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ABSTRACT:Dispersion error analysis can help to assess the performance of finite-element discretizations of the wave equation. Although
less general than the convergence estimates offered by standard finite-element error analysis, it can provide more detailed insight as well
as practical guidelines in terms of the number of elements per wavelength needed for acceptable results. We present eigenvalue and
eigenvector error estimates for cubic Hermite elements on an equidistant 1-D mesh and on a regular structured 2-D triangular mesh
consisting of squares cut in half. The results show that in 1D, the spectrum consists of 2 modes. If these are unwrapped, the spectrum
is effectively doubled. The eigenvalue or dispersion error stays below 7% across the entire spectrum. The error in the corresponding
eigenvectors, however, increases rapidly once the number of elements per wavelength decreases to one. In terms of element size, the
dispersion error is of order 6 and the eigenvector error of order 4. The latter is consistent with the classic finite-element error estimate.
In 2D, we provide eigenvalue and eigenvector errors as a series expansion in the element size and obtain the same orders. 2-D numerical
tests in the time- and frequency-domain are included.

1. INTRODUCTION

Finite elements are attractive for modeling wave propagation
in complex geometries. Elements formulated on the sim-

plex allow for more flexibility in meshing complex geomet-
rical shapes than quadrilaterals and hexahedra. Higher-order
elements tend to be computationally more efficient than lower-
order elements [1–6]. For the linear element of lowest order,
the numerical error mainly shows up as a dispersion error. For
that reason, dispersion error analysis is often used as a tool to
compare various discretization schemes. With finite-difference
schemes, which are translation-invariant on an equidistant grid,
this is easily done. With finite elements, translation invari-
ance only occurs at the element level on highly regular uniform
meshes for homogeneous problems. For higher-order elements,
this leads to a small system instead of a scalar problem in the
Fourier analysis of the error. The eigenvalues and eigenvec-
tors of that system describe different modes. Historically, these
were classified as ‘physical’ and ‘spurious’. However, proper
unwrapping shows that the modes belong to different parts of
an enlarged spectrum, each with there own numerical approxi-
mation error [7]. Apart from the eigenvalue error in each mode,
which is related to the dispersion error, we also have to consider
the errors in the corresponding eigenvectors. Because a given
‘physical’ or exact mode has to be projected on the numerical
eigenvectors, each with its error, some energymay end up in the
wrong modes. This cross talk is responsible for the ‘spurious’
behavior.

* Corresponding author: William Alexander Mulder (w.a.mulder@tudelft.nl).

Here, we apply this eigenvalue and eigenvector analysis
to elements based on cubic Hermite interpolating polynomi-
als [8]. These have stronger continuity properties than the clas-
sic higher-order elements or their mass-lumped variants [1, 3–
5, 9–17], while maintaining a simple structure. In 1D, the cubic
polynomials per element are represented by the wavefield and
its derivatives on the vertices or nodes. In 2D on the triangle,
the element is defined by cubic polynomials with wavefield and
its two derivatives on the vertices. To obtain the ten degrees
of freedom required to represent a cubic polynomial, a bubble
function for the wavefield is added to the interior of the trian-
gle and represented by a wavefield value at its centroid. In 3D
on tetrahedra, the element is defined by the wavefield and its
three derivatives on the vertices and bubble functions for the
wavefield on each of the four faces, providing the 20 degrees
of freedom that determine a 3-D cubic polynomial.
Felippa [18] presented a 1-D application of cubic Hermite

polynomials to bending elements and included dispersion
curves that include a physical and a spurious mode [19]. The
latter is also called ‘optical’ [20, 21]. The eigenvector error
analysis is lacking. Here, we will fill that gap.
An application of Hermite elements can be found in [22].
In the next section, we will consider the 1-D case and analyze

the dispersion and eigenvector errors. Then, a number of 2-D
time- and frequency-domain examples will be presented. The
last section summarizes the conclusions.
A preliminary, shorter version of this work appeared in [23].
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2. ONE DIMENSION

2.1. Finite-Element Discretization
The wave equation in one space dimension reads

−k2u− d2u
dx2

= f. (1)

The solution u(x) depends on position x, whereas f(x) is the
source term or forcing function. The wavenumber is k = ω/c
for an angular frequency ω and a phase velocity c, which gen-
erally depends on ω and x, but will be assumed constant for the
dispersion error analysis.
For the finite-element discretization, we choose vertices xk,

k = 0, . . . , N , that define elements of size hℓ = xℓ − xℓ−1,
ℓ = 1, . . . , N . The element size should typically scale with
the local value of the phase velocity to obtain a constant num-
ber of elements per wavelength. The basis functions ϕi(ξ) and
ψi(ξ), with normalized coordinate ξ ∈ [0, 1] inside the element,
should obey

ϕi(j) = δij ,
dϕi
dξ

(j) = 0, for i, j = 0, 1, (2)

and

ψi(j) = 0,
1

h

dψi

dξ
(j) = δij , for i, j = 0, 1. (3)

In the cubic case, this leads to

ϕ0(ξ) = (1− ξ)2(1 + 2ξ), ψ0(ξ) = h(1− ξ)2ξ,

ϕ1(ξ) = ξ2(3− 2ξ), ψ1(ξ) = −h(1− ξ)ξ2. (4)

Here, h is the length of the element. Note that ϕ1(ξ) = ϕ0(1−
ξ) and ψ1(ξ) = −ψ0(1− ξ).
The discretization is straight-forward if the phase velocity is

constant per element. If the set of basis functions is ordered as
{ϕ0(ξ), ψ0(ξ), ϕ1(ξ), ψ1(ξ)}, with the subscript 0 for the left
node and 1 for the right node of the element, then the contribu-
tion to the mass matrix per element is

A = hQĀQ, Ā =
1

420


156 22 54 13
22 4 13 3
54 13 156 22
13 3 22 4

 , (5)

where
Q = diag{1, h, 1,−h}. (6)

Here, the degrees of freedom are paired as u and du
dx on the left

and on the right side of the element. Note that hmay vary from
element to element. The contribution to the stiffness matrix is

B =
1

h
QB̄Q, B̄ =

1

30


36 3 −36 −3
3 4 −3 1

−36 −3 36 3
−3 1 3 4

 . (7)

An alternative evaluation of A and B is based on the nodal-
to-modal map [24].

2.2. Dispersion Analysis
For the dispersion analysis, we consider a homogeneous prob-
lem and assume that the mesh is equidistant and periodic. Then,
the mass matrixM and stiffness matrix K become

M =
h

420

(
6[52 + 9(T+T−1)] −13h(T−T−1)

13h(T−T−1) h2[2 + 3(2−T−T−1)]

)
,

(8)
and

K =

(
6
5h (2− T − T−1) 1

10 (T − T−1)

− 1
10 (T − T−1) h

30 [6 + 2− T − T−1)

)
. (9)

The shift operator T is defined by Tnum = um+n, where um
approximates the wavefield at xm. We also have Tnu′m =
u′m+n for the derivative u′m that approximates du

dx (xm). The
matrices operate on vectors (um, u′m)T, where (·)T denotes the
transpose.
The Fourier symbol of T is T̂ = eikh for wavenumber k. The

dispersion curve follows from the eigenvalues of L̂ = M̂−1K̂,
which is now a 2 × 2 system. Here, M̂ represents the Fourier
symbol of the mass matrix and K̂ that of the stiffness matrix.
The eigenvalues are

κ2± =
6[141− 4ζ(8 + ζ)± w]

h2[65 + ζ(ζ − 36)]
, (10)

with

w =
√

13056+ζ [3856+ζ {−7524+ζ(1656−19ζ)}], (11)

where ζ = cos(kh). For small k,

(κ−/k)
2 ≃ 1 +

(kh)6

30240
, (12)

demonstrating sixth-order behavior of the dispersion error, rel-
ative to the exact wavenumber k.
Figure 1(a) plots the eigenvalues κ± as a function of the

normalized wavenumber η = kh/(2π). Note that Nyquist-
Shannon sampling theorem requires |kh| ≤ π in the scalar case.
Here, with both u and du

dx , we have |kh| ≤ 2π. The results for
negative wavenumbers follow by symmetry and are not plotted.
Had we only shown the results for |kh| ≤ π, then one eigen-

value, κ− would be physical and the other spurious or ‘op-
tical’ [18, 21]. By enlarging the domain to |kh| ≤ 2π, we
can unwrap the two eigenvalues: κ−/(2πη) for η ∈ [0, 12 ]
and κ+/(2πη) for η ∈ [ 12 , 1]. The other ones, κ

+/(2πη) for
η ∈ [0, 12 ] and κ−/(2πη) for η ∈ [ 12 , 1] then remain as spurious
modes. The symmetry κ2±(1 − η) = κ2±(η) follows from the
dependence of the eigenvalues on ζ = cos(2πη).
Figure 1(b) shows the physical eigenvalues after scaling by

the exact eigenvalue. The two values near the discontinuity at
η = 1/2 are κh =

√
168/17 and

√
10, both close to π. If all

the energy could be restricted to these modes, there would be
no spurious modes. For instance, if k is small, all wave energy
should be confined to the eigenvector of κ−. In practice, some
energy may end up in the eigenvector of κ+ for small k. We
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(a) (b)

FIGURE 1. (a) The positive square-roots of the two eigenvalues, scaled by 2π, as a function of the normalized wavenumber η. The spurious modes
are shown as dashed lines. (b) Unwrapped normalized dispersion curve for the 1-D element based on cubic Hermite polynomials, showing the
numerical approximation κ of the wavenumber normalized by the exact one, kh = 2πη. The dotted line is the exact result, the drawn and dashed
lines mark the two eigenvalue branches.

will study this in more detail by considering the error in the
eigenvectors.
To determine the error in the eigenvectors, we follow [7]

and express the Fourier symbol of the spatial operator as L̂ =
QΛQ−1, where the columns ofQ are the eigenvectors of L̂ and
the diagonal matrix Λ contains the eigenvalues κ2± on its diag-
onal.
The exact eigenvector corresponding to the mode eikx in

the Fourier domain is ê0 = (1, ik)T. Minus the second spa-
tial derivative turns this into k2ê0, whereas the numerical ap-
proximation produces L̂ê0. The error in the eigenvector is then
something like k−2L̂ê0 − ê0. To separate the dispersion error
from the error in the eigenvectors, we can replace the numerical
eigenvalues κ2 in Λ by the exact k2, evaluate the effect of the
modified operator L̂ on the exact eigenvector ê0, divide by k2
afterwards, and compare the result to the same exact eigenvec-
tor. We can also do that for each of the eigenvectors separately
by setting the eigenvalues to zero except for the one of inter-
est. Assuming that the first eigenvector corresponds to κ− and
the second to κ+, we can focus on κ− for small k. We define
vectors

ŝ1 = k−2Q diag{k2, 0}Q−1ê0 (13)
and

ŝ2 = k−2Q diag{0, k2}Q−1ê0. (14)
These describe the following steps: project the exact eigenvec-
tor on the numerical ones, propagate with the exact wavenum-
ber, project back, rescale by the squared the wavenumber, and
compare to the input. The matrix Ŝ = (ŝ1, ŝ2)T has these vec-
tors as its first and second column. Then,

Ŝ ≃

(
1− 2

4725 (kh)
6 2

4725 (kh)
6

ik
[
1 + 2

315 (kh)
4
]

ik
[
− 2

315 (kh)
4
] ) . (15)

The first column approximates the exact eigenvector ê0, and the
second column describes how much of it ends up in the other
mode and is usually classified as spurious energy. This column
has the opposite sign of the error, s1 − ê0, in the first column,

that is, s1 + s2 = ê0. The matrix shows that the first row,
corresponding to u, has a sixth-order error, and the second row,
corresponding to the derivative of u, has a fourth-order error.
The last determines the overall error behavior of the scheme.
To study the eigenvector error over the whole domain, we

first rescale the eigenvector to obtain relative errors, by divid-
ing out the factor ik. Let D = diag{1, (ik)−1}. The normal-
ized exact eigenvector becomes ê1 = Dê0 = (1, 1)T and the
numerical ones the columns of Q̃ = DQ:

Q̃ =

(
a+w
d

a−w
d

sin ξ
ξ

sin ξ
ξ

)
, (16)

with ξ = kh = 2πη, ζ = cos(ξ), d = 6(52 − 17ζ), a =
80+ ζ(52− 27ζ) and w as in Equation (11). We then consider
the vectors

r̂1 = Q̃ diag{1, 0}Q̃−1ê1, (17)
r̂2 = Q̃ diag{0, 1}Q̃−1ê1. (18)

Note that r̂1 + r̂2 = ê1. The vectors r1 and r2 contain 4 com-
ponents that describe the eigenvector error. The drawn line in
Figure 2 consists in r̂1,1 − 1 for η < 1

2 and r̂2,2 − 1 for η > 1
2 ,

with 0 at η → 1
2 . The dashed line follows r̂1,2 − 1 for η < 1

2
and r̂2,1 − 1 for η > 1

2 , with −1 at η → 1
2 . These repre-

sent the relative difference between the approximate and exact
eigenvectors. The missing components represent the spurious
modes and just have the opposite sign, because r̂1 + r̂2 = 1,
and are therefore not shown.
Figure 2 seems to suggest that we should stay at some dis-

tance below the Nyquist limit of η = 1
2 , since one if the

branches shoots off to −1 around η = 1
2 . This may be too pes-

simistic as around η = 1
2 , the two eigenvalues κ2± are nearly

equal. However, the amplitude of the dashed curve rapidly in-
creases for η above 1

2 , so having |η| ≤ ηmax with ηmax just be-
low 1

2 is advisable. This means that the number of elements per
wavelength should be somewhat above 1, or larger for higher
accuracy.
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(a) (b)

FIGURE 2. Error in the eigenvectors. Only two of the four components are shown, since the other two just have the opposite sign. (b) Detail of (a).

(a) (b)

FIGURE 3. Unwrapped normalized dispersion curve for the standard 1-D cubic element with (a) equidistant nodes and a consistent mass matrix and
(b) Legendre-Gauss-Lobatto nodes and a lumped mass matrix, showing the numerical approximation κ of the wavenumber normalized by the exact
one, kh/(2π). The dotted line is the exact result.

We can now compare the above results to the standard cu-
bic element with equidistant internal nodes and to the lumped
cubic element with Legendre-Gauss-Lobatto points, both ana-
lyzed in [7]. Figure 3(a) shows the unwrapped dispersion curve
for the former. The three branches are clearly visible. Note
that the spectrum is doubled nor tripled. The errors are larger
than with the Hermite cubic element. The rightmost panel of
Figure 5 in [7] shows that a significant eigenvector error al-
ready appears in the first branch with η ∈ [0, 16 ], at considerably
smaller values of η than with the cubic Hermite element.
Figure 3(b) shows the unwrapped dispersion curve for the

lumped cubic element with Legendre-Gauss-Lobatto points.
Again, the errors are larger than with the Hermite cubic element
but smaller than for the previous one. The rightmost panel of
Figure 7 in [7] again shows a larger eigenvector error at smaller
η than with the cubic Hermite element.

3. TWO DIMENSIONS

3.1. Method
The finite-element discretization starts with the reference tri-
angle with barycentric coordinates ξ0 = 1 − ξ1 − ξ2, ξ1
and ξ2. The true coordinates inside a triangle with vertices

(x, y) = (x1,k, x2,k), k = 0, 1, 2, are xj =
∑2

k=0 ξkxj,k for
j = 1, 2. Let αj = xj,1 − xj,0 and βj = xj,2 − xj,0 for
j = 1, 2. The 10 degrees of freedom are the wavefield values
uk and their derivatives u1,k and u2,k in x = x1 and y = x2,
respectively, on the three vertices indexed by k = 0, 1, 2,
as well as the wavefield pc at the centroid. We order them
as {u0, u1,0, u2,0, u1, u1,1, u2,1, u2, u1,2, u2,2, uc} per element.
The corresponding basis functions are

ϕ1 = ξ0[(3− 2ξ0)ξ0 − 7ξ1ξ2],

ϕ2 = ξ0[α1ξ1(ξ0 − ξ2) + β1ξ2(ξ0 − ξ1)],

ϕ3 = ξ0[α2ξ1(ξ0 − ξ2) + β2ξ2(ξ0 − ξ1)],

ϕ4 = ξ1[(3− 2ξ1)ξ1 − 7ξ2ξ0],

ϕ5 = ξ1[γ1ξ2(ξ1 − ξ0) + α1ξ0(ξ2 − ξ1)],

ϕ6 = ξ1[γ2ξ2(ξ1 − ξ0) + α2ξ0(ξ2 − ξ1)],

ϕ7 = ξ2[(3− 2ξ2)ξ2 − 7ξ0ξ1],

ϕ8 = ξ2[β1ξ0(ξ1 − ξ2) + γ1ξ1(ξ0 − ξ2)],

ϕ9 = ξ2[β2ξ0(ξ1 − ξ2) + γ2ξ1(ξ0 − ξ2)],

ϕ10 = 27ξ0ξ1ξ2. (19)

The last is the bubble function. The mass and stiffness matrix
per element follow from exact integration over the triangle and
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serve as input for the global assembly. The differences αj , βj
and γj = βj − αj in the basis functions are related to pro-
jections on the edges of the vectors defined by the wavefield
gradient. Note that the gradient of the bubble function prevents
C1 continuity across element edges.
Zero Dirichlet boundary conditions are easily implemented

by eliminating wavefield values on the boundary from the mass
and stiffness matrix. If the boundaries are aligned with the co-
ordinate axes, also their tangential derivatives should be elim-
inated. Similarly, zero Neumann conditions can be imple-
mented by eliminating the normal wavefield derivatives on the
boundary. At corners, this implies that both the horizontal and
vertical derivatives are zero and should be removed from the
mass and stiffness matrices. If the boundaries are not aligned,
a local rotation can be applied for the wavefield derivatives at
the vertices that belong to a boundary edge.
To maintain code flexibility, we have chosen to first assem-

ble the global mass matrix M and stiffness matrix K without
taking the boundary conditions into account. The contributions
per element are evaluated from the basis functions (19) in Carte-
sian coordinates using expressions simply obtained by means
of a symbolic algebra package. After global assembly, either
zero Dirichlet or Neumann boundary conditions were applied
in the test problems we considered. This was implemented by
a global rotation matrix Rb. It is an identity operator for the
degrees of freedom corresponding to the bubble function and
for the degrees of freedom in the interior. For vertices on the
boundary, the normal and tangential vectors of the connected
boundary edges are computed. If they are the same, we define
a local 2×2 rotation matrix for the derivative components with
the edge normal on the first row and the tangential component
on the second. After rotation, either the first is zero with a Neu-
mann condition or the second if a zeroDirichlet condition holds.
This small matrix is inserted in the global one, Rb. If they are
different, we have a corner point and the two components of the
wavefield derivative should be zero, both for the Dirichlet and
the Neumann boundary conditions. In that case, we just use the
identity matrix for the local 2× 2 rotation matrix.
Next, the solution vector is transformed into Rbu, the mass

matrix into RbMRb, and the stiffness matrix into RbKRb.
Note that the inverse, or actually the pseudo-inverse, of Rb is
Rb. Then, we reduce the size of the vector Rbu by eliminat-
ing the zero boundary values. These are the wavefield values
and tangential components of the derivatives for zero Dirich-
let boundary conditions or both components at corners points.
For the zero Neumann boundary conditions, only the normal
components are zero and both in corners points. The result
of taking this subset is denoted by u = SbRbu. Here, Sb is
a non-square matrix with ones and zeros that only selects the
non-zero values. Likewise, we obtainM = SbRbMRbS

T
b and

K = SbRbKRbS
T
b , where (·)T denotes the transpose. If, in the

frequency domain and in 2D, we have to solve

−k2u−∆u = f, (20)

with a source term f(ω, x, y), this would require the solution
of (

−M+K
)
u = SbRbf. (21)

Note that the mass matrix M contains the factor k2. We can
insert the result u back into a vector of the original size and
perform the inverse rotation to obtain u = RbS

T
bu. In the code,

the action of Sb and ST
b is of course implemented with an array

of pointers.
A point source f(ω, x, y) = w(ω)δ(x−xs)δ(y−ys) can be

represented byDirac delta functions and a frequency-dependent
amplitude w(ω). Its discrete representation involves∑

j

∫
Tj

ϕj,kδ(x− xs)δ(y − ys) δxδy = ϕjs,k(xs, ys), (22)

where the domain Ω is partitioned into elements Tj and ϕj,k
for k = 1, . . . , 10 is one of the basis functions of (19) on that
element. Element js contains the source. Note that there may
be multiple elements containing the source if it happens to lie
on an edge or vertex. Because of the continuity of the basis
functions, we only have to include one of those.
Since both the mass and stiffness matrix are symmetric and

real, sparse Cholesky decomposition after minimum-degree re-
ordering [25] can be used for matrix inversion. Once a solution
has been found, we can sample at receiver positions, using the
basis functions in (19) for interpolation.

3.2. Dispersion Analysis
Fourier analysis in two dimensions is straightforward if the
mesh consists of squares of size h × h, each divided into two
triangles. Wewill first focus on this regular case. Distorted ver-
sions [3, 26, 27], based on a parallelepiped instead of a square,
are considered in Appendix A.
The square near the origin consists in one triangle with ver-

tices (0, 0), (h, 0), (0, h) and another with (h, 0), (h, h), (0, h).
Shift operators Tx and Ty are defined by T k

x ui,j = ui+k,j and
T k
y ui,j = ui,j+k. Their Fourier symbols are T̂x = exp(iξ) and
T̂y = exp(iη) with ξ = kxh and η = kyh, where kx and ky are
the wavenumbers in the x- and y-directions, respectively.
The degrees of freedom are u, ∂u/∂x and ∂u/∂y at the ver-

tices, u at the centroid of the first triangle at ( 13h,
1
3h) and of

the second triangle at ( 23h,
2
3h), and all their translates on a pe-

riodic mesh. After a spatial Fourier transform, the 10 degrees
of freedom per element can be represented by 5 coupled ones
on the periodic mesh. We denote the Fourier symbol of the
mass matrix by M̂, that of the stiffness matrix by K̂, and that
of the spatial operator by L̂ = M̂−1K̂. Its 5 eigenvalues for
zero wavenumbers ξ = η = 0 are {0, 42, 42 , 84, 560/3}, two
of which are identical. The series expansion for the smallest is
given by

λ1 ≃ (ξ2 + η2) + 1
5080320

[
159(ξ8 + η8)− 696 ξη(ξ6 + η6)

+3221(ξη)2(ξ4 + η4)− 6792(ξη)3(ξ2 + η2)

+8734(ξη)4
]
, (23)

showing that the dispersion error is of order 6.
The smallest eigenvalue should have an eigenvector that ap-

proximates the exact one, given by

ê1 =
(
1, iξ, iη, e

1
3 i(ξ+η), e

2
3 i(ξ+η)

)T
. (24)
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The superscript (·)T denotes the transpose. The leading er-
ror in eigenvector, ignoring terms of order 5 in x and y, is
(a, 0, 0, 0, 0)T or, with another scaling by 1/(1 + a) ≃ 1 − a,
(0, 0, 0,−a,−a)T, where

a =
47(x4 + y4)− 124xy(x2 + y2) + 192(xy)2

27216
. (25)

Another quick way to estimate the cross talk between eigen-
vectors is provided by the discrete operator acting on the exact
first eigenvector. From

L̂e1 − (ξ2 + η2)e1 ≃
(
−84a, d2, d3,

308

3
a,

308

3
a
)T
, (26)

where

d2 = − i
360

(
8ξ5 − 1095ξ4η + 2050ξ3η2

−1795ξ2η3 + 850ξη4 − 28η5
)

(27)

and

d3 =
i

360

(
28ξ5 − 850ξ4η + 1795ξ3η2

−2050ξ2η3 + 1095ξη4 − 458η5
)
. (28)

This obviously produces an error of order 4, as in the 1-D case.
As already mentioned, distorted triangles based on a periodic

pattern of parallelepipeds are considered in Appendix B. The
results are qualitatively the same.

3.3. Time Domain
We have tested the method on a 2-D standing-wave problem
in a model with constant wave speed. The partial differential
equation is

1

c2
∂2u

∂t2
=
∂2u

∂x2
+
∂2u

∂y2
. (29)

The time stepping scheme lets

un+1 = 2un − un−1 − (∆t)2M−1Kun, (30)

where the superscript denotes time tn = t0 + n∆t. The vector
u denotes the degrees of freedom. The time step ∆t should be
chosen such that 0 ≤ (∆t)2L ≤ 4, with L = M−1K.
Before the time stepping starts, we apply a sparse Cholesky

decomposition on the real symmetric matrix M after
minimum-degree reordering [25]. During the time stepping,
the result is used to compute the action of M−1 on the vector
Kun.
The domain for the test problem has a size [0, 2] × [0, 1]

in dimensionless units. We choose a unit wave speed
c. The exact solution is a standing wave of the form
u = sin(α1x) sin(α2y) cos(ωt), with ω = c(α2

1 + α2
2)

1/2,
αk = 2πmk and m1 = 4, m2 = 2. The solution obeys zero
Dirichlet boundary conditions. The initial-value problem is
started at time zero and runs until tmax = 2π/ω. The mesh was
generated by taking a uniform background mesh with square

cells, perturbing internal vertices randomly by at most 10% to
make it more irregular, and applying a Delaunay triangulation.
Figure 4 shows a fairly coarse mesh and the initial wavefield.
For plotting purposes, the latter was interpolated from the
given degrees of freedom on the mesh to a much finer Cartesian
grid, using the cubic Hermite polynomial representation.

FIGURE 4. Coarse mesh with the exact initial wavefield as backdrop.

The root-mean-square (RMS) errors in the wavefield p at the
vertices, uc at the element centroids, and in the horizontal and
vertical derivatives at the vertices was measured at a time tmax.
Figure 5 plots the results as a function of nλ = λ/

√
|Ω|/ne,

where |Ω| is the area of the domain and ne the number of el-
ements. This quantity estimates the number of elements per
wavelength and is proportional to the inverse of the average el-
ement size. Power-law fits provide an error of order 4 for u
and uc and of order 3 for ∂u

∂x and ∂u
∂y , as expected for a cubic-

polynomial representation of the wavefield and a smooth so-
lution. The second-order time-stepping scheme ran at about
half the maximum allowable value, which apparently produces
time-stepping errors small enough to prevent them from show-
ing up as a second-order trend in the graphs, implying that the
spatial errors dominate in this case.
In this example, the RMS error in the solution u at the ver-

tices is about 6% for nλ = 4.

3.4. Frequency Domain
The first test has a point source at the origin at a frequency that
corresponds to a wavelength of λ = 2π/k = 0.66m in a square
domain of size [−5, 5]× [−5, 5]m2.
This combination of wave propagation speed, frequency,

and domain size does not produce resonances. Zero Neumann
boundary conditions are imposed all around.
A sequence of meshes was generated with MESH2D version

3.1 [28], and the corresponding solutions were computed in
Matlab®. Figure 6 shows the solution on a mesh with N =
1156893 vertices. Data were recorded by a line of receivers
at xr = (0.05 j)m and yr = 0m, where j = 1, 2, . . . , 100.
The results were compared to the exact solution, listed in Ap-
pendix B. The maximum and root-mean-square (RMS) errors
in Figure 7 as a function of N1/2 roughly follow fourth-order
convergence, despite the logarithmic singularity at the source.
In this example, the RMS error in the solution u at the ver-

tices is about 7.4% for nλ = 5.
To demonstrate the capability of the method, the second ex-

ample has a non-square domain with zero Neumann boundary
conditions and corners at (0, 0), (6,−3), (9,−1), (9, 6), and
(3, 6), all in meters. A point source is located at xs = 8m and
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FIGURE 5. Convergence with cubic Hermite polynomials as basis func-
tions for a 2-D test problem. The root-mean-square error as a function
of nλ, the number of elements per wavelength, shows fourth-order con-
vergence, indicated by the gray line, for the wavefield u at the nodes
and uc at the centroids, whereas the horizontal and vertical derivatives
have third-order convergence.

FIGURE 6. Solution for a point source at the center of a square domain
with Neumann boundary conditions.

FIGURE 7. Convergence for data recorded at a line of receivers as a
function of nλ, the number of elements per wavelength. Both the max-
imum and root-mean-square (RMS) errors roughly follow fourth-order
convergence, marked by the gray line.

FIGURE 8. Solution for a point source at (8, 5), marked by the asterisk,
in a polygonal domain with Neumann boundary conditions.

ys = 5m. The wavenumber is the same as in the previous ex-
ample. Figure 8 shows the solution obtained on a mesh with
694692 vertices.

4. CONCLUSIONS

We have analyzed the dispersion properties of finite elements
based on cubic Hermite polynomials applied to the wave equa-
tion with a constant phase velocity. In one space dimension, the
dispersion curve has a sixth-order error, whereas the eigenvec-
tor error that describes the cross talk with the spurious mode
has an error of order six for the wavefield and of order four

for the wavefield gradient. This results in an overall order four
in terms of the element size, consistent with the classic finite-
element error estimate. The accuracy at higher wavenumbers
is reasonable up to a value somewhat below the Nyquist limit
for the scalar case, implying a bit more than one element or two
degrees of freedom per wavelength.
Dispersion analysis in two space dimensions on a regular

structured mesh consisting of squares divided into two trian-
gles shows the same orders of accuracy, 6 for the dispersion
curve and 4 for the eigenvectors. 2-D numerical tests on two
simple problems in the time or frequency domain show fourth-
order spatial accuracy for the wavefield and one order less for
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its gradient. Reasonable results can be obtained already for 5
elements per wavelength.
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APPENDIX A. DISTORTED 2-D CASE
The Fourier analysis for the homogeneous periodic problem
with squares divided into two triangles can be generalized
to parallelepipeds. The first triangle then has vertices (0, 0),
(h, 0), (htx, hsy) and the second (h, 0), (h + htx, hsy),
(htx, hsy), with a relative translation tx and positive relative
height sy . Squares are recovered for tx = 0 and sy = 1.
The scaled wavenumbers ξ and η have to be redefined. From

kxx+kyy = j1ξ+j2η for vertices yj1,j2 = j2hsy and xj1,j2 =
j1h+ j2htx, we obtain ξ = kxh and η = kyhsy + ξtx.
The 5 eigenvalues for zero wavenumbers become

(42/s2y)λ̃0,k with

λ̃0,1 = 0, λ̃0,2 = 1, λ̃0,3 = t2x + s2y,

λ̃0,4 = (1−tx)2 + s2y, λ̃0,5 =
20

9

[
1−tx(1−tx)+s2y

]
.(A1)

The smallest eigenvalue is λ1 ≃ [ξ2 + ((η − ξtx)/sy)
2] with

an error of order 8 in ξ and η. Specifically,

λ1 ≃
[
ξ2 + ((η − ξtx)/sy)

2
]

+

∑8
k=0 ckξ

8−kηk

2540160 p[p− 1 + q(1− q)]
, (A2)

where p = 1− tx(1− tx) + s2y , q = 1− tx and

c0 = 3(p− q)(25p+ 3q),

c1 = 24(p− q)(5− 15p− 4q),

c2 = −4[100 + p(5− 261p+ 126q)− q(205− 109q)],

c3 = 24[50− p(15 + 78p− 29q)− q(94− 45q)],

c4 = −2[770− p(245 + 1098p− 270q)− 5q(313− 154q)],

c5 = 24[45− p(25 + 63p− 9q)− q(94− 50q)],

c6 = −4[109− p(139 + 126p)− 5q(41− 20q)],

c7 = 24(4− 14p− 5q),

c8 = 3(−3 + 28p),

The corresponding exact eigenvector is the same as in
Equation (24). Its approximation has a leading error term
(0, 0, 0,−a,−a)T, now with

a=
19ξ4 − 68ξ3η + 96ξ2η2 − 56ξη3 + 28η4 + 3b/p

13608
, (A3)

where

b = (ξ2 − η2)(3ξ2 + 3η2 + 4ξη)

+txξ(2η − ξ)
[
3ξ2 + 10η(η − ξ)

]
. (A4)

APPENDIX B. EXACT SOLUTION

Consider a two-dimensional square box Ω = [−L,L]2 with
a delta function source at the center and Neumann boundary
conditions all around. Helmholtz’s equation

−k2u−∆u = δ(x)δ(y), k =
ω

c
, (B1)

can be solved with eigenfunctions ϕm1,m2
(x, y) =

ϕm1
(x)ϕm2

(y), where ϕm = cm cos(πmx/L) for
m = 0, 1, . . .. Given the orthogonality relation

∫ L

−L

ϕmϕnx = δm,n(1 + δm,0)Lc
2
m, (B2)

substitution of

u(x, y) =

∞∑
m1=0

∞∑
m2=0

am1,m2
ϕm1,m2

(x, y) (B3)

into (B1) and integration against ϕn1,n2(x, y) over the domain
leads to

am1,m2
=

{
(1 + δm1,0)(1 + δm2,0)

[
π2(m2

1 +m2
2)− (kL)2

]}−1

. (B4)

The implicit assumption is that no resonances occur for the cho-
sen parameters k and L. For receivers on the line y = 0, the
summation overm2 results in

u(x, 0) =

∞∑
m=0

cos(πmx/L)
2q tanh(q)(1 + δm,0)

,

q =
√

(mπ)2 − (kL)2, (B5)

or

u(x, 0) = −
∞∑

m=0

cos(πmx/L)
2s tan(s)(1 + δm,0)

,

s =
√
(kL)2 − (mπ)2. (B6)

Converge is slow for largem, but we can subtract

∞∑
m=1

cos(πmx/L)
2mπ

= − 1

4π
log [2 (1− cos(πx/L))] . (B7)

This leaves terms of O(m−3) instead of O(m−1) in the sum-
mation, still requiring a fairly large range form, up to the order
of 105, and better summed from highm to low.
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