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Abstract
Temporal dispersion correction of second-order finite-difference time stepping for

numerical wave propagation modelling exploits the fact that the discrete operator is

exact but for the wrong frequencies. Mapping recorded traces to the correct frequencies

removes the numerical error. Most of the implementations employ forward and inverse

Fourier transforms. Here, it is noted that these can be replaced by a series expansion

involving higher time derivatives of the data. Its implementation by higher-order finite

differencing can be sensitive to numerical noise, but this can be suppressed by enlarging

the stencil. Tests with the finite-element method on a homogeneous acoustic problem

with an exact solution show that the method can achieve the same accuracy as higher-

order time stepping, similar to that obtained with Fourier transforms. The same holds

for an inhomogeneous problem with topography where the solution on a very fine mesh

is used as reference. The series approach costs less than dispersion correction with the

Fourier method and can be used on the fly during the time stepping. It does, however,

require a wavelet that is sufficiently many times differentiable in time.

K E Y W O R D S
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INTRODUCTION

Discretization errors affect numerical modelling of wave

propagation for seismic applications. For the spatial part, the

errors can be kept small by using sufficiently many points per

wavelength in a finite-difference code. Higher-order schemes

are usually more efficient, except in very heterogeneous earth

models. The same holds for finite elements that tend to have a

better accuracy than finite differences in the presence of rough

topography or large contrasts in the subsurface properties, but

only if the element boundaries follow the sharp interfaces.

The temporal error is likewise controlled by the size of

the time step. A smaller time step reduces the error but also
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increases the number of required time steps and, therefore,

the computational cost. For time stepping with a second-order

finite-difference scheme in time, Stork (2013) showed that

the temporal error can be removed from recorded traces by

dispersion correction. The numerical scheme produces a solu-

tion that is exact for the wrong frequency. When mapped to

the correct frequency, the error almost completely disappears.

Since Stork’s paper, several implementations of this idea were

proposed (Anderson et al., 2015; Dai et al., 2014; Koene et al.,

2018; Li et al., 2016; Mittet, 2017; Qin et al., 2017; Xu et al.,

2017; Wang & Xu, 2015b).

The method of Koene et al. (2018) performs the Fourier

interpolation by means of a slow Fourier transform, followed
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by a fast inverse one. When applying the scheme, a problem

was encountered when requiring very high accuracy, in par-

ticular with low frequencies in the source wavelet and in two

dimensions where the Green function has slow decay (Mul-

der, 2023). The dispersion correction suffers from the abrupt

truncation of the recorded traces at the maximum recording

time. The obvious solution of extending the maximum time

of the simulation in combination with a smooth taper will

ameliorate the problem, but the required extra number of time

steps increases the compute cost. Also, the Fourier interpo-

lation has a quadratic cost in the number of time samples,

which can be lowered by using a non-uniform fast Fourier

transform (Dutt & Rokhlin, 1993; Duijndam & Schonewille,

1999; Feichtinger et al., 1995; Potts et al., 2001; Potter et al.,

2017) instead.

Here, an alternative implementation is proposed, based

on a series expansion in the time domain and involving

only local higher time derivatives of the data. This next

section summarizes elementary facts about numerical disper-

sion and its correction by a Fourier-type approach, using a

finite-difference discretization of the one-dimensional wave

equation in second-order form as an example. The reader

familiar with the subject can skip it. Then, the method is

described and tested on a homogeneous problem with an exact

solution as well as an inhomogeneous problem with topogra-

phy, both taken from Mulder (2023). The results are compared

to those obtained with the method of Koene et al. (2018) and

with higher-order time stepping by the Cauchy–Kovalewski

or Lax–Wendroff or Dablain or modified-equation method

(Dablain, 1986; Lax & Wendroff, 1960; Shubin & Bell, 1987;

von Kowalevsky, 1875). The last section summarizes the

main conclusions.

BACKGROUND

Here, elementary facts about errors in the finite-difference

method are reviewed. Stork’s (2013) dispersion correction

and its implementation with Fourier transforms are explained.

The method of Koene et al. (2018) is compared to an

obvious alternative, which actually might be new in this

context.

Consider the one-dimensional scalar wave equation 𝜕𝑡𝑡𝑢 =
𝑐2𝜕𝑥𝑥𝑢 with solution 𝑢(𝑡, 𝑥), depending on time 𝑡 and position

𝑥, and a constant wave speed 𝑐. The solution is discretized

in space on a periodic grid with points 𝑥𝑗 = 𝑥0 + 𝑗Δ𝑥, 𝑗 =
0, 1,… , 𝑁𝑥 − 1. The discretization in time involves time lev-

els 𝑡𝑛 = 𝑛Δ𝑡, 𝑛 = 0, 1,…, leading to a discrete solution with

values 𝑢𝑛
𝑗
= 𝑢(𝑡𝑛, 𝑥𝑗). The periodic boundary condition sets

𝑢𝑛
𝑁𝑥

= 𝑢𝑛0.

Define a shift operator 𝑇𝑥 by 𝑇𝑚
𝑥
𝑢𝑛
𝑗
= 𝑢𝑗+𝑚 for integer 𝑚.

A central difference discretization in space of order 2𝑀𝑥 is

given by the operator

𝐷
(𝑀𝑥)
𝑥𝑥 = − 1

Δ𝑥2

[
𝑤0 +

𝑀𝑥∑
𝑚=1

𝑤𝑚(𝑇𝑚
𝑥
+ 𝑇 −𝑚

𝑥
)

]
, (1)

with weights (Fornberg, 1987, among other)

𝑤0 =
𝑀𝑥∑
𝑘=1

2
𝑘2

, 𝑤𝑚 = (−1)𝑚
𝑀𝑥∑
𝑘=𝑚

2
𝑘2

(𝑘!)2

(𝑘 − 𝑚)!(𝑘 + 𝑚)!
, (2)

for 1 ≤ 𝑚 ≤ 𝑀𝑥. If a second-order central scheme is applied

in time, the discrete equation becomes

𝑢𝑛+1
𝑗

− 2𝑢𝑛
𝑗
+ 𝑢𝑛−1

𝑗

Δ𝑡2
= 𝑐2𝐷

(𝑀𝑥)
𝑥𝑥 𝑢𝑛

𝑗
. (3)

An estimate of the numerical error follows from a Fourier

expansion in 𝑢̂ = exp[i(𝑘𝑥 − 𝜔𝑡)] with wavenumber 𝑘. In

the exact case, 𝑘 = ±𝜔∕𝑐. Minus signs are usually ignored

because of (anti-)symmetry. Substitution of a Fourier mode

in Equation (3) produces

−
[
sin(𝜔Δ𝑡∕2)

Δ𝑡∕2

]2
𝑢̂ = 𝐷̂

(𝑀𝑥)
𝑥𝑥 𝑢̂, (4)

where the Fourier symbol 𝐷̂
(𝑀𝑥)
𝑥𝑥 follows from 𝐷

(𝑀𝑥)
𝑥𝑥

by replacing 𝑇𝑥 with 𝑇̂ = ei𝑘Δ𝑥. The right-hand side

can be obtained as the truncated series expansion of

[2(𝑐∕Δ𝑥) arcsin(
√

𝜂)]2 in 𝜂 up to the power 𝑀𝑥, followed by

substitution of 𝜂 = sin2(𝑘Δ𝑥∕2) = (2 − 𝑇̂ − 𝑇̂ −1)∕4.

A Taylor series expansion of Equation (4) in Δ𝑡 and Δ𝑥

provides

−𝜔2
[
1 − 1

12
(𝜔Δ𝑡)2

]
= (𝑐𝑘)2

[
1 −

2 (𝑀𝑥!)2

[2(𝑀𝑥 + 1)]!
(𝑘Δ𝑥)2𝑀𝑥

]
, (5)

revealing a second-order error in time and an order 2𝑀𝑥 in

space. The net effect of these errors will appear as numerical

dispersion, with the dispersion relation 𝜔(𝑘) implicitly given

by Equation (4) and approximately by Equation (5).

Figure 1a shows an example with 𝑐 = 1 km/s, periodic

boundary condition 𝑢(𝑡, 𝑥 = 𝑥max) = 𝑢(𝑡, 𝑥 = 0) with 𝑥max =
1 km and discrete initial values 𝑢0

𝑗
= 𝑤0(𝑥𝑗), 𝑢−1𝑗 = 𝑤0(𝑥𝑗 +

𝑐Δ𝑡) for a pulse 𝑤0(𝑥) = [4max(0, 𝜉(1 − 𝜉))]4 with 𝜉 =
(𝑥 − 400)∕100. The exact solution is 𝑢(𝑡, 𝑥) = 𝑤0(𝑥 − 𝑐𝑡),
describing a pulse travelling to the right. The time step

is set at about half the maximum time step, defined by

the Courant–Friedrichs–Lewy (CFL)number: 𝜈 = 𝑐Δ𝑡∕Δ𝑥 ≃
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TEMPORAL DISPERSION CORRECTION 303

F I G U R E 1 A pulse is distorted by numerical dispersion after

travelling around the periodic domain twice. The second-order time

discretization causes higher frequencies to move faster.

0.5 𝜈max, where

1∕𝜈2max =
1
2

𝑀𝑥∑
𝑚=1

4𝑚[(𝑚 − 1)!]2∕(2𝑚)! (6)

for a scheme of spatial order 2𝑀𝑥. The example has an eighth-

order scheme with 𝑀𝑥 = 4 and 𝜈max =
√
315∕512.

The numerical result at time 2𝑥max∕𝑐, after travelling

two times around, is drawn in Figure 1a as a red line

and the exact solution as a black line. If the small spatial

error is neglected, 𝜔 ≃ arcsin(ckΔ𝑡∕2)∕(Δ𝑡∕2), the phase

velocity obeys 𝑐phase∕𝑐 ≃ 1 + (𝜔Δ𝑡)2∕24 and the group

velocity 𝑐group∕𝑐 = 𝑐−1d𝜔∕d𝑘 ≃ 1∕
√
1 − (𝜔Δ𝑡∕2)2 ≃

1 + (𝜔Δ𝑡)2∕8, showing that the higher frequen-

cies tend to travel faster, an effect clearly visible in

Figure 1a.

Stork (2013) noted that Equation (4) is actually exact

in time for a modified frequency 𝜔̃ = 𝜔 sinc(𝜔Δ𝑡∕2) with

sinc(𝑥) = sin(𝑥)∕𝑥. To remove the effect of dispersion, he

computes the effect of dispersion on a given wavelet as a

function of several time intervals and interpolates between the

results to obtain a time-variable filter. Other implementations

follow the same idea (Anderson et al., 2015; Dai et al., 2014;

Li et al., 2016). The approach via the Fourier domain, which

is considerably easier to code, was taken by Wang and Xu

(2015b) and later by Koene et al. (2018), Mittet (2017), Qin

et al. (2017) and Xu et al. (2017). The last corrects a flaw in the

approach of Wang and Xu (2015b), but there is an alternative

to both, as will be shown below.

Figure 2a sketches the idea. Suppose the angular frequen-

cies on the horizontal axis were obtained after a fast Fourier

transform (FFT) on a modelled seismic trace, in this exam-

ple for equally spaced frequencies from 0 to 50 Hz. Only very

few samples are shown on the horizontal axis of Figure 2a

for clarity. These angular frequencies should actually be inter-

preted as the non-uniformly spaced samples of 𝜔̃ on the

vertical axis. If a fast inverse transform is to be used to return

to the time domain, the data as a function of 𝜔̃ should be

interpolation to an equidistant grid, from 0 to (2∕𝜋)𝜔max.

The obvious approach is to use higher-order interpolation

with Lagrange interpolating functions. However, the real and

imaginary parts of the spectrum can be highly oscillatory

and require a very high order. An alternative is to map the

data to amplitude and phase and perform the interpolation

in that domain, but phase unwrapping can be difficult. The

interpolation operator of the highest order, involving all grid

points, amounts to the Fourier interpolation with unevenly

spaced points and will be reviewed below. Before doing that,

it should be noted that Koene et al. (2018) take an opposite

approach, illustrated in Figure 2b. The initial FFT from the

time domain to the frequency domain is replaced by a non-

uniform Fourier transform that produces angular frequencies

𝜔 that have the corresponding 𝜔̃ on an equidistant grid. The

result can then immediately be transformed back to the time

domain by an FFT.

An alternative is to first use an FFT and then use the Fourier

interpolation to map the exact but non-equidistant angular

frequencies 𝜔̃ to an equidistant grid. Consider the spectrum

𝑔(𝑓 ) with frequencies 𝑓 ∈ [−𝑓max, 𝑓max] and 𝑔(𝑓 ) = 0 for|𝑓 | > 𝑓max. Its Fourier expansion with coefficients 𝑎𝑛 is

𝑔(𝑓 ) =
∞∑

𝑛=−∞
𝑎𝑛e2𝜋i 𝑛𝑓∕(2𝑓max),

𝑎𝑛 =
1

2𝑓max ∫
𝑓max

−𝑓max

d𝑓 𝑔(𝑓 )e−2𝜋i 𝑛𝑓∕(2𝑓max).

(7)

Assuming that 𝑔(𝑓 ) has been obtained from an FFT on

well-sampled periodic time data with constant sampling

interval Δ𝑡 = 1∕(2𝑓max) , we have discrete frequencies 𝑓𝑗 ,

symmetrically arranged relative to 𝑓0 with 𝑓−𝑗 = −𝑓𝑗 . For

real-valued time data, 𝑔𝑗 = 𝑔(𝑓𝑗) = 𝑔∗−𝑗 , where the asterisk

denotes the complex conjugate. If there are 𝑛f frequen-

cies with 𝑛f odd, take 𝑗 = −𝑗max,… , 𝑗max, 𝑗max = (𝑛f − 1)∕2,

including 𝑓0 = 0. If 𝑛f is even, consider the 𝑛f indices 𝑗 =
−𝑗max + 1,… , 𝑗max with 𝑗max = 𝑛f ∕2 and again 𝑓0 = 0, and

let the now real-valued 𝑔−𝑗max
= 𝑔𝑗max

correspond to the high-

est frequency, which is proportional to −1,+1,−1,+1,… in

the time domain. In this way, we effectively obtain 𝑛f + 1
discrete frequencies.

The integral in Equation (7) can be approximated by the

trapezoid rule, leading to

𝑎𝑛 = Δ𝑡

𝑗max∑
𝑗=−𝑗max

1
2 (𝑔̃𝑗−1 + 𝑔̃𝑗)(𝑓𝑗 − 𝑓𝑗−1), 𝑔̃𝑗 = 𝑔𝑗e

−2𝜋i 𝑛(𝑓𝑗Δ𝑡),

(8)
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F I G U R E 2 Illustration of dispersion correction in the frequency domain. (a) An FFT produces equidistant angular frequencies 𝜔, shown on the

horizontal axis. The numerical dispersion curve in black deviates from the true one in red. The vertical axis contains the angular frequencies 𝜔̃ for

which the numerical result is exact. The frequency-domain data can be interpolated to an equidistant grid in 𝜔̃ followed by an FFT to the time

domain or can be transformed directly to the time domain by a non-uniform Fourier transform. (b) A non-uniform Fourier transform can also be

applied directly on the time-domain data to obtain values of 𝜔 on a non-equidistant grid that produce an equidistant grid for 𝜔̃, after which an inverse

FFT can be applied.

where 𝑓max = 1∕(2Δ𝑡) has been used. In this periodic set-

ting, the trapezoid rule converges exponentially for suffi-

ciently smooth functions, much better than the better-known

non-periodic case with only second-order accuracy (Tre-

fethen & Weideman, 2014). With 𝑔−𝑗 = 𝑔∗
𝑗

and 𝑔̃−𝑗 =
𝑔̃∗
𝑗
, the expression (8) with ℎ𝑗−1∕2 = Δ𝑡(𝑓𝑗 − 𝑓𝑗−1) reduces

to

𝑎𝑛 = 2Re
𝑗max∑
𝑗=1

1
2 (𝑔̃𝑗−1 + 𝑔̃𝑗)ℎ𝑗−1∕2

= Re
[
𝑔̃0ℎ1∕2 + 𝑔̃1(ℎ1∕2 + ℎ3∕2) +⋯

+𝑔̃𝑗max−1(ℎ𝑗max−3∕2 + ℎ𝑗max−1∕2) + 𝑔̃𝑗max
ℎ𝑗max−1∕2

]
,

(9)

or

𝑎𝑛 = Re
𝑗max∑
𝑗=1

𝑔𝑗ℎ̃𝑗e
−2𝜋i 𝑛(𝑓𝑗Δ𝑡), (10)

where ℎ̃1 = ℎ1∕2, ℎ̃𝑗 = ℎ𝑗−1∕2 + ℎ𝑗+∕2 for 𝑗 = 2,… , 𝑗max −
1, ℎ̃𝑗max

= ℎ𝑗max−1∕2. To obtain the interpolated values of 𝑔(𝑓 )
on an equidistant grid of frequencies, the coefficients have

to be substituted into the expansion of 𝑔(𝑓 ) in Equation (7),

which can be accomplished by an FFT. That step can be

skipped, since we are only interested in the time-domain

result, already available as 𝑎𝑛 = 𝑎(𝑡𝑛).
Figure 3 presents an example of this procedure on a prob-

lem taken from figure 3 in Koene et al. (2018), where

dispersion is added to and then removed from an 8-Hz Ricker

wavelet that peaks at 0.2 s. The time samples are 𝑡𝑛 = 𝑛Δ𝑡

with Δ𝑡 = 0.015 s and 𝑛 = 0, 1,… , 26. The method described

above provides a very similar result to that of Koene et al.

(2018), who argue that the approach of Wang and Xu (2015a)

is incorrect. However, what the latter refer to as forward time

dispersion transform step 3 is, strictly taken, correct if the inte-

gral would be approximated by the above approach with the

trapezoid rule.

If a seismic trace does not end with zero values, which is

usually the case, a smooth taper should be applied at the end.

If the data are to be preserved over a given time span, this

implies that the modelling time should be extended beyond

the desired maximum time to provide sufficiently many extra

time samples for the taper (Mulder, 2023).

METHOD

The second-order formulation of the wave equation contains

the second time derivative 𝜕𝑡𝑡𝑢, where 𝑢(𝑡, 𝐱) is the pressure as

a function of time 𝑡 and position 𝐱 in the acoustic case or one of

the displacement or particle velocity components in the elas-

tic case. A second-order finite-difference approximation is

𝐷𝑡𝑡𝑢
𝑛 = (𝑢𝑛+1 − 2𝑢𝑛 + 𝑢𝑛−1)∕Δ𝑡2 with time step Δ𝑡. The dis-

crete solution at time 𝑡𝑛 = 𝑡0 + 𝑛Δ𝑡 is denoted by 𝑢𝑛 = 𝑢(𝑡𝑛),
and it will be assumed that 𝑡0 = 0. The discrete approxima-

tion is exact for an angular frequency 𝜔̃ = 𝜔 sinc(𝜔Δ𝑡∕2),
with sinc(𝑥) = sin(𝑥)∕𝑥. The dispersion correction scheme
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F I G U R E 3 Comparison of the approaches outlined in Figure 2 by adding dispersion to a Ricker wavelet and then removing it. (a) The black

circles show the result of applying a non-uniform Fourier transform to map the signal from time to frequency and an FFT to go back to time, as

proposed by Koene et al. (2018), whereas the red plusses are obtained for the reverse approach, using an FFT to go the frequency domain followed by

a non-uniform Fourier transform on non-equidistant frequencies to go back to the time domain. (b) The difference between the output of adding and

removing dispersion and the original wavelet for the two methods.

maps the recorded data to the correct angular frequency 𝜔.

Since this also changes the wavelet, dispersion has to be added

to the original wavelet to obtain the correct spectrum after

correcting the data.

Among several later implementations of this idea, the one

of Koene et al. (2018) is taken as a starting point. Their for-

ward step, which adds dispersion to the wavelet and is called

forward time dispersion transform, is given by

𝑢̃(𝑡) = 1
2𝜋 ∫

∞

−∞
d𝜔 ei𝜔𝑡∫

∞

−∞
d𝑡′ e−i𝜔𝑡

′sinc(𝜔Δ𝑡∕2)𝑢(𝑡′). (11)

A series expansion in the time step Δ𝑡 enables the direct

evaluation of the integrals and provides

𝑢̃(𝑡) = 𝑢(𝑡) +
∞∑
𝑘=1

(Δ𝑡∕2)2𝑘

(2𝑘 + 1)!
𝑟
𝑘
(𝑡),

𝑟
𝑘
=

𝑘∑
𝓁=1

(−1)𝓁𝑎
𝑘,𝓁𝜕

2𝑘+𝓁
𝑡

[𝑡𝓁𝑢(𝑡)],

(12)

as derived in the Appendix. The coefficients 𝑎
𝑘,𝓁 in Equa-

tion (A.8b) are non-zero for 1 ≤ 𝓁 ≤ 𝑘 and are defined such

that 𝑎𝑘,1 = 1. The time derivatives are replaced by operators

𝐷[𝑗,𝑚], defined as the discrete 𝑗th derivative of order 𝑚, 𝑚

even, for a unit grid spacing. The discrete approximation of

Equation (12) becomes

𝑢̃(𝑡) ≃ 𝑢(𝑡) +
𝑘max∑
𝑘=1

(1∕2)2𝑘

(2𝑘 + 1)!
𝑟𝑘(𝑡),

𝑟𝑘 =
𝑘∑

𝓁=1
𝑎
𝑘,𝓁(−Δ𝑡)−𝓁𝐷[2𝑘+𝓁,max(1,𝑀𝑡−2(𝑘−1))](𝑡𝓁𝑢),

(13)

with 𝑡 and 𝑢(𝑡) are given on the same equidistant grid with

spacing Δ𝑡. The operator 𝐷[𝑗,𝑚] is defined as the discrete

𝑗th derivative of order 𝑚, 𝑚 even, for a unit grid spacing.

If 𝑀𝑥 is the order of the error in the spatial discretiza-

tion, it makes sense to choose the temporal order 𝑀𝑡 > 𝑀𝑥,

leading to 𝑘max = 𝑀𝑡∕2 = ceil((𝑀𝑥 + 1)∕2), though 𝑘max =
ceil(𝑀𝑥∕2) may already suffice.

The expression for the actual dispersion correction, called

inverse time dispersion transform by Koene et al. (2018), is

𝑢(𝑡) = 1
2𝜋 ∫

∞

−∞
d𝜔 ei𝜔𝑡∫

∞

−∞
d𝑡′ e−i𝜔𝑡

′ arcsin(𝜔Δ𝑡∕2)∕(𝜔Δ𝑡∕2)𝑢̃(𝑡′),
(14)

and results in the series expansion

𝑢(𝑡) = 𝑢̃(𝑡) +
∞∑
𝑘=1

(−1)𝑘
(Δ𝑡∕4)2𝑘(2𝑘)!
(2𝑘 + 1)(𝑘!)2

𝑠
𝑘
(𝑡),

𝑠
𝑘
=

𝑘∑
𝓁=1

(−1)𝓁𝑏
𝑘,𝓁𝜕

2𝑘+𝓁
𝑡

[𝑡𝓁 𝑢̃(𝑡)],

(15)
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306 MULDER

F I G U R E 4 Seismogram as function of the horizontal receiver

position 𝑥𝑟 and time 𝑡.

with coefficients 𝑏𝑘,𝓁 given by Equations (A.12b). The

discrete counterpart of (15) is

𝑢(𝑡) ≃ 𝑢̃(𝑡) +
𝑘max∑
𝑘=1

(−1)𝑘
(1∕4)2𝑘(2𝑘)!
(𝑘!)2(2𝑘 + 1)

𝑠𝑘(𝑡),

𝑠𝑘 =
𝑘∑

𝓁=1
𝑏
𝑘,𝓁(−Δ𝑡)−𝓁𝐾−(2𝑘+𝓁)𝐷[2𝑘+𝓁,max(1,𝑀𝑡−2(𝑘−1))](𝑡𝓁 𝑢̃).

(16)

The factor with 𝐾 accounts for subsampling if the data are

recorded at a sampling interval 𝐾Δ𝑡 with an integer 𝐾 ≥ 1.

RESULTS

Homogeneous model

The method was tested on an earlier homogeneous problem

(Mulder, 2023) with degree-4 mass-lumped triangular finite

elements (Mulder, 2022, 1996) on an unstructured mesh.

The source is placed at the centre of a 2-km wide square

domain with reflecting zero boundary conditions, a sound

speed of 2 km/s and a density of 2 g/cm3. The receivers

are located 200 m below the source with horizontal offsets

from −800 to +800 m at a 50-m interval. The wavelet 𝑤(𝑡) =
[4(𝑡∕𝑇𝑤){1 − (𝑡∕𝑇𝑤)}]16 is non-zero for time 𝑡 ∈ (0, 𝑇𝑤) and

zero otherwise, with 𝑇𝑤 = 0.2 s. Data, shown in Figure 4,

are recorded from 𝑡 = 0 to 1.25 s. The time step was taken

at 99% of the maximum time step for stability, determined by

the power method (Mises & Pollaczek-Geiringer, 1929; Geev-

ers et al., 2019). Figure 5 displays the errors as a function of

𝑁1∕2, the square root of the number of degrees of freedom

𝑁 including the zero boundary values and of the measured

wall clock time for the time-stepping part only, obtained on a

single core and averaged over five runs. Both the relative root-

mean-square error (RMS), defined as the RMS error of the

error divided by that of the solution, and relative maximum

error, defined as the maximum error divided by the maxi-

mum solution value, are shown. The grey line in Figure 5a

and 5c denotes the expected trend of order 𝑀𝑥 = 𝑝 + 1 for

a finite element of degree 𝑝 = 4. The entries in the legend

denote the degree 𝑝 of the element, the order of the time-

stepping scheme if there is a comma and an even integer, and

the number of nodes per element, 18 in this case. If there

are brackets instead of a comma after the degree 𝑝, second-

order time stepping with dispersion correction is used. The

Fourier approach of Koene et al. (2018) is denoted by ‘(d)’

and the series approach with, for instance, ‘(s6, 2)’. The first

number is 2𝑘max, the maximum degree of the series expan-

sion in Δ𝑡. The second number refers to half the number of

extra points used for the numerical derivatives. For the stan-

dard central finite-difference scheme, it is zero. The dashed

lines mark the results for second- and higher-order time step-

ping. The maximum time step for stability increases for higher

time orders, listed for instance in Table 4 of Mulder (2013),

which partly offsets the higher cost of these schemes. The cost

increases roughly by a factor of𝑀𝑡∕2 for a time stepping order

𝑀𝑡, relative to second-order time stepping. The sixth-order

scheme exceeds the order of the spatial error by one and can

serve as a reference for comparing the other time-stepping

methods. The Fourier approach of Koene et al. (2018), cor-

responding to the red drawn line, deteriorates for very small

errors – so small, however, that they may never be needed in

practice.

The series approach, with the receiver sampling time equal

to the time step, is worse with the standard central finite-

difference scheme but improves when extra points are added

to suppress numerical noise (McDevitt, 2012). In this exam-

ple, widening the finite-difference stencil with two times

4 points (s6, 4) appears to suffice, both for the RMS and

the more erratic maximum error. In terms of efficiency,

measured by the elapsed compute time for a given accu-

racy, the series approach with 2 × 4 extra points for the

numerical derivatives appears to be the most attractive. The

time-stepping cost for the Fourier approach is larger because

the recording time was extended to accommodate a taper

with a length equal to that of the wavelet, 0.2 s. The same

was done for the series approach, but by a much smaller

amount, with a number of samples equal to half the width

of the largest finite-difference stencil. This can be avoided by

using one-sided difference operators but then more coding is

required.

Figure 6 illustrates the beneficial effect of the enlarged

finite-difference stencils on a single trace. The noise in

Figure 6a is reduced when extra points are added to the sten-

cil, and three or four extra points on each side are sufficient

in this example. The data correspond to the first trace of four
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TEMPORAL DISPERSION CORRECTION 307

F I G U R E 5 Relative RMS (a,b) and maximum errors (c,d) as a function of the square root of the number of degrees of freedom (a,c) and the

measured wall clock time for time stepping only (b,d).

runs with a fairly large number of degrees of freedom, 𝑁 =
710, 765, for wavelets treated by the series approach with the

same number of additional points as used for the data.

Figure 7 shows the effect of subsampling the recorded

traces, as commonly done in practice. To avoid additional

runs, the same data were used as before but subsampled

to the largest time interval that does not exceed 2 ms

before applying the correction of Equation (16). The origi-

nal runs were sampled at the maximum allowable time step.

With the subsampling, the standard central high-order finite-

difference scheme appears to be sufficient and no additional

points are needed for numerical-noise suppression, at least in

this example.

Inhomogeneous model with topography

Apart from the time-stepping error, the spatial discretization

will play a role. For a homogeneous problem on a rectangular

domain with reflecting boundary conditions, this error con-

verges more rapidly the higher the order of the scheme when

the mesh is refined. This changes if there are discontinuities in

the material properties, with topography as the strongest con-

trast. In the acoustic case, the pressure is continuous across

an interface that describes the positions of the discontinuities,

but its derivatives are not. If the model parameters are repre-

sented on the finite-difference grid in the most straightforward

way, by just sampling, the position of the interface is unknown

within a distance of the grid spacing, leading to a first-order

term. Therefore, if a finite-difference scheme is of order 𝑞, the

error will be of the asymptotic form 𝐶0ℎ
𝑞 + 𝐶1ℎ + 𝐶2ℎ

2 for

a grid spacing ℎ. Here, the constants 𝐶𝑘, 𝑘 = 0, 1, 2, depend

on the problem. If the spacing ℎ is too large, the error will

not follow the asymptotic form. If it is too small, numerical

round-off errors will appear, so the estimate is only valid for a

range of ℎ-values. With time stepping, the spatial errors will

accumulate but in different ways. The first term 𝐶0ℎ
𝑞 will

affect a wave continuously and grow linearly in time, whereas
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F I G U R E 6 Effect of the number of extra stencil points on the removal of numerical noise for the approximation of the term 𝜕2𝑘+𝓁
𝑡

[𝑡𝓁 𝑢̃] with

𝑘 = 3 and 𝓁 = 3. Half the number of extra points equals 0 (a), 2 (b), 3 (c) or 4 (d).

the other two terms will only contribute when a wave passes

an interface. If the model parameters vary smoothly and the

number of interfaces is small, a higher-order scheme may still

pay off.

The same is true for finite elements. In some cases, how-

ever, the first- and second-order errors at interfaces can

be suppressed if the mesh precisely follows the interfaces

between discontinuous material properties. The error will

then behave as 𝐶𝑓ℎ
𝑝+1 for an element size ℎ and a degree-

𝑝 polynomial element of the type used here. In general, this

cannot be achieved due to, for instance, small-scale details,

sharp pinch-outs, curvature, very small distances between

neighbouring faults and fractal behaviour of earth properties.

Highly distorted meshes will adversely affect the accuracy.

The presence of corner singularities, for corners with angles

other than 90◦ in the topography or at interfaces, will degrade

the numerical order. For not too complicated models, how-

ever, finite elements can perform better than finite differences

(e.g., Mulder, 1996; Zhebel et al., 2014).

Figure 8 displays a check-shot setting, taken from Mulder

(2023). The seismogram shows traces as a function of time,

up to 1.2 s, and receiver depth. Values are clipped at 2% of the

maximum amplitude over all traces. The acoustic wave equa-

tion is solved. The wavelet is 𝑤(𝑡) = [4(𝑡∕𝑇𝑤){1 − (𝑡∕𝑇𝑤)}]8
for 𝑡 ∈ (0, 𝑇𝑤) and zero otherwise, with 𝑇𝑤 = 0.1 s. The shot

is placed at 𝑥𝑠 = 100 m and a depth of 6 m depth below the

surface, corresponding to 𝑧𝑠 = −825.573 m. The receiver line

at 𝑥𝑟 = 0m has 137 receivers at a 20-m interval, starting at 𝑧 =
−750 m or 30.62 m below the surface and ending at 𝑧 = 1970
m. The recording time is 1 s. Zero Dirichlet boundary condi-

tions are used on the entire boundary to avoid contamination

by less than perfect absorbing boundaries. The error in the

seismic data is estimated by comparison to results computed

on a very fine mesh.
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F I G U R E 7 As Figure 5 but with subsampling. Apparently, numerical-noise suppression with extra points for the finite-difference stencils is

not needed.

F I G U R E 8 Density (a), P-velocity model (b) and seismogram (c) from Mulder (2023). The black star in (a) and (b) marks the source position

and the yellow line the receivers.
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F I G U R E 9 Relative RMS (a) and maximum errors (b) as a function of the square root of the number of degrees of freedom for the problem

with topography. The grey line corresponds to fourth-order convergence.
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F I G U R E 1 0 As Figure 9, but with subsampling.

Figure 9 shows these estimated errors for a degree-3

element with 12 nodes per element, 3 vertices, 2 interior

nodes per edge, and 3 interior nodes instead of 1 to avoid

accuracy loss during mass lumping (Crouzeix & Raviart,

1973; Cohen et al., 2001). The fourth-order time stepping

scheme serves as reference. The Fourier-based dispersion

correction reaches almost the same accuracy with second-

order time stepping, as does the series approach with order

4, using 𝑘max = ceil(𝑀𝑥∕2) rather than 𝑘max = ceil((𝑀𝑥 +
1)∕2) with 𝑀𝑥 = 4. No extra points appear to be needed for

the difference stencil.

Figure 10 displays similar results when subsampling is

used. The wavelet was preprocessed without subsampling and

only the dispersion correction of the data used a larger sam-

pling time interval, equal to the largest integer multiple of the

computational time step not exceeding 2 ms.

The wavelet

The smoothness of the wavelet affects the accuracy of the

time stepping scheme. For instance, the wavelet 𝑤(𝑡) =
[4(𝑡∕𝑇𝑤)(1 − 𝑡∕𝑇𝑤)]4 for 𝑡 ∈ [0, 𝑇𝑤] and zero otherwise has

a discontinuous fourth derivative at 𝑡 = 0 and 𝑡 = 𝑇𝑤 and

the fifth derivative does not exist at those points. The

time stepping error will not be better than third-order with

a high-order time stepping scheme. Dispersion correction

with the series method and its high derivatives will break

down and perform far worse than the Fourier approach

unless the finite-difference stencil is widened with sufficiently

many points.

For the series method to be useful, a wavelet should be

chosen that is sufficiently many times differentiable, or ana-

lytic like a Ricker wavelet. If the wavelet is given by a table,
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TEMPORAL DISPERSION CORRECTION 311

interpolation with a spline of sufficiently high order, beyond

that of the usual cubic B-spline, is recommended.

A hybrid method combines the Fourier approach to add

wavelet dispersion with the series approach to remove it from

the data traces. The Fourier approach has a higher compu-

tational cost but is only applied on a single time series. Test

results for the hybrid method were of mixed quality. Although

it is quicker to test various parameter setting without rerun-

ning the simulation, the resulting accuracy was not very good,

in particular on finer meshes.

CONCLUSIONS

An alternative implementation of temporal dispersion correc-

tion for the numerical simulation of wave propagation with

second-order explicit time stepping is based on a series expan-

sion and only requires higher time derivatives of the recorded

traces to determine the correction terms. High-order finite

differencing can be sensitive to numerical round-off errors

and may produce noisy results, but this can be suppressed by

adding points to the standard finite-difference stencil.

The effectiveness of the method was studied for the acous-

tic wave equation on a homogeneous problem with an exact

solution and an inhomogeneous problem with topography.

The results show that the same accuracy can be obtained as

with higher-order time stepping, similar to that obtained with

Fourier transforms, but a lower compute cost, which is linear

instead of quadratic in the number of samples. The cost of the

latter, however, can be lowered by using a non-uniform fast

Fourier transform.

The series method, though somewhat less robust than the

Fourier approach, has the advantage that it can apply the dis-

persion correction on the fly while doing the time stepping.

The range of required time samples can be kept in a buffer.

When the subsampling time is reached, the dispersion correc-

tion can be applied and the result stored, after which the buffer

has to be refilled for the next pass. The Fourier approach

requires the whole time series and has to be applied at the

end of the computation. In addition, it requires the simulation

to be carried out beyond the desired maximum time to allow

for a taper at the end of the traces. The series approach was

run as well for a longer time to avoid the implementation of

one-sided difference operators, but the number of additional

samples is smaller, equal to half the finite-difference stencil

length.

D AT A AVA I L A B I L I T Y S T AT E M E N T
Data sharing is not applicable to this article as no new data

were created or analysed in this study. However, if the com-

putational results shown in the Figures are considered as

new data, then the author elects not to share those. Support-

ing software can be found at https://github.com/Someone789/

dispcor.
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APPENDIX: DERIVATION
The partial Bell (1934) polynomials 𝐵𝑘,𝓁(𝑥1,… , 𝑥𝑘+1−𝓁) are

defined by (e.g., Comtet, 1974, section 3.3)

Φ(𝜉, 𝑢) = exp

(
𝑢

∞∑
𝑗=1

𝑥𝑗

𝜉𝑗

𝑗!

)
=

1 +
∞∑
𝑘=1

𝜉𝑘

𝑘!

𝑘∑
𝓁=1

𝑢𝓁𝐵𝑘,𝓁(𝑥1,… , 𝑥𝑘+1−𝓁).

(A.1)

They obey the recurrence relation

𝐵𝑘,𝓁 =
𝑘+1−𝓁∑
𝑗=1

(
𝑘 − 1
𝑗 − 1

)
𝑥𝑗𝐵𝑘−𝑗,𝓁−1, (A.2)

starting from 𝐵0,0 = 1 as well as 𝐵𝑚,0 = 0 and 𝐵0,𝑚 = 0
for 𝑚 ≥ 1. The arguments of 𝐵𝑘,𝓁(𝑥1,… , 𝑥𝑘+1−𝓁) have been

dropped for brevity. In particular, 𝐵𝑘,1 = 𝑥𝑘 and 𝐵𝑘,𝑘 = 𝑥𝑘
1 for

𝑘 ≥ 1.

The problem at hand has 𝑢 = −i𝜔𝑡, 𝜉 = 𝜔Δ𝑡∕2 and 𝑥𝑗 =
𝑓 (𝑗)(0). Applying the expansion (A.1) to (11) and (14),

while using 𝑓 (0) = 1 and 𝛿(𝑡′ − 𝑡) = 1
2𝜋 ∫ ∞

−∞ d𝜔 exp[i𝜔(𝑡′ −
𝑡)], provides

𝑢̃(𝑡′) = 1
2𝜋 ∫

∞

−∞
d𝜔 ei𝜔𝑡

′

∫
∞

−∞
d𝑡 e−i𝜔𝑡 𝑓 (𝜔Δ𝑡∕2)𝑢(𝑡) = 𝑢(𝑡′) + 𝑣(𝑡′),

(A.3)

with

𝑣(𝑡′) = 1
2𝜋 ∫

∞

−∞
d𝜔∫

∞

−∞
d𝑡 ei𝜔(𝑡

′−𝑡)𝑢(𝑡)

∞∑
𝑘=1

(𝜔Δ𝑡∕2)𝑘

𝑘!

𝑘∑
𝓁=1

(−i𝜔𝑡)𝓁𝐵𝑘,𝓁 .

(A.4)
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TEMPORAL DISPERSION CORRECTION 313

Now

1
2𝜋 ∫

∞

−∞
d𝜔∫

∞

−∞
d𝑡 ei𝜔(𝑡

′−𝑡)𝜔𝑘(−i𝜔𝑡)𝓁𝑢(𝑡)

= (−1)𝓁(−i)𝑘

2𝜋 ∫
∞

−∞
d𝜔∫

∞

−∞
d𝑡 𝑡𝓁𝑢(𝑡)𝜕𝑘+𝓁

𝑡′
ei𝜔(𝑡

′−𝑡)

= (−1)𝑘+𝓁 i𝑘 ∫
∞

−∞
d𝑡 𝑡𝓁𝑢(𝑡) 𝛿(𝑘+𝓁)(𝑡′ − 𝑡)

= i𝑘𝜕𝑘+𝓁
𝑡

[
𝑡𝓁𝑢(𝑡)

]|||𝑡=𝑡′ .
(A.5)

With that, Equation (A.3) becomes

𝑢̃(𝑡) = 𝑢(𝑡) +
∞∑
𝑘=1

(iΔ𝑡∕2)𝑘

𝑘!

𝑘∑
𝓁=1

𝐵𝑘,𝓁 𝜕𝑘+𝓁
𝑡

[
𝑡𝓁𝑢(𝑡)

]
. (A.6)

In the forward case, which adds dispersion,

𝑓 (𝜉) = sin(𝜉)
𝜉

=
∞∑
𝑗=0

(−1)𝑗

(2𝑗 + 1)!
𝜉2𝑗 ,

𝑓 (0) = 1, and

𝑥2𝑗 = 𝑓 (2𝑗)(0) = (−1)𝑗

2𝑗 + 1
, 𝑥2𝑗+1 = 0, 𝑗 ≥ 0. (A.7)

Equation (A.6) becomes

𝑢̃(𝑡) = 𝑢(𝑡) +
∞∑
𝑘=1

(Δ𝑡∕2)2𝑘

(2𝑘 + 1)!
𝑟
𝑘
(𝑡),

𝑟
𝑘
=

𝑘∑
𝓁=1

(−1)𝓁𝑎
𝑘,𝓁𝜕

2𝑘+𝓁
𝑡

[𝑡𝓁𝑢(𝑡)],

(A.8a)

where

𝑎
𝑘,𝓁 = (−1)𝑘(2𝑘 + 1)𝐵2𝑘,𝓁(𝑥1,… , 𝑥2𝑘+1−𝓁), (A.8b)

with 𝑥𝑚 from Equation (A.7) and 1 ≤ 𝓁 ≤ 𝑘. The coeffi-

cients 𝑎𝑘,𝓁 are rescaled to obtain 𝑎𝑘,1 = 1. Values of 𝑎
𝑘,𝓁 up

to 𝑘 = 10 are listed below. The factor in front of 𝑟𝑘(𝑡) in

Equation (A.8a) appears in the series expansion

sinh(Δ𝑡∕2)
Δ𝑡∕2

=
∞∑
𝑘=1

(Δ𝑡∕2)2𝑘

(2𝑘 + 1)!
. (A.9)

In the reverse case, removing dispersion,

𝑓 (𝜉) = arcsin(𝜉)
𝜉

=
∞∑
𝑗=0

(2𝑗)!
22𝑗(2𝑗 + 1)(𝑗!)2

𝜉2𝑗 , (A.10)

𝑓 (0) = 1, and

𝑥2𝑗 = 𝑓 (2𝑗)(0) = [ (2𝑗)! ]2

22𝑗(2𝑗 + 1)(𝑗!)2
, 𝑥2𝑗+1 = 0, 𝑗 ≥ 0.

(A.11)

If Equation (A.6) is written as

𝑢(𝑡) = 𝑢̃(𝑡) +
∞∑
𝑘=1

(−1)𝑘
(Δ𝑡∕2)2𝑘(2𝑘)!

22𝑘(2𝑘 + 1)(𝑘!)2
𝑠
𝑘
(𝑡),

𝑠
𝑘
=

𝑘∑
𝓁=1

(−1)𝓁𝑏
𝑘,𝓁𝜕

2𝑘+𝓁
𝑡

[𝑡𝓁 𝑢̃(𝑡)],

(A.12a)

then

𝑏
𝑘,𝓁 = (2𝑘 + 1)

[
𝑘!2𝑘
(2𝑘)!

]2
𝐵2𝑘,𝓁(𝑥1,… , 𝑥2𝑘+1−𝓁), (A.12b)

with 𝑥𝑚 from Equation (A.11), 1 ≤ 𝓁 ≤ 𝑘 and rescaled such

that 𝑏𝑘,1 = 1. Note that

arcsinh(Δ𝑡∕2)
Δ𝑡∕2

=
∑

(−1)𝑘
(Δ𝑡∕2)2𝑘(2𝑘)!

22𝑘(2𝑘 + 1)(𝑘!)2
. (A.13)

The recurrence relation (A.2) can be simplified when

𝑥2𝑗+1 = 0 for 𝑗 ≥ 0. First, consider an odd 𝑘 = 2𝑘′ + 1, 𝑘′ ≥ 0
and let 𝑗 = 2𝑗′. Then, 𝐵2𝑘′+1,1 = 𝑥2𝑘′+1 = 0, 𝐵2𝑘′+1,2𝑘′+1 =
𝑥2𝑘

′+1
1 = 0, and

𝐵2𝑘′+1,𝓁 =
⌊𝑘′+1−𝓁∕2⌋∑

𝑗′=1

(
2𝑘′

2𝑗′ − 1

)
𝑥2𝑗′𝐵2(𝑘′−𝑗′)+1,𝓁−1,

(A.14)

showing that 𝐵2𝑘′+1,𝓁 = 0 for 𝑘′ ≥ 0 and 0 ≤ 𝓁 ≤ 2𝑘′ + 1.

Here, 𝑘 = ⌊𝑎⌋ denotes the largest integer 𝑘 ≤ 𝑎, sometimes

expressed as f loor(𝑎), for a real number 𝑎.

For the even case, let 𝑘 = 2𝑘′, 𝑘′ ≥ 1 and 𝑗 = 2𝑗′. Then,

𝐵2𝑘′,𝓁

⌊𝑘′−(𝓁−1)∕2⌋∑
𝑗′=1

(
2𝑘′ − 1
2𝑗′ − 1

)
𝑥2𝑗′𝐵2(𝑘′−𝑗′),𝓁−1, (A.15)

which now only involves 𝐵𝑘,𝓁 with even 𝑘.

Equation [3m] in Section 3.3 of Comtet (1974) reads

𝐵𝑘,𝑘−𝑚(𝑥1, 𝑥2,… , 𝑥𝑘+1−(𝑘−𝑚)) =

2𝑚∑
𝑗=𝑚+1

(
𝑘

𝑗

)
𝑥
𝑘−𝑗
1 𝐵𝑗,𝑗−𝑚(0, 𝑥2,… , 𝑥𝑗+1−(𝑗−𝑚)).

(A.16)

The implied condition 𝑗 ≤ 𝑘 leads to 𝑚 ≤ ⌊𝑘∕2⌋. If 𝑥1 = 0
and 𝑘 = 2𝑘′, this shows that 𝐵2𝑘′,𝓁 = 0 for 𝓁 > 𝑘′. With that,

the recurrence relation (A.15) can be rewritten in terms of

 13652478, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1365-2478.13411 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [31/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



314 MULDER

𝐵̃𝑘′,𝓁 = 𝐵2𝑘′,𝓁 as

𝐵̃𝑘′,𝓁 =
𝑘′+1−𝓁∑
𝑗′=1

(
2𝑘′ − 1
2𝑗′ − 1

)
𝑥2𝑗′ 𝐵̃𝑘′−𝑗′,𝓁−1, 1 ≤ 𝓁 ≤ 𝑘′,

(A.17)

starting from 𝐵̃0,0 = 1, 𝐵̃𝑚,0 = 𝐵̃0,𝑚 = 0 for 𝑚 ≥ 1, and using

𝑘 = 2𝑘′ and 𝑗 = 2𝑗′ as before.

The coefficients 𝑎𝑘,𝓁 up to 𝑘max = 10 or (Δ𝑡)20 are elements

of the lower triangular matrix

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1 5

3
1 7 35

9
1 123

5 42 35
3

1 253
3 341 770

3
385
9

1 2041
7

38324
15

11869
3

5005
3

5005
27

1 1023 18759 484484
9

130130
3

35035
3

25025
27

1 32759
9

413882
3

31384873
45

25967942
27

4254250
9

2382380
27

425425
81

1 65531
5

107585809
105

133275614
15

297217817
15

142908766
9

47205158
9

6466460
9

8083075
243

1 524277
11 7704576 112990891 9860196129

25 485601753 6835048220
27

539949410
9

56581525
9

56581525
243

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For 𝑏𝑘,𝓁 , we have

𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1 5

27
1 7

25
7
405

1 2067
6125

6
175

1
945

1 4477
11907

4829
99225

22
8505

11
229635

1 150761
373527

990964
16372125

1261
297675

13
93555

13
7577955

1 78103
184041

48787
693693

106684
18243225

314
1216215

1
173745

1
19702683

1 164187887
372683025

477888394
6087156075

430651327
58530346875

4836262
12314176875

9826
820945125

68
351833625

17
13299311025

1 335021699
738720125

309336853817
3621857864625

1508301434
172469422125

531060317
995015896875

1390078
69780335625

31046
69780335625

76
13956067125

19
678264862275

1 10892077437
23467660931

169784
1859715

3936101287
393230282445

118566891343
175549233234375

15738043
540151486875

7036
8741712375

3646
265165275375

1
7576150725

1
1841004626175

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A Matlab (2021) code abmatrix.m is produced as an illustra-

tion. The script abmatrixsym.m provided the matrices above,

using the Symbolic Math Toolbox.
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