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Definition

Porous medium: A material containing voids (pores), whose
size is small compared to the size of the sample.
Fracture: a break in a material with a small thickness com-
pared to its global extension.
Fracture network: a network composed of several intersecting
fractures.
Introduction

Fractures are ubiquitous in porous media. Here, with the term
fracture we denote a void in the porous material that has the
following characteristics:

(i) One of its dimensions, the aperture, is orders of magni-
tude smaller than the other dimensions and the size of the
domain of interest, but still large compared to pore size.
We will indicate with extension the size of a fracture in
the directions orthogonal to the aperture. The extension
of fractures in a network has a distribution that is usually
assumed to be governed by a power law, which implies
the presence of a large variation of space scales. See
Fig. 1.

(ii) Fractures may be either open or infilled by a material,
whose physical characteristics may be strongly different
from those of the surrounding material.
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(iii) Fractures usually form networks, called fracture net-
works, often highly connected.

With the previous definitions one can consider as fractures,
depending on the scale of interest, different objects such as:
tectonic faults at the scale of sedimentary basins, cracks in
glaciers, as well as fractures in concrete or in rocks.

When they are empty or filled with highly permeable mate-
rials, fractures may provide a preferential path to fluid flow,
but in some cases the deposits inside fractures can become
nearly impermeable. We refer to the latter situation as blocking
fracture.

The presence of fractures greatly alters the macroscopic
properties of the material in a complex way, in particular its
mechanical and flow characteristics.Wewill be here concerned
with the second aspect, and specifically on the mathematical
modeling and computing techniques that may be adopted in the
presence of fractured porous media. For a more general
treatment of fractures in porous media the reader may refer to
the book “Fractured Porous Media” (Adler et al. 2012).

The irregular spatial distribution of fractures and the presence
of multiple scales make it difficult and often impossible to
account for fractures by deriving effective upscaled parameters,
permeability for instance, by volume averaging or homogeniza-
tion techniques. Indeed, such procedures assume a strong sepa-
ration of scales. Therefore, methods have been developed that
model fractures explicitly, at least those crucial for the flow.
These models are based on the assumption that in the porous
medium flow is governed by Darcy’s law, and often a similar
model is adopted for theflow taking place in the fractures as well.

We recall the main characteristic of the Darcy’s model,
considering, for simplicity, just the case of single-phase flow.
In this mathematical framework the two main variables are
the pressure p and the macroscopic velocity field u, also called
Darcy’s velocity. The two quantities are related by Darcy’s
law (Bear 1972; Helmig 1997),

mK�1uþ ∇p ¼ 0 in O, ð1aÞ
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Fig. 1 Choice of the numerical model for domains at different space
scales
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where Ω � ℝd represents the domain occupied by the porous
material and ∇ indicates the gradient. In the case where
gravity effect are relevant, Eq. (1a) may be modified by
replacing the pressure term with p – rgz, where r is the
fluid density, g the magnitude of the gravity acceleration,
and z is the vertical coordinate pointing upwards from the
Earth surface. The main hypotheses behind the model are that
fluid velocity is small, so we can neglect inertial effects, and
the main model parameters are: m, the fluid viscosity, and K,
the permeability tensor of the porous medium, which is a
symmetric and positive definite tensor. Permeability may be
heterogeneous in space and often with high variations.

The second equation expresses continuity of mass by the
following differential equation (Bear 1972; Helmig 1997),
cf@tpþ ∇ � u ¼ q in O, ð1bÞ

where ∇� is the divergence operator, q a source/sink term,
c accounts for the medium and fluid compressibility, and f is
the porosity. Sometimes one is interested in the steady-state
solution or the compressibility can be neglected, in which
case cf@tp ¼ 0.

Equations (1a) and (1b) form a system of partial differen-
tial equations which, complemented by appropriate boundary
and initial conditions, allows to describe the evolution of
(u, p) in the porous medium.
Numerical Models for Fractured Porous Media

Numerical models for fractured porous media may be sub-
divided into two main categories: continuum fracture models
(CFMs) and discrete fracture models (DFMs).

Continuum Fracture Models
CFMs are early models introduced in the 1960s (Warren and
Root 1963), later justified mathematically in (Arbogast et al.
1990), and currently implemented in many industrial soft-
ware. They assume a highly permeable and interconnected
fracture network so that it can be modeled as a continuum
superimposed to that of the porous medium.

A commonly adopted method is the dual-porosity/dual-
permeability scheme. It assumes that at each point of the
domain Ω we may use the Darcy’s equations for flow in the
fractures and in the porous medium, respectively, with a term
representing the interchange of mass between them. A basic
model of this type may be written as:

cmfm@tpm þ ∇ � um þ a pm � p f

� � ¼ qm

c ff f @tp f þ ∇ � u f � a pm � p f

� � ¼ q f

in O, ð2aÞ

where suffixes m and f refer to quantities related to the porous
medium and fractures, respectively. The term α(pm � pf) rep-
resents themass exchange between the two components, with α
a rate parameter. The Darcy’s velocities um and uf are given by
mK�1
m um þ ∇pm ¼ 0

mK�1
f u f þ ∇p f ¼ 0

in O: ð2bÞ

A simpler model, called dual-porosity/single-permeability,
may be obtained formally by settingKm¼ 0. It assumes that the
porous medium acts as storage volume for flow occurring only
along fractures. A further simplification, appropriate only for
highly connected networks of fracture of small extension rela-
tive to the domain size, consists in the use of a single equivalent
continuum with upscaled properties that account for the com-
bined effect of porous medium and fractures.

Discrete Fracture Models
DFMs represent fractures explicitly, modeled as a network of
(typically planar) surfaces Γ, immersed in the porous medium.
In the fractures we typically use a Darcy-type model where
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some special source terms are added to account for the fluid
exchange with the porous medium. The Darcy equations in
the latter are also modified, with terms that act as interface
conditions.

DFMs are computationally more demanding that CFMs,
but also more accurate, particularly when fracture of relative
large extension are present. For this reason the choice
between CFM and DFM may depend on the spatial scale of
interest, as illustrated in Fig. 1.

On each fracture we may identify a unit normal vector nf,
and thus a positive and a negative side of Γ, see Fig. 2. We
indicate with〚f〛¼ f + � f � the jump of a quantity f across
the fracture.

A commonly used model is derived in Martin et al. (2005),
in which the fracture permeability is split into a normal, Kf,n,
and tangential, Kf,t, components to account for the fact that
those quantities may be different and scale differently with the
fracture aperture ϵ. In the porous medium Ω\Γ we consider
Eq. (1), while in the fractures we have, neglecting the com-
pressibility term,
N

mK�1
f ,tu f þ ϵ∇tp f ¼ 0

∇t � u f � um � n f

� � ¼ q f

in G, ð3aÞ

where ∇t� and ∇t are the divergence and gradient operating on
the tangent plane of the fractures, respectively. The jump of
normal velocity across the fracture acts as a source term in the
mass conservation equation and represent the net flux enter-
ing (or leaving) the fracture. This model must be
complemented by appropriate boundary conditions. In the
portion of the boundary of Γ that touches the boundary of
Ω, the conditions are determined by the specific problem at
hand: either pressure or mass flux is prescribed. In the case of
a fracture tip that ends inside Ω, a zero mass flux condition is
generally adopted.

A network normally exhibits intersection between frac-
tures. A common approach is to assume that the pressure is
continuous at the intersection and the net sum of fluxes is
zero. More sophisticated models are available, to account for
fractures with different hydraulic properties and flow along
fracture intersections.

To close the problem we need also to specify interface
conditions to couple Γ to the porous medium. In Martin et al.
(2005) a family of models is presented, including the follow-
ing, often adopted in practice
Numerical Methods for Flow in
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Fig. 2 Positive and negative side
of Γ
mϵK�1
f ,nu

þ
m � n f þ 2 p f � pþm

� � ¼ 0

mϵK�1
f ,nu

�
m � n f þ 2 p�m � p f

� � ¼ 0
on G: ð3bÞ

These conditions can be interpreted as the application of a
discrete Darcy law across the fracture, and indeed they link
the flux across the fracture to pressure differences.

Remark 1 If the fractures are highly permeable in the normal
direction, continuity of pressure across Γ is often assumed,
that is, pþm ¼ p�m . This induces a certain simplification in the
model, since it does not account for a net mass flow across the
fracture, but only for porous medium-fracture exchanges.

Remark 2 For nearly impermeable porous media, a different
simplification of these models, called discrete fracture net-
works (DFNs), consists in neglecting the effect of the porous
material and simulates flow just in the fracture network. They
can be used in the presence of highly connected and perme-
able fractures.
Discretization Schemes for DFM

Numerical schemes for the approximation of the equations
presented in the previous section are based on partitioning the
domain Ω into a mesh of polyhedral elements T h . The
unknowns are then discretized by assuming a given variation
inside each element, for instance constant or linear. The
continuous solution is then replaced by the discrete values at
the mesh nodes.

In the case of DFM we need to mesh both the porous
medium and fracture domains and construct suitable ways to
couple the two via (3b). Many discretization techniques avail-
able in the literature may be roughly subdivided into three
categories, depending on the relation between porous medium
and fracture grids, see Fig. 3.

(i) Conforming methods. The mesh for the porous medium
conforms to that adopted for the fracture network. It
means that a fracture mesh element coincides
(geometrically) with the faces of two porous medium
mesh elements, on the positive and negative side of the
fracture. Consequently, no porous medium mesh ele-
ments are cut by the fracture. This requirement poses
strong constraints on the mesh generation process,
which indeed can be the most time-consuming part of
the simulation, particularly in the presence of complex
networks. On the other hand, the implementation of (3b)
is rather straightforward.

(ii) Non-conforming methods. Still no elements in the
porous medium grid are cut by the fractures: however,
the grid at the two sides of the fracture and the fracture
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Fig. 3 Porous medium and fracture grids
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grid are independent. The implementation of (3b)
involves the setup of suitable operators to transfer the
discrete solution in the fractures to the porous medium
grid and vice versa. The so-called mortar technique,
which is based on the set up of additional variables at
the interface, is sometimes used to simplify the construc-
tion of the transfer operators. The process of grid gener-
ation is eased and it is simpler to avoid the generation of
highly distorted elements: however, it is still rather
demanding in complex situations.

(iii) Non-matchingmethods. Themesh for the porousmedium
and the fracture network are completely independent and
the fracture grids can cut the porous medium mesh ele-
ments in an arbitrary way. This simplifies mesh genera-
tion greatly, since porous medium and fracture grids can
be generated independently. It is still necessary to find the
intersections, but this is simpler than generating a
conforming mesh and can be done with standard geomet-
ric search tools. However, implementation of conditions
(3b) is more complex.

For every category, many different numerical schemes are
at disposal. For the cases (i) and (ii), it is beneficial to use
techniques able to operate on arbitrary polyhedral grids, like
finite volumes or mimetic finite differences, to mention the
more established one. The research in this field is, however,
very active, and wemention also gradient schemes, the hybrid
high order (HHO) method, and the virtual elements Method
(VEM). A reference containing examples of numerical
schemes applied in a DFM context is Fumagalli et al. (2019).

In the case (iii), as already stated, the main difficulty is how
to impose the interface conditions. In that respect we have two
classes of procedures. The first is to represent the possible
jumps in the solution across the elements cut by a fracture
explicitly. This is what is done in eXtended Finite Elements
(XFEM), where the finite element basis functions are locally
enriched to allow discontinuous solutions that can satisfy the
coupling conditions (3b). Contrarily, if one accepts a less
accurate representation of the solution, some manipulations
of the interface conditions are possible to transform them into
source terms acting both on the fracture elements and on the
elements in the porous medium that are cut by the fracture.
The resulting source terms have some similarity with those
present in CFM techniques. The embedded discrete fracture
model (EDFM), usually coupled with a simple finite volumes
approximation, falls into this second category of methods.
A reference on EDFM techniques is in Lee et al. (2000).

The performances ofmany classes of methods are presented
and discussed in Flemisch et al. (2018) for bi-dimensional
problems and Berre et al. (2020) for three-dimensional
problems.
An Example of Computational Workflow

Numerical simulation of flow in fractured porous media is
challenging due to the intrinsic geometrical complexity of
the fractures, as well as the measurement of real fractures
and their properties buried deep in the underground. These
data are difficult to obtain and usually affected by large
uncertainty which compromises the reliability of the numer-
ical solutions.

Several approaches can be considered to detect fractures in
the underground, from seismic inversion to outcrop interpreta-
tion, the former effective to detect big fractures few kilometers
below the surface while the latter normally used as an analogue
of the underground. Once the fractures are collected and digi-
talized by means of one of these methods, a suitable mathe-
matical model can be adopted to perform the simulations.

We focus our attention on the case of outcrop interpreta-
tion. From highly detailed photographs of the interested
region, all the fractures are collected and interpreted up to a
minimum sampling scale determined by the quality of the
data or by computational constraints. Smaller fractures can be
accounted for by a suitable change of the porous medium
properties and seen as upscaled or homogenized. What quan-
tity defines a fracture “small” and thus not explicitly
represented is still an open question, many authors consider
the fracture extension a good proxy for its importance. After
this operation, the digitalized version of the outcrop is thus
available, see Fig. 4 on the top as an example where natural
and human factors limit its exposure. The outcrop is a portion
of Sotra Island, near Bergen in Norway.

Another challenging aspect is the collection of the physical
data, again affected by uncertainty, that are needed to run the
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Fig. 4 On the top the interpreted outcrop and digitalized fractures.
The blue fractures are geometrically simplified due to software con-
straint. Images are taken from Flemisch et al. (2018). The others

represent pressure, velocity field, and a scalar tracer at a specific time.
The color scheme spans from the lowest in blue to the highest in red.
(Images are taken from Fumagalli and Keilegavlen (2019). Under CC
BY 4.0 licence)
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simulation. If some data are not available, it is possible to fill
the gap considering models from the literature to, for exam-
ple, relate the permeability with the aperture and the latter
with the fracture extension. The model can, at this point, be
discretized numerically by means of one of the methods
mentioned in the previous sections.

Figure 4 reports numerical results of a simulation, in par-
ticular the pressure and concentration of a tracer (for instance
a contaminant) in the interpreted outcrop. Two extreme cases
are considered, if the fractures are more or less permeable than
the surrounding porous medium. Data are homogeneous and a
left to right pressure gradient is imposed. The solutions are
obtained with the library PorePy, see https://github.com/
pmgbergen/porepy.
Conclusion

Modeling flow in porous media in presence of fractures and
fracture networks is a challenging task. Several approaches
are available in literature, and a few of them implemented in
specialized software. The choice depends on the scales at
which the phenomenon has to be considered, on the connec-
tivity of the fracture network and on the level of accuracy
desired. Simpler continuum fracture models are suitable for
highly connected and dense networks of fracture, while in
presence of fracture with a larger extension and more sparse,
discrete fracture models provide more accurate results.
Clearly, it is also possible to use a combination of the two
approaches. In this entry we gave a rapid review of the
different strategies and, for the sake of simplicity, we focused
the attention on single-phase flow. The general conclusions
can however be extended to the more complex situation of
multiphase flows.
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Definition

The boundary element method is a numerical technique for
investigating deformation within the Earth. The method is
particularly adept at investigations of discontinuities in the
crust, such as cracks, faults, and dikes. The numerical method
is able to analyze complex problems by discretizing the
surfaces of the discontinuities into small elements and solving
the problem piecewise.
Introduction

The boundary element method (BEM) is one of several
numerical methods used to investigate deformation within
the Earth. The principal difference between boundary element
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method and most other numerical methods of continuum
mechanics, such as the finite element method (FEM), is that
only the boundaries of the deforming body need to be meshed
(Fig. 1). While other methods require meshing the entire
volume of the deforming body into two-dimensional (2D) or
three-dimensional (3D) elements, the BEM only requires
discretization of the boundaries (e.g., fractures, bedding
planes, or external boundaries) into one-dimensional (1D) or
2D elements. Minimizing discretization decreases model
building and run time as well as errors due to discretization
(Crouch and Starfield 1990). The greatest advantages of BEM
modeling in geophysics are that (1) very complicated surface
geometries, such as undulating fault surfaces, can be incor-
porated and (2) the method can readily accommodate fracture
propagation by addition of new elements (Fig. 1). The disad-
vantages of BEM are (1) that the stiffness matrix relating
stresses to strains on the elements is non-sparse so that
inverting the matrix to find stresses can be very CPU intensive
and (2) heterogeneous material properties are more complex
to incorporate in BEM than methods that utilize volume
discretization, such as FEM (Becker 1992).
BEM: for
propagation
just add
another
element

BEM: readily 
accomodates 
complex shapes

Numerical Methods, Boundary
Element, Fig. 1 Contrasting
discretization approaches of the
boundary element method and
finite element method. BEM only
discretizes the boundaries and/or
internal surfaces (blue line) rather
than the entire volume. Fracture
propagation is facilitated by
addition of elements (red line)
How Does BEM Work?

BEM models are based on the solution to Kelvin’s problem
for the deformation due to a point load within a body. The
solution provides the stresses and displacements everywhere
due to the point load. We can calculate the effects of distrib-
uted loads by integrating the point force. When the loads are
applied over discrete elements, the relationships between the
displacements at one element due to loads at another are used
to build an influence coefficient matrix. When either the
displacements or tractions are prescribed to all elements that
comprise the BEM model, the method will solve for the
unknown element tractions or displacements via the influence
coefficient matrix. Once all the displacements and tractions
along the boundary elements are known, the stresses and
strains at any point within the body can be calculated using
the solution of Kelvin’s problem. So unlike FEM, where
solutions are calculated at each node within the element
mesh, within BEM, problems displacements and stresses
can be calculated at any point within the body, once all the
tractions and displacements along the elements are known.
FEM:  
propagation
requires
remeshing

FEM:  special 
elements at 
crack tip, mesh 
complications
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Two variations of BEMs are commonly used, the fictitious
stress and displacement discontinuity methods. The fictitious
stress method is based on Kelvin’s problem and applies uni-
form tractions along each boundary element. In contrast, the
displacement discontinuity method applies displacements
along each element such that the difference in displacement
form one side of the element to the other is constant along the
boundary element (Fig. 2). While fictitious stress method
works well for homogeneous bodies under external loads,
the displacement discontinuity method is better suited for
problems of solid bodies containing cracks (Crouch and
Starfield 1990). For this reason, the displacement discontinu-
ity method is more common for geophysical analyses, which
investigate deformation associated with dikes, sills, micro-
cracks, joints, and faults within the Earth.
What Can BEM Do?

Boundary element method codes using the displacement dis-
continuity formulation have been developed to solve both
two-dimensional (e.g., Crouch and Starfield 1990 and three-
dimensional problems (Okada 1992; Thomas 1993; Meade
2007). Two-dimensional formulations use a linear dislocation
for each element while threedimensional formulations utilize
either rectangular dislocations (Okada 1992) or angular dis-
locations (Cominou and Dundurs 1975) that can be assem-
bled to form triangular elements of constant displacement
discontinuity (Thomas 1993; Meade 2007). The advantage
of triangular elements over rectangular elements is that com-
plex nonplanar surfaces can be meshed without creating loca-
tions of overlaps and gaps.

Important refinements to the basic displacement disconti-
nuity method for investigation of problems in geophysics
include incorporation of frictional slip along crack elements
and prevention of interpenetration of crack walls during com-
pressive loading of cracks. These refinements facilitate inves-
tigation of deformation associated with subsurface faults and
joints. Algorithms for preventing interpenetration include the
penalty method (Crouch and Starfield 1990; Cooke and
Pollard 1997) and the complementarity method (Maerten
et al. 2010). The penalty method employs normal and shear
stiffness to each element to prevent interpenetration. The
complementarity method uses an iterative solver to solve the
inequality that opening should be equal to or greater than zero
along each element (Maerten et al. 2010).

Heterogeneous properties can be incorporated within
BEM formulations by way of a contact boundary. Stresses
and displacements are prescribed to be uniform across the
boundary between otherwise homogeneous portions of the
model. With this constraint along the boundary, the solution
for each homogeneous section is found separately. This
approach has not been widely applied because it is difficult
to implement; finite element methods are generally believed
to be better suited for heterogeneous properties.
Applications of the Boundary Element Method

In most BEM implementations, gravitational body forces are
superposed onto the solution to the applied loading. This
precludes direct investigation of problems related to topo-
graphic loading. However, Martel and Muller (2000) devel-
oped a formulation for analyzing topographic stresses using a
long stress-free crack to simulate the topography.

Investigations of fluid flow through fracture networks has
benefited from the surface discretization approach of the
boundary element method. Models of subsurface flow
through fracture networks utilize a boundary element method
model that incorporates fluid flow along each element (e.g.,
Dershowitz and Fidelibus 1999). Such approaches can permit
the full coupling of mechanical deformation and fluid flow.

The boundary element method has found widespread use
in the subfield of structural geology for solving problems of
deformation and propagation of opening mode and sliding
mode fractures (e.g., joints and faults). Both forward and
inverse modeling techniques have utilized the boundary ele-
ment method. Forward models apply loading to the crack
system to determine the resulting deformation of the system.
Such investigations may explore the development of second-
ary cracks around a fault or the aperture of a hydraulic
fracture. In contrast, inverse models start with the observed
deformation and invert to find the slip on the fault or opening
on the crack that must have produced the observations. For
example, deformation observed along the surfaces of the earth
via GPS stations velocities or InSAR imagery can be inverted
to find the slip distribution on the underlying fault (e.g.,
Maerten et al. 2005).
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Definition
Computational
domain
A bounded spatial region where a partial
differential equation is solved.
Dirichlet
boundary
condition
A condition imposed directly on the
unknown of the differential problem, also
called essential boundary condition.
Neumann
boundary
condition
A condition imposed on the fluxes
associated to the differential problem at
hand, that is, stresses, heat flux, etc. Also
called natural boundary condition.
Parallel
computer
A computer with more than one processing
unit capable of computing operations
concurrently.
Parallel
computation
A numerical procedure executed on a
parallel computer.
Preconditioner
 In the context of the solution of a linear
system by an iterative method, a
preconditioner is an easily invertible
matrix spectrally similar to the matrix
governing the problem.
Introduction

Domain decomposition (DD) method is a technique for the
solution of partial differential equations which can be instru-
mental to the development of parallel computations. It can be
used in the framework of discretization methods, for example,
finite elements, finite volumes, finite differences, or spectral
element methods.

It is based on the reformulation of the given boundary-
value problem on a partition of the computational domain Ω
into M subdomains Ωi, with i ¼ 1,. . ., M. Typically M is also
the number of processors at disposal, even if it is possible to
have more subdomains per processor.

The DD method also provides a convenient framework
for the solution of heterogeneous or multi-physics prob-
lems, that is, those that are governed by differential equa-
tions of different kinds in different subregions of the
computational domain. In this case, the subdomains con-
form with the subregions. In this work, however, we will
address only homogeneous DD methods, yet some of the
concepts presented here may be readily adapted for the
nonhomogeneous case.

We will refer to a partial differential equation of the form

�div T uð Þð Þ ¼ f in O ð1Þ

with suitable boundary conditions on @Ω.
For instance, in an elastostatic problem, u is the dis-

placement and T(u) the stress tensor; in a heat conduction
problem, u is a scalar variable, the temperature, and T the
Laplace operator. With a rather similar formalism we may
also account for the Stokes problem. The method is in fact
applicable also to time-dependent problems, since in most
cases the time advancing scheme required by the numeri-
cal simulation leads eventually to a sequence of problems
of type (1). For instance, if we consider the evolution
equation

https://doi.org/10.1007/978-3-030-58631-7_135
https://doi.org/10.1007/978-3-030-58631-7_37
https://doi.org/10.1007/s10596-009-9170-x
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@tu� div T uð Þð Þ ¼ f ,

a time discretization by the implicit Euler method leads to
solve for the unknown un at each time step tn a differential
problem of the type
un � dtdiv T unð Þð Þ ¼ dtf n þ un�1:

It is still of the form (1) with div(T) replaced by δt div (T) –
I, δt being the time step, and I the identity operator. A similar
form is obtained also for the elastodynamic equations,
discretized in time, for instance, by a Newmark method
(Quarteroni and Valli 1994).

Typically, and for evident practical reasons, the partition
into subdomains is made after having triangulated Ω into a
finite element mesh th, each subdomain being in fact formed
by a set of elements of the original grid (see Fig. 1). The
partition is often made automatically, using libraries like
METIS (Karypis and Kumar 1998b) or PARMETIS
(Karypis and Kumar 1998a), the latter able to exploit a paral-
lel architecture also for this preprocessing stage.

More in particular, there are two ways of subdividing the
computational domain into subdomains. The first uses dis-
joint subdomains, where Ωi \ Ωj ¼ Ø for i 6¼ j. Here, the
interface between subdomains reduces to surfaces (in 3D) and
lines (in 2D). The second strategy adopts overlapping sub-
domains, usually built by letting the subdomains of an initial
nonoverlapping partition grow of a certain factor δ. In most of
the cases δ is dictated by the number of “layers” of grid
elements that are added to the original partition. The minimal
overlap is of one element, like that shown in Fig. 1. For a more
complete review of DD methods one may refer to Smith et al.
(1996), Quarteroni and Valli (1999), Wohlmuth (2001),
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into subdomains with an overlap equal to one layer of elements. Right: Pa
Toselli and Widlund (2005), and Mathew (2008); several
examples with emphasis on parallel computations are
reported, for instance, in Bruaset and Tveito (2006).
Algorithms Without Overlap

We indicate with Γij the interface between subdomainsΩi and
Ωj and we set Γ¼[ijΓij. We exploit the fact that problem (1) is
equivalent to solving the following M coupled problems for
i ¼ 1,. . ., M,
�div T uið Þð Þ ¼ f i in Oi ð2Þ

with the same boundary conditions of the original problem
applied to @Ωi\ @Ω, while on each Γijwe set the continuity of
the local solutions ui and of the fluxes, that is,
ui ¼ u j T uið Þ � nij þ T u j

� � � nji ¼ 0, ð3Þ

where nij is the normal to Γij outward oriented w.r.t.Ωi. It may
be proved that ui ¼ u|Ωi (Quarteroni and Valli 1999).

Problems (2) are coupled because of relations (3).
A parallel algorithm may be obtained by an iterative proce-
dure where conditions (3) are enforced in such a way to
generate at each iteration decoupled problems that can be
run on different processes, with only a small amount of
communication needed at the beginning of each iteration.
For the sake of space we give an example of just one of
these procedures, called Dirichlet-Neumann for the case of

two subdomainsΩ1 andΩ2. Starting from a guess for u 0ð Þ
1 and

u
0ð Þ
2 , the algorithm solves for k ¼ 1, 2, . . . the following

sequence of independent problems,
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�div T u kþ1ð Þ
1

� ��
¼ f 1, in O1,

u kþ1ð Þ
1 ¼ yu kð Þ

2 þ 1� yð Þu kð Þ
1 , on G12

8<: and

�div T u kþ1ð Þ
2

� ��
¼ f 2, in O2

T u kþ1ð Þ
2

� �
� n21 ¼ T u kð Þ

1

� �
� n21 on G12

8><>: :

until a measure of the difference u
kþ1ð Þ
1 � u

kþ1ð Þ
2 on Γ12 is

below a given tolerance; θ here is a convenient relaxation
factor. The Dirichlet-Neumann technique is not easily extend-
able to an arbitrary number of subdomains (unless suitable
coloring techniques are used) and its convergence character-
istics strongly depend on the geometry of the subdomains as
well as on the possible jump of characteristic coefficients (for
instance, the viscosity of different rocks forming a sedimen-
tary basin). Other more favorable techniques like the
Neumann-Neumann, Robin-Robin, and FETI methods are
described in Quarteroni and Valli (1999), Wohlmuth (2001)
and Toselli and Widlund (2005).

The DD method may be also set from an algebraic view-
point. Indeed when discretized, for instance, by a finite ele-
ment method, (2) and (3) reduce to a system of linear
equations, which may be written in a block form as
N

AII AΙG

AGΙ AGG

� 	
uI
uG

� 	
¼ f I

f G

� 	
,

where AII is a block diagonalmatrix withM blocks of dimen-
sion equal to the number of unknowns internal to each sub-
domain, the latter being collected in uI, while uΓ is the vector
of unknowns on the interface Γ. If AII is invertible (and
normally this is the case), we may obtain a problem for the
uΓ only (Schur complement system), SΓuΓ ¼ xΓ, whereP

G ¼ AGG � AGΙA
�1
II AΙG is the so-called Schur complement

matrix w.r.t. AΓΓ. Having solved for uΓ the computation of uI
can be done in a perfect parallel fashion by solving the block
diagonal problem AIIuI ¼ fI – AIΓ uΓ.

A DD scheme with no overlap may be interpreted as
preconditioned iterative scheme (Quarteroni and Valli
1994; Quarteroni 2009) for the Schur complement system,
where the preconditioner can be efficiently applied in a
parallel setting. A crucial issue for parallel computing is
that of scalability. In the DD setting, an algorithm is said
to be scalable if its convergence properties do not depend
on the number of subdomains M, and in particular does not
degrade if we keep the ratio M/N between number of
subdomains and the total number N of unknowns of our
problem fixed. Indeed in this case (if we neglect commu-
nication overheads), we may solve in the same time
a problem twice as large by doubling the number of
processors.
A scalable parallel preconditioner cannot be built using
only local (i.e., at the subdomain level) approximations of the
Schur matrix; we need to add also a coarse operator that has
the role of transferring information among far away sub-
domains. The typical form of the preconditioner is (we write
directly the inverse operator since it is the one actually
required by the iterative procedure (Quarteroni et al. 2007))
P�1
S ¼

XM
i¼1

RT
i

X�
i
Ri þ RT

0

X�
0
R0, ð4Þ

where Ri is a restriction operator that selects from all the uΓ
those local to the i-th subdomain, and

P�
i is a local approx-

imation of the inverse Schur matrix, which typically can be
built using just data related to the i-th subdomain (and thus in
parallel). Finally,

P�
0 is the coarse operator, of small dimen-

sion (typically of the order of M), whose role is to guarantee
the coupling among all subdomains and it is necessary for
scalability. The application of the preconditioner (i.e., the
computation of P�1Px, where x is any vector of the right
length) can be done in parallel a part from the coarse operator,
which however, being small in size, is irrelevant in the com-
putational cost balance. Several scalable preconditioners are
available, see Toselli and Widlund (2005) and Canuto
et al. (2007).
Methods with Overlap

A typical DD scheme with overlapping subdomains is the
Schwarz method. In its basic form, it is an iterative algorithm
for the solution of (1) that for k ¼ 1, 2, . . . solves a series of
local problems on each subdomain Ωi, where on the non-
empty interfaces Γij¼ @Ωi \Ωj, we apply Dirichlet boundary
conditions using the latest values available from Ωj, that is,

�div T u kþ1ð Þ
i

� �
¼ f i, in Oi,

�
u kþ1ð Þ
i ¼ u kð Þ

j , on Gij:

8<:
The iteration continues until the difference between two

successive iterations is sufficiently small. The convergence
analysis of the Schwarz method may be found in Smith et al.
(1996); Quarteroni and Valli (1999); Toselli and Widlund
(2005), and Canuto et al. (2007) in the context of spectral
element discretizations.

The method is seldom used in this form, however. Yet, it is
probably the most adopted method to build parallel pre-
conditioners for an iterative solver of the global problem,
giving rise the so-calledKrylov-Schwarz (for linear problems)
and Newton-Krylov-Schwarz methods.
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A Schwarz parallel preconditioner PS may be written sim-
ilarly to (4), that is,
P�1
S ¼

XM
i¼1

RT
i Α

�1
i Ri þ RT

0Α
�1
0 R0,

where here the restriction operator Ri extracts from a vector of
length N the elements corresponding to the unknowns internal
to the extended subdomain Ωi, Ai ¼ RiAR

T
i is the local matrix

extracted from the matrix A of our problem, and finally A0 is
again a global coarse operator of size of the orderM needed for
scalability, and R0 being the corresponding restriction matrix.

Again, apart from the coarse operator, the computation of
P�1
S xcan be done in parallel since the matrices Ai are local and

can be handled by each processor.
Application to Geophysical and Geological
Problems

DD methods have been applied successfully in the context of
geophysical problems, like acoustic and elastodynamic wave
propagation (Faccioli et al. 1997), or full-waveform tomog-
raphy (Sourbier et al. 2009).

It has been also applied to speed up the simulation of the
evolution of sedimentary basins. Here, different types of
sediments, such as gravel, sand, rocks, and biological remains
that have been transported by the wind, the rivers, and, some-
times, by the sea, accumulate, are buried deeper and deeper,
and are transformed eventually into rocks by a complex
process of compaction and diagenesis.
6.42 Mya

ΓL

ΓB

ΓS

Numerical Methods, Domain
Decomposition, Fig. 2 The
simulated evolution of a salt
diapir. In the first graphic, the
computational domain showing
the subdivision of the layers. The
other pictures show snapshots of
the evolution of the salt layer with
the formation of a diapir
On geological scales, the evolution of a sedimentary basin
may be tackled by a fluid approach where each rock layer is
modeled as a viscous fluid. This is particularly convenient in
the presence of salt tectonics (Massimi et al. 2007).

The computational domain Ω is split in several sub-
domains Ωi, which usually correspond to the rock layers, as
shown in Fig. 2. At each time step, we have to solve in the
domain Ω a Stokes problem, possibly with non-Newtonian
rheology, to compute the instantaneous velocity field,
�div T vð Þð Þ þ ∇p ¼ f ,

div vð Þ ¼ f,

@r
@t

þ v∇ð Þr ¼ 0:

8>>><>>>: ð5Þ

Here, v is the velocity, p the pressure, f the external grav-
itational field, and r the density. The stress tensor T depends
on characteristics of the rocks, such as viscosity and density,
which may be discontinuous across layers. The function f
may account for compaction processes or may be simply set
to zero when the hypothesis of isochoric flow is acceptable.
The last equation describes the evolution of the density, which
is simply advected by the velocity field. The presence of faults
is accounted for by appropriately reducing the rock viscosity
in the vicinity of the faults.

The movement of the layers has been tracked using a level
set technique. A finite element scheme has been adopted for
the discretization of the Stokes problem, while a conservative
finite volume scheme has been used for the tracking of the
layer interfaces. The parallel implementation has been carried
out with the help of the TRILINOS library (Heroux et al.
Layer

2.69 Mya

10.82 Mya

ΓL

Horizon
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2005), using a Schwarz algorithm with a coarse operator built
by aggregation (Sala 2004).

Figure 2 shows the evolution of a salt dome. Salt is less
compressible than the surrounding rock, so during the sedi-
mentation process it ends having a smaller density than the
overburden. We are then facing a Rayleigh-Taylor instability
and any small perturbation will cause the salt to rise, with
large movements that cause the so-called salt diapirism.
Cross-References

▶Numerical Methods, Finite Element
▶Numerical Methods, Multigrid
▶ Sedimentary Basins
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Definition

Finite-difference method. A method to approximate deriva-
tives between neighboring points in a grid. The method can be
applied to solve partial-differential equations, such as the
wave equation.
Introduction

The finite-difference (FD) method is among the most com-
monly used methods for simulating wave propagation in a
heterogeneous Earth. In this article, we describe the FD
method for modeling wave propagation on Cartesian grids
in acoustic, elastic isotropic, elastic anisotropic, as well as
viscoacoustic/elastic media. The basic equations for wave
propagation can be formulated in various formally equivalent
ways. We will restrict our description to systems of first-order
partial-differential equations with pressure/stress and particle
velocities as wavefield variables. Due to its versatility, attrac-
tive stability, and dispersive properties, particularly for
modeling wave propagation in elastic media, this formulation
has been by far the most popular formulation over the last
several decades. Amore extensive review of the FDmethod is
given by Moczo et al. (2007).

We start with a brief review of wave propagation theory
and introduce some fundamental concepts including the basic
structure (staggering) of the FD grid. In the following two
sections, we discuss the choice of FD approximation and
introduce two basic numerical properties of the FD method:
numerical dispersion and stability. The last two sections are
devoted to different boundary conditions and source
implementations.
Theory of Wave Propagation and Fundamental
Concepts

We focus on wave propagation in 3D Cartesian coordinates
with coordinate axes (x, y, z). The special cases of 1D or 2D
can easily be generalized from the expressions presented here,
for example, in 2D, omitting terms or expressions containing
components in the y-direction. The particle velocity wavefield
is denoted by v

! ¼ vx, vy, vz
� �

. In acoustic media, the second
wavefield variable is the scalar quantity pressure, p, whereas

https://doi.org/10.1007/978-3-030-58631-7_37
https://doi.org/10.1007/978-3-030-58631-7_153
https://doi.org/10.1007/978-3-030-58631-7_216
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in elastic media it is the (symmetric) stress tensor, S. We will
often be representing stresses and particle velocities using
stress and strain vectors defined as (the so-called Voigt
notation):

s! ¼ sxx syy szz syz sxz sxy
� �T

,

and

e
! ¼ exx eyy ezz 2eyz 2exz 2exyð ÞT ,

where the strain vector is related to the particle velocity vector
components through:
@ e
!

@t
¼ @vx

@x

@vy
@y

@vz
@z

@vy
@z

þ @vz
@y

@vx
@z

þ @vz
@x

@vy
@x

þ @vx
@y

� 	T

:

The system of equations for wave propagation consists of
two (dependent) sets of equations. First, the equation of
motion (or Newton’s second law):
r
@ v
!

@t
¼ ∇ � Sþ f

!
, ð1Þ

where r is the density of the medium, ∇ � S denotes diver-

gence of the stress tensor and f
!
is a point-force source (source

formulations driving the FD simulations will be described in
detail later). In an acoustic medium, only the diagonal ele-
ments of the stress tensor are non-zero and equal to the
negative pressure � p.

The second set of equations for wave propagation is the
constitutive stress–strain relation:
@
@t

s! ¼ C
@
@t

ϵ!, ð2Þ

where C is the 6-by-6 stiffness matrix. For an elastic isotropic
medium, the stiffness matrix takes the form:
C ¼

lþ 2m l l 0 0 0

l lþ 2m l 0 0 0

l l lþ 2m 0 0 0

0 0 0 m 0 0

0 0 0 0 m 0

0 0 0 0 0 m

0BBBBBBBB@

1CCCCCCCCA
, ð3Þ

whereas in a general anisotropic medium, all components of
the stiffness matrix may be non-zero. As we shall see, this has
profound implications on the choice of grid geometry to
discretize the constitutive relation. Finally, although redun-
dant, the acoustic constitutive relation can also be written
using the notation of the stiffness matrix and the stress–strain
constitutive relation. As noted above, instead of a stress
vector with three independent components, we obtain:
s! ¼ � p p p 0 0 0ð ÞT : ð4Þ

In an acoustic medium, only the (3-by-3) upper left quad-
rant of the stiffness matrix is non-zero, with all elements equal
and identical to the bulk modulus of the acoustic medium k.
Clearly this results in three identical equations – the familiar
Hooke’s law: @

@t p ¼ �k∇ � v!:
The FD method comprises solving Eqs. 1 and 2 by

discretizing them in time and space and stepping forward in
small incremental time steps. In particular, the exact choice of
discretization in space turns out to be of fundamental impor-
tance. The so-called staggered grid was introduced for model-
ing isotropic elastic wave propagation by Virieux (1986) and
Levander (1988, 1989). In the following, wewill be referring to
this as the Virieux grid. The choice of this grid results in
schemes with attractive stability and dispersion properties,
which other non-staggered grids do not necessarily possess.
FD approximations to first-order derivatives naturally result in
outputting the derivative of the wavefield at a location in
between the discretized wavefield. By shifting the exact loca-
tion of individual wavefield components by half a grid step in
certain directions within each grid cell, it is possible to ensure
that spatial derivatives can be computed exactly at the locations
where they are needed to advance canonical wavefield quanti-
ties in time using Eqs. 1 and 2. The structure of the Virieux
staggered grid is illustrated in Fig. 1a. The Virieux grid is also a
good choice for modeling wave propagation in acoustic media.
The resulting sparsely populated staggered-grid cell is equiva-
lent to Fig. 1a but without the shear stresses populating the grid
cell (small blue balls in Fig. 1a). In many situations, it is
desirable to have a computational model that may contain
both acoustic and elastic regions (e.g., modeling a marine
seismic experiment or the seismic response of magma cham-
bers). This is straightforward using a Virieux grid, by simply
setting l ¼ k and m ¼ 0 in Eq. 3 in the acoustic regions.
Updating the equations will guarantee that the “acoustic stress
vector” in Eq. 4 is satisfied to within-machine precision.

The Virieux grid is the natural choice for modeling wave
propagation in elastic media as long as the stiffness matrix, C,
in Eq. 2 belongs to a class of anisotropic materials referred to
as orthorhombic media and as long as the symmetry axes of
the medium are aligned with the Cartesian grid (isotropic
media is a special case that belongs in this family of media).
For this class of anisotropic materials, all elements that are
zero in Eq. 3 remain zero. However, as soon as we introduce
more complex anisotropic symmetry classes or rotate the
symmetry axes with respect to the grid, the elements that are
zero in Eq. 3 will become non-zero. As a consequence, Igel
et al. (1995) noted that spatial derivatives are no longer



a b

Numerical Methods, Finite Difference, Fig. 1 Staggered-grid
geometries. (a) (left): Virieux staggered grid (1986). Large blue ball:
normal stress components; small blue ball: shear stress components; red
arrows: particle velocity components in the directions indicated. (b)
(Right): Lebedev staggered grid (Lisitsa and Vishnevskiy 2010; Bernth

and Chapman 2010). Large blue ball: all stress components; large red
ball: all particle velocity components. The authors acknowledge Chris
Chapman and Henrik Bernth (Schlumberger Cambridge Research) for
providing the figure
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N

available at all locations where they are needed. Igel et al.
(1995) solved this by interpolating strains between their natu-
ral locations. However, the scheme is both expensive and
results in fairly complex implementations. Saenger (2000)
solved the problem in 2D by observing that a rotation of the
staggered grid by 45° results in a natural choice for staggering
the wavefield quantities so that no interpolation is necessary.
The so-called rotated staggered scheme can also be general-
ized to 3D, although it can no longer be seen as a simple
rotation of the Virieux grid. Another staggered grid that avoids
the necessity to interpolate wavefield quantities in anisotropic
media is the Lebedev grid (Lisitsa and Vishnevskiy 2010),
which is illustrated in Fig. 1b. Bernth and Chapman (2010)
analyzed and compared the different staggered-grid geome-
tries and concluded that whereas the rotated staggered grid and
the Lebedev grid are equivalent in 2D, the Lebedev grid is
different and a better choice compared to the rotated staggered
grid in 3D. The Lebedev grid is both computationally more
efficient and also lends itself to a simpler implementation as it
can be regarded as a combination of four independent Virieux
grids that decouple in isotropic media.

So far, the discussion in this section has concerned lossless
media. In order to account for attenuation, a viscoacoustic or
viscoelastic model is introduced by using a different consti-
tutive stress–strain relation compared to Eq. 2. Equation 2 can
be thought of as a model of springs connecting particles in a
lattice. When compressing the springs, energy is stored for an
infinite time or until the compressed springs are released after
which the particles return to their original positions. In a
viscoelastic medium, dashpots are introduced in parallel or
in series with the springs causing energy to dissipate after
compression. The stiffness matrix becomes time-dependent
and the multiplication with the time derivative of the strains is
replaced by a convolution in time. The new viscoelastic
constitutive relation becomes:
@
@t

s! ¼ G tð Þ � @
@t

e
!
, ð5Þ

where G(t) is the new relaxation stiffness matrix, which
contains elements that are functions of time. Such a particu-
larly useful function corresponds to a spring/dashpot config-
uration called a standard linear solid (Robertsson et al. 1994).
First, due to the exponential kernel (in time) in the relaxation
function of a standard linear solid, the convolution in Eq. 5
can be eliminated at the expense of introducing a new set of
differential equations to be solved at each time step and spatial
location. No additional complications due to various grid
geometries arise after introducing the new differential equa-
tions solving for the so-called viscoelastic memory variables
as these equations are fairly simple ordinary differential equa-
tions in time (as opposed to partial-differential equations with
additional spatial derivatives). Second, Robertsson et al.
(1994) and Blanch et al. (1995) showed how arrays of stan-
dard linear solid elements can advantageously be used to
model constant quality factor Q versus frequency and also
how to model attenuation of P and S waves in elastic isotropic
media separately. However, exactly what attenuation to
model for different wave types in an anisotropic medium is
unclear and remains a topic for research (there are no pure
P and S waves in an anisotropic medium).

Finite-Difference Approximations

The FD method approximates derivatives by combining
neighboring function values on a grid, where the particular
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combination is commonly derived using the Taylor expansion
of the function at the different sample points. The simplest
example of a FD approximation is the first derivative of a
function p at x0 using only two samples:
@p x0ð Þ
@x

¼ 1

Dx
p x0 þ Dx

2

� 	
� p x0 � Dx

2

� 	� 	
þ C1

@3p x0ð Þ
@x3

Dxð Þ2 þ O Dxð Þ4
� �

, ð6Þ

where Δx is the sampling interval and C1 is a constant. The
lowest-order error term in this expansion is proportional to the
square of the sampling interval. Hence, as we decrease Δx,
the FD approximation will become increasingly accurate (the
increase in accuracy proportional to the square of Δx) and in
the limit be equivalent to the first derivative of p. The approx-
imation is therefore considered second-order accurate since
the lowest-order error term depends on the square of the
sampling interval. Higher-order approximations of the first
derivative can be expressed as a weighted sum of additional
adjacent sample points:
@p x0ð Þ
@x

¼ 1

Dx

XM
i¼1

ai p x0 þ 2i� 1ð ÞDx
2

� 	
� p x0 � 2i� 1ð ÞDx

2

� 	� 	
þ O Dxð Þ2M

� �
:

(7)

The coefficients αi describe what is often called the FD stencil
and are chosen such that terms containing lower-order error
factors are canceled (Table 1).

The accuracy of the FD approximations for the temporal
derivatives and the spatial derivatives are often different and
schemes are accordingly named with two accuracy orders. An
O(2,8) accurate scheme would be second-order accurate in
time and eighth-order accurate in space.

From Eq. 6, we note that the derivative estimate of a spatial
derivative is computed in between sample points of the
wavefield quantity in question. As described in the previous
section, this is the reason why the staggered-grid formulation
is particularly well suited for FD modeling of the system of
first-order differential equations describing wave propaga-
tion. The grid staggering is also applied in time, typically
utilizing the simple second-order accurate approximation in
Eq. 6, resulting in a time-stepping method referred to as a
“leap-frog” scheme. The leap-frog scheme is in turn referred
Numerical Methods,
Finite Difference,
Table 1 Examples of αi for
different accuracies

αi
Order i ¼ 1 i ¼ 2 i ¼ 3

2 1 N/A N/A

4 9/8 �1/24 N/A

6 75/64 �25/384 3/640
to as an explicit FD scheme since the differential equations
only contain one unknown after discretization in space and
time, and which, therefore, can be computed directly without
solving further systems of equations. For example, if we are in
the process of updating particle velocities at a new time step
t0 + Δt using Eq. 1, we can compute the particle velocities
directly from the known particle velocities at time t0 and
through spatial FD approximations of the known stresses at
time t0 + Δt/2. We then proceed to update stresses at time
t0 ¼ 3Δt/2 using Eq. 2 explicitly from the stresses at t0 + Δt/2
and particle velocities at t0 + Δt. In this fashion, we march
through the FD simulation until we reach the desired maxi-
mum time of the simulation. Clearly, we need to initiate the
simulation with so-called initial conditions for particle veloc-
ities at time 0 and stresses at time Δt/2.
Accuracy and Numerical Dispersion

The most visible error introduced through the FD approxima-
tion is called numerical dispersion and appears when either
the sampling interval is too large or the approximation is not
of sufficiently high order. Numerical dispersion is defined as
the effect when different frequencies of the wavefields prop-
agate slower or faster compared to the correct speed of wave
propagation in the medium. Figures 2 and 3 show wave
propagation simulations with two different order schemes
using the same spatial sampling and clearly demonstrate
severe effects of numerical dispersion of the lower-order
scheme.

The numerical dispersion can be predicted by Fourier
transforming the FD expressions in time and space. Using
the Fourier-transformed expressions, we obtain a relationship
that shows how the propagation velocity in the medium is
affected by numerical dispersion. It is a function of several
parameters including the spatial grid step and the so-called
Courant number (see stability section below). Figure 4 shows
several such dispersion curves (phase velocity error as a
function of the number of wavelengths per gridpoint) for
different choices of time steps (resulting in different Courant
numbers, see below). The numerical dispersion is dominated
by the slowest wave speed in the medium, where the wave-
length is the shortest. The number of sampling/gridpoints per
wavelength necessary for a certain level of accuracy is thus
determined by the dispersion curve and the slowest wave
speed in a medium.

In practice, it is still difficult to define exactly how fine the
wavefields must be sampled to avoid numerical dispersion as
the severity of the numerical dispersion depends on the accu-
racy of the approximation and how far the wave has to
propagate. However, as general rules of thumb, in order to
roughly limit effects of numerical dispersion within a 2.5%
error in propagation velocity, an O(2,4) scheme requires at
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N

least eight grid points per minimum wavelength, whereas an
O(2,6) scheme requires six grid points per minimum
wavelength.

It is obvious from Eq. 8 that a higher-order derivative
approximation requires more computations than a lower-
order approximation. However, in general higher-order
approximations (up to some limit) are preferred as the com-
putational requirements increase linearly with accuracy order,
whereas a finer grid increases the computational requirement
to the fourth power of the refinement in 3D. The fourth power
dependence originates from the fact that the temporal step
must be proportional to the spatial step (see Time Stepping
and Stability below). Thus, if the spatial step is reduced by a
factor n, then a factor n3 more gridpoints are required in 3D in
addition to another factor n more time steps, therefore
resulting in an increase of a factor n4 in the number of
computations required.
Lax–Wendroff Corrections, Optimally Accurate FD
Schemes and Time Dispersion Correction

The higher-order FD approximations are usually applied to
spatial derivatives. To construct a functional scheme that has
a higher order of accuracy in time, it is often necessary to use
implicit time stepping, which results in a substantial increase
in computational requirements. A solution to increase the
formal order of accuracy (in a Taylor sense) without
resorting to implicit schemes or saving several time levels
is to apply a so-called Lax–Wendroff correction (Dablain
1986). The Lax–Wendroff correction works by using the
system of equations to express higher-order derivatives in
time as spatial derivatives. The approximations of the
higher-order time derivatives can be used to construct cor-
rection terms to cancel errors of successively higher order.
Using the system
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@p
@t

¼ �k
@v
@x

@v
@t

¼ � 1

r
@p
@x

,
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the corresponding Lax–Wendroff correction for a third-order
time derivative is:
@3p
@t3

¼ k
@3v
@x@t2

¼ k
@
@x

1

r
@2p
@x@t

¼ k
@
@x

1

r
@
@x

k
@v
@x

: ð9Þ

However, the method is somewhat cumbersome in multi-
dimensions as it requires mixed derivatives and also deriva-
tives of the material parameters, that is, r and k in Eqs. 8 and 9
(see for instance Blanch and Robertsson (1997) for applica-
tions of the Lax–Wendroff correction).

The FD stencil can also be adjusted such that it is optimal
for a certain frequency/wavelength range and thus achieves a
higher accuracy than a standard scheme (Holberg 1987;
Geller and Takeuchi 1995; Zingg 2000). Note that in a strict
(and in this case misleading) Taylor sense, these schemes do
not necessarily appear to be high-order schemes.

Fornberg (1987) noted that spatial and temporal dispersion
can be considered as separate issues that can be minimized
separately. Dispersion associated with the approximation of
the time derivatives is not a function of the propagation path
or type (e.g., P or S) of the synthesized data but only of the
number of time-steps in the simulation since the source was
introduced and can therefore be completely removed from FD
computed data with a pre- and post-processing filtering pro-
cedure (Stork 2013; Koene et al. 2018). The computational
cost of obtaining this spectral accuracy in time is negligible. It
can also be used in combination with Lax-Wendroff related
schemes (e.g., Amundsen and Pedersen 2017) which gener-
ally also allow for larger time-steps without violating the
stability condition of the FD scheme. Thus, stability may be
increased without increasing time dispersion.
Time Stepping and Stability

As discussed above, the time stepping is most commonly
explicit using a second-order approximation resulting in a
leap-frog scheme. The explicit time stepping introduces a
so-called CFL (Courant–Friedrich–Levy) stability condition
prescribing the maximum size of the time step Δ t. The CFL
condition can be derived from the same Fourier transforma-
tion as described above (in the context of numerical disper-
sion) and requiring the resulting difference equation to have
roots of absolute value less than or equal to one. As a result,
the maximum time step is determined by the fastest wave
speed in a medium, the spatial step, and a constant depending
on the particular FD approximations used:
Dt � Kffiffiffiffi
D

p Dx
cmax

, ð10Þ

where the constant K depends on the spatial accuracy and is
slowly decreasing with increasing accuracy of the scheme
from a value of 1 for an O(2,2) scheme, D is the dimension
of the simulation (e.g., D ¼ 2 for 2D) and cmax is the maxi-
mum wave propagation speed in the medium. Rapid changes
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in material parameters may require an even smaller time step,
but do not, in general, cause problems (Haney 2007). Using a
temporal step larger than determined by the CFL condition
yields an unstable simulation, that is, parasitic solutions will
grow at an exponential rate and swamp the physical solution.

The Courant number is often used in the context of
discussing stability and numerical dispersion. It is defined as
g ¼ c0
Dt
Dx

, ð11Þ

where c0 is the local velocity of the medium. The Courant
number can be interpreted physically as the fraction of the
spatial increment that a wave can advance in a time step. From
Eq. 11, we see that the Courant number controls the stability
of the numerical scheme. In a heterogeneous medium, there
exists a large range of velocities and it is thus important to
study a FD scheme’s behavior (i.e., numerical dispersion) for
a range of Courant numbers (e.g., see Fig. 4). In the literature,
the normalized Courant number is often used:
N

gnorm ¼ c0
Dt
Dx

ffiffiffiffi
D

p
K

, ð12Þ

which needs to be less than or equal to 1 for a stable
simulation.

Amundsen and Pedersen (2017) showed that through a Lax-
Wendroff related procedure it is possible to choose time steps
that can be doubled, tripled, or generally, n-tupled beyond the
classical CFL limit. However, like the Lax-Wendroff proce-
dure, they require more computational effort per time step.
Boundary Conditions

The most important boundary conditions for wave simula-
tions are radiating and free-surface boundary conditions.
Radiating boundary conditions are applied at the edge of the
finite computational domain to annihilate undesired reflec-
tions from the edge of the domain. The radiating boundary
conditions can be implemented as “one-way” wave equation
propagators using special operators at the boundaries. A first-
order simple version is to implement the following equation at
the boundary:
@p
@t

¼ �c0
@p
@x

, ð13Þ

where the sign depends on which boundary (maximum or
minimum x coordinate) and c0 is the (local) propagation
velocity. For a single propagation velocity, Eq. 13 is fairly
straightforward to implement. However, significant compli-
cations arise for elastic or anisotropic media and for higher
dimensions than 1D where it is the apparent velocity
perpendicular to the boundary that is the relevant parameter
(Clayton and Engquist 1977; Higdon 1986, 1990).

The radiating boundary conditions are more commonly
implemented as absorbing (or attenuating) boundary condi-
tions applied in a finite region just inside the computational
domain (Cerjan et al. 1985). Absorbing boundaries do, how-
ever, need to have a transition zone, where the attenuation of
the wavefield is gradually increased, since a rapid change in
attenuation will cause reflections as well. A particularly effi-
cient absorbing boundary condition is the “Perfectly Matched
Layer” (PML) (Bérenger 1994; Collino and Tsogka 2001). The
PML allows the attenuation to be increased extremely rapidly
without causing reflections. The PML boundary conditions can
be thought of as introducing artificial anisotropy to the bound-
ary and matching the reflection coefficient in different propa-
gation directions. The most straightforward realization of a
PML boundary is through the split-field technique, where the
wavefield is split depending on which spatial derivatives are
used to update it. For the system in Eq. 8 in two dimensions, an
implementation for the p variable would be
@px
@t

þ bxp ¼ �K
@vx
@x

@pz
@t

þ bzp ¼ �K
@vz
@z

p ¼ px þ pz

8>>><>>>: ð14Þ

The coefficients βi control the attenuation in either the x or
z directions independently.

The straightforward split-field implementation is equiva-
lent to a fully anisotropic implementation (Teixeira et al.
2002) but suffers from a mild instability for waves impinging
on the boundary at an incidence angle higher than 45°.
A slightly more complex implementation avoids this instabil-
ity (Bécache et al. 2002).

The free-surface boundary condition is used to approxi-
mate the interface between a water/solid material and air.
Since the acoustic impedance of air is significantly different
from that of water or the Earth, explicit modeling results in a
computationally much more expensive simulation. In fact, it
is possible to use a (pressure release) free-surface condition
instead (water or Earth in contact with vacuum). For a water/
air contact it is simply implemented through mirroring,
p �zð Þ ¼ �p zð Þ
vz �zð Þ ¼ vz zð Þ

�
, ð15Þ

assuming the boundary is located at z ¼ 0. The upper bound-
ary in Fig. 2 is implemented using a free-surface condition.
The free-surface condition for a solid elastic material is more
complicated and cannot be achieved solely throughmirroring.
Care must be taken to ensure that all wavefield components
satisfy the wave equation and the free-surface condition in
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order to accurately model wave phenomena such as Rayleigh
waves at the free surface (see Robertsson 1996, for details).
Topography and Conformal Mapping of Grids

Topography can either be implemented explicitly into a FD
scheme (Robertsson 1996) or by stretching the grid through
conformal mapping of the regular computational grid onto a
grid with continuously varying grid spacings where the top of
the grid follows the topography (Fornberg 1988; Hestholm and
Ruud 1994). The explicit method will lose some of its flexibil-
ity to implement rapidly varying topography if a higher-order
scheme is used for the solution. If a conformal mapping is used,
all derivatives will depend on themapping function through the
chain-rule. This may lead to stricter stability conditions and
stricter requirements on spatial sampling.
Source Implementations

Seismic sources can be introduced in terms of body forces as
indicated in Eq. 1 or as moment-tensor sources using an
equivalent source term in the constitutive equation (e.g.,
Eqs. 2 or 5). A straightforward approach is to simply drive a
body force at one point by feeding Eq. 1 with the value of a
desired source wavelet in a single spatial grid point at each
time step. Although this approach tends to work fairly well,
researchers have sometimes reported on high-frequency noise
being introduced. The origin of this noise has been attributed
to the intrinsic difficulty in representing delta functions on a
discretely sampled model with continuous wavefields.

Practitioners in exploration seismology often mimic
explosive sources by equal excitation of the diagonal ele-
ments of the stress tensor at the source location or alterna-
tively model compressional or shear vibroseis source by
either exciting vertical or horizontal body forces. Earthquake
seismologists who wish to model a moment-tensor source can
do this either through a stress or body-force representation as
described by Moczo et al. (2007).

An alternative way to introduce a source wavefield on a FD
grid is by means of a boundary condition on an artificial
surface interior to the grid. The method was first described
by Alterman and Karal (1968) and followed by many authors
clarifying the concept (Kelly et al. 1976; Levander 1989;
Robertsson and Chapman 2000; Moczo et al. 2007). The
technique relies on two prerequisites. First, that the spatial
FD operators have a limited extent in space and second, that
the (isolated) source wavefield can be computed in a region
around the source location without reverberations from the
rest of the model at the (simulated) time of source insertion.

The method of introducing a source wavefield as a bound-
ary condition along an internal surface can also be used in
seismic data processing and imaging applications (e.g.,
Amundsen and Robertsson 2014) and in so-called hybrid
methods where two different numerical solutions are coupled
together (e.g., Robertsson et al. 1996; Zahradník and Moczo
1996; Robertsson and Chapman 2000; van Manen et al.
2007). However, the wavefield on opposite sides of the arti-
ficial surface in the technique above is reversed so that the
source wavefield is present inside the artificial surface only.

Finally, Robertsson et al. (2015) showed that by introduc-
ing a source wavefield as a boundary condition, it is possible
to output up- and down-going as well as P- and S-wave
constituents to machine precision accuracy. This enables the
use of FD methods in research where such outputs are
required instead of relying on so-called propagator matrix
methods that are limited to 1D media.
Conclusions

We have outlined the basic principles of FD approximations
to the systems of first-order partial-differential equations
describing acoustic, isotropic elastic, anisotropic elastic, or
viscoacoustic/elastic wave propagation. The method is based
on explicit leap-frog time-stepping and staggered-grid repre-
sentations. Most commonly Taylor-series-derived stencils are
used to approximate the spatial derivatives, although other
means to optimize FD stencils have also been described.

Two types of boundary conditions exist. First, radiating or
absorbing boundary conditions (e.g., PML) are used to trun-
cate the model while avoiding boundary reflections. Second, a
free-surface boundary condition can be used to simulate the
surface of the Earth with or without topography.

Sources are introduced either as point-force or stress
sources, or along closed (artificial) surfaces inside the FD grid.

The maximum possible spatial grid size in order to limit
numerical error is computed from the slowest propagation
velocity in the model (e.g., a shear-wave velocity in the
near-surface) using the so-called numerical dispersion rela-
tion for the FD scheme. Once the grid spacing has been
chosen, the maximum possible time step is computed from
the CFL-stability condition. The maximum possible time step
is proportional to the spatial grid size and inversely propor-
tional to the maximum propagation velocity in the grid. Since
the computational cost of a 3D FD simulation increases to the
power of four with a linear reduction of grid size, high-order
accurate FD stencils are usually preferred.
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Definition

The finite element method is a numerical method, like the
finite difference method, for solving differential equations
arising in the study of physical phenomena. In the finite
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element method, a given domain is viewed as a set of non-
intersecting subdomains, called finite elements, and over each
element the governing equation is approximated by any of the
traditional variational methods (e.g., Ritz, Galerkin, and least-
squares methods). The main reason behind seeking approxi-
mate solution on a set of elements is the fact that it is easier to
represent a complicated function as a sum of simple poly-
nomials. Of course, each individual segment of the solution
should fit with its neighbors in the sense that the function
and possibly its derivatives up to a chosen order are continu-
ous along the interface between elements. This entry is a
brief introduction to the finite element modeling of diffusion
processes and the Navier–Stokes equations governing vis-
cous incompressible fluids. Both phenomena play crucial
role in modeling a variety of geological or geomechanics
processes.
General Introduction

Scientists and engineers model (i.e., develop mathematical
models and numerically simulate) natural phenomena with
the objective of understanding it. Virtually every phenome-
non in nature, whether aerospace, biological, chemical, geo-
logical, or mechanical, can be described in terms of
algebraic, differential, and/or integral equations relating var-
ious quantities of interest. Determining the stress distribu-
tion in a mechanical structure with oddly shaped members
and numerous stiffeners and subjected to mechanical, ther-
mal, and/or aerodynamic loads, finding the concentration of
pollutants in lakes and estuaries or in the atmosphere, pre-
dicting geophysical and geological events, and simulating
weather in an attempt to predict the formation of tornadoes
and thunderstorms are a few examples of many important
practical problems that scientists and engineers are
occupied with.

In the last four decades, the finite element method has
emerged as a powerful computational tool for solving non-
linear partial differential equations over irregular domains
with complex domain properties (Reddy 2015, 2019; Reddy
and Gartling 2010; Bathe 1996; Belytschko et al. 2000).
Applications of the method to geology, geophysics, and
geomechanics problems are numerous (see, e.g., Reddy
et al. 1982; Wickham et al. 1982; Bird 1989; Parsons
2002; Dyksterhuis et al. 2005 and references therein). This
brief introduction is meant to provide some insight into the
workings of the finite element method as applied to the
Poisson equation as well as the Navier–Stokes equations
that are used to model certain geomechanics processes in
two dimensions.
Finite Element Model of 2-D Poisson Equation

Consider the problem of finding u(x, y) such that the follow-
ing partial differential equation (a generalized Poisson’s equa-
tion) is satisfied
� @
@x

axx
@u
@x

� 	
þ @
@y

ayy
@u
@y

� 	� 
¼ f x, yð Þ in O ð1Þ

whereΩ is a two-dimensional domainwith boundaryΓ. Here axx
and ayy are material coefficients in the x and y directions, respec-
tively, and f(x, y) is the known source. For example, in a ground
water flow problem u denotes the water head (i.e., velocity
potential), axx and ayy are the permeabilities in the x and
y directions, respectively, and f(x, y) is distributed water source.
Equation 1 also arises in many areas of science and engineering.

In the finite element method, the domain O ¼ O [ G is
divided into a set of subdomains O

e ¼ Oe [ Ge, called finite
elements. Any geometric shape qualifies as an element, pro-
vided that the approximation functions ce

i can be derived
uniquely for the shape.

Suppose that the dependent unknown u is approximated
over a typical finite element O

e
by the expression
u xð Þ � ueh xð Þ ¼
Xn
j¼1

uejc
e
j xð Þ, x ¼ x, yð Þ�O

e ð2Þ

where ueh xð Þ represents an approximation of u(x) over the
element O

e
, parameters uej denote the values of the function

ueh xð Þ at a selected number of points (i.e., element nodes) in
the element O

e
, and ce

j are the Lagrange interpolation func-
tions associated with the element.

We seek to satisfy the governing differential equation in a
weak-form sense, with the weight functions being the same as
the approximation functions. The resulting finite element
model, i.e., set of algebraic equations) is called the weak-form
Galerkin finite element model (Reddy 2019). The weak form is
0 ¼
ð
Oe

axx
@we

i

@x

@ueh
@x

þ ayy
@we

i

@y

@ueh
@y

� we
i f

� 	
dxdy

�
þ
Ge
we
i qnds

ð3Þ

Suppose that ueh is represented over a typical finite element
Ωe by expression of the form 2. Substituting the finite element
approximation 2 into the weak form 3, we obtain
Keue ¼ fe þ qe 	 Fe ð4Þ

where the coefficients Ke
ij, f

e
i and qei are defined by
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f ei ¼
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fce

i dA, q
e
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ð
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bqn þ hcucð Þce
i ds

ð5Þ

We note that Ke
ij ¼ Ke

ji (i.e., K
e is symmetric).
Finite Element Models of the 2-D Navier–Stokes
Equations

In this section, we develop the finite element models of steady
flows of viscous, incompressible fluids in two-dimensional
domains. The governing equations are the conservation of
linear momentum and conservation of mass, expressed in
terms of the Cartesian components
N

r u
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@x

þ v
@u
@y

� 	
� @sxx

@x
� @sxy

@y
� fx ¼ 0 ð6Þ

r u
@v
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@v
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� 	
� @sxy
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� @syy

@y
� fy ¼ 0 ð7Þ

@u
@x

þ @v
@y

¼ 0 ð8Þ

sxx ¼ 2m
@u
@x

� P, syy ¼ 2m
@v
@y

� P,

sxy ¼ m
@u
@y

þ @v
@x

� 	 ð9Þ

Here we present two different finite element models asso-
ciated with Eqs. 6, 7, 8, and 9. The first one is a direct
formulation in which the three equations in (u, v, P) are
used in their original form. This formulation is known as
the velocity–pressure formulation. The other formulation is
based on the interpretation that the continuity equation
(Eq. 8) is a constraint on u and v, and the constraint is
satisfied in a least-squares (i.e., approximate) sense. This
particular method of including the constraint in the formu-
lation is known as the penalty function method, and the
model is termed as the penalty-finite element model. It is
informative to note that the velocity–pressure formulation is
the same as the Lagrange multiplier formulation, wherein
the constraint is included by means of the Lagrange multi-
plier. The Lagrange multiplier turns out to be the negative of
the pressure.
Velocity–Pressure (Mixed) Model
The weak forms of Eqs. 6, 7, and 8 over an element Ωe can be
constructed following the standard procedure (Reddy 2015).
The weight functions have the following physical interpretation:
w1 
 u,w2 
 v and w3 
 �P ð10Þ

Assuming approximations of the form
u ¼
Xm
j¼1

v jc
e
j, v ¼

Xm
j¼1

v jc
e
j, P ¼

Xn
j¼1

P jf
e
j ð11Þ

where ce
j and fe

j denote the Lagrange type interpolation func-

tions (n<m; n + 1¼m) and substituting into the weak forms of
Eqs. 6, 7, and 8, we obtain the following finite element model:
K11 K12 K13

K21 K22 K23

K31 K32 K33

264
375 u
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8><>:
9>=>; ¼
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9>=>; ð12Þ

where F3
i ¼ 0
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F1
i ¼

ð
Oe
f xcidxdyþ

þ
Ge
txcids,

F2
i ¼

ð
Oe
f ycidxdyþ

þ
Ge
tycids

ð13Þ

Here (tx, ty) denote the components of the stress vector t on
the boundary
tx ¼ sxxnx þ sxyny, ty ¼ sxynx þ syyny ð14Þ

and (nX, nY) are the components of the unit normal vector bn.
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Penalty-Finite Element Model
Use of the penalty function method amounts to replacing the
pressure with
P ¼ �g
@u
@x

þ @v
@y

� 	
ð15Þ

where γ is known as the penalty parameter. For complete
details, the reader may consult (Reddy 2015, 2019; Reddy
and Gartling 2010). Note that Eq. 15 is used to post-compute
P once the velocity field is available.

Assuming interpolation of the form
u ¼
Xn
j¼1

uejc
e
j, v ¼

Xn
j¼1

vejc
e
j ð16Þ

where ce
i are Lagrange interpolation functions. Substituting

Eq. 16 into the weak forms of Eqs. 6 and 7, we obtain the
finite element model
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The numerical evaluation of the coefficient matrices
appearing in Eq. 17 requires special consideration. Eq. 17 is
of the general form
Km þKr þKgð ÞD ¼ F ð19Þ

where Km, Kr, and Kγ denote the contributions from the
viscous, inertia, and penalty terms, respectively. In theory,
as we increase the value of the penalty parameter γ, the
conservation of mass is satisfied more exactly. However, in
practice, for some large value of γ, the contribution from
the viscous and inertia terms would be negligibly small
compared to the penalty terms in the computer. Thus, if K3

is a nonsingular (i.e., invertible) matrix, the solution of the
final equations associated with Eq. 19 for a large value of γ is
trivial
lim g ! 0 Km þKr þKgð ÞD ¼ F ! KgD ¼ 1

g
F ð20Þ

which will yield Δ¼ 0. While the trivial solution satisfies the
continuity equation, it does not satisfy the momentum equa-
tions for nontrivial boundary data or body forces. In this case,
the discrete problem (Eq. 17) is said to be over-constrained or
“locked.” If Kγ is singular, then the sum Km + Kr + Kγ is
nonsingular (because Km is nonsingular after the imposition
of proper boundary conditions), and a nontrivial solution to
the problem may be obtained.

The numerical problem described above is eliminated by
proper evaluation of the integrals in Kγ. It is found that if the
coefficients of Kγ (i.e., penalty terms) are evaluated using a
numerical integration rule of one order less than that required
to integrate them exactly, the finite element equations (Eq. 17)
will give acceptable solutions for the velocity field. This
technique of under-integrating the penalty terms is known in
the literature as reduced (order) integration. For example, if a
linear rectangular element is used to approximate the velocity
field in a two-dimensional problem, the matrix coefficientsKm

as well asKr are evaluated using the 2� 2 Gauss quadrature,
and Kγ are evaluated using the one-point 1 � 1) Gauss
quadrature. The one-point quadrature yields a singular Kγ.
Therefore, Eq. 17 cannot be inverted, whereas Km + Kr + Kγ

is nonsingular and can be inverted (after assembly and impo-
sition of boundary conditions) to obtain a good finite element
solution of the original problem. When a quadratic rectangu-
lar element is used, the 3 � 3 Gauss quadrature is used to
evaluateKm andKr, and the 2� 2 Gauss quadrature is used to
evaluate Kγ.

The choice of the penalty parameter is largely dictated by
the ratio of the magnitude of penalty terms to the viscous and
convective terms (or compared to the Reynolds number, Re),
the mesh, and the word length in the computer. The following
range of γ is suggested in computations
g ¼ 104Re to g ¼ 1012Re:
Summary

Numerical simulation of geomechanical processes requires a
good understanding of computational fluid mechanics, heat
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transfer, and solid mechanics and their couplings. The
increase in computing power in both single processor and
parallel environments has allowed realistic geomechanics
problems of significant complexity and fidelity to be rou-
tinely solved and utilized in technological advances. Com-
mercial software has made rapid progress in providing a
broad spectrum of analysis capabilities to a variety of indus-
tries. Though software is increasingly robust, accurate
simulations still require a knowledgeable user, with a back-
ground in both mechanics and numerical methods. This
entry only provides an introduction to an individual who is
interested in the use of the finite element method as a numer-
ical simulation tool for the study and understanding of
geomechanical phenomena. The Poisson equation and the
Navier–Stokes equations visited here provide the necessary
background for the study of diffusion processes and viscous
flow problems. Interested readers may consult the references
listed.
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Definition

A multigrid method is an algorithm for the iterative
solution of partial differential equations using a sequence
of discretizations on multiple scales.
Introduction

The numerical solution of a partial differential equation
(PDE) requires its discretization and a method to solve the
resulting large system of algebraic equations. For linear equa-
tions, the resulting system is often a sparse matrix, and a direct
solution method suffices if the size of the problem is modest.
In three space dimensions, the computational cost of a direct
solver may be too high. An iterative method that improves
the accuracy of an approximate solution step by step can be
a good alternative. Multigrid is an example.

The multigrid method has optimal complexity: the amount
of work required to solve a problem with N unknowns is
O(N), meaning that it scales with the problem size N. It
achieves its efficiency by employing several discretization
grids for the same problem.
History

Fedorenko (1964) introduced the multigrid method as an
iterative scheme for solving Poisson’s equation on a square
and showed that the number of computations required to
determine a solution with a prescribed accuracy is propor-
tional to the number of unknowns, N. Therefore, the method
has an optimal computational complexity. Brandt (1973)
found that the actual computational cost for a sufficiently
accurate result was about 10 work units, where a work
unit is the cost of evaluating the discretized equations.
He connected the method to local adaptive grid refinement
and introduced nonlinear multigrid. Hackbush (1976, 1985)
discovered the method independently and provided a mathe-
matical foundation. Since then, the method was developed
further to handle PDEs other than Poisson’s, which is elliptic,
and to go beyond PDEs.

https://doi.org/10.1007/978-3-030-58631-7_152
https://doi.org/10.1007/978-3-030-58631-7_135
https://doi.org/10.1007/978-3-030-58631-7_153
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Textbooks include those by Hackbush (1976), who
includes convergence proofs; by Wesseling (1992), with
chapters on computational fluid dynamics; by Briggs et al.
(2000), an easy to read introduction; and by Trottenberg
et al. (2001), among others.
Two-Grid Scheme

A discrete representation of a PDE provides an algebraic
system of equations with relations between solution values
at neighbouring grid points. It is fairly easy to make local
corrections that reduce the solution error on a short range but
much harder to correct the long-range or long-wavelength
components of the solution that have a more global character.
By projecting the solution onto a coarser grid, the long wave-
lengths become shorter and can effectively be solved for.
Combining the corrections to the solution from coarser and
finer grids yields an efficient solver.

A simple one-dimensional example can help to understand
the fundamentals of the multigrid method. The PDE is Lu¼ f,
with u(x) the unknown solution as a function of position x on
a finite interval [xmin, xmax] on the real axis, f (x) a source term
or forcing function, and L a linear differential operator,
for instance, minus the Laplacian, which in 1D is � d2

dx2
.

Dirichlet boundary conditions let the solution be zero at the
endpoints of the interval. To obtain a discrete representation
of the problem, an equidistant one-dimensional grid is defined
with grid points xk ¼ xmin + kh, index k¼ 0,. . ., N + 1, where
N + 1 ¼ 2M and M is a positive integer. The grid spacing is
h ¼ (xmax � xmin)/(N + 1). A standard second-order finite-
difference scheme leads to
�uk�1 þ 2uk � ukþ1

h2
¼ f k, k ¼ 1, . . . ,N,

where uk approximates u(xk) and fk ¼ f (xk). At the boundaries,
u0 ¼ uN+1 ¼ 0. The discrete equations represent the problem
Lhuh¼ f h, where Lh is a N� N sparse matrix and uh and f h are
vectors of length N. The residual is defined as rh ¼ f h � Lhuh

and should vanish once the numerical solution has been found.
A simple iterative method is Jacobi relaxation, in which

the matrix Lh is replaced by its diagonal Dh ¼ 2/h2. One step
of Jacobi relaxation amounts to
uh≔uh þ o Dh
� ��1

rh:

The symbol “:¼” indicates that the solution values are
replaced by the expression on the right-hand side. The factor
o controls the amount of damping. Convergence requires
0 < o � 1. Fourier analysis (Hackbush 1985) shows
that the convergence rate, the factor by which the norm of
the difference between the current and the exact numerical
solution is reduced, is 1 – O(h2) for Jacobi relaxation.
Convergence slows down on increasingly finer grids.

The Fourier analysis reveals that the slow convergence
is caused by the long-wave components of the solution.
Because long waves can be represented on coarser grids,
it makes sense to have look at a two-grid scheme, outlined
in Fig. 1 and its caption. The coarse grid consists of
every other grid point of the fine grid: xK ¼ x0 + KH, with

H ¼ 2h and K ¼ 0, . . . , 1
2
N þ 1ð Þ. A restriction operator eI H

h

maps the current fine-grid residual rh to the coarser grid:

rH ¼ eI H

h rh . The simplest restriction operator is injection:
rHK ¼ rh2K , K ¼ 1, . . . , 1

2
N � 1ð Þ. Full weighting, which lets

rHK ¼ 1
4
rh2K�1 þ 1

2
rh2K þ 1

4
rh2Kþ1 , applies some smoothing to

the residual and is more common. The exact solution of
the coarse-grid problem yields the coarse-grid correction
vH ¼ (LH)�1rH, which should be interpolated back to the
fine grid and added as a correction to the latest fine-grid
solution. The interpolation or prolongation operator is
denoted by IhH and lets uh≔uh þ IhHv

H.
If linear interpolation is used for prolongation, this

becomes

uh2K≔uh2K þ vHK , K ¼ 1, . . . ,
1

2
N � 1ð Þ,

uh2K�1≔uh2K�1 þ
1

2
vHK�1 þ vHK
� �

, K ¼ 1, . . . ,
1

2
N þ 1ð Þ:

Here, it is assumed that vH0 ¼ vHNþ1ð Þ=2 ¼ 0. After prolon-

gation, an additional relaxation step with damped Jacobi
further removes oscillatory error components of the solution.
Jacobi relaxation inside this two-grid scheme has a different
purpose than when used as an iterative solver by itself. Instead
of removing both the short- and long-wave components of the
numerical solution error, it only has to deal with those com-
ponents that cannot be represented on the coarser grid without
aliasing. Therefore, a damped version witho< 1 can be more
effective as it can be optimized to remove the short-wave
or oscillatory components. For Fig. 1, o ¼ 2/3 was used.
The optimal choice requires a more detailed analysis
(Hackbush 1985).

A relaxation scheme geared towards removing oscillatory
components is called a smoother. Another popular choice is
Gauss-Seidel relaxation. The operator is then approximated
by a lower or upper triangular matrix, which is easy to invert.
The implementation of the scheme is similar to Jacobi, but the
residual is evaluated with the most recent solution available.
The result will depend on the order in which the grid is
traversed. With lexicographic Gauss-Seidel, one follows the
natural index k in increasing order or in the opposite direction.
Symmetric Gauss-Seidel performs both these smoothing
steps in sequence. An alternative is red-black Gauss-Seidel,
where first the points with an odd and then those with an even
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(b) pre-smoothing

(c) restriction

(d) exact correction
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Numerical Methods, Multigrid, Fig. 1 Steps in a two-grid cycle.
(a) The initial solution on the fine grid is set to zero and the residual
equals the forcing function. The dash line represents the exact numerical
solution. (b) After one step of pre-smoothing with damped Jacobi
relaxation, the solution error is still large, and the residual has hardly
changed in this example. Its restriction to the coarser grid (c) is solved
exactly, using a coarse-grid version of the discrete differential operator.

The resulting correction to the fine-grid solution (d) is interpolated
or prolongated back to the fine grid and added to the fine-grid
solution (e). The error in the solution is now dominated by the short
wavelengths and appears as an oscillatory function, which is reflected in
the corresponding residual. A post-smoothing step (f) removes most of
the solution error. Repeating the whole cycle will further reduce the error
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N

index are updated, always using the latest solution values for
the residual. In 2D, this would follow a checkerboard pattern.

The grid transfer operator, restriction and prolongation,
should obey mp + mr > 2m (Hackbush 1985) where 2m is
the order of the differential equation andmp� 1 is the highest
degree of the polynomial that is interpolated exactly. The
scaled adjoint of the restriction operator is an interpolation
operator for which mr can be defined in the same way as mp.
In the example above, 2m¼ 2, full-weighting hasmr¼ 2, and
prolongation based on linear interpolation has mp ¼ 2. More
advanced grid transfer operators are based on the differential
operator Lh, leading to operator-weighted restriction and
prolongation.

The coarse-grid operator LH can be based on the same
discretization as the fine-grid operator Lh. An alternative is

the Galerkin coarse-grid approximation eI H

h LhIhH . In the cur-
rent example with full weighting, these happen to be the same.
Operator-weighted grid transfer operators can accelerate the
convergence by using the coefficients of the differential oper-
ator in the construction of restriction and prolongation
operators, which in turn will affect the Galerkin coarse-grid
approximation of the differential operator.
Multigrid

Instead of using the exact numerical solution on the coarser of
the two grids, a two-grid scheme can be applied to the coarse-
grid problem. Extending this recursively to the coarsest grid
with three points and one unknown, a multigrid solver is
obtained. All these grids can be visited in different orders.
The standard approach is to start at the finest grid, perform a
number of pre-smoothing steps, then move to the coarser grid,
again perform pre-smoothing, and continue this until the
coarsest grid is reached. There, the exact numerical solution
is computed, and the resulting coarse-grid correction is pro-
longated back to the finer level, followed by a number of post-
smoothing steps. This is repeated up to the finest grid. Such a
sequence is called a V-cycle. A single V-cycle may be insuf-
ficient to obtain a convergence rate on the coarser grid that is
similar to the smoothing rate on the finer grid. Convergence
on coarser grids can be improved by performing more than
one cycle. In the W-cycle, the number of cycles doubles on
each coarser grid. Figure 2 illustrates the order in which grids
are visited for a V-, W-, and F-cycle. The last one is less
expensive than a W-cycle, as the number of cycles increases
by only one for increasingly coarser grids. Another option,
adaptive cycling, decides on the sequence of grids by moni-
toring the decrease of the residuals.

With a proper choice of relaxation scheme or smoother
grid transfer operators, the multigrid method can reach a
grid-independent or h-independent convergence rate. This
does not, however, mean that the amount of work required
to reach a sufficiently accurate solution is proportional to the
number of grid points N. The exact numerical solution differs
from the true solution of the PDE because of the numerical
error due to the discretization, typically with some power p of
h. In the earlier example, the discretization is second-order
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accurate, so p¼ 2. Given this numerical error, convergence to
machine precision is more than needed. An iteration error
somewhat smaller than the discretization error should suffice.
Therefore, more iterations should be carried out if a more
accurate solution on a finer grid has to be computed. This
leads to an overall complexity ofO(N logN) rather thanO(N).
Successive grid refinement, in which one first computes a
solution on a coarse grid and uses that as an initial guess for
the next finer grid and so on, enables removal of the factor log
N, assuming that a fixed number of multigrid cycles are used
at each level. The combination of successive grid refinement
with a multigrid solver is called full multigrid (FMG).
Nonlinear Multigrid

One way to apply the multigrid method to nonlinear PDEs
is the use of Newton’s method. A multigrid solver is then
applied to a linearization of the discretized nonlinear problem.
Another approach is the use of the discretized nonlinear
PDE inside the multigrid algorithm. This requires the full
solution to be available on the coarser grids. In the example
above, only corrections to the solution were represented
on coarser grids. The full approximation scheme (FAS) is a
reformulation of the multigrid method that includes the full
solution (Brandt 1982). It requires a restriction of the full
solution, uH ¼ IHh u

h, and of the coarse-grid forcing function,

f H ¼ LH IHh u
h

� �þ eI H

h rh . The prolongation needs to be
changed to uh≔uh þ IhH uH � IHh u

h
� �

, where uH is the suffi-
ciently converged solution on the coarser grid and IHh u

h

the restriction of the latest fine-grid solution. The restriction
operators for the residuals, eI H

h , and for the solution, IHh , do not
have to be the same. Note that the coarse-grid pro-
blem, LHuH ¼ f H, can be interpreted in a different way:

LHuH ¼ f H ¼ eI H

h f h þ tHh . The fine-to-coarse defect correc-
tion, tHh ¼ LH IHh u

h
� �� eI H

h Lhuh
� �

, ensures that the coarse-
grid equations maintain the accuracy of the fine-grid
equations.

Nonlinear equations of the form Lh(uh) ¼ f h fit into this
scheme. For LH(uH), the same discretization scheme as on the
fine grid can be adopted. Smoothing operators can be based
on a local linearization of the residuals.
Generalizations

Multigrid is highly efficient for the solution of Poisson’s
equation on the square, discretized by the finite-difference
method on a Cartesian grid. For other PDEs, describing
convection, diffusion, waves, and flow, the method may be
less easy to apply. The same is true for unstructured grids, for
instance, based on triangles or tetrahedra. With suitable mod-
ifications and at the expense of additional code complexity,
the multigrid method can still be the optimal approach. With
unstructured grids, the coarser and finer grid are generally not
nested, leading to grid transfer operations that are less easy to
code than on a Cartesian grid.

Anisotropy in the PDE can degrade performance. Consider
the equation:
� @2u
@x2

� a
@2u
@y2

¼ f x, yð Þ:

For 0 < a � 1, smoothing operators may have difficulty
with the y-direction where there is only weak coupling
between neigbouring unknowns. Effective anisotropy in
the discretized equation can also happen with grids that
have widely different spacings in the various coordinate
directions. A more powerful relaxation scheme may repair
the poor performance of a simple smoother. For 2D prob-
lems, line relaxation will smooth in one direction and
solve in the other. An example is line Jacobi relaxation,
which approximates the matrix Lh by dropping the off-
diagonals in one coordinate direction, while keeping them
in the other. The dropped off-diagonals can be subtracted
from the main diagonal with a suitable weight factor to
obtain better smoothing properties. For 3D problems,
plane relaxation is required, which may be too expensive.
An alternative is semi-coarsening, where the coarse grid
has the same number of points in the direction of weak
coupling and is coarsened only in the direction in which
the smoothing effectively removes the shorter wave-
lengths. Figure 3 shows an example of a grid before and
after semi-coarsening in the horizontal direction. In the
more general case where semi-coarsening is required in
all coordinates, it can be applied in alternating directions.



(a) (b)

Numerical Methods, Multigrid, Fig. 3 Semi-coarsening of grid (a) in
the horizontal direction provides grid (b)
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A more costly but powerful approach is simultaneous
semi-coarsening in all coordinates (Mulder 1989), which
still retains optimal complexity.
N

Beyond Partial Differential Equations

The application of the multigrid method is not restricted to the
solution of PDEs. There are generalizations to eigenvalue
problems, integral equations, optimization and optimal con-
trol, statistical physics, image processing, image segmenta-
tion, and edge detection. In all cases, the simultaneous use of
different scales overcomes the problem of slowly converging
solution components.

Algebraic multigrid (AMG), or, better, the algebraic multi-
level method, refers to a class of solvers that construct sets
of coarse-level equations without referring to grids or geo-
metrical properties (Trottenberg et al. 2001; Shapira 2008).
Coarsening is applied to subsets of unknowns for which
smoothing is effective. If the problem is specified by a large
matrix, these subsets can be determined by examining the
coefficients of the matrix. Strongly coupled unknowns, say ui
and uj, are related by a matrix coefficient aij that is relatively
large. In that case, smoothing is effective, and one of the
unknowns can be removed from the equations on the coarser
level. The coarser level will then be mainly populated by
weakly coupled variables. Operator-weighted grid transfer
operators are natural in this context, as well as the Galerkin
approach for the construction of the coarse-level operator.
Algebraic multilevel methods are a popular choice for finite-
element discretizations on unstructured grids, as they can
be used as a black-box solver and do not require the tedious
coding of grid transfer operations between non-nested
elements.

The multigrid method bears some resemblance to other
techniques such as wavelets, hierarchical-basis finite ele-
ments, multi-scale techniques, cyclic reduction, fast multipole
methods, and other divide-and-conquer methods.
Geophysical Applications

Multigrid has been applied successfully to a wide range
of partial differential equations, describing static and dynamic
problems, diffusion, convection, and flow problems. Exam-
ples in geophysics include elliptic problems in potential
theory, such as gravity (Kusche 2002), magnetostatics
(De Gersem and Hameyer 2001), electrostatics (Ascher
and Haber 2003), and Darcy’s law in porous media flow
(Mulder and Gmelig Meyling 1993). Two-dimensional
phase unwrapping for satellite interferometric synthetic
aperture radar (Pritt 1996) can also be stated as an elliptic
problem. Controlled-source electromagnetics (Werthmüller
et al. 2019), magnetotellurics (Li et al. 2015), mantle convec-
tion, and geodynamics (Gerya 2019) are examples of para-
bolic problems.

The wave equation for seismic applications is a hyperbolic
problem. Iterative solution of its frequency-domain formula-
tion, the Helmholtz equation, was a notoriously difficult
numerical problem but can nowadays be accomplished by
using a damped version as preconditioner in a conjugate-
gradient-type iterative scheme. Multigrid efficiently deals
with the approximate inversion of the preconditioner
(Riyanti et al. 2006). In the generalization of the method to
the elastic wave equation, simple Point-Jacobi smoothing
turns out to be insufficient for the secondary or shear waves,
and a more powerful smoother is required (Rizzuti and
Mulder 2016).
Summary

The multigrid method provides an optimal iterative solution
method for a wide class of problems governed by partial
differential equations. Its application to a finite-difference
discretization of Poisson’s equation on a square is the easiest.
For other problems, a bit more effort may be required.
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