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Discrete Seismic Tomography

By Ajinkya Kadu, Tristan van Leeuwen, and Wim A. Mulder

A seismic “camera” images Earth’s interior by probing it with elastic waves. The camera
consists of transmitters and receivers placed near or on the surface of Earth. The transmitter
generates elastic waves with an explosive source, which scatter from Earth’s discontinuities.
Some of the scattered waves reflect back to the surface and are measured by receivers or
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geophones.

Figure 1illustrates a

typical seismic
acquisition. The task

of forming an image of
Earth from the
scattered waves is

known as seismic
tomography. Here, an
image constitutes a
map of Earth’s Figure 1. Schematic of a seismic experiment. The red star represents the transmitter

spatially-varying that generates waves (blue curves), and the green triangles denote the receivers. The

properties — for transmitter moves along the x-axis and a seismic experiment is conducted for each

example, sound speed position.
(referred to as velocity
from this point on), density, anisotropy, and attenuation. A few challenges concerning seismic

tomography are as follows:

1. Partial information:. scattered waves are measured at only a few locations

2. Nonlineatrity. the relation between the measurements and properties of Earth is highly
nonlinear

3. Non-uniqueness: different images may produce similar measurements

4. Sharp contrasts: large discontinuities in Earth give rise to complex scattering effects

5. Noise: an improper physics model introduces a non-random, coherent noise.

These challenges make it difficult to retrieve an image of Earth from seismic measurements.

We address the challenge caused by large discontinuities in Earth, for instance, by salt bodies.
Subsurface salt formations have much larger velocities than their surrounding sediments.
These formations are of particular interest because hydrocarbon reservoirs are commonly
found underneath or next to them. Figure 2 depicts a typical salt model. Accurate imaging of
these bodies is essential for better hydrocarbon exploration. We are ultimately interested in
the shape of these bodies, and imaging them is the topic of discrete seismic tomography.
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Figure 2. Two-dimensional salt model provided by BP. The model consists of two salt bodies (denoted by solid yellow

colors). Dark blue color signifies the water.

The Problem

One can mathematically pose the seismic tomography as an optimization problem of finding
Earth’s medium parameters so as to minimize the least-squares misfit between the simulated
and measured wavefield. The simulated wavefield is the solution of the wave equation for
given medium properties. Since this problem is ill-posed, we introduce a regularization
function alongside the least-squares misfit term. A general procedure for optimizing such cost-
functions is to generate a sequence of iterates, such that the iterates converge to a minimizer.
This sequence follows from the function’s gradient. However, we must note that the sequence
can converge to a global minimum only if the cost function is convex. This is generally not the
case, meaning that we must choose a good initial guess to converge to a local solution.

Many popular regularization approaches fail in the presence of salt bodies, usually because it
is difficult to capture the sharp contrast between the layers and salt with these methods.
Moreover, one cannot incorporate the salt’s almost constant velocity, which is assumed to be
known in advance, with these techniques.

The Solution

To address this issue, discrete tomography imposes a regularization function that constrains
the solution space. This constraint is a semi-discrete set consisting of a range of values for the
velocity of Earth’s layers and a constant value for the velocity of the salt. For example, if Earth’s
sediment layers have velocities between 1.5 and 3 km/s and the salt has a 4.5 km/s velocity,
the setis {[1.5, 3], 4.5} km/s. This set is non-convex, meaning that the corresponding
regularization function—which is an indicator function to this set—is non-convex and non-
differentiable. To tackle this, we utilize a level-set method that separates the layers from the
salt. In this approach we define an auxiliary function whose positive value denotes the salt and
negative values indicate the sediment layers. A level-set of this function yields the boundary
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Figure 3. Demonstration of the level-set approach. The top row denotes

the true image. The model is 3 km deep and 10 km wide. The velocities
of the layers vary from 1.5 km/s to 3.5 km/s, and the salt has a velocity of
4.5 km/s. The middle row represents the classical reconstruction while
the bottom row depicts the reconstruction with a level-set approach.

The red dotted line denotes true boundary of the salt.

between the layers and the salt
(see Figure 3). For convenience,
we represent the auxiliary
function with a convex
combination of radial basis
functions (RBFs). If we fix their
centers and width, the auxiliary
function’s boundary is uniquely
determined by the coefficients of
these basis functions.

With this formulation, we now
must find the velocity profile of
the layers and the coefficients of
the RBFs so that the least-
squares misfit is smallest. An
alternating minimization
technique, which minimizes the
velocity of layers and the RBF
coefficients alternatively, can
solve the problem. The salt’s
shape is then retrieved from the
level-set of the auxiliary function.
This approach is demonstrated in
Figure 3.

Ultimately, the level-set based approach incorporates prior information about the salt velocity

while simultaneously introducing nonlinearity to separate the layers from the salt. This

nonlinearity can potentially create a problem during the inversion process. We will address this

issue in future work.
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