
CEMRACS 2016

Numerical challenges in parallel scientific computing
July 18th - August 26th

Krylov subspace solvers and preconditioners

Prof.dr.ir. C. Vuik

2016

Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft Institute of Applied Mathematics

Copyright 2016 by Delft Institute of Applied Mathematics, Delft, The Netherlands.

No part of this work may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission from Delft Institute of Applied Mathematics, Delft University
of Technology, The Netherlands.

Contents

1 Basic iterative solution methods for linear systems 5

1.1 Introduction and model problem . 5
1.2 Basic iterative methods . 6
1.3 Starting vectors and termination criteria . 13
1.4 Exercises . 16

2 A Krylov subspace method for systems with a symmetric positive definite

matrix 17

2.1 Introduction . 17
2.2 The Conjugate Gradient (CG) method . 17
2.3 The convergence behavior of the CG method 20
2.4 Exercises . 26

3 Preconditioning of Krylov subspace methods 27

3.1 The Preconditioned Conjugate Gradient (PCG) method 27
3.2 Preconditioning for general matrices . 37
3.3 Exercises . 38

4 Krylov subspace methods for general matrices 39

4.1 Introduction . 39
4.2 Indefinite symmetric matrices . 39
4.3 Iterative methods for general matrices . 40

4.3.1 CG applied to the normal equations 41
4.3.2 Bi-CG type methods . 41
4.3.3 GMRES-type methods . 46
4.3.4 Choice of an iterative method . 49
4.3.5 Iterative methods for complex matrices 50

4.4 Exercises . 51

3

Preface

In these lecture notes an introduction to Krylov subspace solvers and preconditioners is pre-
sented. After a discretization of partial differential equations large, sparse systems of linear
equations has to be solved. Fast solution of these systems is very urgent nowadays. The size
of the problems can be 1013 unknowns and 1013 equations. Iterative solution methods are the
methods of choice for these large linear systems. We start with a short introduction of Basic
Iterative Methods. Thereafter preconditioned Krylov subspace methods, which are state of
the art, are describeed. A distinction is made between various classes of matrices.

At the end of the lecture notes many references are given to state of the art Scientific Comput-
ing methods. Here, we will discuss a number of books which are nice to use for an overview
of background material. First of all the books of Golub and Van Loan [19] and Horn and
Johnson [26] are classical works on all aspects of numerical linear algebra. These books also
contain most of the material, which is used for direct solvers. Varga [50] is good starting point
to study the theory of basic iterative methods. Krylov subspace methods and multigrid are
discussed in Saad [38] and Trottenberg, Oosterlee and Schüller [42]. Other books on Krylov
subspace methods are [1, 34, 6, 21].

Delft, June 2016, Kees Vuik

4

1 Basic iterative solution methods for linear systems

1.1 Introduction and model problem

Problems coming from discretized partial differential equations lead in general to large sparse
systems of equations. Direct solution methods can be impractical if A is large and sparse,
because the factors L and U can be dense. This is especially the case for 3D problems. So
a considerable amount of memory is required and even the solution of the triangular system
costs many floating point operations.

In contrast to the direct methods are the iterative methods. These methods generate a
sequence of approximate solutions

{

x(k)
}

and essentially involve the matrix A only in the
context of matrix-vector multiplication. The evaluation of an iterative method invariably
focuses on how quickly the iterates x(k) converge. The study of round off errors is in general
not very well developed. A reason for this is that the iterates are only approximations of the
exact solution, so round off errors in general only influence the speed of convergence but not
the quality of the final approximation.

The use of iterative solution methods is very attractive in time dependent and nonlinear
problems. For these problems the solution of the linear system is part of an outer loop: time
stepping for a time dependent problem and Newton Raphson (or other nonlinear methods)
for a nonlinear problem. So good start vectors are in general available: the solution of the
preceding outer iteration, whereas the required accuracy is in general low for these problems.
Both properties lead to the fact that only a small number of iterations is sufficient to obtain
the approximate solution of the linear system. Before starting the description and analysis
of iterative methods we describe a typical model problem obtained from a discretized partial
differential equation. The properties and definitions of the given methods are illustrated by
this problem.

Model problem
Consider the discrete approximation of the Poisson equation

∂2w

∂x2
+

∂2w

∂y2
= G(x, y) , 0 < x < 1 , 0 < y < 1,

and boundary conditions

w(x, y) = g(x, y) , x ∈ {0, 1} , or y ∈ {0, 1} .

In the sequel vij is an approximation of w(xi, yj) where xi = ih and yj = jh, 0 ≤ i ≤
m+ 1, 0 ≤ j ≤ m+ 1. The finite difference approximation may be written as:

4vi,j − vi+1,j − vi−1,j − vi,j+1 − vi,j−1 = −h2 G(xi, yj).

The ordering of the nodal points is given in Figure 1 for m = 3. The kth component uk of the
vector u is the unknown corresponding to the grid point labeled k. When all the boundary

5

16

18

20

15

17

19

21 22

line 3

23 24 25

10 11 12 13 14

x x

x x x

x x x

x1 2 3

4 5 6

7 8 9

line 1

line 2

Figure 1: The natural (lexicographic) ordering of the nodal points

terms are moved to the right-hand side, the system of difference equations can be written as:

4 −1 0 −1
−1 4 −1 0 −1 ⊘
0 −1 4 0 0 −1
−1 0 0 4 −1 0 −1

−1 0 −1 4 −1 0 −1
−1 0 −1 4 0 0 −1

−1 0 0 4 −1 0
⊘ −1 0 −1 4 −1

−1 0 −1 4

u1
u2
u3
u4
u5
u6
u7
u8
u9

=

g11 + g15 − h2G1

g12 − h2G2

g13 + g16 − h2G3

g17 − h2G4

− h2G5

g18 − h2G6

g19 + g22 − h2G7

g23 − h2G8

g20 + g24 − h2G9

If the unknowns on lines parallel to the x-axis are grouped together the given system can be
written as:

A1,1 A1,2 0
A2,1 A2,2 A2,3

0 A3,2 A3,3

U1

U2

U3

 =

F1

F2

F3

 ,

where the unknowns on line k are denoted by Uk. The lines and grid points are given in
Figure 2.1. The matrices Ai,j are given by:

Ak,k =

4 −1 0
−1 4 −1
0 −1 4

 and Ak+1,k = Ak,k+1 =

−1 0 0
0 −1 0
0 0 −1

 .

The submatrix Ak,l gives the coupling of the unknowns from line k to those on line l.

1.2 Basic iterative methods

The basic idea behind iterative methods for the solution of a linear system Ax = b is: starting
from a given x(k), obtain a better approximation x(k+1) of x in a cheap way. Note that b−Ax(k)
is small if x(k) is close to x. This motivates the iteration process

x(k+1) = x(k) +M−1(b−Ax(k)) (1)

One immediately verifies that if this process converges, x is a possible solution.
So if ‖b−Ax(k)‖2 is large we get a large change of x(k) to x(k+1). The choice of M is crucial
in order to obtain a fast converging iterative method. Rewriting of (1) leads to:

Mx(k+1) = Nx(k) + b (2)

6

where the matrix N is given by N = M − A. The formula A = M − N is also known as a
splitting of A. It can easily be seen that if x(k+1) → x the vector x should satisfy

Mx = Nx+ b ⇔ Ax = (M −N)x = b.

As a first example we describe the point Gauss Jacobi method. First we define DA = diag (A)
and LA and UA which are the strictly lower respectively the strictly upper part of A. So
A = DA + LA + UA.

Gauss Jacobi (point).
The choice M = DA and N = −(LA + UA) leads to the point Gauss Jacobi iteration. This
algorithm can be described by the following formula:

for i = 1, . . . , n do

x
(k+1)
i =

bi −

n
∑

j=1

j 6=i

aijx
(k)
j

/aii

end for

(3)

One immediately sees that only memory is required to store the matrix A, the right-hand side
vector b and the approximation vector x(k) which can be overwritten in the next step. For
our model problem it is sufficient to store 7 vectors in memory. Furthermore, one iteration
costs approximately as much work as a matrix vector product.

Whether or not the iterates obtained by formula (2) converge to x = A−1b depends upon
the eigenvalues of M−1N . The set of eigenvalues of A is denoted as the spectrum of A. The
spectral radius of a matrix A is defined by

ρ(A) = max {|λ|, where λ ∈ spectrum of A} .

The size of ρ(M−1N) is critical to the convergence behavior of (2).

Theorem 1.1 Suppose b ∈ IRn and A = M−N ∈ IRn×n is nonsingular. If M is nonsingular
and the spectral radius of M−1N is less than 1, then the iterates x(k) defined by (2) converge
to x = A−1b for any starting vector x(0).

Proof: Let e(k) = x(k) − x denote the error in the kth iterate. Since Mx = Nx+ b it follows
that

M(x(k+1) − x) = N(x(k) − x)

and thus the error in x(k+1) given by e(k+1) satisfies:

e(k+1) = M−1Ne(k) = (M−1N)ke(0) (4)

From [19], p. 336, Lemma 7.3.2 it follows that (M−1N)k → 0 for k → ∞ if ρ(M−1N) < 1,
so e(k+1) → 0 for k →∞. �

As an example we note that point Gauss Jacobi is convergent if the matrix A is strictly
diagonal dominant. To show this we note that

ρ(M−1N) ≤ ‖M−1N‖∞ = ‖D−1
A (LA + UA)‖∞ = max

1≤i≤n

n
∑

j=1

j 6=i

|aij |
|aii|

.

7

Since a strictly diagonal dominant matrix has the property that
n
∑

j=1

j 6=i

|aij | < |aii| it follows that

ρ(M−1N) < 1. In many problems an increase of the diagonal dominance leads to a decrease
of the number of iterations.

Summarizing the results given above we see that a study of basic iterative methods proceeds
along the following lines:

- a splitting A = M − N is given where systems of the form Mz = d (d given and z
unknown) are cheaply solvable in order to obtain a practical iteration method by (2),

- classes of matrices are identified for which the iteration matrixM−1N satisfies ρ(M−1N) <
1.

- further results about ρ(M−1N) are established to gain intuition about how the error
e(k) tends to zero.

For Gauss Jacobi we note that M is a diagonal matrix so that systems of the form Mz = d are
easily solvable. We have specified a class of matrices such that convergence occurs. The final
point given above is in general used to obtain new methods with a faster rate of convergence
or a wider class of matrices such that ρ(M−1N) < 1.

Below we first give a block variant of the Gauss Jacobi method. Thereafter other methods
are specified. In the remainder of this section we suppose that Ax = b is partitioned in the
form

A1,1 . . . A1,q
...

...
Aq,1 . . . Aq,q

X1
...
Xq

=

B1
...
Bq

,

where Ai,j is an ni × nj submatrix and n1 + n2 . . . + nq = n. Here the Xi and Bi represent
subvectors of order ni. Furthermore, we define

DA =

A1,1 ⊘
. . .

⊘ Aq,q

, LA =

©
A2,1 ⊘
...

. . .

Aq,1 Aq,q−1 ©

and UA =

© A1,2 A1,q

. . .

⊘ Aq−1,q

©

Gauss Jacobi (block)
For the given matrices DA, LA and UA the Gauss Jacobi method is given by M = DA and
N = −(LA + UA). The iterates can be obtained by the following algorithm:

for i = 1, . . . , q do

X
(k+1)
i = A−1

i,i

Bi −

q
∑

j=1

j 6=i

AijX
(k)
j

.

end for

For the special case ni = 1, i = 1, . . . , n we get the point Gauss Jacobi back. In our example
a natural block ordering is obtained if we take ni = 3. In that case the diagonal block matri-
ces Ai,i are tridiagonal matrices for which cheap methods exist to solve systems of the form

8

Ai,iz = d.

Note that in the Gauss Jacobi iteration one does not use the most recently available infor-

mation when computing X
(k+1)
i . For example X

(k)
1 is used in the calculation of X

(k+1)
2 even

though component X
(k+1)
1 is already known. If we revise the Gauss Jacobi iteration so that

we always use the most current estimate of the exact Xi then we obtain:

Gauss Seidel (block)
The Gauss Seidel method is given by M = DA + LA and N = −UA. The iterates can be
obtained by

for i = 1, . . . , q do

X
(k+1)
i = A−1

i,i

(

Bi −
i−1
∑

j=1
Ai,jX

(k+1)
j −

q
∑

j=i+1
Ai,jX

(k)
j

)

.

end for

Note that again the solution of systems of the form Mz = d are easily obtained since M =
DA+LA and LA is a strictly lower triangular block matrix. As an example for the convergence
results that can be proved for the point Gauss Seidel method (Ai,i = ai,i), we give the following
theorem:

Theorem 1.2 If A ∈ IRn×n is symmetric and positive definite, then the point Gauss Seidel
iteration converges for any x(0).

Proof: see [19], p. 512, Theorem 10.1.2.

This result is frequently applicable because many of the matrices that arise from discretized
elliptic partial differential equations are symmetric positive definite. In general Gauss Seidel
converges faster than Gauss Jacobi. Furthermore, block versions converge faster than point
versions. For these results and further detailed convergence proofs we refer to [51], [54], [24],
and [3].

The Gauss Seidel iteration is in general a slowly converging process. Inspections of the iterates
show that in general the approximations are monotonous increasing or decreasing. Hence we
may expect an improvement of the rate of convergence if we use an extrapolation in the
direction of the expected change. This leads to the so called successive over-relaxation (SOR)
method:

SOR (block)
The successive over-relaxation method is obtained by choosing a constant ω ∈ IR and compute
the iterates by

Mωx
(k+1) = Nωx

(k) + ωb,

where Mω = DA + ωLA and Nω = (1 − ω)DA − ωUA. Note that ωA = Mω − Nω. The
following algorithm can be used:

for i = 1, . . . , q do

X
(k+1)
i = ωA−1

i,i

(

Bi −
i−1
∑

j=1
Ai,jX

(k+1)
j −

q
∑

j=i+1
Ai,jX

(k)
j

)

+ (1− ω)X
(k)
i .

end for

9

It can be shown that for 0 < ω < 2 the SOR method converges if A is symmetric and positive
definite. For ω < 1 we have underrelaxation and for ω > 1 we have overrelaxation. In
most examples overrelaxation is used. For a few structured (but important) problems such
as our model problem, the value of the relaxation parameter ω that minimizes ρ(M−1

ω Nω) is
known. Moreover, a significant reduction of ρ(M−1

ωopt
Nωopt) with respect to ρ(M−1

1 N1) can be
obtained. Note that for ω = 1 we get the Gauss Seidel method. As an example it appears that
for the model problem the number of Gauss Seidel iterations is proportional to 1

h2 whereas
the number of SOR iterations with optimal ω is proportional to 1

h . So for small values of h a
considerable gain in work results. However, in more complicated problems it may be necessary
to perform a fairly sophisticated eigenvalue analysis in order to determine an appropriate ω.
A complete survey of ”SOR theory” appeared in [54]. Some practical schemes for estimating
the optimum ω are discussed in [5], [7], and [53].

Chebyshev
The SOR method is presented as an acceleration of the Gauss Seidel method. Another method
to accelerate the convergence of an iterative method is the Chebyshev method. Suppose
x(1), . . . , x(k) have been obtained via (2), and we wish to determine coefficients γj(k), j =
0, . . . , k such that

y(k) =
k
∑

j=0

γj(k)x
(j) (5)

is an improvement of x(k). If x(0) = . . . = x(k) = x, then it is reasonable to insist that y(k) = x.
Hence we require

k
∑

j=0

γj(k) = 1 (6)

and consider how to choose the γj(k) so that the error y(k) − x is minimized. It follows from
the proof of Theorem 1.1 that e(k+1) = (M−1N)ke(0) where e(k) = x(k)−x. This implies that

y(k) − x =
k
∑

j=0

γj(k)(x
(j) − x) =

k
∑

j=0

γj(k)(M
−1N)je(0). (7)

Using the 2-norm we look for γj(k) such that ‖y(k) − x‖2 is minimal. To simplify this mini-
mization problem we use the following inequality:

‖y(k) − x‖2 ≤ ‖pk(M−1N)‖2‖x(0) − x‖2 (8)

where pk(z) =
k
∑

j=0
γj(k)z

j and pk(1) = 1. We now try to minimize ‖pk(M−1N)‖2 for all

polynomials satisfying pk(1) = 1. Another simplification is the assumption that M−1N is
symmetric with eigenvalues λi that satisfy α ≤ λn . . . ≤ λ1 ≤ β < 1. Using these assumptions
we see that

‖pk(M−1N)‖2 = max
λi

|pk(λi)| ≤ max
α<λ<β

|pk(λ)|.

So to make the norm of pk(M
−1N) small we need a polynomial pk(z) that is small on [α, β]

subject to the constraint that pk(1) = 1. This is a minimization problem of polynomials on

10

the real axis. The solution of this problem is obtained by Chebyshev polynomials. These
polynomials cj(z) can be generated by the following recursion

c0(z) = 1,
c1(z) = z,
cj(z) = 2zcj−1(z)− cj−2(z).

These polynomials satisfy |cj(z)| ≤ 1 on [−1, 1] but grow rapidly in magnitude outside this
interval. As a consequence the polynomial

pk(z) =
ck

(

−1 + 2 z−α
β−α

)

ck

(

1 + 2 1−β
β−α

)

satisfies pk(1) = 1, since −1 + 2 1−α
β−α = 1 + 2 1−β

β−α , and tends to be small on [α, β]. The last
property can be explained by the fact that

−1 ≤ −1 + 2
z − α

β − α
≤ 1 for z ∈ [α, β] so the

numerator is less than 1 in absolute value, whereas the denominator is large in absolute value
since 1 + 2 1−β

β−α > 1. This polynomial combined with (8) leads to

‖y(k) − x‖2 ≤
‖x− x(0)‖2

|ck
(

1 + 2 1−β
β−α

)

|
. (9)

Calculation of the approximation y(k) by formula (5) costs much time and memory, since all
the vectors x(0), . . . , x(k) should be kept in memory. Furthermore, to calculate y(k) one needs
to add k+1 vectors, which for the model problem costs for k ≥ 5 more work than one matrix
vector product. Using the recursion of the Chebyshev polynomials it is possible to derive a
three term recurrence among the y(k). It can be shown that the vectors y(k) can be calculated
as follows:

y(0) = x(0)

solve z(0) from Mz(0) = b−Ay(0) then y(1) is given by

y(1) = y(0) + 2
2−α−β z

(0)

solve z(k) from Mz(k) = b−Ay(k) then y(k+1) is given by

y(k+1) =
4− 2β − 2α

β − α

ck

(

1 + 2 1−β
β−α

)

ck+1

(

1 + 2 1−β
β−α

)

(

y(k) − y(k−1) +
2

2− α− β
z(k)

)

+ y(k−1) .

We refer to this scheme as the Chebyshev semi-iterative method associated with My(k+1) =
Ny(k) + b. Note that only 4 vectors are needed in memory and the extra work consists of the
addition of 4 vectors. In order that the acceleration is effective it is necessary to have good
lower and upper bounds of α and β. These parameters may be difficult to obtain. Chebyshev
semi-iterative methods are extensively analyzed in [51], [20] and [24].

11

In deriving the Chebyshev acceleration we assumed that the iteration matrix M−1N was
symmetric. Thus our simple analysis does not apply to the SOR iteration matrix M−1

ω Nω

because this matrix is not symmetric. To repair this Symmetric SOR (SSOR) is proposed. In
SSOR one SOR step is followed by a backward SOR step. In this backward step the unknowns
are updated in reversed order. For further details see [19], Section 10.1.5.
Finally we present some theoretical results for the Chebyshev method 1. Suppose that the
matrix M−1A is symmetric and positive definite and that the eigenvalues µi are ordered as
follows 0 < µ1 ≤ µ2 . . . ≤ µn. It is then possible to prove the following theorem:

Theorem 1.3 If the Chebyshev method is applied and M−1A is symmetric positive definite
then

‖y(k) − x‖2 ≤ 2

(

√

K2(M−1A)− 1
√

K2(M−1A) + 1

)k

‖x(0) − x‖2.

Proof Since M−1A = M−1(M − N) = I −M−1N we see that the eigenvalues satisfy the
following relation:

µi = 1− λi or λi = 1− µi.

This combined with (9) leads to the inequality:

‖y(k) − x‖2 ≤
‖x− x(0)‖2

|ck
(

1 + 2 (1−(1−µ1))
(1−µ1)−(1−µn)

)

|
. (10)

So it remains to estimate the denominator. Note that

ck

(

1 +
2(1− (1− µ1))

(1− µ1)− (1− µn)

)

= ck

(

µn + µ1

µn − µ1

)

= ck

(

1 + µ1

µn

1− µ1

µn

)

.

The Chebyshev polynomial can also be given by

ck(z) =
1

2

{

(

z +
√

z2 − 1
)k

+
(

z −
√

z2 − 1
)k
}

[1], p. 180.

This expression can be used to show that

ck

(

1+
µ1
µn

1−
µ1
µn

)

> 1
2

1+
µ1
µn

1−
µ1
µn

+

√

(

1+
µ1
µn

1−
µ1
µn

)2

− 1

k

=

= 1
2

(

1+
µ1
µn

+2
√

µ1
µn

1−
µ1
µn

)k

= 1
2

(

1+
√

µ1
µn

1−
√

µ1
µn

)k

.

(11)

The condition number K2(M
−1A) is equal to µn

µ1
. Together with (10) and (11) this leads to

‖y(k) − x‖2 ≤ 2

(

√

K2(M−1A)− 1
√

K2(M−1A) + 1

)k

‖x(0) − x‖2.

�

Chebyshev type methods which are applicable to a wider range of matrices are given in the
literature. In [28] a Chebyshev method is given for matrices with the property that their
eigenvalues are contained in an ellipse in the complex plane, and the origin is no element of
this ellipse. For a general theory of semi-iterative methods of Chebyshev type we refer to [8].

1These results are used in the following chapters to analyze the converge behavior of other iterative methods

12

1.3 Starting vectors and termination criteria

Starting vectors

All the given iterative solution methods used to solve Ax = b start with a given vector x(0).
In this subsection we shall give some ideas how to choose a good starting vector x(0). These
choices depend on the problem to be solved. If no further information is available one always
starts with x(0) = 0. The solution of a nonlinear problem is in general approximated by the
solution of a number of linear systems. In such a problem the final solution of the iterative
method at a given outer iteration can be used as a starting solution for the iterative method
used to solve the next linear system.

Suppose we have a time dependent problem. The solution of the continuous problem is

denoted by u(n). In every time step this solution is approximated by a discrete solution u
(n)
h

satisfying the following linear system

A(n)u
(n)
h = b(n).

These systems are approximately solved by an iterative method where the iterates are denoted

by x(n,k). An obvious choice for the starting vector is x(n+1,0) = x(n,kn) where kn denotes the
number of iterations in the nth time step. A better initial estimate can be obtained by the
following extrapolation:

u(n+1) ∼= u(n) +△t
du(n)

dt
,

where du(n)

dt is approximated by x(n,kn)−x(n−1,kn−1)

△t . This leads to the following starting vector

x(n+1,0) = 2x(n,kn) − x(n−1,kn−1) .

Finally starting vectors can sometimes be obtained by solution of related problems, e.g.,
analytic solution of a simplified problem, a solution computed by a coarser grid, a numerical
solution obtained by a small change in one of the parameters etc.

Termination criteria
In Subsection 1.2 we have specified iterative methods to solve Ax = b. However, no criteria
to stop the iterative process have been given. In general, the iterative method should be
stopped if the approximate solution is accurate enough. A good termination criterion is
very important for an iterative method, because if the criterion is too weak the approximate
solution is useless, whereas if the criterion is too severe the iterative solution method never
stops or costs too much work.

We start by giving a termination criterion for a linear convergent process. An iterative method
is linear convergent if the iterates satisfy the following equation:

‖x(i) − x(i−1)‖2 ≈ r‖x(i−1) − x(i−2)‖2, r < 1 (12)

and x(i) → A−1b for i → ∞. Relation (12) is easily checked during the computation. In

general initially (12) is not satisfied but after some iterations the quantity ‖x(i)−x(i−1)‖2
‖x(i−1)−x(i−2)‖2

converges to r. The Gauss Jacobi, Gauss Seidel and SOR method all are linear convergent.

13

Theorem 1.4 For a linear convergent process we have the following inequality

‖x− x(i)‖2 ≤
r

1− r
‖x(i) − x(i−1)‖2.

Proof
Using (12) we obtain the following inequality for k ≥ i+ 1.

‖x(k) − x(i)‖2 ≤
k−1
∑

j=i
‖x(j+1) − x(j)‖2 ≤

k−i
∑

j=1
rj‖x(i) − x(i−1)‖2

= r 1−rk−i−1

1−r ‖x(i) − x(i−1)‖2 .

Since lim
k→∞

x(k) = x this implies that

‖x− x(i)‖2 ≤
r

1− r
‖x(i) − x(i−1)‖2.

�

The result of this theorem can be used to give a stopping criterion for linear convergent
methods. Sometimes the iterations are stopped if ‖x(i)−x(i−1)‖2 is small enough. If r is close
to one this may lead to inaccurate results since r

1−r‖x(i) − x(i−1)‖2 and thus ‖x− x(i)‖2 may
be large. A safe stopping criterion is: stop if

r

1− r

‖x(i) − x(i−1)‖2
‖x(i)‖2

≤ ǫ.

If this condition holds then the relative error is less than ε:

‖x− x(i)‖2
‖x‖2

∼= ‖x− x(i)‖2
‖x(i)‖2

≤ r

1− r

‖x(i) − x(i−1)‖2
‖x(i)‖2

≤ ǫ.

Furthermore, Theorem 1.4 yields the following result:

‖x− x(i)‖2 ≤
ri

1− r
‖x(1) − x(0)‖2 . (13)

So assuming that the expression (13) can be replaced by an equality

log ‖x− x(i)‖2 = i log (r) + log

(

‖x(1) − x(0)‖2
1− r

)

. (14)

This implies that the curve log ‖x − x(i)‖2 is a straight line as function of i. This was the
motivation for the term linear convergent process. Given the quantity r, which is also known
as the rate of convergence, or reduction factor, the required accuracy and ‖x(1) − x(0)‖2 it
is possible to estimate the number of iterations to achieve this accuracy. In general r may
be close to one and hence a small increase of r may lead to a large increase of the required
number of iterations.

For iterative methods, which have another convergence behavior most stopping criteria are
based on the norm of the residual. Below we shall give some of these criteria and give comment

14

on their properties.

Criterion 1 ‖b−Ax(i)‖2 ≤ ǫ.

The main disadvantage of this criterion is that it is not scaling invariant. This implies that
if ‖b − Ax(i)‖2 < ǫ this does not hold for ‖100(b − Ax(i))‖2. Although the accuracy of x(i)

remains the same. So a correct choice of ǫ depends on properties of the matrix A.

The remaining criteria are all scaling invariant.

Criterion 2 ‖b−Ax(i)‖2
‖b−Ax(0)‖2

≤ ǫ

The number of iterations is independent of the initial estimate x(0). This may be a drawback
since a better initial estimate does not lead to a decrease of the number of iterations.

Criterion 3 ‖b−Ax(i)‖2
‖b‖2

≤ ǫ

This is a good termination criterion. The norm of the residual is small with respect to the
norm of the right-hand side. Replacing ǫ by ǫ/K2(A) we can show that the relative error in
x is less than ǫ. It follows (compare Theorem ??) that:

‖x− x(i)‖2
‖x‖2

≤ K2(A)
‖b−Ax(i)‖2
‖b‖2

≤ ǫ.

In general ‖A‖2 and ‖A−1‖2 are not known. Some iterative methods gives approximations of
these quantities.

Criterion 4 ‖b−Ax(i)‖2
‖x(i)‖2

≤ ǫ/‖A−1‖2

This criterion is closely related to Criterion 3. In many cases this criterion also implies that
the relative error is less then ǫ:

‖x− x(i)‖2
‖x‖2

∼= ‖x− x(i)‖2
‖x(i)‖2

=
‖A−1(b−Ax(i))‖2

‖x(i)‖2
≤ ‖A

−1‖2‖b−Ax(i)‖2
‖x(i)‖2

≤ ǫ

Sometimes physical relations lead to other termination criteria. This is the case if the residual
has a physical meaning, for instance the residual is equal to some energy or the deviation
from a divergence free vector field etc.

In Theorem ?? we have seen that due to rounding errors the solution x represented on a
computer has a residual which may be of the magnitude of u‖b‖2, where u is the machine
precision. So we cannot expect that a computed solution by an iterative solution method
has a smaller norm of the residual. In a good implementation of an iterative method, a
warning is given if the required accuracy is too high. If for instance the termination criterion
is ‖b−Ax(i)‖2 ≤ ǫ and ǫ is chosen less then 1000u‖b‖2 a warning should be given and ε should
be replaced by ǫ = 1000u‖b‖2. The arbitrary constant 1000 is used for safety reasons.

15

1.4 Exercises

1. Suppose ‖E‖ < 1 for some matrix E ∈ IRn×n. Show that

(I − E)−1 =

∞
∑

k=0

Ek and ‖(I −E)−1‖ ≤ 1

1− ‖E‖ .

2. Show that if A is strictly diagonal dominant then the Gauss Seidel method converges.

3. Suppose that A is symmetric and positive definite.

(a) Show that one can write A = DA−LA−LT
A where DA is diagonal with dii > 0 for

each 1 ≤ i ≤ n and LA is strictly lower triangular. Further show that DA − LA is
nonsingular.

(b) Let Tg = (DA − LA)
−1LT

A and P = A− T T
g ATg. Show that P is symmetric.

(c) Show that Tg can also be written as Tg = I − (DA − LA)
−1A.

(d) Let Q = (DA − LA)
−1A. Show that Tg = I −Q and

P = QT (AQ−1 −A+ (QT)−1A)Q.

(e) Show that P = QTDAQ and P is symmetric and positive definite.

(f) Let λ be an eigenvalue of Tg with eigenvector x. Use part (b) to show that xTPx >
0 implies that |λ| < 1.

(g) Show that the Gauss Seidel method converges.

4. Extend the method of proof in Exercise 3 to the SOR method with 0 < ω < 2.

5. Suppose that µ̃1 is an estimate for µ1 and µ̃n for µn.

(a) Show that in general the Chebyshev method converges slower if 0 < µ̃1 < µ1 and
µ̃n > µn if µ̃1 and µ̃n are used in the Chebyshev method.

(b) Show that divergence can occur if µ̃n < µn.

6. (a) Do two iterations with Gauss Jacobi to the system:

(

2 0
−2 2

)(

x1
x2

)

=

(

2
2

)

Note that the second iterate is equal to the exact solution.

(b) Is the following claim correct?

The Gauss Jacobi method converges in mostly n iterations if A is a lower triangular
matrix

16

2 A Krylov subspace method for systems with a symmetric
positive definite matrix

2.1 Introduction

In the basic iterative solution methods we compute the iterates by the following recursion:

xi+1 = xi +M−1(b−Axi) = xi +M−1ri

Writing out the first steps of such a process we obtain:

x0 ,

x1 = x0 + (M−1r0),

x2 = x1 + (M−1r1) = x0 +M−1r0 +M−1(b−Ax0 −AM−1r0)

= x0 + 2M−1r0 −M−1AM−1r0,
...

This implies that

xi ∈ x0 + span
{

M−1r0,M
−1A(M−1r0), . . . , (M

−1A)i−1(M−1r0)
}

.

The subspace Ki(A; r0) := span
{

r0, Ar0, . . . , A
i−1r0

}

is called the Krylov-space of dimension
i corresponding to matrix A and initial residual r0. An xi calculated by a basic iterative
method is an element of x0 +Ki(M−1A;M−1r0).

In the preceding chapter we tried to accelerate convergence by the Chebyshev method. In
this method one approximates the solution x by a vector xi ∈ x0 +Ki(M−1A;M−1r0) such
that ‖x − xi‖2 is minimized in a certain way. One of the drawbacks of that method is that
information on the eigenvalues of M−1A should be known. In this chapter we shall describe
the Conjugate Gradient method. This method minimizes the error x − xi in an adapted
norm, without having to know any information about the eigenvalues. In Section 2.3 we give
theoretical results concerning the convergence behavior of the CG method.

2.2 The Conjugate Gradient (CG) method

In this section we assume that M = I, and x0 = 0 so r0 = b. These assumptions are
only needed to facilitate the formula’s. They are not necessary for the CG method itself.
Furthermore, we assume that A satisfies the following condition.

Condition 3.2.1
The matrix A is symmetric (A = AT) and positive definite (xTAx > 0 for x 6= 0).

This condition is crucial for the derivation and success of the CG method. Later on we shall
derive extensions to non-symmetric matrices.

17

The first idea could be to construct a vector xi ∈ Ki(A, r0) such that ‖x − xi‖2 is minimal.
The first iterate x1 can be written as x1 = α0r0 where α0 is a constant which has to be chosen
such that ‖x− x1‖2 is minimal. This leads to

‖x− x1‖22 = (x− α0r0)
T (x− α0r0) = xTx− 2α0r

T
0 x+ α2

0r
T
0 r0 . (15)

The norm given in (15) is minimized if α0 =
rT0 x

rT0 r0
. Since x is unknown this choice cannot be

determined, so this idea does not lead to a useful method. Note that Ax = b is known so
using an adapted inner product implying A could lead to an α0 which is easy to calculate.
To follow this idea we define the following inner product and related norm.

Definition 3.2.2
The A-inner product is defined by

(y, z)A = yTAz,

and the A-norm by ‖y‖A =
√

(y, y)A =
√

yTAy.

It is easy to show that if A satisfies Condition 3.2.1 (., .)A and ‖.‖A satisfy the rules for inner
product and norm (see Section ??) respectively. In order to obtain x1 such that ‖x− x1‖A is
minimal we note that

‖x− x1‖2A = xTAx− 2α0r
T
0 Ax+ α2

0 rT0 Ar0,

so α0 =
rT0 Ax

rT0 Ar0
=

rT0 b

rT0 Ar0
. We see that this new inner product leads to a minimization problem,

which can be easily solved. In the next iterations we compute xi such that

‖x− xi‖A = min
y∈Ki(A;r0)

‖x− y‖A (16)

The solution of this minimization problem leads to the conjugate gradient method. First we
specify the CG method, thereafter we summarize some of its properties.

Conjugate Gradient method

k = 0 ; x0 = 0 ; r0 = b initialization
while rk 6= 0 do termination criterion

k := k + 1 k is the iteration number
if k = 1 do

p1 = r0
else

βk =
rT
k−1rk−1

rT
k−2rk−2

pk is the search direction vector

pk = rk−1 + βkpk−1 to update xk−1 to xk
end if

αk =
rT
k−1rk−1

pT
k
Apk

xk = xk−1 + αkpk update iterate
rk = rk−1 − αkApk update residual

end while

18

The first description of this algorithm is given in [25]. For recent results see [47]. Besides
the two vectors xk, rk and matrix A only one extra vector pk should be stored in memory.
Note that the vectors from the previous iteration can be overwritten. One iteration of CG
costs one matrix vector product and 10 n flops for vector calculations. If the CG algorithm
is used in a practical application the termination criterion should be replaced by one of the
criteria given in Section 1.3. In this algorithm rk is computed from rk−1 by the equation
rk = rk−1 − αkApk. This is done in order to save one matrix vector product for the original
calculation rk = b − Axk. In some applications the updated residual obtained from the CG
algorithm can deviate much from the exact residual b−Axk due to rounding errors. So it is
strongly recommended to recompute b − Axk after the termination criterion is satisfied for
the updated residual and compare the norm of the exact and updated residual. If the exact
residual does no satisfy the termination criterion the CG method should be restarted with xk
as its starting vector.

The vectors defined in the CG method have the following properties:

Theorem 2.1

1. span {p1, . . . , pk} = span {r0, . . . , rk−1} = Kk(A; r0), (17)

2. rTj ri = 0 i = 0, . . . , j − 1 ; j = 1, . . . , k , (18)

3. rTj pi = 0 i = 1, . . . , j ; j = 1, . . . , k , (19)

4. pTj Api = 0 i = 1, . . . , j − 1 ; j = 2, . . . , k (20)

5. ‖x− xk‖A = min
y∈Kk(A;r0)

‖x− y‖A. (21)

Proof: see [19], Section 10.2.

Remarks on the properties given in Theorem 2.1

- It follows from (17) and (18) that the vectors r0, . . . , rk−1 form an orthogonal basis of
Kk(A; r0).

- In theory the CG method is a finite method. After n iterations the Krylov subspace is
identical to IRn. Since ‖x − y‖A is minimized over Kn(A; r0) = IRn the norm is equal
to zero and xn = x. However in practice this property is never utilized for two reasons:
firstly in many applications n is very large so that it is not feasible to do n iterations,
secondly even if n is small, rounding errors can spoil the results such that the properties
given in Theorem 2.1 do not hold for the computed vectors.

- The sequence ‖x− xk‖A is monotone decreasing, so

‖x− xk+1‖A ≤ ‖x− xk‖A .

This follows from (21) and the fact that Kk(A; r0) ⊂ Kk+1(A; r0). In practice ‖x−xk‖A
is not easy to compute since x is unknown. The norm of the residual is given by ‖rk‖2 =
‖x− xk‖ATA. This sequence is not necessarily monotone decreasing. In applications it

19

may occur that ‖rk+1‖2 is larger than ‖rk‖2. This does not mean that the CG process
becomes divergent. The inequality

‖rk‖2 = ‖Axk − b‖2 ≤
√

‖A‖2‖x− xk‖A

shows that ‖rk‖2 is less than the monotone decreasing sequence
√

‖A‖2‖x − xk‖A, so
after some iterations the norm of the residual decreases again.

- The direction vector pj is A-orthogonal or A-conjugate to all pi with index i less than
j. This is the motivation for the name of the method: the directions or gradients of the
updates are mutually conjugate.

- In the algorithm we see two ratios, one to calculate βk and the other one for αk. If
the denominator is equal to zero, the CG method breaks down. With respect to βk
this implies that rTk−2rk−2 = 0, which implies rk−2 = 0 and thus xk−2 = x. The linear

system is solved. The denominator of αk is zero if pTkApk = 0 so pk = 0. Using property
(17) this implies that rk−1 = 0 so again the problem is already solved.
Conclusion: If the matrix A satisfies Condition 3.2.1 then the CG method is robust.

In a following chapter we shall give CG type methods for general matrices A. But first we
shall extend Condition 3.2.1 in such a way that also singular matrices are permitted. If the
matrix A is symmetric and positive semi definite (xTAx ≥ 0) the CG method can be used to
solve the linear system Ax = b, provided b is an element of the column space of A (range(A)).
This is a natural condition because if it does not hold there is no vector x such that Ax = b.
For further details and references see [27].

2.3 The convergence behavior of the CG method

An important research topic is the rate of convergence of the CG method. The optimality
property enables one to obtain easy to calculate upper bounds of the distance between the
kth iterate and the exact solution.

Theorem 2.2 The iterates xk obtained from the CG algorithm satisfy the following inequal-
ity:

‖x− xk‖A ≤ 2

(

√

K2(A)− 1
√

K2(A) + 1

)k

‖x− x0‖A.

Proof
We shall only give a sketch of the proof. It is easily seen that x − xk can be written as a
polynomial, say pk(A) with pk(0) = 1, times the initial residual (compare the Chebyshev
method)

‖x− xk‖A = ‖pk(A)(x− x0)‖A.
Due to the minimization property every other polynomial qk(A) with qk(0) = 1 does not
decrease the error measured in the A-norm:

‖x− xk‖A ≤ ‖qk(A)(x − x0)‖A.

The right-hand side can be written as

‖qk(A)(x− x0)‖A = ‖qk(A)
√
A(x− x0)‖2 ≤ ‖qk(A)‖2‖

√
A(x− x0)‖2 = ‖qk(A)‖2‖x− x0‖A

20

Taking qk(A) equal to the Chebyshev polynomial gives the desired result. �

Note that the rate of convergence of CG is comparable to that of the Chebyshev method,
however it is not necessary to estimate or calculate eigenvalues of the matrix A. Furthermore,
increasing diagonal dominance leads to a better rate of convergence.

Initially the CG method was not very popular. The reason for this is that the convergence
can be slow for systems where the condition number K2(A) is very large. On the other hand
the fact that the solution is found after n iteration is also not useful in practice. Firstly n
may be very large, secondly the property does not hold in the presence of rounding errors.
To illustrate this we consider the following classical example:

Example 1

The linear system Ax = b should be solved where n = 40 and b = (1, 0, . . . , 0)T . The matrix
A is given by

A =

5 −4 1
−4 6 −4 1 ⊘
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

1 −4 6 −4 1
⊘ 1 −4 6 −4

1 −4 5

.

This can be seen as a finite difference discretization of the bending beam equation:
u′′′′ = f . The eigenvalues of this matrix are given by:

λk = 16sin4
kπ

82
k = 1, . . . , 40.

The matrix A is symmetric positive definite so the CG method can be used to solve the linear
system. The condition number of A is approximately equal to

(

82
π

)4
. The resulting rate of

convergence given by
√

K2(A)− 1
√

K2(A) + 1
∼= 0.997

is close to one. This explains a slow convergence of the CG method for the first iterations.
However after 40 iterations the solution should be found. In Figure 2 the convergence behavior
is given where the rounding error is equal to 10−16, [18]. This example suggests that CG has
only a restricted range of applicability. These ideas however changed after the publication of
[35]. Herein it is shown that the CGmethod can be very useful for a class of linear systems, not
as a direct method, but as an iterative method. These problems originate from discretized
partial differential equations. It appears that not the size of the matrix is important for
convergence but the extreme eigenvalues of A.

One of the results which is based on the extreme eigenvalues is given in Theorem 2.2. This
inequality is an upper bound for the error of the CG iterates, and suggests that the CG
method is a linearly convergent process (see Figure 3). However, in practice the convergence
behavior looks like the one given in Figure 4. This is called superlinear convergence behavior.

21

10 20 30 40 50 60 70 80 90
-14

-12

-10

-8

-6

-4

-2

0

2
 The iterations using Conjugate Gradients

 iterations

 1
0l

og
(|

| b
-A

x_
i |

|_
2)

Figure 2: The convergence behavior of CG applied to Example 1.

So the upper bound is only sharp for the initial iterates. It seems that after some iterations
the condition number in Theorem 2.2 is replaced by a smaller ”effective” condition number.
To illustrate this we give the following example:

log || x - x || A

i

i

Figure 3: A linear convergent behavior

Example 2
The matrix A is the discretized Poisson operator. The physical domain is the two-dimensional
unit square. The grid used consists of an equidistant distribution of 30× 30 grid points. The
dimension of A is equal to 900 and the eigenvalues are given by

λk,l = 4− 2cos
πk

31
− 2cos

πl

31
, 1 ≤ k, l ≤ 30.

Using Theorem 2.2 it appears that 280 iteration are necessary to ensure that

‖x− xi‖A
‖x− x0‖A

≤ 10−12.

22

Alog || x - x ||

i

i

Figure 4: A super linear convergent behavior

Computing the solution it appears that CG iterates satisfy the given termination criterion
after 120 iterations. So in this example the estimate given in Theorem 2.2 is not sharp.

To obtain a better idea of the convergence behavior we have a closer look to the CG method.
We have seen that CG minimizes ‖x − xi‖A on the Krylov subspace. This can also be seen
as the construction of a polynomial qi of degree i and qi(0) = 1 such that

‖x− xi‖A = ‖qi(A)(x − x0)‖A = min
q̃i,

q̃i(0) = 1

‖q̃i(A)(x − x0)‖A .

Suppose that the orthonormal eigen system of A is given by: {λj, yj}j=1,...,n where

Ayj = λjyj , λj ∈ R, ‖yj‖2 = 1, yTj yi = 0, j 6= i, and 0 < λ1 ≤ λ2 . . . ≤ λn. The initial errors

can be written as x− x0 =
n
∑

j=1
γjyj, which implies that

x− xi =

n
∑

j=1

γjqi(λj)yj . (22)

If for instance λ1 = λ2 and γ1 6= 0 and γ2 6= 0 it is always possible to change y1 and y2 in
ỹ1 and ỹ2 such that γ̃1 6= 0 but γ̃2 = 0. This combined with equation (22) implies that if
qi(λj) = 0 for all different λj then xi = x. So if there are only m < n different eigenvalues
the CG method stops at least after m iterations. Furthermore, the upper bound given in
Theorem 2.2 can be sharpened.

Remark

For a given linear system Ax = b and a given x0 (note that x− x0 =
n
∑

j=1
γjyj) the quantities

α and β are defined by:
α = min {λj |γj 6= 0} ,
β = max {λj|γj 6= 0} .

It is easy to show that the following inequality holds:

‖x− xi‖A ≤ 2

√

β
α − 1

√

β
α + 1

i

‖x− x0‖A. (23)

23

The ratio β
α is called the effective condition number of A.

It follows from Theorem 2.1 that r0, . . . , rk−1 forms an orthogonal basis for Kk(A; r0). So
the vectors r̃i = ri/‖ri‖2 form an orthonormal basis for Kk(A; r0). We define the following
matrices

Rk ∈ IRn×k and the jth column of Rk is r̃j ,

Tk = RT
kARk where Tk ∈ IRk×k.

The Ritzmatrix Tk can be seen as the projection of A on Kk(A; r0). It follows from Theo-
rem 2.1 that Tk is a tridiagonal symmetric matrix. The coefficients of Tk can be calculated
from the αi’s and βi’s of the CG process. The eigenvalues θi of the matrix Tk are called
Ritzvalues of A with respect to Kk(A; r0). If zi is an eigenvector of Tk so that Tkzi = θizi
and ‖zi‖2 = 1 then Rk zi is called a Ritzvector of A. Ritzvalues and Ritzvectors are approxi-
mations of eigenvalues and eigenvectors and play an important role in a better understanding
of the convergence behavior of CG. The properties of the Ritzvalues are given in more detail
in Chapter 6. Some important properties are:

- the rate of convergence of a Ritzvalue to its limit eigenvalue depends on the distance of
this eigenvalue to the rest of the spectrum

- in general the extreme Ritzvalues converge the fastest and their limits are α and β.

In practical experiments we see that, if Ritzvalues approximate the extreme eigenvalues of A,
then the rate of convergence seems to be based on a smaller effective condition number (the
extreme eigenvalues seem to be absent). We first give an heuristic explanation. Thereafter
an exact result from the literature is cited.

From Theorem 2.1 it follows that rk = A(x − xk) is perpendicular to the Krylov subspace
Kk(A; r0). If a Ritzvector is a good approximation of an eigenvector yj of A this eigenvector is
nearly contained in the subspaceKk(A; r0). These two combined yields that (A(x−xk))T yj ∼=
0. The exact solution and the approximation can be written as

x =
n
∑

i=1

(xT yi)yi and xk =
n
∑

i=1

(xTk yi)yi.

From (A(x−xk))
T yj = (x−xk)

Tλjyj ∼= 0 it follows that xT yj ∼= xTk yj. So the error x−xk has
a negligible component in the eigenvector yj. This suggest that λj does no longer influence
the convergence of the CG process.

For a more precise result we define a comparison process. The iterates of this process are
comparable to that of the original process, but its condition number is less than that of
original process.

Definition
Let xi be the i-th iterate of the CG process for Ax = b. For a given integer i let xj denote
the j-th iterate of the comparison CG process for this equation, starting with x0 such that
x− x0 is the projection of x− xi on span{y2, . . . , yn}.

Note that for the comparison process the initial error has no component in the y1 eigenvector.

24

Theorem 2.3 [44]
Let xi be the i-th iterate of CG, and xj the j-th iterate of the comparison process. Then for
any j there holds:

‖x− xi+j‖A ≤ Fi‖x− xj‖A ≤ Fi
‖x− xj‖A
‖x− x0‖A

‖x− xi‖A

with Fi =
θ
(i)
1
λ1

max
k≥2

|λk−λ1|

|λk−θ
(i)
1 |

, where θ
(i)
1 is the smallest Ritzvalue in the i-th step of

the CG process.

Proof: see [44], Theorem 2.1.

The theorem shows that from any stage i on for which θ
(i)
1 does not coincide with an eigenvalue

λk, the error reduction in the next j steps is at most the fixed factor Fi worse than the error
reduction in the first j steps of the comparison process in which the error vector has no

y1-component. As an example we consider the case that λ1 < θ
(i)
1 < λ2 we then have

Fi =
θ
(i)
1

λ1

λ2 − λ1

λ2 − θ
(i)
1

,

which is a kind of relative convergence measure for θ
(i)
1 relative to λ1 and λ2−λ1. If

θ
(i)
1 −λ1

λ1
<

0.1 and
θ
(i)
1 −λ1

λ2−λ1
< 0.1 then we have Fi < 1.25. Hence, already for this modest degree of

convergence of θ
(i)
1 the process virtually converges as well as the comparison process (as if the

y1-component was not present). For more general results and experiments we refer to [44].

25

2.4 Exercises

1. Show that (y, z)A =
√

yTAz is an inner product if A is symmetric and positive definite.

2. Give the proof of inequality (23).

3. (a) Show that an A-orthogonal set of nonzero vectors associated with a symmetric and
positive definite matrix is linearly independent.

(b) Show that if {v(1), v(2), . . . , v(n)} is a set of A-orthogonal vectors in IRn and zT v(i) =
0 for i = 1, . . . , n then z = 0.

4. Define

tk =
(v(k), b−Ax(k−1))

(v(k), Av(k))

and x(k) = x(k−1)+tkv
(k), then (r(k), v(j)) = 0 for j = 1, . . . , k, if the vectors v(j) form an

A-orthogonal set. To prove this, use the following steps using mathematical induction:

(a) Show that (r(1), v(1)) = 0.

(b) Assume that (r(k), v(j)) = 0 for each k ≤ l and j = 1, . . . , k and show that this
implies that

(r(l+1), v(j)) = 0 for each j = 1, . . . , l.

(c) Show that (r(l+1), v(l+1)) = 0.

5. Take A =

1 0 0
0 1 0
0 0 2

 and b =

2
1
−1

. We are going to solve Ax = b.

(a) Show that Conjugate Gradients applied to this system should convergence in 1 or
2 iterations (using the convergence theory).

(b) Choose x(0) =

0
0
0

 and do 2 iterations with the Conjugate Gradients method.

6. Suppose that A is nonsingular, symmetric, and indefinite. Give an example to show
that the Conjugate Gradients method can break down.

26

3 Preconditioning of Krylov subspace methods

We have seen that the convergence behavior of Krylov subspace methods depends strongly
on the eigenvalue distribution of the coefficient matrix. A preconditioner is a matrix that
transforms the linear system such that the transformed system has the same solution but the
transformed coefficient matrix has a more favorable spectrum. As an example we consider a
matrix M which resembles the matrix A. The transformed system is given by

M−1Ax = M−1b ,

and has the same solution as the original system Ax = b. The requirements on the matrix M
are the following:

- the eigenvalues of M−1A should be clustered around 1,

- it should be possible to obtain M−1y with low cost.

Most of this chapter contains preconditioners for symmetric positive definite systems (Sec-
tion 3.1). For non-symmetric systems the ideas are analogously, so in Section 3.2 we give
some details, which can be used only for non-symmetric systems.

3.1 The Preconditioned Conjugate Gradient (PCG) method

In Section 2.3 we observed that the rate of convergence of CG depends on the eigenvalues of
A. Initially the condition number λn

λ1
determines the decrease of the error. After a number of

iterations the λn

λ1
is replaced by the effective condition number λn

λ2
etc. So the question arises,

is it possible to change the linear system Ax = b in such a way that the eigenvalue distribution
becomes more favorable with respect to the CG convergence? This is indeed possible and the
approach is known as: the preconditioning of a linear system. Consider the n× n symmetric
positive definite linear system Ax = b. The idea behind Preconditioned Conjugate Gradients
is to apply the ”original” Conjugate Gradient method to the transformed system

Ãx̃ = b̃ ,

where Ã = P−1AP−T , x = P−T x̃ and b̃ = P−1b, and P is a nonsingular matrix. The
matrix M defined by M = PP T is called the preconditioner. The resulting algorithm can be
rewritten in such a way that only quantities without a ˜ sign occurs.

27

Preconditioned Conjugate Gradient method

k = 0 ; x0 = 0 ; r0 = b ; initialization
while (rk 6= 0) do termination criterion

zk = M−1rk preconditioning
k := k + 1
if k = 1 do

p1 = z0
else

βk =
rT
k−1zk−1

rT
k−2zk−2

update of pk

pk = zk−1 + βkpk−1

end if

αk =
rT
k−1zk−1

pT
k
Apk

xk = xk−1 + αkpk update iterate
rk = rk−1 − αkApk update residual

end while

Observations and properties for this algorithm are:

- it can be shown that the residuals and search directions satisfy:

rTj M
−1ri = 0 , i 6= j ,

pTj (P
−1AP−T)pi = 0 , i 6= j .

- The denominators rTk−2zk−2 = zTk−2Mzk−2 never vanish for rk−2 6= 0 because M is a
positive definite matrix.

With respect to the matrix P we have the following requirements:

- the multiplication of P−TP−1 by a vector should be cheap. (comparable with a matrix
vector product using A). Otherwise one iteration of PCG is much more expensive than
one iteration of CG and hence preconditioning leads to a costlier algorithm.

- The matrix P−1AP−T should have a favorable distribution of the eigenvalues. It is easy
to show that the eigenvalues of P−1AP−T are the same as for P−TP−1A and AP−TP−1.
So we can choose one of these matrices to study the spectrum.

In order to give more details on the last requirement we note that the iterate xk obtained by
PCG satisfies

xk ∈ x0 +Kk(P−TP−1A ; P−TP−1r0), and (24)

‖x− xk‖A ≤ 2

(

√

K2(P−1AP−T)− 1
√

K2(P−1AP−T) + 1

)k

‖x− x0‖A . (25)

So a small condition number of P−1AP−T leads to fast convergence. Two extreme choices
of P show the possibilities of PCG. Choosing P = I we get the original CG method back,
whereas if P TP = A the iterate x1 is equal to x so PCG converges in one iteration. For a
classical paper on the success of PCG we refer to [29]. In the following pages some typical
preconditioners are discussed.

28

Diagonal scaling
A simple choice for P is a diagonal matrix with diagonal elements pii =

√
aii. In [43] it has

been shown that this choice minimizes the condition number of P−1AP−T if P is restricted
to be a diagonal matrix. For this preconditioner it is advantageous to apply CG to Ãx̃ = b̃.
The reason is that P−1AP−T is easily calculated. Furthermore, diag (Ã) = 1 which saves n
multiplications in the matrix vector product.

Basic iterative method
The basic iterative methods described in Section 1.2 use a splitting of the matrix A = M−N .
In the beginning of Section 2.2 we show that the k-th iterate yk from a basic method is an
element of x0 + Kk(M−1A,M−1r0). Using this matrix M in the PCG method we see that
the iterate xk obtained by PCG satisfies the following inequality:

‖x− xk‖A = min
z∈Kk(M−1A;M−1r0)

‖x− z‖A .

This implies that ‖x− xk‖A ≤ ‖x− yk‖A, so measured in the ‖ . ‖A norm the error of a PCG
iterate is less than the error of a corresponding result of a basic iterative method. The extra
costs to compute a PCG iterate with respect to the basic iterate are in general negligible.
This leads to the notion that any basic iterative method based on the splitting A = M −N
can be accelerated by the Conjugate Gradient method so long as M (the preconditioner) is
symmetric and positive definite.

Incomplete decomposition
This type of preconditioner is a combination of an iterative method and an approximate di-
rect method. As illustration we use the model problem defined in Section 1.1. The coefficient
matrix of this problem A ∈ IRn×n is a matrix with at most 5 nonzero elements per row. Fur-
thermore, the matrix is symmetric and positive definite. The nonzero diagonals are numbered
as follows: m is number of grid points in the x-direction.

A =

a1 b1 c1
b1 a2 b2 c2
...

. . .
. . .

. . . ©/
c1 bm am+1 bm+1 cm+1

. . . ©/ . . .
. . .

. . . ©/ . . .

©/

(26)

An optimal choice with respect to converge is take a lower triangular matrix L such that
A = LTL and P = L (L is the Cholesky factor). However it is well known that the zero
elements in the band of A become non zero elements in the band of L. So the amount of
work to construct L is large. With respect to memory we note that A can be stored in 3n
memory positions, whereas L needs m . n memory positions. For large problems the memory
requirements are not easily fulfilled.

If the Cholesky factor L is calculated one observes that the absolute value of the elements in
the band of L decreases considerably if the ”distance” to the non zero elements of A increases.
The non zero elements of L on positions where the elements of A are zero are called fill-in
(elements). The observation of the decrease of fill-in motivates to discard fill in elements
entirely, which leads to an incomplete Cholesky decomposition of A. Since the Cholesky

29

decomposition is very stable this is possible without break down for a large class of matrices.
To specify this in a precise way we use the following definition:

Definition
The matrix A = (aij) is an M -matrix if aij ≤ 0 for i 6= j, the inverse A−1 exists and has
positive elements (A−1)ij ≥ 0.

The matrix of our model problem is an M -matrix. Furthermore, we give a notation for these
elements of L which should be kept to zero. The set of all pairs of indices of off-diagonal
matrix entries is denoted by

Qn = {(i, j)| i 6= j , 1 ≤ i ≤ n , 1 ≤ j ≤ n } .

The subset Q of Qn are the places (i, j) where L should be zero. Now the following theorem
can be proved:

Theorem 3.1 If A is a symmetric M -matrix, there exists for each Q ⊂ Qn having the
property that (i, j) ∈ Q implies (j, i) ∈ Q, a uniquely defined lower triangular matrix L and a
symmetric nonnegative matrix R with lij = 0 if (i, j) ∈ Q and rij = 0 if (i, j) ∈/Q, such that
the splitting A = LLT −R leads to a convergent iterative process

LLTxi+1 = Rxi + b for every choice x0 ,

where xi → x = A−1b.

Proof (see [29]; p.151.)

After the matrix L is constructed it is used in the PCG algorithm. Note that in this algorithm
multiplications by L−1 and L−T are necessary. This is never done by forming L−1 or L−T .
It is easy to see that L−1 is a full matrix. If for instance one wants to calculate z = L−1r we
compute z by solving the linear system Lz = r. This is cheap since L is a lower triangular
matrix so the forward substitution algorithm can be used.

Example
We consider the model problem and compute a slightly adapted incomplete Cholesky decom-
position: A = LD−1LT −R where the elements of the lower triangular matrix L and diagonal
matrix D satisfy the following rules:

a) lij = 0 for all (i, j) where aij = 0 i > j,

b) lii = dii,

c) (LD−1LT)ij = aij for all (i, j) where aij 6= 0 i ≥ j.

In this example Q0 = {(i, j)| |i− j| 6= 0, 1,m}
If the elements of L are given as follows:

L =

d̃1
b̃1 d̃2

. . .
. . . ©/

c̃1 b̃m d̃m+1

. . . ©/ . . .
. . .

©/

(27)

30

it is easy to see that (using the notation as given in (26))

d̃i = ai −
b2i−1

d̃i−1
− c2i−m

d̃i−m

b̃i = bi
c̃i = ci

i = 1, ..., n . (28)

where elements that are not defined should be replaced by zeros. For this example the
amount of work for P−TP−1 times a vector is comparable to the work to compute A times a
vector. The combination of this incomplete Cholesky decomposition process with Conjugate
Gradients is called the ICCG(0) method ([29]; p. 156). The 0 means that no extra diagonals
are used for fill in. Note that this variant is very cheap with respect to memory: only one
extra vector to store D is needed.

Another successfull variant is obtained by a smaller set Q. In this variant the matrix L
has three more diagonals than the lower triangular part of the original matrix A. This
preconditioning is obtained for the choice

Q3 = {(i, j)| |i− j| 6= 1, 2,m − 2,m− 1,m}

For the formula’s to obtain the decomposition we refer to ([29]; p. 156). This preconditioner
combined with PCG is known as the ICCG(3) method. A drawback is that all the elements
of L are different from the corresponding elements of A so 6 extra vectors are needed to store
L in memory.

To give an idea of the power of the ICCG methods we have copied some results from [29]. As
a first example we consider the model problem, where the boundary conditions are somewhat
different:

∂u
∂x(x, y) = 0 for

{

x = 0 , y ∈ [0, 1]
x = 1 , y ∈ [0, 1]

,

∂u
∂y (x, y) = 0 for y = 1 , x ∈ [0, 1] ,

u(x, y) = 1 for y = 0 , x ∈ [0, 1] .

The distribution of the grid points is equidistant with h = 1
31 . The results for CG, ICCG(0)

and ICCG(3) are plotted in Figure 5.

From inequality (25) it follows that the rate of convergence can be bounded by

r =

√

K2(P−1AP−T)− 1
√

K2(P−1AP−T) + 1
. (29)

To obtain a better insight in the fast convergence of ICCG(0) and ICCG(3) the eigenvalues
of A, (L0L

T
0)

−1A and (L3L
T
3)

−1A are computed and given in Figure 6. For this result given
in [29] a small matrix of order n = 36 is used, so all eigenvalues can be calculated.
The eigenvalues as given in Figure 6 can be substituted in formula (29). We then obtain

r = 0.84 for CG ,
r = 0.53 for ICCG(0) ,
r = 0.23 for ICCG(3) ,

(30)

which explains the fast convergence of the PCG variants. In our explanation of the conver-
gence behavior we have also used the notion of Ritz values. Applying these ideas to the given
methods we note the following:

31

4.0

0.0

-4.0

-8.0

-12.

expressed in number of iterations ICCG (3)

0 20 40 60

1
2

4

3

5

1 ICCG (0)
2 ICCG (3)
3 SIP
4 SLOR
5 CONJ. GR.

Residual

10log ||Ax1 - b|| 2

computational work,

Figure 5: The results for the CG, ICCG(0) and ICCG(3) methods, compared with SIP
(Strongly Implicit Procedure) and SLOR (Successive Line Over Relaxation method)

- For CG the eigenvalues of A are more or less equidistantly distributed. So if a Ritzvalue
has converged we only expect a small decrease in the rate of convergence. This agrees
with the results given in Figure 5, the CG method has a linear convergent behavior.

- For the PCG method the eigenvalue distribution is very different. Looking to the
spectrum of (L3L

T
3)

−1A we see that λ36 = 0.446 is the smallest eigenvalue. The distance
between λ36 and the other eigenvalues is relatively large which implies that there is a
fast convergence of the smallest Ritz-value to λ36. Furthermore, if the smallest Ritzvalue
is a reasonable approximation of λ36 the effective condition number is much less than
the original condition number. Thus super linear convergence is expected. This again
agrees very well with the results given in Figure 5.

So the faster convergence of ICCG(3) comes from a smaller condition number and a more
favorable distribution of the internal eigenvalues.

32

0.058

x

x
xx

x

x
x

x x

x
x

x

x x
x

x
x x x

x
x

x x
x

x
x x

xx

x
x

x
x

x

xx

7.503

0

1

2

3

4

5

6

7

8

0 10 20 30 40

INDEX

E
IG

E
N

V
A

L
U

E
S

i

l
i

EIGENVALUES OF x

EIGENVALUES OF

A

EIGENVALUES OF

L 0
T()

-1
A

L T()
-1

AL
L 0
3 3

0.446
0.119

Figure 6: The eigenvalues of A, (L0L
T
0)

−1A and (L3L
T
3)

−1A.

Finally, the influence of the order of the matrix on the number of iterations required to reach
a certain precision was checked for both ICCG(0) and ICCG(3). Therefore several uniform
rectangular meshes have been chosen, with mesh spacings varying from ∼ 1/10 up to ∼ 1/50.
This resulted in linear systems with matrices of order 100 up to about 2500. In each case
it was determined how many iterations were necessary, in order that the magnitude of each
entry of the residual vector was below some fixed small number ε. In Figure 7 the number of
iterations are plotted against the order of the matrices for ε = 10−2, ε = 10−6 and ε = 10−10.
It can be seen that the number of iterations, necessary to get the residual vector sufficiently
small, increases only slowly for increasing order of the matrix. The dependence of K2(A) for
this problem is O(1

h2). For ICCG preconditioning it can be shown that there is a cluster of
large eigenvalues of (L0L

T
0)

−1A in the vicinity of 1, whereas the small eigenvalues are of order
O(h2) and the gaps between them are relatively large. So also for ICCG(0) the condition
number is O(1

h2). Faster convergence can be explained by the fact that the constant before
1
h2 is less for the ICCG(0) preconditioned system than for A and the distribution of the
internal eigenvalues is much better so super linear convergence sets in after a small number
of iterations.

The success of the ICCG method has led to many variants. In the following we describe two
of them MICCG(0) given in [23] (MICCG means Modified ICCG) and RICCG(0) given in [2]
(RICCG means Relaxed ICCG).

MICCG
In the MICCGmethod the MIC preconditioner is constructed by slightly adapted rules. Again
A is splitted as follows A = LD−1LT −R, where L and D satisfy the following rules:

a) lij = 0 for all (i, j) where aij = 0 i > j,

33

ICCG(3),

0 400 800 1200 1600 2000 2400
0

20

40

60

80

100

NUMBER OF LINEAR EQUATIONS

N
U

M
B

E
R

 O
F

IT
E

R
A

T
IO

N
S

e = 10ICCG(0), -6

-10

e = 10 -10ICCG(0),

e = 10ICCG(3),

e = 10ICCG(3), -6

e = 10ICCG(0), -2

e = 10 -2

Figure 7: Effect of number of equations on the rate of convergence

34

b) lii = dii,

c) rowsum (LD−1LT)=rowsum(A) for all rows and (LD−1LT)ij = aij for all (i, j) where
aij 6= 0 i > j .

A consequence of c) is that LD−1LT

1
...
1

= A

1
...
1

so (LD−1LT)−1A

1
...
1

=

1
...
1

.

this means that if Ax = b and x and/or b are slowly varying vectors this incomplete Cholesky
decomposition is a very good approximation for the inverse of A with respect to x and/or b.
Using the same notation of L as given in (27) we obtain

d̃i = ai − (bi−1 + ci−1)
bi−1

d̃i−1
− (bi−m + ci−m) ci−m

d̃i−m

b̃i = bi
c̃i = ci

i = 1, .., n (31)

It can be proved that for this preconditioning there is a cluster of small eigenvalues in the
vicinity of 1 and the largest eigenvalues are of order 1

h and have large gap ratio’s. So the
condition number is O(1/h).

In many problems the initial iterations of MICCG(0) converge faster than ICCG(0). There-
after for both methods super linear convergence sets in. Using MICCG the largest Ritz values
are good approximations of the largest eigenvalues of the preconditioned matrix. A drawback
of MICCG is that due to rounding errors components in eigenvectors related to large eigen-
values return after some iterations. This deteriorates the rate of convergence. So if many
iterations are needed ICCG can be better than MICCG.

In order to combine the advantage of both methods the RIC preconditioner is proposed in [2],
which is an average of the IC and MIC preconditioner. For the details we refer to [2]. Only
the algorithm is given: choose the average parameter α ∈ [0, 1] then d̃i, b̃i and c̃i are given by:

d̃i = ai − (bi−1 + αci−1)
bi−1

d̃i−1
− (αbi−m + ci−m) ci−m

d̃i−m

b̃i = bi
c̃i = ci

i = 1, ..., n (32)

However the question remains: how to choose α? In Figure 8 which is copied from [45] a
typical convergence behavior as function of α is given. This motivates the choice α = 0.95,
which leads to a very good rate of convergence on a wide range of problems.

Diagonal scaling
The above given preconditioners IC, MIC and RIC can be optimized with respect to work.
One way to do this is to look at the explicitly preconditioned system:

D1/2L−1AL−TD1/2y = D1/2L−1b (33)

Applying CG to this system one has to solve lower triangular systems of equations with matrix
LD−1/2. The main diagonal of this matrix is equal to D1/2. It saves time if we can change
this in such a way that the main diagonal is equal to the identity matrix. One idea could be
to replace (33) by

D1/2L−1D1/2D−1/2AD−1/2D1/2L−TD1/2y = D1/2L−1D1/2D−1/2b .

35

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

alpha

nu
m

be
r

of
 it

er
at

io
ns

Figure 8: Convergence in relation with α

with Ã = D−1/2AD−1/2 , L̃ = D−1/2LD−1/2 and b̃ = D−1/2b we obtain

L̃−1ÃL̃−Ty = L̃b̃ . (34)

Note that L̃ii = 1 for i = 1, ..., n. PCG now is the application of CG to this preconditioned
system.

Eisenstat implementation
In this section we restrict ourselves to the IC(0), MIC(0) and RIC(0) preconditioner. We
have already noted that the amount of work of one PCG iteration is approximately 2 times
as large than a CG iteration. In [9] it is shown that much of the extra work can be avoided.
If CG is applied to (34) products of the following form are calculated: vj+1 = L̃−1ÃL̃−T vj .
For the preconditioners used, the off diagonal part of L̃ is equal to the off-diagonal part of Ã.
Using this we obtain:

vj+1 = L̃−1ÃL̃−T vj = L̃−1(L̃+ Ã− L̃− L̃T + L̃T)L̃−T vj (35)

= L̃−Tvj + L̃−1(vj + (diag (Ã)− 2I)L̃−T vj)

So vj+1 can be calculated by a multiplication by L̃−T and L̃−1 and some vector operations.
The saving in CPU time is the time to calculate the product of A times a vector. Now one
iteration of PCG costs approximately the same as one iteration of CG.

General stencils
In practical problems the stencils in finite element methods may be larger or more irregular
distributed than for finite difference methods. The same type of preconditioners can be used.
However there are some differences. We restrict ourselves to the IC(0) preconditioner. For the
five point stencil we see that the off diagonal part of L is equal to the strictly lower triangular
part of A. For general stencils this property does not hold. Drawbacks are: All the elements

36

of L should be stored, so the memory requirements of PCG are two times as large as for CG.
Furthermore, the Eisenstat implementation can no longer be used. This motivates another
preconditioner constructed by the following rules:

ICD (Incomplete Cholesky restricted to the Diagonal).
A is again splitted as A = LD−1LT −R and L and D satisfy the following rules:

a) lij = 0 for all (i, j) where aij = 0 i > j

b) lii = dii, i = 1, ..., n

c) lij = aij for all (i, j) where aij 6= 0 i > j
(LD−1LT)ii = aii i = 1, ..., n.

This enables us to save memory (only the diagonal D should be stored) and CPU time (since
now Eisenstat implementation can be used) per iteration. For large problems the rate of
convergence of ICD is worse than for IC. Also MICD and RICD preconditioners can be given.

3.2 Preconditioning for general matrices

The preconditioning for non-symmetric matrices goes along the same lines as for symmetric
matrices. There is a large amount of literature for generalization of the incomplete Cholesky
decompositions. In general it is much more difficult to prove that the decomposition does not
break down or that the resulting preconditioned system has a spectrum which leads to a fast
convergence. Since symmetry is no longer important the number of possible preconditioners
is much larger. Furthermore, if we have an incomplete LU decomposition of A, we can apply
the iterative methods from 4.3.3 to the following three equivalent systems of equations:

U−1L−1Ax = U−1L−1b , (36)

L−1AU−1y = L−1b , x = U−1y , (37)

or
AU−1L−1y = b , x = U−1L−1y . (38)

The rate of convergence is approximately the same for all variants. When the Eisenstat
implementation is applied one should use (37). Otherwise we prefer (38) because then the
stopping criterion is based on ‖r‖2 = ‖b−Axk‖2 whereas for (36) it is based on ‖U−1L−1rk‖2,
and for (37) it is based on ‖L−1rk‖2.

37

3.3 Exercises

1. Derive the preconditioned CG method using the CG method applied to Ãx̃ = b̃.

2. (a) Show that the formula’s given in (28) are correct.

(b) Show that the formula’s given in (31) are correct.

3. (a) Suppose that ai = 4 and bi = −1. Show that lim
i→∞

d̃i = 2 +
√
3, where d̃i is as

defined in (28).

(b) Do the same for ai = 4, bi = −1 and ci = −1 with m = 10, and show that
lim
i→∞

d̃i = 2 +
√
2.

(c) Prove that the LD−1LT decomposition (28) exists if ai = a, bi = b, ci = c and A is
diagonally dominant.

4. A practical exercise

Use as test matrices:

[a, f] = poisson(30, 30, 0, 0,′ central′)

(a) Adapt the matlab cg algorithm such that preconditioning is included. Use a diag-
onal preconditioner and compare the number of iterations with cg without precon-
ditioner.

(b) Use the formula’s given in (28) to obtain an incomplete LD−1LT decomposition
of A. Make a plot of the diagonal elements of D. Can you understand this plot?

(c) Use the LD−1LT preconditioner in the method given in (a) and compare the con-
vergence behavior with that of the diagonal preconditioner.

38

4 Krylov subspace methods for general matrices

4.1 Introduction

In the preceding chapter we discuss the Conjugate Gradient method. This Krylov subspace
method can only be used if the coefficient matrix is symmetric and positive definite. In this
chapter we discuss Krylov subspace methods for an increasing class of matrices. For these we
give different iterative methods, and at this moment there is no method which is the best for
all cases. This is in contrast with the symmetric positive definite case. In Subsection 4.3.4 we
give some guidelines for choosing an appropriate method for a given system of equations. In
Section 4.2 we consider symmetric indefinite systems. General real matrices are the subject
of Section 4.3. We end this chapter with a section containing iterative methods for complex
linear systems.

4.2 Indefinite symmetric matrices

In this section we relax the condition that A should be positive definite (Chapter 2), and only
assume that A is symmetric. This means that xTAx > 0 for some x and possibly yTAy < 0
for some y. For the real eigenvalues this implies that A has positive and negative eigenvalues.
For this type of matrices ‖.‖A defines no longer a norm. Furthermore, CG may have a serious
break down since pTkApk may be zero whereas ‖pk‖2 is not zero. In this section we give two
different (but related) methods to overcome these difficulties. These methods are defined in
[31].

SYMMLQ

In the CG method we have defined the orthogonal matrix Rk ∈ IRn×k where the jth column
of Rk is equal to the normalized residual rj/‖rj‖2. It appears that the following relation holds

ARk = Rk+1T̄k, (39)

where T̄k ∈ IRk+1×k is a tridiagonal matrix. This decomposition is also known as the Lanczos
algorithm for the tridiagonalisation of A ([19]; p.477). This decomposition is always possible
for symmetric matrices, also for indefinite ones. The CG iterates are computed as follows:

xk = Rkyk, where (40)

RT
kARkyk = Tkyk = RT

k b. (41)

Note that Tk consists of the first k rows of T̄k. If A is positive definite then Tk is positive
definite. It appears further that in the CG process an LDLT factorization of Tk is used to
solve (41). This can lead to break down because Tk may be indefinite in this section (compare
[19]; Section 9.3.1, 9.3.2, 10.2.6). In the SYMMLQ method [31] problem (41) is solved in a
stable way by using an LQ decomposition. So Tk is factorized in the following way:

Tk = L̄kQk where QT
kQk = I (42)

with L̄k lower triangular. For more details to obtain an efficient code we refer to [31] section 5.

39

MINRES
In SYMMLQ we have solved (41) in a stable way and obtain the ”CG” iteration. However
since ‖.‖A is no longer a correct norm, the optimality properties of CG are lost. To get these
back we can try to use the decomposition

ARk = Rk+1T̄k

and minimize the error in the ‖.‖ATA norm. This is a norm if A is nonsingular. This leads to
the following approximation:

xk = Rkyk, (43)

where yk is such that
‖Axk − b‖2 = min

y∈IRk
‖ARky − b‖2. (44)

Note that ‖ARky − b‖2 = ‖Rk+1T̄ky − b‖2 using (39).

Starting with x0 = 0 implies that r0 = b. Since Rk+1 is an orthogonal matrix and b =

Rk+1‖r0‖2e1, where e1 =

1
0
...
0

∈ IRk+1, we have to solve the following least squares problem

min
y∈IRk

‖T̄ky − ‖r0‖2e1‖2 . (45)

Again for more details see [31]; Section 6.7. A comparison of both methods is given in [31].
In general the rate of convergence of SYMMLQ or MINRES for indefinite symmetric systems
of equations is much worse than of CG for definite systems. Preconditioning techniques for
these methods are specified in [36].

4.3 Iterative methods for general matrices

In this section we consider iterative methods to solve Ax = b where the only requirement is
that A ∈ IRn×n is nonsingular. In the symmetric case we have seen that CG has the following
three nice properties:

- the approximation xi is an element of Ki(A; r0),

- optimality, the error is minimal measured in a certain norm,

- short recurrences, only the results of one foregoing step is necessary so work and memory
do not increase for an increasing number of iterations.

It is shown in [13] that it is impossible to obtain a Krylov method based on Ki(A; r0), which
has these properties for general matrices. So either the method has an optimality property
but long recurrences, or no optimality and short recurrences, or it is not based on Ki(A; r0).
Recently some surveys on general iteration methods have been published: [6], [19] Section 10.4,
[15], [39], [21], [3].

It appears that there are essentially three different ways to solve non-symmetric linear systems,
while maintaining some kind of orthogonality between the residuals:

40

1. Solve the normal equations ATAx = AT b with Conjugate Gradients.

2. Construct a basis for the Krylov subspace by a 3-term bi-orthogonality relation.

3. Make all the residuals explicitly orthogonal in order to have an orthogonal basis for the
Krylov subspace.

These classes form the subject of the following subsections. An introduction and comparison
of these classes is given in [30].

4.3.1 CG applied to the normal equations

The first idea to apply CG to the normal equations

ATAx = AT b, (46)

or
AAT y = b with x = AT y (47)

is obvious. The first method is known as the CGNR method, whereas the second method is
known as the CGNE method. When A is nonsingular ATA is symmetric and positive def-
inite. So all the properties and theoretical results for CG can be used. There are however
some drawbacks first the rate of convergence now depends on K2(A

TA) = K2(A)
2. In many

applications K2(A)
2 is very large so the convergence of CG applied to (46) is very slow. An-

other difference is that CG applied to Ax = b depends on the eigenvalues of A whereas CG
applied to (46) depends on the eigenvalues of ATA, which are equal to the singular values of
A squared.

Per iteration a multiplication with A and AT is necessary, so the amount of work is approx-
imately two times as much as for the CG method. Furthermore, in several (FEM, parallel)
applications Av is easily obtained but AT v not due to the unstructured grid and the data
structure used.
Finally not only the convergence depends on K2(A)

2 but also the error due to rounding er-
rors. To improve the numerical stability it is suggested in [4] to replace inner products like
pTATAp by (Ap)TAp. Another improvement is the method LSQR proposed by [32]. This
method is based on the application of the Lanczos method to the auxiliary system

(

I A
AT 0

)(

r
x

)

=

(

b
0

)

.

This is a very reliable algorithm. It uses reliable stopping criteria and estimates of standard
errors for x and the condition number of A.

4.3.2 Bi-CG type methods

In this type of methods we have short recurrences but no optimality property. We have
seen that CG is based on the Lanczos algorithm. The Lanczos algorithm for non-symmetric
matrices is called the bi-Lanczos algorithm. Bi-CG type methods are based on bi-Lanczos.
In the Lanczos method we try to find a matrix Q such that QTQ = I and

QTAQ = T tridiagonal .

41

In the Bi-Lanczos algorithm we construct a similarity transformation X such that

X−1AX = T tridiagonal .

To obtain this matrix we construct a basis r0, ..., ri−1, which are the residuals, for Ki(A; r0)
such that rj⊥Kj(AT ; s0) and s0, ..., si−1 form a basis for Ki(AT ; s0) such that sj⊥Kj(A; r0),
so the sequences {ri} and {si} are bi-orthogonal. Using these properties and the definitions
Rk = [r0...rk−1], Sk = [s0...sk−1] the following relation can be proved [46]:

ARk = RkTk + αkrke
T
k , (48)

and
ST
k (Axk − b) = 0 .

Using (48), r0 = b and xk = Rky we obtain

ST
k RkTky = s0r

T
0 e1. (49)

Since ST
k Rk is a diagonal matrix with diagonal elements rTj sj, we find, that if all these diagonal

elements are nonzero,
Tky = e1 , xk = Rky .

We see that this algorithm fails when a diagonal element of ST
k Rk becomes (nearly) zero,

because these elements are used to normalize the vectors sj (compare [19] §9.3.6). This is
called a serious (near) break down. The way to get around this difficulty is the so-called
look-ahead strategy. For details on look-ahead we refer to [33], and [16]. Another way to
avoid break down is to restart as soon as a diagonal element gets small. This strategy is very
simple, but one should realize that at a restart the Krylov subspace that has been built up
so far, is thrown away, which destroys possibilities for faster (superlinear) convergence. (The
description of the methods given below is based on those given in [46].)

Bi-CG
As has been shown for Conjugate Gradients, the LU decomposition of the tridiagonal system
Tk can be updated from iteration to iteration and this leads to a recursive update of the
solution vector. This avoids to save all intermediate r and s vectors. This variant of Bi-
Lanczos is usually called Bi-Conjugate Gradients, or shortly Bi-CG [14]. Of course one can in
general not be sure that an LU decomposition (without pivoting) of the tridiagonal matrix Tk

exists, and if it does not exist then a serious break-down of the Bi-CG algorithm occurs. This
break-down can be avoided in the Bi-Lanczos formulation of this iterative solution scheme.
The algorithm is given as follows:

Bi-CG

x0 is given; r0 = b−Ax0;
r̂0 is an arbitrary vector (r̂0, r0) 6= 0
possible choice r̂0 = r0 ;
ρ0 = 1
p̂0 = p0 = 0
for i = 1, 2, ...

ρi = (r̂i−1, ri−1) ; βi = (ρi/ρi−1) ;
pi = ri−1 + βipi−1 ;

42

p̂i = r̂i−1 + βip̂i−1 ;
vi = Api
αi = ρi/(p̂i, vi);
xi = xi−1 + αipi
ri = ri−1 − αivi
r̂i = r̂i−1 − αiA

T p̂i
end for

Note that for symmetric matrices Bi-Lanczos generates the same solution as Lanczos, provided
that s0 = r0, and under the same condition, Bi-CG delivers the same iterates as CG, for
symmetric positive definite matrices. However, the Bi-orthogonal variants do so at the cost
of two matrix vector operations per iteration step.

QMR
The QMR method [17] relates to Bi-CG in a similar way as MINRES relates to CG. For
stability reasons the basis vectors rj and sj are normalized (as is usual in the underlying
Bi-Lanczos algorithm).

If we group the residual vectors rj, for j = 0, ..., i − 1 in a matrix Ri, then we can write the
recurrence relations as

ARi = Ri+1T̄i ,

with
←− i −→

T̄i =

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .
. . .

↑

i+ 1

↓

.

Similar as for MINRES we would like to construct the xi, with

xi ∈ span {r0, Ar0, ..., Ai−1r0} , xi = Riȳ,

for which

‖Axi − b‖2 = ‖ARiȳ − b‖2
= ‖Ri+1T̄iy − b‖2
= ‖Ri+1{T̄iy − ‖r0‖2e1}‖2

is minimal. However, in this case that would be quite an amount of work since the columns
of Ri+1 are not necessarily orthogonal. In [17] it is suggested to solve the minimum norm
least squares problem

min
y∈IRi

‖barTiy − ‖r0‖2e1‖2 . (50)

This leads to the simplest form of the QMR method. A more general form arises if the least
squares problem (50) is replaced by a weighted least squares problem. No strategies are yet

43

known for optimal weights, however. In [17] the QMR method is carried out on top of a look-
ahead variant of the bi-orthogonal Lanczos method, which makes the method more robust.
Experiments suggest that QMR has a much smoother convergence behavior than Bi-CG, but
it is not essentially faster than Bi-CG. For the algorithm we refer to [3] page 24.

CGS
For the bi-conjugate gradient residual vectors it is well-known that they can be written as
rj = Pj(A)r0 and r̂j = Pj(A

T)r̂0, where Pj is a polynomial of degree j such that Pj(0) = 1.
From the bi-orthogonality relation we have that

(rj , r̂i) = (Pj(A)r0, Pi(A
T)r̂0) = (Pi(A)Pj(A)r0, r̂0) = 0 , for i < j.

The iteration parameters for bi-conjugate gradients are computed from innerproducts like
above. Sonneveld observed in [41] that we can also construct the vectors rj = P 2

j (A)r0, using
only the latter form of the innerproduct for recovering the bi-conjugate gradients parameters
(which implicitly define the polynomial Pj). By doing so, it can be avoided that the vectors
r̂j have to be formed, nor is there any multiplication with the matrix AT . The resulting CGS
[41] method works in general very well for many non-symmetric linear problems. It converges
often faster than Bi-CG (about twice as fast in some cases). However, CGS usually shows
a very irregular convergence behavior. This behavior can even lead to cancellation and a
spoiled solution [45].

The following scheme carries out the CGS process for the solution of Ax = b, with a given
preconditioner K:

Conjugate Gradient Squared method
x0 is an initial guess; r0 = b−Ax0;
r̃0 is an arbitrary vector, such that
(r0, r̃0) 6= 0 ,
e.g., r̃0 = r0 ; ρ0 = (r0, r̃0) ;
β−1 = ρ0 ; p−1 = q0 = 0 ;
for i = 0, 1, 2, ... do

ui = ri + βi−1qi ;
pi = ui + βi−1(qi + βi−1pi−1) ;
p̂ = K−1pi ;
v̂ = Ap̂ ;
αi =

ρi
(r̃0,v̂)

;
qi+1 = ui − αiv̂ ;
û = K−1(ui + qi+1)
xi+1 = xi + αiû ;
if xi+1 is accurate enough then quit;
ri+1 = ri − αiAû ;
ρi+1 = (r̃0, ri+1) ;
if ρi+1 = 0 then method fails to converge!;
βi =

ρi+1

ρi
;

end for

In exact arithmetic, the αj and βj are the same constants as those generated by Bi-CG.
Therefore, they can be used to compute the Petrov-Galerkin approximations for eigenvalues

44

of A.

Bi-CGSTAB
Bi-CGSTAB [46] is based on the following observation. Instead of squaring the Bi-CG
polynomial, we can construct other iteration methods, by which xi are generated so that
ri = P̃i(A)Pi(A)r0 with other ith degree polynomials P̃i. An obvious possibility is to take for
P̃j a polynomial of the form

Qi(x) = (1− ω1x)(1− ω2x)...(1 − ωix) ,

and to select suitable constants ωj ∈ IR. This expression leads to an almost trivial recurrence
relation for the Qi. In Bi-CGSTAB ωj in the jth iteration step is chosen as to minimize rj ,
with respect to ωj, for residuals that can be written as rj = Qj(A)Pj(A)r0.
The preconditioned Bi-CGSTAB algorithm for solving the linear system Ax = b, with pre-
conditioning K reads as follows:

Bi-CGSTAB method
x0 is an initial guess; r0 = b−Ax0;
r̄0 is an arbitrary vector, such that (r̄0, r0) 6= 0, e.g., r̄0 = r0 ;
ρ−1 = α−1 = ω−1 = 1 ;
v−1 = p−1 = 0 ;
for i = 0, 1, 2, ... do

ρi = (r̄0, ri) ; βi−1 = (ρi/ρi−1)(αi−1/ωi−1) ;
pi = ri + βi−1(pi−1 − ωi−1vi−1) ;
p̂ = K−1pi ;
vi = Ap̂ ;
αi = ρi/(r̄0, vi) ;
s = ri − αivi ;
if ‖s‖ small enough then

xi+1 = xi + αip̂ ; quit;
z = K−1s ;
t = Az ;
ωi = (t, s)/(t, t) ;
xi+1 = xi + αip̂+ ωiz ;
if xi+1 is accurate enough then quit;
ri+1 = s− ωit ;

end for

The matrix K in this scheme represents the preconditioning matrix and the way of precondi-
tioning [46]. The above scheme in fact carries out the Bi-CGSTAB procedure for the explicitly
postconditioned linear system

AK−1y = b ,

but the vector yi has been transformed back to the vector xi corresponding to the original
system Ax = b. Compared to CGS two extra innerproducts need to be calculated.

In exact arithmetic, the αj and βj have the same values as those generated by Bi-CG and
CGS. Hence, they can be used to extract eigenvalue approximations for the eigenvalues of A
(see Bi-CG).

45

An advantage of these methods is that they use short recurrences. A disadvantage is that
there is only a semi-optimality property. As a result of this, more matrix vector products
are needed and no convergence properties have been proved. In experiments we see that the
convergence behavior looks like CG for a large class of problems. However, the influence of
rounding errors is much more important than for CG. Small changes in the algorithm can lead
to instabilities. Finally it is always necessary to compare the norm of the updated residual
to the exact residual ‖b−Axk‖2. If ”near” break down had occurred these quantities may be
different by several orders of magnitude. In such a case the method should be restarted.

4.3.3 GMRES-type methods

These methods are based on long recurrences, and have certain optimality properties. The
long recurrences imply that the amount of work per iteration and required memory grow for
increasing number of iterations. Consequently in practice one cannot afford to run the full
algorithm, and it becomes necessary to use restarts or to truncate vector recursions. In this
section we describe GMRES, GCR and a combination of both GMRESR.

GMRES
In this method, Arnoldi’s method is used for computing an orthonormal basis {v1, ..., vk} of
the Krylov subspace Kk(A; r0). The modified Gram-Schmidt version of Arnoldi’s method can
be described as follows [40]:

1. Start: choose x0 and compute r0 = b−Ax0 and v1 = r0/‖r0‖2,

2. Iterate: for j = 1, ..., k do:
vj+1 = Avj
for i = 1, .., j do:

hij := vTj+1vi , vj+1 := vj+1 − hijvi ,
end for
hj+1,j := ‖vj+1‖2 , vj+1 := vj+1/hj+1,j

end for
The entries of the upper k + 1× k Hessenberg matrix H̄k are the scalars hij .

In GMRES (General Minimal RESidual method) the approximate solution xk = x0+ zk with
zk ∈ Kk(A; r0) is such that

‖rk‖2 = ‖b−Axk‖2 = min
z∈Kk(A;r0)

‖r0 −Az‖2 (51)

As a consequence of (51) it appears that rk is orthogonal to AKk(A; r0), so rk⊥Kk(A;Ar0).
If A is symmetric the GMRES method is equivalent to the MINRES method as described in
[31]. Using the matrix H̄k it follows that AVk = Vk+1H̄k where the n× k matrix Vk is defined
by Vk = [v1, ..., vk]. With this equation it is shown in [40] that xk = x0 + Vkyk where yk is
the solution of the following least squares problem:

‖βe1 − H̄kyk‖2 = min
y∈IRk

‖βe1 − H̄ky‖2 (52)

with β = ‖r0‖2 and e1 is the first unit vector in IRk+1. GMRES is a stable method and
no break down occurs, if hj+1,j = 0 than xj = x so this is a ”lucky” break down (see [40];

46

Section 3.4).

Due to the optimality (see inequality (51)) convergence proofs are possible [40]. If the eigen-
values of A are real the same bounds on the norm of the residual can be proved as for the CG
method. For a more general eigenvalue distribution we shall give one result in the following
theorem. Let Pm be the space of all polynomials of degree less than m and let σ represent
the spectrum of A.

Theorem 4.1 Suppose that A is diagonalizable so that A = XDX−1, σ = {λ1, ..., λn}, and
let

ε(m) = min
p∈Pm
p(0)=1

max
λi∈σ
|p(λi)|

Then the residual norm of the m-th iterate satisfies:

‖rm‖2 ≤ K(X)ε(m)‖r0‖2 (53)

where K(X) = ‖X‖2‖X−1‖2. If furthermore all eigenvalues are enclosed in a circle centered
at C ∈ IR with C > 0 and having radius R with C > R, then

ε(m) ≤
(

R

C

)m

. (54)

Proof: see [40]; p. 866.

For GMRES we see in many cases a super linear convergence behavior comparable to CG. The
same type of results are proved for GMRES [48]. As we have already noted in the beginning,
work per iteration and memory requirements increase for an increasing number of iterations.
In this algorithm the Arnoldi process requires k vectors in memory in the k-th iteration.
Furthermore, 2k2 · n flops are needed for the total Gram Schmidt process. To restrict work
and memory requirements one stops GMRES after m iterations, form the approximate solu-
tion and use this as a starting vector for a following application of GMRES. This is denoted
by the GMRES(m) procedure. Not restarted GMRES is denoted by full GMRES. However
restarting destroys many of the nice properties of full GMRES, for instance the optimality
property is only valid inside a GMRES(m) step and the superlinear convergence behavior is
lost. This is a severe drawback of the GMRES(m) method [11, 22].

GCR
Slightly earlier than GMRES, [10] proposed the GCR method (Generalized Conjugate Resid-
ual method). The algorithm is given as follows:

GCR algorithm
choose x0, compute r0 = b−Ax0

for i = 1, 2, ... do
si = ri−1 ,
vi = Asi ,
for j = 1, ..., i − 1 do

α = (vj , vi) ,
si := si − αsj , vi := vi − αvj ,

end for

47

si := si/‖vi‖2 , vi := vi/‖vi‖2
xi := xi−1 + (vi, ri−1)si ;
ri := ri−1 − (vi, ri−1)vi ;

end for

The storage of si and vi costs two times as much memory as for GMRES. The rate of con-
vergence of GCR and GMRES are comparable. However there are examples where GCR
breaks down. So comparing full GMRES and full GCR the first one is preferred in many
applications.
When the required memory is not available GCR can be restarted. Furthermore, another
strategy is possible which is known as truncation. An example of this is to replace the j-loop
by

for j = i−m, ..., i − 1 do

Now 2m vectors are needed in memory. Other truncation variants to discard search direction
are possible. In general we see that truncated methods have a better convergence behavior
especially if super linear convergence plays an important role. So if restarting or truncation is
necessary truncated GCR is in general better than restarted GMRES. For convergence results
and other properties we refer to [10].

GMRESR
A number of methods are proposed to diminish the disadvantages of restarting and or trun-
cation. One of these methods is GMRESR proposed in [49] and further investigated in [52].
This method consists of an outer- and an inner loop. In the inner loop we approximate the
solution of a linear system with GMRES to find a good search direction. Thereafter in the
outer loop the minimal residual approximation using these search directions is calculated by
a GCR approach.

GMRESR algorithm
choose x0 and m, compute r0 = b−Ax0

for i = 1, 2, ... do
si = Pm,i−1(A)ri−1 ,
vi = Asi ,
for j = 1, ..., i − 1 do

α = (vj , vi) ,
si := si − αsj , vi := vi − αvj ,

end for
si := si/‖vi‖2 , vi := vi/‖vi‖2
xi := xi−1 + (vi, ri−1)si ;
ri := ri−1 − (vi, ri−1)vi ;

end for

The notation si = Pm,i−1(A)ri−1 denotes that one applies one iteration of GMRES(m) to the
system As = ri−1. The result of this operation is si. For m = 0 we get GCR, whereas for
m→∞ one outer iteration is sufficient and we get GMRES. For the amount of work we refer
to [49], where also optimal choices of m are given. In many problems the rate of convergence
of GMRESR is comparable to full GMRES, whereas the amount of work and memory is much

48

less. In the following picture we have tried to visualize the strong point of GMRESR in com-
parison with GMRES(m) and truncated GCR. A search directions is indicated by the symbol
vi. We see for GMRES(3) that after 3 iterations all information is thrown away. For GCR(3)

v1v2v3 restart v1v2v3 restart GMRES(3)

v1v2v3⌊v4v5v6⌋ ... GCR truncated with 3 vectors
→

v̂1v̂2v̂3 v̂1v̂2v̂3 ...
↓ ↓ GMRESR with GMRES(3) as

condense condense innerloop.
v1 v2

Figure 9: The use of search directions for restarted GMRES, truncated GCR and full GM-
RESR.

a window of the last 3 vectors moves from left to right. For GMRESR the information after
3 inner iterations is condensed into one search direction so ”no” information gets lost.
Also for GMRESR restarts and truncation are possible [52]. In the inner loop other iterative
methods can be used. Several of these choices lead to a good iterative method. In theory we
can call the same loop again, which motivates the name GMRES Recursive. A comparable
approach is the FGMRES method give in [37]. Herein the outer loop consists of a slightly
adapted GMRES algorithm. Since FGMRES and GMRESR are comparable in work and
memory but FGMRES can not be truncated we prefer the GMRESR method.

4.3.4 Choice of an iterative method

For non-symmetric matrices it is very difficult to decide which iterative method should be
used. All the methods treated here have their own type of problems for which they are winners.
Furthermore, the choice depends on the computer used and the availability of memory. In
general CGS and Bi-CGSTAB are easy to implement and reasonably fast for a large class
of problems. If break down or bad convergence appear, GMRES like methods are better.
Finally LSQR always converges but can take a large number of iterations.

In [52] we have tried to specify some easy to obtain parameters to facilitate a choice. First
one should have an (crude) idea of the total number of iterations (mg) using full GMRES,
secondly one should measure the ratio f which is defined as

f =
the CPU time used for one preconditioned matrix vector product

the CPU time used for a vector update

Note that f depends on the used computer. Under certain assumptions given in [52] we obtain
Figure 10. This figure gives only qualitative information. It illustrates the dependence of the
choice on f and mg. If mg is large and f is small, Bi-CGSTAB is the best method. For large
values of f and small values of mg the GMRES method is optimal and for intermediate values
GMRESR is the best method. In [3] a flowchart is given with suggestions for the selection of
a suitable iterative method.

49

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35 40 45 50

GMRES

m
g

f

GMRESR

Bi-CGSTAB

Figure 10: Regions of feasibility of Bi-CGSTAB, GMRES, and GMRESR.

4.3.5 Iterative methods for complex matrices

There are in practice, important applications that lead to linear systems where the coef-
ficient matrix has complex valued entries. Examples are: complex Helmholtz equations,
Schrödinger’s equation, under water acoustics etc [12]. If the resulting system is Hermitian
the methods of Chapter 2 can be used. In these algorithms the inner product xT y should be
replaced by the complex inner product x̄T y. For non Hermitian matrices iterative methods as
given in Sections 4.3.1 to 4.3.3 can be used. Again they should be adapted to use the correct
inner product.
In many applications the resulting complex linear systems have additional structure that can
be exploited. For instance matrices of the following form arise:

A = eiΘ(T + σI) where T = T̄ T , Θ ∈ IR , σ ∈ CI

Another special case that arises frequently in applications are complex symmetric matrices

A = AT

For example, the complex Helmholtz equations leads to complex symmetric systems. For
methods to solve these systems we refer to [16]; section 2.2, 2.3, 6.

50

4.4 Exercises

1. Show that the solution

(

y
x

)

of the augmented system

(

I A
AT 0

)(

y
x

)

=

(

b
0

)

is such that x satisfies ATAx = AT b.

2. Take the following matrix
(

2 −1
−1 2

)

.

(a) Suppose that GCR is applied to the system Ax = b. Show that GCR converges in
1 iteration if x− x0 = cr0, where c 6= 0 is a scalar and r0 = b−Ax0.

(b) Apply GCR for the choices b =

(

1
1

)

and x0 =

(

0
0

)

.

(c) Do the same for x0 =

(

1
0

)

.

3. In the GCR algorithm the vector ri is obtained from vectorupdates. Show that the
relation ri = b−Axi is valid.

4. Prove the following properties for the GMRES method:

• AVk = Vk+1H̄k,

• xk = x0 + Vkyk, where yk is obtained from (52).

5. Figure 10 can give an indication which solution method should be used. Give an advice
in the following situations:

• Without preconditioning Bi-CGSTAB is the best method. What happens if pre-
conditioning is added?

• We use GMRESR for a stationary problem. Switching to an instationary problem,
what are good methods?

• We use GMRES. After optimizing the matrix vector product, which method is
optimal?

6. A practical exercise

For the methods mentioned below we use as test matrices:

[a, f] = poisson(5, 5, 100, 0,′ central′)

and
[a, f] = poisson(5, 5, 100, 0,′ upwind′)

(a) Adapt the matlab cg algorithm such that it solves the normal equations. Apply
the algorithm to both matrices.

51

(b) Implement Bi-CGSTAB from the lecture notes. Take K = I (identity matrix).
Apply the algorithm to both matrices.

(c) Implement the GCR algorithm from the lecture notes. Apply the algorithm to
both matrices.

(d) Compare the convergence behavior of the three methods.

52

References

[1] O. Axelsson. Iterative Solution Methods. Cambridge University Press, Cambridge, UK,
1994.

[2] O. Axelsson and G. Lindskog. On the eigenvalue distribution of a class of preconditioning
methods. Numer. Math., 48:479–498, 1986.

[3] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods. SIAM, Philadelphia, 1994.

[4] A. Björck and T. Elfving. Accelerated projection methods for computing pseudo-inverse
solution of systems of linear equations. BIT, 19:145–163, 1979.

[5] E.K. Blum. Numerical Analysis and Computation, Theory and Practice. Addison-Wesley,
Reading, 1972.

[6] A.M. Bruaset. A Survey of Preconditioned Iterative Methods. Pitman research notes in
mathematics series 328. Longman Scientific and Technical, Harlow, 1995.

[7] B.A. Carré. The determination of the optimum accelerating factor for successive over-
relaxation. Computer Journal, 4:73–78, 1961.

[8] M. Eiermann, W. Niethammer, and R.S. Varga. A study of semiiterative methods for
nonsymmetric systems of linear equations. Numer. Math., 47:505–533, 1985.

[9] S.C. Eisenstat. Efficient implementation of a class of preconditioned conjugate gradient
methods. SIAM J. Sci. Stat. Comput., 2:1–4, 1981.

[10] S.C. Eisenstat, H.C. Elman, and M.H. Schultz. Variable iterative methods for nonsym-
metric systems of linear equations. SIAM J. Num. Anal., 20:345–357, 1983.

[11] M. Embree. The Tortoise and the Hare restart GMRES. SAIM Review, 45:259–266,
2003.

[12] Y.A. Erlangga, C.W. Oosterlee, and C. Vuik. A novel multigrid based preconditioner for
heterogeneous Helmholtz problems. SIAM J. Sci. Comput., 27:1471–1492, 2006.

[13] V. Faber and T. Manteuffel. Necessary and sufficient conditions for the existence of a
conjugate gradient method. SIAM J. Num. Anal., 21:356–362, 1984.

[14] R. Fletcher. Factorizing symmetric indefinite matrices. Lin. Alg. and its Appl., 14:257–
277, 1976.

[15] R.W. Freund, G.H. Golub, and N.M. Nachtigal. Iterative solution of linear systems. In
A. Iserles, editor, Acta Numerica, pages 57–100. Cambridge University Press, Cambridge,
UK, 1992.

53

[16] R.W. Freund, M.H. Gutknecht, and N.M. Nachtigal. An implimentation of the look-
ahead Lanczos algorithm for non-Hermitian matrices. SIAM J. Sci. Comp., 14:137–156,
1993.

[17] R.W. Freund and N.M. Nachtigal. QMR: a quasi-minimal residual method for non-
Hermitian linear systems. Numer. Math., 60:315–339, 1991.

[18] T. Ginsburg. The conjugate gradient method. In J.H. Wilkinson and C. Reinsch, editors,
Handbook for Automatic Computation, 2, Linear Algebra, pages 57–69, Berlin, 1971.
Springer.

[19] G.H. Golub and C.F. van Loan. Matrix Computations. The Johns Hopkins University
Press, Baltimore, 1996. Third edition.

[20] G.H. Golub and R.S. Varga. Chebychev semi-iterative methods, successive over-
relaxation iterative methods and second order Richardson iterative methods. Part I and
II. Numer. Math., 3:147–156, 157–168, 1961.

[21] A. Greenbaum. Iterative Methods for Solving Linear Systems. Frontiers in applied math-
matics 17. SIAM, Philadelphia, 1997.

[22] A. Greenbaum, V. Ptak, and Z. Strakos. Any nonincreasing convergence curve is possible
for GMRES. SIAM J. Matrix Anal. Appl., 17:465–469, 1996.

[23] I.A. Gustafsson. A class of first order factorization methods. BIT, 18:142–156, 1978.

[24] L.A. Hageman and D.M. Young. Applied Iterative Methods. Academic Press, New York,
1981.

[25] M.R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for Solving Linear Sys-
tems. J. Res. Nat. Bur. Stand., 49:409–436, 1952.

[26] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, Cambrige,
1985.

[27] E.F. Kaasschieter. Preconditioned conjugate gradients for solving singular systems. J.
of Comp. Appl. Math., 24:265–275, 1988.

[28] T.A. Manteuffel. The Tchebychev iteration for nonsymmetric linear systems. Numer.
Math., 28:307–327, 1977.

[29] J.A. Meijerink and H.A. van der Vorst. An iterative solution method for linear systems of
which the coefficient matrix is a symmetric M-matrix. Math. Comp., 31:148–162, 1977.

[30] N.M. Nachtigal, S.C. Reddy, and L.N. Trefethen. How fast are non symmetric matrix
iterations. SIAM J. Matrix Anal. Appl., 13:778–795, 1992.

[31] C.C. Paige and M.A. Saunders. Solution of sparse indefinite system of linear equations.
SIAM J. Num. Anal., 12:617–629, 1975.

[32] C.C. Paige and M.A. Saunders. LSQR: an algorithm for sparse linear equations and
sparse least square problem. ACM Trans. Math. Softw., 8:44–71, 1982.

54

[33] B.N. Parlett, D.R. Taylor, and Z.A. Liu. A look-ahead Lanczos algorithm for unsym-
metric matrices. Math. Comp., 44:105–124, 1985.

[34] T. F. Chan J. Demmel J. Donato J. Dongarra V. Eijkhout R. Pozo C. Romine R. Barrett,
M. Berry and H. Van der Vorst. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, 1994.

[35] J.K. Reid. The use of conjugate for systems of linear equations posessing property A.
SIAM J. Num. Anal., 9:325–332, 1972.

[36] Y. Saad. Preconditioning techniques for non symmetric and indefinite linear system. J.
Comp. Appl. Math., 24:89–105, 1988.

[37] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Stat.
Comput., 14:461–469, 1993.

[38] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston, 1996.

[39] Y. Saad. Iterative methods for sparse linear systems, Second Edition. SIAM, Philadelphia,
2003.

[40] Y. Saad and M.H. Schultz. GMRES: a generalized minimal residual algorithm for solving
non-symmetric linear systems. SIAM J. Sci. Stat. Comp., 7:856–869, 1986.

[41] P. Sonneveld. CGS: a fast Lanczos-type solver for nonsymmetric linear systems. SIAM
J. Sci. Stat. Comput., 10:36–52, 1989.

[42] C. Oosterlee U. Trottenberg and A. Schüller. Multigrid. Academic Press, San Diego,
2001.

[43] A. van der Sluis. Conditioning, equilibration, and pivoting in linear algebraic systems.
Numer. Math., 15:74–86, 1970.

[44] A. van der Sluis and H.A. van der Vorst. The rate of convergence of conjugate gradients.
Numer. Math., 48:543–560, 1986.

[45] H.A. van der Vorst. High performance preconditioning. SIAM J. Sci. Stat. Comp.,
10:1174–1185, 1989.

[46] H.A. van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for
solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comp., 13:631–644, 1992.

[47] H.A. van der Vorst. Iterative Krylov Methods for Large Linear Systems. Cambridge
Monographs on Applied and Computational Mathematics, 13. Cambridge University
Press, Cambridge, 2003.

[48] H.A. van der Vorst and C. Vuik. The superlinear convergence behaviour of GMRES.
J. Comput. Appl. Math., 48:327–341, 1993.

[49] H.A. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods. Num.
Lin. Alg. Appl., 1:369–386, 1994.

[50] R. S. Varga. Matrix Iterative Analysis. Springer, Berlin, 2000.

55

[51] R.S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1962.

[52] C. Vuik. Solution of the discretized incompressible Navier-Stokes equations with the
GMRES method. Int. J. Num. Meth. in Fluids, 16:507–523, 1993.

[53] E.L. Wachspress. Iterative Solution of Elliptic Systems. Prentice-Hall, Englewood Cliffs,
1966.

[54] D.M. Young. Iterative Solution of Large Linear Systems. Academic Press, New York,
1971.

56

Index

A-inner product, 18
A-norm, 18
M -matrix, 30

basic iterative method, 6
Bi-CG, 41
Bi-CGSTAB, 45
bi-Lanczos, 41
BIM preconditioner, 29

CGNE, 41
CGNR, 41
CGS, 44
Chebyshev, 10
complex matrices, 50
Conjugate Gradient, 17

diagonal preconditioner, 29
diagonal scaling, 35
diagonalizable, 47

effective condition number, 24
Eisenstat, 36

FGMRES, 49
finite difference, 5

Gauss Jacobi, 7
Gauss Seidel, 9
GCR, 47
GMRES, 46
GMRESR, 48

Hessenberg, 46

ICCG, 31
incomplete Cholesky decomposition, 29

lexicographic, 6
linear convergent, 13
LSQR, 41

MINRES, 40
Modified ICCG, 33

Poisson equation, 5
positive definite, 17

Preconditioned Conjugate Gradient, 27

QMR, 43

Relaxed ICCG, 33
restart, 47, 48
Ritzmatrix, 24
Ritzvalues, 24
Ritzvector, 24

SOR, 9
spectral radius, 7
starting vectors, 13
super linear, 47
superlinear convergence, 21
symmetric, 17
SYMMLQ, 39

termination criterion, 13
truncation, 48

57

