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ABSTRACT
The representation of a force or moment point source in a spectral finite-element code
for modelling elastic wave propagation becomes fundamentally different in degener-
ate cases where the source is located on the boundary of an element. This difference
is related to the fact that the finite-element basis functions are continuous across ele-
ment boundaries, but their derivatives are not. A method is presented that effectively
deals with this problem. Tests on one-dimensional elements show that the numerical
errors for a force source follow the expected convergence rate in terms of the ele-
ment size, apart from isolated cases where superconvergence occurs. For a moment
source, the method also converges but one order of accuracy is lost, probably be-
cause of the reduced regularity of the problem. Numerical tests in three dimensions
on continuous mass-lumped tetrahedral elements show a similar error behaviour as
in the one-dimensional case, although in three dimensions the loss of accuracy for the
moment source is not a severe as a full order.

Key words: Seismics, Elastics, Modelling, Mathematical formulation, Computing
aspects.

INTRODUCTION

In exploration geophysics, the method of choice for elas-
tic wave propagation modelling and inversion is the finite-
difference method, whereas in seismology, the spectral ele-
ment method on hexahedra (Komatitsch and Vilotte, 1998)
has found widespread use. On simplicial elements such as tri-
angles and tetrahedra, the construction of spectral elements
is not as straightforward as on quadrilaterals and hexahe-
dra, where Cartesian products enable the generalization of the
one-dimensional polynomial elements with Legendre–Gauss–
Lobatto nodes and their corresponding quadrature weights
to multiple dimensions. Up till now, triangular spectral ele-
ments of degree 2 and 3 (Cohen et al., 1995, 2001; Tordj-
man, 1995), 4 (Mulder, 1996), 5 (Chin-Joe-Kong et al., 1999),
infinitely many of degree 6 (Mulder, 2013) and 7 to 9 (Cui
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et al., 2017; Liu et al., 2017) have been found. Spectral ele-
ments for tetrahedra have been available since 1996 (Mulder,
1996; Chin-Joe-Kong et al., 1999) but were rarely used be-
cause the requirement to maintain spatial accuracy after mass
lumping comes at a high computational expense (Lesage et al.,
2010; Mulder and Shamasundar, 2016). This changed fairly
recently, when a sharper accuracy criterion led to a significant
cost reduction (Geevers et al., 2018, 2019),making themmore
appealing for large-scale applications.

The numerical representation of the source term in a
finite-element method is straightforward if a point force
source is considered. Integration of a spatial delta function
against the finite-element basis functions provides the result in
the form of weights equal to the basis functions evaluated at
the source position (Komatitsch and Vilotte, 1998). Degener-
ate cases, where the source is located on a face, edge or vertex
of an element, do not pose a problem because the basis func-
tions are continuous across elements. Therefore, evaluation
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Figure 1 Three cases for the position of a moment source on a 2D triangular mesh. If the source, marked by a star, lies inside a triangle (a), only
one element is involved. If on an edge (b), two elements have to be considered. If on a vertex, all neighbouring elements have to be taken into
account.

with reference to one element or to another, either one hav-
ing the source on its boundary, will provide the same weights
as long as only a single element is considered per source. For
a moment source, this is no longer true.

The problem arises when a moment source is represented
by means of derivatives of delta functions. Integration against
the finite-element basis functions then provides their deriva-
tives at the source position. These are not continuous across
element boundaries. If the source is, for instance, located on
a face shared by two elements, a completely different result is
obtained if the evaluation is carried out with reference to the
element on one side of that face or on its other side.

A solution is presented below, together with a set of tests
in one and three space dimensions to study its impact on
the numerical accuracy. In one dimension, the spectral ele-
ments consist of polynomials up to a certain degree, defined
on Legendre–Gauss–Lobatto nodes to allow for mass lump-
ing and explicit time stepping. The generalization to quadri-
laterals in two dimensions and hexahedra in three dimensions
involves Cartesian products of basis functions and is straight-
forward. Here, their formulation on tetrahedra is examined
with polynomials of degree 1 to 4, but augmented with higher
degree polynomials in the interior of the faces and of the tetra-
hedral elements, which is required to maintain accuracy after
mass lumping.

METHOD

Consider a computational domain � partitioned into simpli-
cial elements T j( j = 1, . . . , nelem). On each element, the basis
functions φ j,k are the Lagrange interpolating polynomials over
the nodes k = 1, . . . ,np of that element, obeying φ j,i(xk) =
δi,k. In the finite-element discretization of the second-order

form of the elastic wave equation, the basis functions provide
themassmatrixM and stiffnessmatrixK, as well as a discrete
representation of the source term, f (Komatitsch and Vilotte,
1998; Fichtner, 2011; Mulder and Shamasundar, 2016, e.g.).

A point force source is of the form f = w(t )s δ(x −
xs), where w(t ) denotes the wavelet, s its directional am-
plitudes and xs the source position. If the source is con-
tained well inside an element js, as sketched in Fig. 1(a)
for the two-dimensional case, the contribution to fg( js,k),� is∫
T js

f�φ js,k dx = w(t )s�φ js,k(xs). Here, g( j, k) defines the local-
to-global map from node k in element j to the global set of
degrees of freedom and � = 1, 2,3 denotes the component.

If the source happens to lie on an edge, as sketched in
Fig. 1(b), there are two neighbouring elements j1 and j2 that
contribute with weights φ j1,k(xs) = φ j2,k(xs). These weights
are equal, because the basis functions are assumed to be con-
tinuous from element to element. As a result, the source is
counted twice. This can be repaired either by allowing only
one element to contribute, which is the simplest approach, or
by computing the sum of the contributing φ j,k(xs) and dividing
by it, that is, determine ai = ∑

g( j,k)=i φ j,k(xs), and divide fi,� by
ai if non-zero. In the case sketched in Fig. 1(c), the source is
located on a vertex and again only one element can be used
to compute the discrete source term, or the normalization has
to be carried out using all elements connected to that vertex,
which will provide the same result but is clearly less efficient.

A point moment source has components of the form
w(t )M�,m∂xmδ(x − xs). If the source is well inside an element
T js , the contribution to fg( js,k),� is

∫
T js

φ js,kw(t )M�,m∂xmδ(x − xs) dx

= −w(t )M�,m∂xmφ js,k(xs). (1)
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This involves derivatives of the basis functions evaluated at the
source position. Because these are not continuous across ele-
ment boundaries, the simple approach of evaluating the source
term for just a single element will fail in the cases of Fig. 1(b,c).
Then, the alternative method of adding contributions for all
neighbouring elements and normalizing by ai, if non-zero, is
needed. Note that the latter involves the values of the basis
functions, not their derivatives.

The net result for component � of the finite-element
source term at the node with global index i, is

fi,� = 1
ai

∑
g( js,k)=i

fg( js,k),� if ai �= 0, (2a)

fg( js,k),� = w(t )s�φ js,k(xs)

− w(t )
3∑

m=1

M�,m∂xmφ js,k(xs), (2b)

ai =
∑

g( js,k)=i
φ js,k(xs). (2c)

If ai = 0, then fi,� = 0. Here, force and moment sources have
been combined into one expression, but usually only one of
them is present. One or more elements T js contain the source
position xs, the wavelet isw(t ), the force source has elements s�
and the symmetric moment source tensorM�,m for � = 1, 2,3
and m = 1,2, 3. The nodes are enumerated by k = 1, . . . ,np
inside one element T j with associated Lagrange basis functions
φ j,k, and g( j, k) defines the local-to-global map from node k in
element j to the global set of nodes or scalar degrees of free-
dom.

Since the examples involve higher-order time stepping
(von Kowalevsky, 1875; Lax and Wendroff, 1960; Dablain,
1986; Shubin and Bell, 1987; Mulder et al., 2014), the related
equations are recapitulated for completeness. For order Mt ,
we have

un+1 − 2un + un−1 = 2
Mt/2∑
m=1

(�t )2m

(2m)!
∂2mun

∂t2m
, (3a)

∂2m+2un

∂t2m+2
= M−1

(
∂2mfn

∂t2m
− K∂2mun

∂t2m

)
, m ≥ 0. (3b)

The superscript n denotes the values at time tn = n�t.Higher-
order time stepping can be avoided altogether, of course, with
Stork’s dispersion correction method (Stork, 2013; Anderson
et al., 2015;Wang andXu, 2015; Koene et al., 2017; Qin et al.,
2017).

NUMERICAL RESULTS IN ONE DIMENSION

The acoustic wave equation in terms of displacement rather
than pressure reads

ρ
∂2u
∂t2

= f + ∂

∂x

(
ρv2 ∂u

∂x

)
, (4)

where the displacement u(t,x) depends on time t and position
x, ρ(x) is the density and v(x) the sound speed. As before,
f (t,x) = w(t )δ(x− xs) defines a point force source at xs. For a
moment source, the same expression with f = −W (t )∂xδ(x−
xs) can be used. The spectrum is similar in both cases ifW (t )
is the time integral of the wavelet w(t ) for the force source.
For a problem with constant coefficients and non-reflecting
boundary conditions, the exact solution at sufficiently large
time, after the wavelet has ended, is

u f
exact(t,x) = 1

2ρv
[W (t − (x− xs)/v) +W (t + (x− xs)/v)], (5)

for a force source, whereas a moment source leads to

uMexact(t,x) = 1
2ρv2

[W (t − (x− xs)/v) −W (t + (x− xs)/v)]. (6)

In one space dimension, the spectral elements are poly-
nomials up to degree p defined on Legendre–Gauss–Lobatto
nodes. The inclusion of the vertices makes them continuous,
and the choice of nodes provides sufficient accuracy after mass
lumping. For the numerical tests, a domain with x ∈ [0,2] km
is partitioned into an even number of cells with constant width
h. The shot is placed at xs = xjs + ξsh, where 0 ≤ ξs < 1 and
xjs = 1 km is the position of a mesh vertex. The source wavelet
is chosen either as a 10-Hz Ricker wavelet w(t ) for a force
source or as its time integralW (t ) for a moment source. The
sound speed is v = 2 km/s, and the density is ρ = 2 g/cm3.
Time runs from 0 to 0.3 s.

The fourth-order central Lax–Wendroff time-stepping
scheme ran at 80% of the maximum allowable time step.
Together with a polynomial degree p = 3 for the spatial dis-
cretization, the solution error is expected to behave as O(h4)
for an element size h, if the solution itself is sufficiently smooth
and the mesh sufficiently fine.

Figure 2(a) displays the maximum and root-mean-square
(RMS) error, relative to the maximum amplitude, as a function
of mesh size h for a fixed relative source position ξs = 0.2. If a
power-law fit is made, the error is roughly proportional to h4

with the force source, both for the RMS and maximum error.
With the moment source, one order is lost and we observe
roughly O(h3) convergence.

Figure 2(b) displays the powers obtained by such power-
law fits for various choices of the relative source position ξs,
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Figure 2 Powers for errors with 1-D elements of polynomial degree 3.
(a) The RMS and maximum error as a function of element size h for
a force or moment source at a fixed relative source position ξs = 0.2.
Power-law fits provide the powers shown in (b) and (c) as a function
of the relative source position ξs for the RMS and maximum errors,
respectively.

obtained with the RMS norm for a force or moment source.
Figure 2(c) does the same for the maximum error. Results are
fairly similar. For some choices of ξs, superconvergence is ob-
served. The term ‘superconvergence’ is used here in the narrow
sense of higher-order accuracy at isolated points (Strang and
Fix, 1973, p. 168).

For the force source, the peak in the measured power
occurs near the Legendre–Gauss–Lobatto nodes, defined by
the element’s endpoints and the roots of the derivative of

Figure 3 Example of a mesh.

the Legendre polynomial, d
dxP3(xj ) = 0, at ζ j = 1

2 (1 + xj ) =
0, 1

2 (1 − √
1/5) = 0.2764, 1

2 (1 + √
1/5) = 0.7236 and 1. For

the moment source, the peaks occur near the three roots
of P3(x), at ζ j = 1

2 (1 + xj ) = 1
2 (1 − √

3/5) = 0.1127, 1
2 and

1
2 (1 + √

3/5) = 0.8873.

NUMERICAL RESULTS IN THREE
DIMENSIONS

The application to tetrahedra faces the same issues as the one-
dimensional case. For the continuous mass-lumped finite ele-
ments, augmented with higher-degree polynomials to preserve
accuracy after mass lumping, only the more efficient ones are
considered, with four nodes for the standard linear elements,
15 for degree 2, 32 for 3 and 65 for degree 4 (Geevers et al.,
2018, 2019).

The test problem resembled that of Geevers et al. (2019).
The domain had x ∈ [−2, 2] km, y ∈ [−1, 1] km and z ∈ [0, 2]
km. The isotropic elastic parameters were constant, with P-
wave velocity vp = 2.0 km/s, S-wave velocity vs = 1.2 km/s
and density ρ = 2 g/cm3. The source was positioned at xs =
ys = 0 m and a depth zs = 1, 000 m. Receivers were placed
between xr = −612.5 to 612.5 m at a 25-m interval and at
yr = 200 and zr = 800m.The Ricker wavelet had a 5-Hz peak
frequency for the vertical force source with s = (0 0 1)T. For
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Figure 4 RMS errors for a 3-D homogeneous elastic problem with a
force source (a) or moment source (b) as a function of the cube root
of the number of scalar degrees of freedom N. The legend contains
the polynomial degree of the finite-element discretization, the order
of the time-stepping scheme, the number of nodes per element and
the power of the power-law fit to the error. The latter are included as
drawn lines.

the moment source, the time integral of that Ricker wavelet
was used and the moment tensor was

M =

⎛
⎜⎝
0 2 1
2 0 −1
1 −1 0

⎞
⎟⎠ . (7)

Natural, reflecting boundaries were used on all sides. Time ran
from −0.42 to 0.60 s, starting before the onset of the zero-
phase wavelet and ending before reflected waves reached the
receivers. A sequence of successively finer meshes was consid-
ered, with one shown in Fig. 3.

Figure 4(a) displays the root-mean-square errors for a
force source, observed on several meshes with the four con-
tinuous mass-lumped finite-element schemes considered here,
from degree p = 1 to 4. Power-law fits show that, on aver-
age, the error behaves slightly better than hp+1, where N−1/3

was taken instead of the average element size h. Here, N is
the total number of scalar degrees of freedom, which is one-
third of the number of displacement unknowns. Figure 4(b)
shows similar curves for the moment source. Power-law fits
yield powers that are significantly smaller than p+ 1 for el-
ements with degrees p = 1 to 4, as in the 1-D case, although
the loss of accuracy apparently is less than a full order for the
higher degrees.

CONCLUSIONS

A solution was presented to the degeneracy of a moment
source located on an element boundary. For a spectral ele-
ment of a given degree, one-dimensional experiments show
that a force source and a smooth wavelet produces errors of
the order of the degree plus one, apart from isolated source po-
sitions at which superconvergence occurs. A moment source
has one order less, most likely due to reduced regularity. The
generalization to quadrilaterals in two dimensions and hexa-
hedra in three dimensions is straightforward. In three dimen-
sions on tetrahedra with continuous mass-lumped elements, a
similar error behaviour was observed, establishing the validity
of the approach.
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