and position (xNx , z j0 ), evaluated at later time
tn, n > 0, and at positions (xi, z j ), i > Nx, for j and j0 =
1, . . . ,Nz, while setting the wavefield to zero at x = xNx for
n > 0. This means that Gn

Nx, j;Nx, j0
= δn,0δ j, j0 , using the Kro-

necker delta. It also implies that these Green functions do not
depend on the sound speed and density at i < Nx, as long as
the time step �t and grid spacings are kept fixed, as well as
the sound speeds and densities at i = Nx.

With these Green functions, the wavefield just outside
the domain can be predicted from earlier values on the
boundary:

unNx+1, j =
n∑

m=1

Nz∑
j0=1

Gm
Nx+1, j;Nx, j0

un−mNx, j0
. (4)

Note that this expression only holds for the lowest-order dis-
cretization. For higher orders, additional points for some val-
ues of i < Nx are involved (Mulder, 2020).

The boundary Green functions Gn
i, j;Nx, j0

at i = Nx +
1 follow from the discrete wave equation (2) with zero
source term f ni, j = 0. Constant extrapolation in the direc-
tion perpendicular to the boundary is applied to the sound
speed and density: ci, j = cNx, j and ρi, j = ρNx, j for i > Nx.
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Figure 4 Wavefield for constant model.

Initially, G0
Nx+1, j;Nx, j0

= 0, G1
Nx+1, j;Nx, j0

= (cNx, j�t/�x)2δ j0, j

and G0
Nx+2, j;Nx, j0

= G1
Nx+2, j;Nx, j0

= 0.
The discrete wave equation in the strip i = Nx + 1 in-

volves values at the left, at i = Nx, that are all zero except for
the unit spike at time n = 0 and position (xNx , z j0 ). At the top,
the free surface can be modelled by anti-symmetric extrapola-
tion: Gn

Nx+1,0;Nx, j0
= −Gn

Nx+1,1;Nx, j0
. At the bottom, the same

boundary condition as in the interior should be used, for in-
stance, zero Dirichlet as at the free surface, zero Neumann
with Gn

Nx+1,Nz+1;Nx, j0
= Gn

Nx+1,Nz;Nx, j0
or the Enquist–Majda

condition of equation (3), which is the proposed workaround
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(a) (b)
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Figure 5 (a) Difference between the wavefield on the truncated and the enlarged domain, as shown in Fig. 4, for (a) Enquist–Majda boundary
conditions, (b) exact at xmin and xmax, (c) exact at zmax, and (d) exact, separately at xmin, xmax and zmax. Note that the true solution in Fig. 4
has a smaller amplitude.

in this paper. At the right, at i = Nx + 2, recursion with equa-
tion (4) shifted one point to the right results in

Gn
Nx+2, j;Nx, j0

=
n−1∑
m=1

Nz∑
k=1

Gn−m
Nx+1, j;Nx,kG

m
Nx+1,k;Nx, j0

, n > 1. (5)

Its earlier values are zero. Note that the last equation assumes
translation invariance in the direction perpendicular to the
boundary. Alternating between this recursion relation and the
discrete partial difference equation at i = Nx + 1 provides the
boundary Green functions Gn

Nx+2, j;Nx, j0
and Gn

Nx+1, j;Nx, j0
, of

which only the latter is needed in equation (4).

Convolution is the most costly part of the method.
Sofronov and Podgornova (2006) describe further approxi-
mations to reduce that cost, but these have not been consid-
ered here. Note that the discrete boundary Green functions
can be reused if the material properties on the boundary, the
grid spacing and the time step stay the same, which may be
useful for simulating multiple shots.

RESULTS

As a proof of principle, a random model on a domain 1 km
wide and 40 m deep is considered. Sound speed values vary

© 2020 European Association of Geoscientists & Engineers,Geophysical Prospecting, 68, 2857–2866
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between 0.7 and 1.0 km/s, whereas density values range from
0.8 to 2.0 g/cm3. Such a model is pre-eminently suited for code
development and testing. The source at xs = 397.5 m and zs =
97.5m, on a grid point, has a waveletw(t ) = − d

dt [4(t/Tw )(1 −
t/Tw )]12 for 0 ≤ t ≤ Tw = 0.1625 s and zero otherwise, which
corresponds to a peak frequency of about 10 Hz. The grid
spacing is �x = �z = 5 m. A free-surface boundary condition
is present at zmin = 0 m.

A first test had non-reflecting boundary conditions at the
left and right, at xmin = 0 and xmax = 1 km, and the Enquist–
Majda conditions at the bottom. For comparison, a run was
performed on a domain extended at the left and right but with
a free surface at the top and the Enquist–Majda conditions at
the bottom. Figure 2(a) shows a subset of the resulting wave-
field after 2 seconds.The difference between the result with the
numerically exact non-reflecting boundary conditions at the
left and right and a subset of the former is shown in Fig. 2(b)
and is of the order of 10−15, representing accumulated numer-
ical round-off errors in a double-precision computation.

Figure 3(a) shows the wavefield for a second test, now
with the Enquist–Majda boundary conditions at the left and
right and a non-reflecting boundary at the bottom, at zmax =
0.4 km. Again, the difference with the wavefield for a numer-
ically exact non-reflecting boundary condition at the bottom
consists in numerical round-off noise, as shown in Fig. 3(b).
This demonstrates the effectiveness of the exact boundary con-
ditions and the correctness of the code.

The second example is a constant model with a sound
speed of 1 km/s and density of 1 g/cm3. Again, the boundaries
are non-reflecting except for the free surface at zmin = 0 m.
Domain size, shot position and wavelet are the same as in the
first example. Figure 4 shows a subset of the wavefield on the
original domain after 1 second, computed on an domain en-
larged in both x and z. The wavefront has already disappeared
and only the tail of the two-dimensional Green function is
visible.

Figure 5 shows the difference between the wavefield for
various boundary conditions with that of Fig. 4. Figure 5(a)
displays the result for Enquist–Majda boundary conditions on
all sides except the free surface. With numerically exact con-
ditions at the left and right but Enquist–Majda at the bottom,
the result of Fig. 5(b) is obtained. The approximate charac-
ter of the Enquist–Majda condition generates reflected waves
at the bottom that travel back to the surface, where they are
reflected by the free surface. The figure shows the remnants
of these up- and downgoing waves. With an exact condition
at the bottom, at zmax = 400 m and Enquist–Majda on the
left and right, Fig. 5(c) is obtained. Now, we see horizontally

(a)

(b)

(c)

Figure 6 (a) Sound speed model. (b) Density. (c) Seismogram.
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(a) (b)

(c) (d)

Figure 7 Difference between the seismogram on the truncated and the enlarged domain, shown in Fig. 6(c), for (a) Enquist–Majda boundary
conditions, (b) exact at xmin and xmax, (c) exact at zmax and (d) exact, separately at xmin, xmax and zmax.

travelling waves caused by the inexactness of the boundaries
on the left and right.

If the exact boundary conditions are applied indepen-
dently, assuming an Enquist–Majda or free-surface boundary
condition in the other direction during the computation of the
discrete boundary Green functions, the result of Fig. 5(d) is
obtained. The difference with the one in Fig. 4 now mainly
consists in waves reflected from the corner. Note that all the
figures have the same scale. The actual maximum amplitudes
for the various runs are: 0.028 for the full wavefield on the
extended domain, 0.27 for the difference plot in Fig. 5(a) with
the Enquist–Majda conditions, 0.24 for the difference plot
with exact conditions in x (b), and 0.095with exact conditions
in z (c), showing that the waves reflected from the bottom are

strongest in this example. The maximum amplitude of the dif-
ference when exact conditions are applied independently in x
and z is 0.064, mainly caused by waves reflected from the two
corners at the bottom, visible in Fig. 5(d). The corner reflection
is caused by the approximate character of the Enquist–Majda
conditions employed in the discrete wave equation during the
computation of the boundary Green functions.

The third and last example is a salt diapir in a marine
environment with a shallow sea, slightly modified from Mul-
der (2001). Figure 6(a,b) shows the velocity model and the
density. Figure 6(c) displays the seismogram for a shot at xs =
505 m and zs = 15 m for the same wavelet as in the previous
example but now with Tw = 1.625/ fpeak, fpeak = 12 Hz. Re-
ceivers were placed at a depth of 10 m between xr = 600

© 2020 European Association of Geoscientists & Engineers,Geophysical Prospecting, 68, 2857–2866
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and 3500 m at a 25-m interval. The grid spacing was 10 m.
Figure 7(a) plots the difference between a seismogram deter-
mined with the Enquist–Majda boundary conditions on all
sides except the free surface and the seismic data obtained on
the enlarged domain of Fig. 6(c). Figure 7(b) shows the differ-
ence with exact conditions at the left and right and Enquist–
Majda at the bottom. Only reflected waves from the bottom,
caused by the approximate character of the Enquist-Majda
boundary conditions, are visible. With an exact boundary at
the bottom and Enquist–Majda on the left and right, the re-
sult in Fig. 7(c) resembles that of Fig. 7(a), indicating that with
Enquist–Majda, the stronger reflected events come from the
side. Finally, Fig. 7(d) displays the result with exact bound-
ary conditions applied independently. Note that all graphs of
Fig. 7 employ the same scale. The maximum observed ampli-
tudes, scaled by that of the result in Fig. 6(c), are 0.093 for
Enquist–Majda, 0.010 with exact boundaries in x, 0.092 with
an exact boundary at zmax and 0.0050 with independent ex-
act boundaries at xmin, xmax and zmax. From a cost perspective,
exact conditions only in x may be preferable in this example.

CONCLUSIONS

Numerically exact non-reflecting boundaries provide a solu-
tion that is not different from one on an enlarged domain with
the boundary so far away that unwanted reflected waves do
not have time to return. They require discrete boundary Green
functions that can be computed by a simple recurrence rela-
tion if only one or two opposing sides of a rectangular domain
are considered, assuming that material properties in the en-
larged domain are obtained by constant extrapolation in the
direction perpendicular to the boundary. If two sides share
a common corner, translation invariance is lost and a sim-
ple recurrence relation does not seem to exist. The proposed
workaround consists of an exact condition in one direction
and a classic, approximate condition in the other. Although
exactness is lost, the resulting condition can be advantageous
in cases where the classic conditions provide reflection events
that are much stronger in one coordinate direction than in
the other. This can happen in the presence of a shallow wa-
ter layer or with strong surface waves. Alternatively, the exact
conditions can be applied independently, using the approx-
imate conditions in the other direction during the recursive
computation of the boundary Green functions. This leaves re-
flected waves from the corners. In the examples studied, these
have significantly smaller amplitudes than the reflected waves
from the sides generated by the approximate classic boundary
condition used, the lowest-order Enquist–Majda condition.

Higher-order finite-difference discretizations are feasi-
ble, as well as a combination with higher-order approxi-
mately non-reflecting boundary conditions. A disadvantage of
the proposed boundary condition is the computational cost,
caused by its convolutional character. However, the boundary
Green functions can be reused for a several problems as long
as the grid size, time step and material properties next to or
on the boundaries do not change.
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