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A finite volume approach is developed for the solution of the contaminant transport equation in
groundwater. By defining a triangular control volume over which the dependent variable of the
governing equation is averaged, the scheme combines the flexibility in handling complex geometries
intrinsic to finite element methods with the simplicity of finite difference techniques. High-resolution
upwind schemes are employed for the discretization of the advective terms. The technique is based on
the concept of ‘‘monotone interpolation’ to ensure the monotonicity preserving property of the
scheme, and on the exact solution of local Riemann problems at the interface between neighboring
control volumes. In this way, numerical oscillations are completely avoided for a full range of cell
Peclet numbers. Together with the discretization of the dispersive fluxes, an approximation is obtatned
that is locally first order, but globally of second-order accuracy. As compared to usual upwind
schemes, much smaller amounts of numerical viscosity are introduced when sharp concentration
fronts occur. A number of numerical tests show good agreement with analytical solutions. A
hypothetical problem involving nonequilibrium reaction terms is solved to illustrate the applicability

and robustness of the proposed formulation for solving the groundwater transport equations.

INTRODUCTION

Finite volume techniques have been used for a long time
[Peyret and Taylor, 1983]. In the water resources commu-
nity, however, finite difference and especially finite element
methods are often preferred. The latter are more widely used
in the solution to the groundwater transport equations be-
cause of their ability to describe geometrically complex
domains.

When the transport is advection dominated, sharp concen-
tration fronts are usually present. Special methods are then
required in the attempt to avoid spurious oscillations and to
minimize the artificial viscosity introduced, which consider-
ably affects the resolution of the sharp front. Lagrangian
techniques (method of characteristics) have been used for
the discretization of advective fluxes in conjunction with
standard finite difference or finite element methods for the
approximation of the dispersive terms [Neuman, 1981, 1984;
Farmer, 1985]. These formulations achieve high-order accu-
racy at the expense of high computational costs, especially
in more than one space dimension.

Alternatively, upwind schemes have been extensively
used in finite difference and finite element methods [Richi-
meyer and Morton, 1967; Zienkiewicz, 1986]. A simple way
to incorporate upwind terms in finite element techniques is
described by Sun and Yeh [1983] for the solution of the
two-dimensional groundwater contamination problem. It is
based on the definition of a subdomain, incorporating parts
of the elements converging to a node, over which upstream
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weights can easily be added. The formulation, however,
requires the empirical evaluation of a parameter in order to
follow the changing characteristics of the transport equation.
Furthermore, it is only first-order accurate, and therefore
may introduce large amounts of artificial viscosity.

To overcome this problem, schemes have been developed
that are globally high-order accurate and nonoscillatory
[Roe, 1986]. This started with MUSCL (monotone upwind
schemes for conservation laws) by van Leer [1977a, b],
which provides a higher-order extension of Godunov’s
[1959] scheme. The basic idea can be outlined, in the
one-dimensional case, as follows. First, the dependent vari-
able is represented as a volume average in a control volume
or cell. Its rate of change is determined by the fluxes across
the two cell interfaces. The flux at an interface is obtained
from the left and right volume averaged states by solving the
local physical problem, the so-called Riemann problem,
exactly. This leads to a first-order scheme. Note that, in
solving the Riemann problem, the variables are assumed to
be piecewise constant. Higher-order extensions can be ob-
tained by assuming the variables in each cell to be piecewise
linear, quadratic, etc. Second-order accuracy is then
achieved with the determination of the linear distribution of
the dependent variable in the control volumes. This is
calculated by interpolation from neighboring cells. The cru-
cial step is to do this in the following monotone way: in
determining the linear distribution, no overshoots or under-
shoots with respect to neighboring cell averages should be
created. Near discontinuities, this requirement results in
slopes that are smaller than those obtained by usual inter-
polation. This procedure is normally referred to as ‘‘limit-
ing.”” Once the piecewise linear distributions are deter-
mined, the fluxes are obtained from the solution of the local
Riemann problem at the cell interfaces. The procedure
results in spatial second-order accuracy on all points other
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than where limiting occurs, in which case the scheme
becomes first-order accurate.

Harten [1983] constructed a second-order accurate TVD
(total variation diminishing) upwind scheme in which an
extra antidiffusive term is added to minimize artificial vis-
cosity. The TVD property is generally a more relaxed
version of the monotonocity preserving property, but still
insures that the scheme does not produce nonphysical oscil-
lations. For linear fluxes, this approach coincides with van
Leer’s scheme. Operational unifications of high-resolution
upwind techniques have been presented by Chakravarthy

and Osher [1985] and by van Leer [1985]. Extensions of this

family of schemes to two space dimensions are usually based
on the solution of the Riemann problems along near-
orthogonal directions, using quadrilateral control volumes.
It becomes difficult to describe complex geometries.

Chakravarthy and Osher [1985] introduced a procedure
for the extension of such schemes to triangular elements.
This finite volume approach is used and extended in the
present research and is applied to the solution of the general
transport equations in groundwater. The formulation is very
attractive for this problem as an alternative to finite differ-
ence and finite element methods [Putti, 1989]. It combines
the flexibility of finite elements in describing complicated
geometries with the computational simplicity and efficiency
of finite differences. It is globally second-order accurate and
especially developed for the resolution of steep fronts arising
when advective fluxes are dominating the process.

The paper is organized as follows. First, the finite volume
scheme is developed with reference to triangular control
volumes, and the convective and dispersive fluxes are de-
rived. A short review is proposed on the one-dimensional
Godunov’s scheme and its higher-order extensions, upon
which the high-resolution upwind scheme is based. The
high-resolution upwind scheme, defined in terms of Go-
dunov’s method, is applied to triangular control volumes.
The discretization of the dispersive fluxes, together with the
forcing function, is then reported. Finally the description of
the time stepping technique, and the operational definition of
the Courant number, the Peclet number and the stability
criteria close the analytical developments.

The second part of the paper discusses some numerical
results obtained with the proposed approach. To demon-
strate the robustness of the scheme, examples regarding the
solution of the one- and two-dimensional transport equations
are discussed. Purely dispersive cases are treated as well as
purely hyperbolic problems, and linear and nonlinear forcing
functions are considered.

THE FINITE VOLUME APPROACH

The contaminant transport equation in groundwater can
be generally written as [Bear, 1979]:

dc
63;+V-(0vc)=v-(6DVc)+G )

where

¢ concentration of the contaminant;

8 porosity of the porous medium;

v velocity field;

V gradient operator;

D dispersion tensor.
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Fig. I. Triangular control volumes used in the derivation of the

convective and dispersive numerical fluxes.

The term G represents all the sources or sinks and all the
transformations that the contaminant may undergo. A sim-
plified, two-dimensional model problem is used for the
derivation of the finite volume scheme:

0
a—j+V-F=V~DVc+G 2
where F = vc is the advective flux vector.

The scheme is defined over triangular control volumes
(Figure 1) over which the dependent variable ¢ is averaged.
For the space discretization, (2) is integrated over triangle T,
with area Az,:

oc
-—dx+f V~Fdx=f V-DVcdx+f Gdx 3)
To ar Te Te Te

Interchanging the time differentiation and the space integra-
tion operators, the equation can be written as

—f V-Fdx+f V-DVcdx+f Gdx
Ty To To

“

] 1

o, CABC =
at ATo

1
CABC =
ATD To

cdx

The variable ¢ ,5c becomes the new dependent variable and
its value is assigned to the centroid of 7.
Application of the divergence theorem to (4) gives

f F'ﬂABdS+f F'ﬁgcds
AB BC

+ f Fefca ds| - f DVC!AB “fizp ds
CA AB

+ f DVC|BC . ﬁBC ds + f DVCICA . ﬁCA ds
BC CA

+f de]} (5)
To

d 1

— Capc= ——
at Bc ATo
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Fig. 2. Piecewise constant interpolation of the dependent variable
c.

where F4p, Fpc, and F, are the convective fluxes and
DVc|45, DVc|gc, and DV¢|c, are the dispersive fluxes across
the sides of triangle Ty, and f 4, fige, and fic, are the unit
outward normal vectors for each side of 7. The semidis-
crete version of the previous equation can be written

J 1
— capc = —— {~[Fag + fac +
o CABC Ar{ [Fas + Foc + fcal

+[Dag + Dpc + Desl + G (6)

where f and D represent the space discretization operators
for, respectively, the convective fluxes and the dispersive
fluxes, and G represents the forcing functions.

Convective Fluxes

The calculation of the numerical convective flux is based
on an extension of Godunov-type schemes to triangular
control volumes. Godunov’s scheme, and its higher-order
extensions can be exemplified by simple applications to
one-dimensional scalar hyperbolic equations. For the follow-
ing discussion, the reader is referred to the reviews by
Sweby [1985] and Goodman and LeVeque {1988]; the ap-
proach used is taken from van Leer [1977a, b].

Godunov’s scheme. Consider the one-dimensional scalar
hyperbolic equation in conservation form:

dc  af(c)
— + =
at dx

)]

subject to appropriate initial and boundary conditions. De-
fine the computational grid by means of cell centers x; = (Jj
=9DAx, (j=1,---,J), and cell interfaces x;,, = jAx, (j=
0,1,-+-,J),inspace,and t, = nAt,n =1,2,--+, Nin
time. Let ¢ be the interpolation of the dependent variable ¢
over each interval (x; (1), xj.12)) by a piecewise constant
function at time ¢, (Figure 2):

l Xj+ (172

c;' i c(x, t,) dx (8)

Xj-(12y

Godunov’s scheme proceeds as follows. First at each cell
interface the analytical solution c®(x;, (), #) to the local
so-called Riemann problem is calculated for ¢, < r < 1,,,.
This local problem is constituted by (7) defined over a
domain which extends indefinitely on both parts of the cell
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interface. The initial conditions are given by the constant
states (8) calculated in the two neighboring control volumes
and extended over the infinite domain. The solution of the
local Riemann problem at the interface x;, ;2 between cells
Jand j + 1 yields a state c‘(c;.(). ) which is used to
evaluate the numerical flux:

l In+
Feam= Ar f Sle(x;j+ amy, 7)) dr 9a)
4 ta
The new state at ¢,,, becomes
At
Cf”=C,-"”E(ﬁ'+u/2)_ﬁ—(m)) 99)

A forward Euler time stepping scheme approximates (9) by

fvam =4 qms 12) (10)
and leads to first-order accuracy in time. For a linear flux,
f = vc, as usually encountered in groundwater transport of
monophasic contaminants, (9) simplifies to:
i =yl >0
J+ () T U vj

1y

Fvam=vi+1€s,  otherwise

It is easy to show that Godunov’s scheme is only first-
order accurate in space, and that the stability condition for
this method requires that the Courant-Friedrichs-Lewy
(CFL) number be less than unity. The CFL number can be
defined for (7) as CFL = (At/Ax)|max f'(c)|, or CFL =
(At/Ax)|v| for a linear flux. The advantage of this scheme in
solving hyperbolic equations stems from the fact that, when-
ever stability is ensured, it is free of numerical oscillations.
In fact the total variation (TV) of the discrete solution,
defined as:

J
VE) = 2 [6]., - ¢ (12)
j=0

is a nonincreasing function of time:

TV ) = TV(e)) (13)
This statement implies that no oscillations are artificially
created by the scheme when starting from nonoscillatory
initial data. This property is generally indicated as TVNI
(total variation nonincreasing) or, less appropriately, as
TVD (total variation diminishing).

Second-order spatial accuracy. Second-order exten-
sions are obtained by employing piecewise linear interpola-
tion, as opposed to piecewise constant, for the calculation of
the numerical fluxes at each cell interface. However, care
must be exercised: in order to avoid oscillations the inter-
polation must be performed in a monotonic way. This is
accomplished by imposing the interpolated variable in each
cell to be bounded by the value of the same variable in
neighboring cells. The slope of the linear distribution inside
the control volume must therefore be changed according to
neighboring values. In the presence of a local or global
maximum the slope is set to zero. This procedure is called
“‘limiting”* and is automatically carried out only where the



2868

solution displays large gradients; i.e., where the data at the
last time level are not smooth.

The discrete operator of this second order Godunov-type
scheme can be summarized in three distinct phases: (1)
reconstruction using linear interpolation (R) plus limiting
(L); (2) evolution (solution to the local Riemann problem)
(E); and (3) average (projection on the original grid by cell
averaging the result of evolution) (A). These three steps can
be visualized graphically as in Figure 3 in the case of linear
advection.

The definition of the evolution and averaging operators is
immediate once the reconstruction operator, and hence the
numerical fluxes across cell interfaces, are known. Let us
look then first at the reconstruction operator.

Let ACj+(1/2) = Cjy € and denote by ACj = %(ACJ'+(]/2) +
Ac;_p) the average gradient in cell j (e.g., Ac; = %(cjﬂ -
¢j—1)). Then the linear reconstruction operator may be
expressed as

RI(x) = €7 + X —x; o x—x;| 1
| = A v < -
PTG T T )09 Ax | 2

(14)
R/(x)=0 otherwise

Here Ac/ is the average gradient in cell j, changed by the
limiting procedure. Limiting is required to obtain a mono-
tone reconstruction. It should be noted that the reconstruc-
tion R"(x) = V,;R/(x) itself does not have to be monotone,
but the result after evolution and averaging must be. This
can be clarified by an example using linear advection. We
now apply the evolution operator to the reconstruction data
result in R"(x — v(t"*' — ")), where v is the constant
velocity field. The new solution becomes:

1 Xj+ (1)
—=n+1
C; =

1
J v R'(x—v(t"* ' = 1) dx

(15)

Xj -y

Define ¢ = x; — v(t"*! — ") and find i such that £ € {x;,

X;+1]. Then (15) results in

_ _ (€ —x)
Tl Ax Acly un)
1 —x)é—xivan) — —
5 o (Act, ,—AchH  (16)
This expression will be monotone in ¢ only if
lAciy 1 — Aci|=2/Ac], yp) an

In general this condition is not satisfied if the interpolated
data are not smooth, and the average gradients in the third
term of the right-hand side of (16) must be changed. This is
obtained by the limiting procedure is such a way that the
limited gradient Ac"” satisfies condition (17). The resulting
slope is changed until the dependent variable agrees with the
average values found at each cell interface as shown in
Figure 3b. This variation in the slope of the linear distribu-
tion of the dependent variable introduces some numerical
diffusion. The goal is then to provide a limiting rule that will
act only on nonsmooth parts of the solution and will add the
least amount of artificial diffusion when sharp fronts are
detected.
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For this purpose, define the smoothness parameter:

Acj-qap
Ci+(112)

as the ratio l_)etween two consecutive gradients, and let the
limited flux Ac be:

o n 1 n
Acj' = dlr)Aci'y op = ¢< )ch+ ) (19)

rj
where ¢(r;) is the *'limiting function™ or simply *‘limiter.”
When r; — 1, which means that the numerical solution is
smooth, the limiting function must evidently approach unity.
In any case the limiter must conserve second-order accuracy
and the TVNI property of the scheme. It can be shown
[Sweby, 1984] that, in the linear case, and with the appro-
priate time stepping, we recover the well-known second-
order accurate Lax-Wendroff method if ¢(r) = 1. A second-
order TVNI scheme may be in fact viewed as obtained
through a redefinition of the Lax-Wendroff numerical flux
using the limiting procedure.
Many different choices of ¢ allow second-order accuracy
together with TVNI. One simple formula is given by Roe’s
[1986] ‘‘minmod’’ function, defined as:

&(r) = max [0, min (r, 1)] (20)

Using r = x/y with x = Ac/, ) and y = Acj’(y) we obtain

¢>(§) = minmod (x, y)

= sign (x) max {0, min [|x|, y sign (x)]} (21
which may be rewritten as:
minmod (x, y) = x if x| < |y|

minmod (x, y) =y if |x| > |y| 22)

minmod (x, y) =0if xy <0

For a more exhaustive discussion on limiters the reader is
referred to the paper by Sweby [1984].

For nonlinear problems, the evolution operator in (15)
does not have a simple form. Therefore, we use (9) based on
fluxes. The time integration will be approximated by a
second-order accurate two-step scheme to be described
later. The scheme requires fluxes computed from the solu-
tion of the local Riemann probiem. With the piecewise linear
reconstruction, the numerical flux takes the form [Chakra-
varthy and Osher, 1985}:

1 _ 1 _
fivan = 2 &S ) +FE S an)] = 3 L am) — 4+ am)]

(23)
where f(¢) is the general convective flux,
df;', any = max [sign (v), OILF (&% o) — F(&5 )] (24)
df% 1y = —min [sign (1)), 01LF (&% 1) —f (&% )] (24D)
_ 1—
Crap =6t 2 Ac; (24¢)
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Fig. 3.

Graphical visualization of one step of a second order Godunov-type scheme for linear advective flux: (a)

reconstruction; (b) limiting; (c) evolution (solution to local Riemann problem); (d) average.

1 __
(—"}'-:-(]/2J=Cj+l_£ch+l (244d)
and Ac; is given by (19). Here ¢5 ) is the limited value of
the linear interpolation of ¢; in x;.(), While ¢}y, is the
limited value of the linear interpolation of €, in x;j,(y;3). In
case of a linear flux, (23) takes a simpler form:

1
Fivam= 2 (A5 an) +F(E% am)]

1 _
- E sign (W)[f(@ir am) —F(& 4 (1/2;)] (25)
Hence for f(¢) = vc,
1
5 =—{v; 1 T UC
) = S5+ 1G e a) T UG+ an)
- sign @)[vis am ~ v+ 16 anlt (26)
or in equivalent form,
Fivam =v5 an v <0
27)
Fivam=vi+ lc'ji am otherwise

This expression represents the exact solution to the local
Riemann problem,

dc dc
—+v—=0

28
at dx (28)

across the cell interface j + 1 with initial conditions given by

c=Ciany  X<X+am
(29)
S “'+ >
C=Civ X 2 Xj+(172)
and velocity field
U=I7j_ X <Xj+2)
(30)
~ t
U=Tiy X > X400

Note that the original first-order scheme is obtained by
setting Z\_Cj in (24) to zero for cell j. If A¢; is computed
through a limiter, the scheme is globally second-order accu-
rate and TVNI. Second-order accuracy is obtained almost
everywhere except at sharp fronts, where the limiter forces
first-order (O(A x)) errors. However, this behavior does not
destroy the global accuracy of the solution which remains of
second order. The particular monotone interpolation used in
the reconstruction phase guarantees the solution to be TV NI
by adding first-order numerical diffusion at discontinuities
only.

Many different limiters have been proposed in the litera-
ture, each of them having different properties. However, this
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point is not essential for the present discussion as long as the
limiter employed in the calculations lies in the second-order
accuracy region.

Higher-order schemes can be obtained employing more
accurate interpolation of the dependent variable. However,
the definition of the appropriate limiters becomes more
complex.

Extension to triangular control volumes. The application
of the second-order upwind scheme to two spatial dimen-
sions is immediate for rectangular control volumes. In this
case, one can split the fluxes along the directions orthogonal
to each cell boundary. Then the reconstruction and flux
computation for the one-dimensional problem can be applied
to each direction and combined together in a finite volume
fashion similar to (6). The numerical flux at each cell
interface is then given by (23) and (24).

The use of triangular control volumes requires a more
complex formulation. In particular the interpolation of the
dependent variable from the centroid to the sides of the
triangle is now a two-dimensional process. Once the inter-
polated values at each side are obtained, limiting and evolu-
tion can again be performed as in the one-dimensional case.

Consider the equilateral triangle T, of Figure 1, formed by
the vertices A, B, and C. Let B, be the centroid of T, and let
T, T, and T; be the neighboring triangles with b,, b,, and
b; their respective centroids. Let us focus on the derivation
of the numerical flux fgc across side BC; the fluxes across
the other sides of T, are derived analogously.

Let c4pc be the value of the dependent variable in by, and
let ég¢ be the interpolation of c,p- to the side BC. The
superscript ‘‘in’’ indicates that the interpolation is per-
formed from the *‘inside™ of T, with respect to BC. Analo-
gously the superscript ‘‘out’” indicates that the interpolation
is performed from the ‘‘outside’” of 7,. Note that the
“‘inside’” for T, corresponds to the ‘‘outside’” for 7, and
vice versa. )

The value of g can be calculated as

5&' in
~in __ in { _~
€pc = ¢aBc t Spc )

31
on BC

where sl is the distance of by from side BC and n is the
direction normal to BC. To evaluate the normal derivative at
side BC the divergence theorem is used: the derivative ¢ can
be calculated as

oc dc
—dxdy= § cn ds
T, 9 To

where s is the linear coordinate along the perimeter of Tj.
Note that ¢} = cge = ¢4 and

R+Uﬂ43’ﬁgc+aﬁCA'“BC=0

A, —= 32
Y 32

(33)

where fi is the unit outward normal to the corresponding
side. Given the differences

_ .ont in
OAB= Cap — CaB
__ .out in
agc = Cgc — CpC

_ out in
aca=Cca — Cca
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and (33), the integral (32) can be calculated numerically in
two ways: (1) by slightly shifting T, to one side of BC:

e\ , ‘
Ar, (8—) =BCcp¢ + ABcyphap - Bpc + CAcSyhca  Rpe
n
BC

=BCapc
and (2) by slightly shifting 7, to the other side of BC:

(349

AR ) )
ATn (5—) = B?Cg‘c + HC:‘“EﬂAB <fige + C_A'cg"A'ﬁCA < fige
n
BC

=ABaphap - bgc + CAacaics *Bipc  (35)

The average of (3c/on)yl and (3c/an) R gives a first-order
approximation to (3c/an)J¢, that may be interpreted as the
average gradient of the dependent variable across side BC.
Hence (34) and (35) can be used as arguments of the limiting
process to get the following second-order flux-limited ap-
proximation:

ac in
(a—‘> = {minmod [Bta BC» ABa ABﬁAB . ﬁBC
"/ sc

+CAacafica * fipclAr)  (36)

The general numerical convective flux can now be written
in full as

1 .
foc= 5 [F(€5c) - mpe + F(Che) - mpe — (dfpe — dfge)]  (37a)

where nge = BChgc, fige is the unit outward normal to side
BC,

dfsc = max [sign (v{pc * Aac), OIS (€5¢) = £(E50)

dfgc = —min [sign (vigc - Age), OILF(EE) — £ (Cl)]

and fgc( ) = Fpe( ) * ngc. Note how the expressions in
(37b) and (37¢) are immediate extensions of equations (24a)
and (24b) in the one-dimensional case.

In the case of linear flux, since F = vc¢, and f = vc * n, we
obtain an expression similar to (27) which represents the
solution to the local Riemann problem:

(37b)
(37¢)

_ in _in in
foc = €pcVipc e Vi >0

(38)

fBC = fglgvglgc . ﬁBC otherwise

The proposed scheme introduces first-order numerical
viscosity only where sharp concentration fronts are encoun-
tered. In smooth regions of the solution, only second-order
numerical diffusion is added. Because the TVNI property is
insured, the technique is free of spurious oscillations even in
the presence of discontinuities. The formulation is globally
second-order accurate when applied to equilateral triangular
grids. It will remain certainly second order as long as (31)
holds, that is, as long as the distance of the centroids from
the sides of each cell varies within the order of the spatial
truncation error, O(A x2). Therefore nonuniform grids may
be used, but the transition from the equilateral shape and
from element to element must be smooth. Schemes that are
of global second-order accuracy in any situation can be
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obtained, but seem to lose the appealing simplicity of the
present formulation.

Any other second-order accurate limiting technique be-
sides ‘‘minmod’” can be emploved, but it must account for
the triangular form of the control volume. Among the many
limiters presented in the literature, minmod is the one that
introduces the largest amount of numerical viscosity, but it is
the most robust, and does not require particular attention for
its use in two-dimensional triangular cells. Sharper concen-
tration fronts could probably be obtained employing dif-
ferent limiters, but their definition on triangular cells is not
immediate. The study and use of different limiters is one of
the issues that will be pursued in future research.

Dispersive Fluxes

The dispersive fluxes and the forcing functions are repre-
sented by the second part of (5). For triangle T, they can be
written as:

1
DABC = j DVCIAB‘ ﬁAB ds + [ DVC'BC' ﬁBC ds
Az, [ Jas BC

+f DVC|CA “fcg ds + /I‘T()de}
cA

1 .
=-—[Dap + Dpc + Dca + G]
ATo

(39)

For each side of the control volume, approximations to the
normal derivative and the tangential derivative can be de-
fined. These are then projected along the coordinate axis,
multiplied by the dispersion tensor, and then projected along
the direction normal to the side. For example, for side BC,
the normatl derivative can be approximated by

(GC) Cc| — Cp
n/gc  bibg

where b b, is the distance between the centroids of triangles
T, and T;. The tangential derivative can be written as

(ac) EB - EC
05/ pe BC

in which ¢g and ¢, are defined as

(40)

41)

a)

b)

Fig. 4. Computational grids used in the one-dimensional simula-
tions.
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Ng Ng N N
Ta= 2 Arc/2 A1 To= 2 Argl 2 Ag,
=1 ji=1 i=1

(42)

j=1

where Ny and N are the number of triangles 7, that have
respectively nodes B and C in common, and c; is the value of
the concentration in triangle 7. The dispersive fluxes can

then be evaluated by
Dpc = (DVc|pc) « AgcBC

where ¥c|gc is evaluated from equations (40) and (41) by
projection along the coordinate axis:

ac ac T
Vdﬂc ) (5—;) BC, (6_y> BC

Equation (43) is a consistent approximation to the dispersive
fluxes. It is locally first-order accurate but achieves global
second-order accuracy on the whole domain as long as the
triangulation does not become too irregular.

“43)

(44)

Time Discretization and Stability

A peculiar characteristic of the high-order upwind scheme
adopted for the discretization of the convective fluxes is that
it is intrinsically nonlinear even when applied to a linear
equation, as in the present case. Also, it can be shown that
the scheme is unconditionally unstable when a first-order
approximation to the time derivative is used. For this
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wave for Ax = 1/32.

reason, Hancock’s scheme [van Albada et al., 1982] is
employed. It is a two-step second-order accurate explicit
scheme.

Denoting by R, the right-hand side of (6), the technique
can be written as

c" +(172) — o _% Atﬁ*(c")

(43)
=t - Atﬁ(C" + (1/2))

The superscript n denotes the time stage (0 < n < N)and A¢
is the time spacing. In the first half step, the asterisk denotes
that the convective flux is evaluated using values inside the
control volume, interpolated from the centroid to the bound-
ary of the cell but evolution is not performed. While for the
dispersive fluxes the scheme is a normal second-order
Runge-Kutta technique, for the convective fluxes the Rie-
mann problem is not solved on the first half step, thereby
achieving better efficiency.

Limitations on the size of the time step must be satisfied to
ensure stable solutions. For the proposed triangular control
volumes, it is necessary to redefine the Courant-Friedrichs-
Lewy number (CFL) and the diffusion number (7).

For the linear convective flux the CFL number can be
defined as
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§ [v-m|ds
1Jr
— At
Ar,

CFL = 3 (46)
0
and the diffusion number y as
v = IDlat “n
ATO

norm of D Numer,
norm Of o, ;SNumer

is sufficient for stability:

max [CFL, 2y]< 1 (48)

In the same fashion, we can define the cell-Peclet number

to be
%lv-mds
To
e:——-:—————-——

49
y 2] @

As in the standard case, when Pe is small the equation is
dominated by dispersion phenomena; when large, advective
terms prevail.

The size of the allowable time step can be severely limited
by stability condition (48) when 1y is large. The computa-
tional efficiency of the scheme may become very low in this
case. The use of second-order accurate implicit schemes
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Fig. 7. Purely advective example. Initial conditions and concen-

tration profiles obtained after one period with the second order
accurate in time and space for CFL = 1.0: (a) sin? wave; (b) square
wave for Ax = 1/32.
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increases the maximum A¢, which is now limited ounly by
accuracy requirements, although a set of nonlinear equations
must be solved even for linear convective fluxes. However,
it can be shown that the proposed scheme produces diago-
nally dominant matrices, and hence efficient relaxation
schemes can be derived. The solution of the nonlinear
system can be obtained by means of Picard iterations.

NUMERICAL EXAMPLES

One-Dimensional Simulation

To test the accuracy and the general behavior of the
scheme, the following one-dimensional constant coefficient
advection-diffusion problem is solved in a two-dimensional
grid system using different dimensionless parameters:

dc
—+V-F=V-DVc
at
(50)

F =vc

A rectangular domain with unitary length is discretized using
rectangular and equilateral triangles (Figure 4) so that the
effects of the shape of the control volume on the numerical
solution can be evaluated. Two different grid spacings are
used for the calculations: Ax; = 1/32 and Ax, = 1/64 corre-
sponding, respectively, to discretizations formed by 33 and 65
elements. The size of the time step is calculated according to
(48). In the experiments conducted, only very small differences
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Fig. 8. Purely advective example. Initial conditions and concen-

tration profiles obtained after one period with the second order
accurate in time and space: (a) sin? wave; (b) square wave forAx =
1/64.
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Fig. 9. Purely diffusive example. Concentration profiles and ana-

lytical solutions at t = 0.5 and 7 = 1.0 for Ax = 1/32.

can be noted in the numerical solutions obtained from the two
grid systems. This fact suggests that the scheme will remain
second-order accurate as long as the shape of the elements is
not much different from the equilateral.

The first example problem is an application to a purely
hyperbolic equation with constant coefficients and linear
flux:

ac
—+V-F=0
dat
(51)
F- _ 1
=vc v= 0
a)
-0.50
—_ —_—
g -1.00 f— =00
.’E =05
brd 150+ —_——
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Fig. 10. Purely diffusive example. Logarithm of the norms of (a)
the residuals and (b) solution errors plotted versus grid spacing.
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TABLE 1. Parameters Used in the Solution of the One-
Dimensional Convection-Diffusion Equation
Case v, m/s D, m%/s Ax, m Pe
1 1.0 10.0 5.0 0.5
2 1.0 0.05 2.5 50
3 1.0 0.05 5.0 100
4 1.0 5x 1073 5.0 10,000

Periodic boundary conditions are employed so that the
effects of the boundaries do not influence the behavior of the
numerical scheme. The following two different initial condi-
tions are considered: a smooth sine square wave and a
discontinuous square wave traveling with unitary velocity.
The analytical solution is represented by a wave traveling
throughout the domain with unitary period and maintaining
the shape of the initial data. Simulations are performed for
CFL numbers ranging from 0.5 to 1. The results are shown in
Figures 5 to 8.

The scheme performs satisfactorily for any of the CFL
numbers tested. In general, small amounts of numerical
viscosity are added. Theoretically, numerical viscosity is the
largest when CFL = 0.5. This is verified numerically in Figure
5. The peak concentration, however, is very well described.
When CFL = 0.9 (Figure 6) artificial diffusion is noted only in
the case of discontinuous initial data. A very good agreement
with the analytical solution is obtained for the smooth sine
square wave. At CFL = 1, exact results are obtained (Figure
7). The asymmetry of the concentration fronts for CFL # 1
stems from the particular limiter adopted in the formulation. It
is interesting to note the well-known instability of the scheme
when a first-order time discretization is used (Figure 8). Oscil-
lations do not appear only because of the limiting process.
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Fig. 11.
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These effects are especially evident in Figure 8a, where the sine
square wave is completely squared after one period.

For the evaluation of the accuracy of the discretization of
the dispersive fluxes, a pure diffusive equation with constant
coeflicients and Dirichlet boundary condition is solved. A
Gaussian plume is used as the initial condition so that numer-
ical and analytical solutions can easily be compared. Figure 9
shows the results of the simulations at different times.

For a better estimate of the convergence rate, Figure 10a
reports the norms of the residuals plotted in logarithmic
scale versus different grid spacings. The residual is defined
as the difference between the differential space operator and
the numerical space discretization operator, both of which
act on the exact solution. It is therefore free of errors due to
the temporal part at r = 0. Comparison with the A? line
shows that the scheme is accurate to the second order. This
is also verified by the analogous plot in Figure 10b, where the
norm of the residuals is replaced by the norm of the solution
errors (difference between numerical and analytical solu-
tions). Only at a later time is a departure from the O(h?)
behavior visible. This may be caused in part by accumula-
tion errors due to time stepping.

The last one-dimensional example is a convection-
diffusion problem with Dirichlet boundary conditions and
zero initial condition, solved for different values of the
cell-Peclet number. The parameters used in the simulation
are reported in Table 1. The characteristic behavior dis-
played in the previous examples can be noticed. When the
Peclet number is small, the numerical solutions agree well
with the analytical solutions, (Figure 11a). At larger Peclet
numbers, some numerical viscosity starts to appear, and the
asymmetry caused by the limiting process is evident (Figures
116 and 11¢). The concentration fronts are, however, well
described, especially at high Peclet numbers (Figure 11d).
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Two-Dimensional Simulations

To show the applicability of the proposed scheme to the
solution of groundwater transport problems, the two-
dimensional transport-reaction equations are solved on a
square grid system. The hypothetical problem considered
here is the prediction of the movement of a contaminant
injected in an aquifer from a point source. A regional flow
pattern is given and it is assumed not affected by the
injection. The mathematical model can be stated as

ac
5—;+v-Vc=V-DVc+A(c*—C)+R (52)
subject to the appropriate initial and boundary conditions. R
is the source term representing the point injection, and
AMc* — c) represents the sorption reaction between the
contaminant in the fluid phase and in the solid phase. It is
assumed that the equilibrium concentration c¢* is constant.
This may not be a realistic assumption in the description of
a physical process, since the equilibrium concentration is
usually a function of the fluid phase concentration. It is,
nonetheless, employed for this example problem so that the
effects of the forcing functions can be isolated.

The regional flow is assumed to be along the x axis. All the
parameters are considered constant and are appropriately
scaled. The efficiency and accuracy of the scheme will not be
affected by time or space-dependent coefficients as long as
their variation is smooth, as is usually the case in ground-
water problems.

The flow domain is discretized using 1225 equilateral
triangles and is shown in Figure 12. The injection location
and the observation well used to monitor the concentration
are displayed. Injection starts at + = 0 and is turned off at
t = 0.5. The concentration profiles over the whole domain
are obtainedatt = 0.5and ¢t = 1 ort = 1.5, and breakthrough
curves at the observation well are also calculated. The
parameters used for these simulations are summarized in
Table 2.

Case 1: Dispersion and advection without reaction
terms. The example is a convection-diffusion problem
without reaction terms. The parameters are chosen so that a
Peclet number of about 10 is used. From the level curves,
shown in Figures 134 and 135, dispersion along the y axis is
clearly evident. The plume at ¢ = 1 is more dispersed in any
direction than the same plume at ¢t = 0.5. The peak concen-
tration has moved downstream and has decreased. The
breakthrough curve, Figure 13¢, also displays a pattern
characteristic of these problems.

TABLE 2. Parameters Used in the Solution of the Two-
Dimensional Convection-Dispersion-Reaction Equation
Case D A c*
1 0.01 0.0 0.0
2 0.0 0.0 0.0
3 0.0 0.02 2.0
4 0.0t 0.02 2.0
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Fig. 13. Case 1. Dispersion and advection without reaction terms for (a) t = 1.0, () ¢t = 1.0, and (c) breakthrough
curve.

Case 2: Pure advection without reaction terms. In this axis because this is a direction perpendicular to the regional
example, a pure advective problem is considered. This is flow, and the grid is oriented along this direction.
useful to check if the behavior of the numerical solution is It is interesting to examine the breakthrough curve (Figure
consistent with the one-dimensional simulations. Again, 14¢). The observation well starts to detect the contaminant
small nonsymmetric numerical viscosity is visible in the at ¢+ = 0.2, and then the concentration increases exponen-
concentration profiles (Figures 14a and 14b) along the x tially to reach its maximum at ¢t = 0.5. This is the time at
direction. No numerical viscosity can be seen along the y which the injection is turned off and the concentration
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Fig. 14. Case 2. Pure advection without reac

achieves its maximum value at the injection well. It can be
concluded that the peak concentration is not affected by
numerical viscosity. The latter is visible on the right front of
the breakthrough curve and it displays the characteristic
behavior shown in the one-dimensional examples.

Cases 3 and 4: Pure advection and advection-dispersion
with reaction terms. The behavior of the numerical scheme
in the presence of reaction terms is analyzed. Equation (52)
is solved by setting A = 0.2. To better simulate a practical

tion terms for (a) t = 0.5, (b) t = 1.5, and (¢) breakthrough curve.

situation, the equilibrium concentration c¢* is considered
zero whenever the fluid phase concentration ¢ is zero. It is
set to a constant value whenever ¢ # Q. Figures 15 and 16
show the results for advection-reaction and advection-
dispersion-reaction problems.

The most visible effect due to the reaction terms is the
appearance of a ‘‘tail’’ in the concentration profiles. The
phenomenon is similar to a continuous injection at constant
rate Ac*, which reaches a local steady state after the passage
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Fig. 15. Case 3. Pure advection with reaction terms for () 1 = 0.5, (b) t = 1.0, and (¢) breakthrough curve.

of the plume (Figures 15¢ and 16¢). In the pure advective until the contaminant is entirely or almost entirely removed
case, the effect is visible only along the direction of the flow from the solid phase.

(Figure 15b). In the advective-dispersive case the ‘‘tail’’ is
evident also in a direction orthogonal to the flow, because
the dispersive fluxes are affected by this kind of reaction
(Figure 16b). In a nonhypothetical scenario, where c* is The following conclusions are worth emphasizing:
dependent on c, the tailing effect will be more pronounced 1. A finite volume approach based on triangular control
and will not achieve steady state, but will vary with time elements is presented for the numerical solution of the

ConNcLUsIONS AND FUTURE RESEARCH
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curve.

transport equation in groundwater contamination problems.
By defining triangular cells, the scheme is flexible in handling
geometrically complex domains and boundary conditions.
2. The formulation implements high-resolution upwind
schemes for the discretization of the convective fluxes.
These techniques, based on Godunov’s method, allow accu-
rate description of steep fronts with introduction of first-
order numerical viscosity only in a neighborhood of the

sharp front and are globally second-order accurate. As
shown in the numerical examples, the scheme displays no
spurious oscillations confirming the theoretical resuit that
the formulation is TVNI. Analytical considerations, sup-
ported also by numerical experiments, suggest that the
scheme remains second-order accurate for a full range of
Peclet numbers. The reliability and flexibility of the pro-
posed technique have been demonstrated by two-dimen-
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sional example problem. Solutions obtained employing non-
equilibrium reaction terms closely resemble concentration
profiles obtained in field experiments.

3. The method possesses desirable properties that make
the scheme very attractive especially for the solution of
nonlinear problems. Its full capability may be best exploited
for example in the area of multiphase flow and transport,
where nonlinearities and coupling play an important role.
The scheme is in fact particularly suited for nonlinear
convective fluxes and may be extended for the discretization
of systems of equations.

4. A more thorough examination of the accuracy of the
scheme for nonequilateral triangles may be a subject of
future research. As already mentioned, the technique will
remain second-order accurate if the transition from element
to element is smooth, and the distance of the centroid of
each cell from the side varies always within the range of the
truncation error O(A x?). Therefore, shapes that are partic-
ularly narrow will destroy the global accuracy. Research
along these direction is needed to ascertain the real accuracy
of the method in all situations and to derive extensions to
triangles of any shape. Another issue that should be ad-
dressed is the use of different limiting functions. Their role is
in fact crucial for the description of steep fronts without
incurring spurious oscillations. A limiter should be used to
add numerical diffusion only when the latter is really neces-
sary to maintain the TVNI property. In the literature several
one-dimensional limiters have been presented that are able
to accurately describe very steep fronts and discontinuities.
However their extension to two spatial dimensions must be
carefully studied in order to obtain two-dimensional limiters
with the same characteristics.
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