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Problem area
Radar cross section prediction
methods are used to analyze the
radar signature of military plat-
forms when the radar signature can-
not be determined experimentally
because:

• The platform is in the design,
development or procurement
phase

• The platform belongs to a
hostile party

For jet powered fighter aircraft, the
radar signature is dominated by the
contribution of the jet engine air
intake for a large range of forward
observation angles. The intake can
be regarded as a one-side open large
and deep forward facing cavity. Al-

though the contribution of the outer
mould shape of the platform can be
efficiently and accurately computed
using simple scattering models,
these cannot be used to accurately
compute the contribution of the
jet engine air intake. The storage
requirements of the existing solu-
tion algorithm for the jet engine air
intake, are too stringent which pro-
hibits the application to the relevant
excitation frequency band.

Description of work
To deal with the storage require-
ments of the existing solution algo-
rithm, alternative solution methods
are analyzed and compared to the
original formulation. More specifi-
cally, it is analyzed how to incorpo-
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rate so called multigrid acceleration
in the existing algorithm.

Results and conclusions
Multigrid methods are successfully
applied to efficiently solve large lin-
ear systems arising from discretiza-
tion of partial differential equations.
Due to the properties of the gov-
erning equations, multigrid must be
applied indirectly to accelerate the
solution of the current application.

Furthermore, propositions are made
for the incorporation of a multigrid
black box solver into the existing
algorithm.

Applicability
The developed technology will be
applied for the analysis and possible
optimization of jet engine air intake
geometries of current intermediate
observable and future low observ-
able fighter aircraft.
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Summary

RADAR (Radio Detection and Ranging) is technology to detect aircraft and ships by using elec-

tromagnetic waves. A measure of this detectability is the radar cross section (RCS). Generally, it

is known that the contribution of the jet engine air intake of a modern fighter aircraft accounts for

the major part of the RCS of the total aircraft, if the platform is excited from the front. The prop-

erties of the scattered electric and magnetic fields can be described by the Maxwell equations

whereupon the vector wave equation can be derived. This equation is discretized by the finite

element method resulting in a large system of linear equations.

In the present implementation, the iterative Krylov subspace method used to solve this linear sys-

tem is the Generalized Conjugate Residual (GCR) method. As the system matrix is ill-conditioned,

the convergence of the GCR method is generally slow. To improve the convergence rate, the

shifted Laplace operator is used as a preconditioner for the discretized vector wave equation.

As the memory requirements become difficult to satisfy when the number of degrees of free-

dom increases, this solution procedure cannot be used for very large systems. To overcome these

difficulties, the existing algorithm will be modified such that a Multigrid solution method is in-

corporated.

Multigrid (MG) methods can be used in many applications where large linear systems arise from

the discretization of partial differential equations. However, when the system matrix is indefi-

nite, multigrid cannot be directly applied. To get a definite system matrix, the system must be

preconditioned (e.g. in the current application the shifted Laplace preconditioner is used). Hence

multigrid is said to have an indirect application in the current system.

Furthermore, multigrid methods are independent of the mesh size h and they can solve a linear

system with N unknowns, in cN arithmetic operations (c is a constant). To explain the multigrid

idea in this thesis, the classical geometric multigrid methods will be introduced together with all

the multigrid components. This will be achieved using a simple one dimensional Laplace prob-

lem. After this introduction it will be discussed that geometric multigrid has several favorable

aspects but unfortunately also some crucial disadvantages for application in the current problem.

To overcome these disadvantages Algebraic Multigrid (AMG) will be used instead.

The power of AMG lies in the possibility of its ‘operator-independent’ formulation and its ap-

plicability in general domains (e.g.: not only structured grids). Algebraic multigrid can also be

extended for complex valued systems as will be seen in this thesis. Furthermore, it will be shown

that AMG can be effectively used as a solution method for the current application, combined

with the shifted Laplace preconditioner. Since the AMG preconditioner is constant in every iter-
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ation, GCR can be replaced by a short recurrence method e.g. Bi-CGSTAB, which will lead to a

considerable reduction of memory requirements.

As AMG (and MG) are widely used to solve large linear systems, there are several black box

solvers available for many (specific) problems. The challenge is to choose a black box solver

which can handle the properties in the current system (e.g. high frequencies). Based on the in-

formation about available multigrid solvers, one of the most suitable black box solvers for the

current application is a Multilevel (ML) Preconditioning Package developed by Sandia National

Laboratories (see ref. 12).
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1 Introduction

RADAR (Radio Detection and Ranging) is technology to detect aircraft and ships by using elec-

tromagnetic waves. It is very important to be able to predict the detectability of a platform by

radar in the development stage. A direct consequence of working in this development stage is

that it is not possible to determine the radar signature experimentally. Therefore, theoretical radar

signature predicting techniques must be used.

A measure to quantify the radar signature is the so called radar cross section (RCS). It is known

that the jet engine air intake of a typical aircraft, a forward facing cavity, accounts for the major

part of the RCS for a large angular region, when excited from the front side. The electric field

scattered by the jet engine air intake can be computed by solving the vector wave equation ob-

tained from the Maxwell’s equations with the appropriate boundary conditions inside this cav-

ity. This equation is discretized by using the finite element discretization method resulting in a

large system of linear equations. The system matrix is complex valued with a sparsely and a fully

populated part. In the present implementation the discretized system is preconditioned by the

shifted Laplace preconditioner and the preconditioned system is solved using a Krylov subspace

method, namely GCR. The greatest disadvantages from the GCR method are the storage require-

ments and the dependence of the total work of GCR on the number of degrees of freedom. The

current implementation gives satisfactory results for intermediate system sizes up to #(degrees

of

freedom) = 3.0 ·105. In the current application, however, the #(degrees of freedom) = 5.19 ·105

for a wavenumber equal to 10 and #(degrees of freedom) = 2.03 ·107 for a wavenumber equal to

100. Therefore more investigation is needed to advance towards these large numbers of degrees

of freedom.

The purpose of this thesis is to investigate another solver for the preconditioner system, namely

a multigrid solution method. Multigrid can be classified as geometric or algebraic, depending

on the availability of the underlying grid. As in the current application there is no specified grid

available beforehand, geometric multigrid cannot be used. When the grid locations are known,

but are allowed to be unstructured or irregular, algebraic multigrid will be used as solver. In this

case the coefficients in the system matrix will be used to specify the connections within the grid.

In fact, when the system matrix is known, the grid can be derived, and algebraic multigrid can

be used. In the current application, the system matrix is known and therefore algebraic multigrid

can be used.

15
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Since it is not likely that a full algebraic multigrid implementation can be realized in the time

available, and because there are several black box implementations available, the most suitable

algebraic multigrid black box solver will be chosen to be incorporated in the existing algorithm.

The specific requirements that have to be met by this black box solver will be discussed.

This report is outlined as follows. In Chapter 2 the governing equations will be discussed, to-

gether with the finite element discretization method and the resulting linear system. The choice

of elements and basis functions is explained and some important properties of the system matrix

are stated. In Chapter 3 the (iterative) Krylov subspace methods are discussed combined with

several preconditioning techniques. Hereafter in Chapter 4 multigrid methods will be the subject.

The basic principles of (classical) geometric multigrid methods will be discussed after which

algebraic multigrid methods for complex valued linear systems will be treated. At the end an out-

line for the most promising direction of further research is given, included with the choice of the

algebraic multigrid black box solver that will be used in the current application.

16
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2 An algorithm for full wave analysis of cavity scattering

2.1 Introduction
In this chapter a numerical method for the analysis of cavity scattering is described, based on

a finite element discretization of the Maxwell equations. After the Maxwell equations are dis-

cretized, they form a linear system of equations which must be solved numerically.

In Section 2.2 the Maxwell equations are introduced and the necessary tools and assumptions

made to arrive at the dimensionless form of these equations are presented in Subsection 2.2.2.

There are applications of the FEM using zeroth order basis functions, which unfortunately lead

to a large number of unknowns for a large scatterer and have a low convergence rate. To over-

come these problems, higher order basis functions can be used. The finite element method, using

higher order basis functions to discretize the system, is the subject of Section 2.3. Finally this

chapter will be completed with some properties of the resulting linear system in Section 2.4.

2.2 Physical model
In the introduction of this thesis it is already mentioned that for forward observation angles, the

jet engine air intake of a modern fighter aircraft accounts for the main part of the scattered field

for an electromagnetic wave that excites the platform. This air intake is a deep open cavity and

is characterized by a large Length/diameter ratio: L
d > 3. Because of this large ratio, it is not

possible to use high frequency asymptotic methods to approximate the solution and therefore full

wave methods will be used (see Van der Heul, Van der Ven and Van der Burg, ref. 5).

2.2.1 Maxwell equations
In 1873, James Clerk Maxwell coupled the work of several scientists, covering the equations of

electromagnetism. Below they are stated for a general domain Ω in differential form1:

5∗ ×E∗ = −∂
∗B∗

∂∗t∗
(2.2.1)

5∗ ×H∗ =
∂∗D∗

∂∗t∗
+ J ∗ (2.2.2)

5∗ ·D∗ = Q∗ (2.2.3)

5∗ ·B∗ = 0 (2.2.4)

5∗ ·J ∗ = −∂
∗Q∗

∂∗t∗
(2.2.5)

1In this thesis dimensionfull variables are denoted with a *
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Here the following variables are used with their S.I. unit between brackets:

E∗ = electric field intensity [ V
m ]

D∗ = electric flux density [ C
m2 ]

H∗ = magnetic field intensity [ A
m ]

B∗ = magnetic flux density [Wb
m2 ]

J ∗ = electric current density [ A
m2 ]

Q∗ = electric charge density [ C
m3 ]

t∗ = time [s]

From this point on the assumption is made that the field quantities above are harmonic oscillating

functions with a angular frequency ω∗, called time-harmonic functions.

ω∗ is defined as ω∗ = 2πf∗, with f∗ the frequency measured in hertz. In the current application

discussed in this thesis, f∗ = 10 GHz.

Let F∗(x∗, t∗) denote a time-harmonic function denoted by:

F∗(x∗, t∗) = F∗(x∗)ejω
∗t∗ (2.2.6)

with j2 = −1. Then the derivative of F∗ with respect to time t∗ becomes:

∂F∗(x∗, t∗)
∂∗t∗

= jω∗F∗(x∗, t∗) (2.2.7)

Under this assumption for the other variables above, the general equations (2.2.1), (2.2.2) and

(2.2.5) above are rewritten as:

5∗ ×E∗ = jω∗B∗ (2.2.8)

5∗ ×H∗ = jω∗D∗ + J∗ (2.2.9)

5∗ ·J∗ = −jω∗q∗ (2.2.10)

where the quantities E∗,D∗,B∗,H∗, J∗, and q∗ are the phasor quantities corresponding to the

variables defined before.

Note that the introduction of the general equations concerns five equations (2.2.1) - (2.2.5), but

there are six variables. Since equations (2.2.8) - (2.2.10) cover three equations, additional re-

lations are needed to close the problem. These so called constitutive relations are used which

describe the macroscopic properties of the medium of interest. They are given by:

D∗ = ε∗(x∗)E∗ (2.2.11)

B∗ = µ∗(x∗)H∗ (2.2.12)

J∗ = σ∗(x∗)E∗ (2.2.13)

18
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Where the parameter:

• ε∗ = ε∗(x∗) is the permittivity: [farads
meter ]

• µ∗ = µ∗(x∗) is the permeability: [henrys
meter ]

• σ∗ = σ∗(x∗) is the conductivity: [ siemens
meter ]

These parameters are written as a product of the vacuum value ε∗0 and a relatively constant ε∗r .

So, e.g. ε∗ = ε∗0ε
∗
r . For simple problems, these parameters are constants and it is also possible

that they are complex valued (e.g. application of radar absorbing materials). See appendix A for

the vacuum values and the relations to the standard SI-units.

When equations (2.2.8), (2.2.9), (2.2.11) and (2.2.12) are used, the vector wave equation in the

presence of a source

J∗ 6= 0 becomes:

5∗ ×

(
1
µ∗
5∗ ×E∗

)
− ω∗2ε∗E∗ = −jω∗J∗ (2.2.14)

When the following two definitions are used:

1. free-space wavenumber k∗0 := ω∗
√
ε∗0µ

∗
0

2. free-space impedance Z∗0 :=
√

µ∗
0

ε∗0

equation (2.2.14) can be rewritten as:

5∗ ×

(
1
µ∗r
5∗ ×E∗

)
− k∗20 ε

∗
rE∗ = −jk∗0Z∗0J (2.2.15)

If there is no source i.e. J∗ = 0, as is the case inside the cavity, the vector wave equation is

called homogeneous.

The last thing to discuss, is transforming the system of equations into a so called well-posed

problem. Therefore, it is necessary to define either the tangential electric field or the tangential

magnetic field on the boundary of the domain (see Balanis, ref. 3). The boundary of the cavity

consists of the aperture (Saperture) and the mantle (Smantle) of the cavity (see Figure 2.2.1).

Firstly, the boundary conditions are stated in equations (2.2.16) and (2.2.17) and afterward, this

section will be ended with some notational issues:

(n̂×E∗)Smantle
= 0 (2.2.16)

(n̂×H∗
inc)Saperture = 4n̂×

{
5∗2 · N∗ + k∗20 N∗

jω∗µ∗0

}
(2.2.17)
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where:

1. the quantity K∗(r) = n̂× E∗(r) is a fictitious magnetic current

2. H∗
inc(r) denotes the incident magnetic field

3. N∗(r) = K∗(r) ∗G(r, r′) =
∫ ∫

Sa
K∗(r′)G(r, r′)dr′ =

∫ ∫
Sa

[n̂× E∗(r′)dr′]
4. G(r, r′) is the three dimensional Green’s function:

G(r, r′) = e−jk|r−r′|

4π|r−r′|

5. ‘*’ denotes the three-dimensional convolution

Fig. 2.2.1 Schematic view of cylindrical cavity with length L and cross section diameter d
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2.2.2 Dimensional analysis
Dimensional analysis is a conceptual tool that can be used reduce the number of parameters in a

given system of equations. In this report, dimensional analysis will be applied to the vector wave

equation to determine which parameter(s) characterize the problem.

The important parameters which are made dimensionless are stated. There are four scale factors

used to transform (→) the variables, parameters and operator:

• length: R

• mass: M

• time: T

• electric current: I

Quantities

E∗ : electric field intensity → E := E∗
T 3I

RM

J∗ : electric current density → J := J∗
R2

I

Position Variables

Define x, y, z =
x∗

R
,
y∗

R
,
z∗

R
respectively

Parameters
• free space wavenumber k∗0 → k0 = k∗0R

• intrinsic free space impedance Z∗0 → Z0 := Z∗
I2T 3

MR2

Operator: gradient 5∗→ 1
R
5

Using these definitions, the vector wave equation can be rewritten in the following dimensionless

form:

5×5×E− k2
0E = −jk0Z0J (2.2.18)

From this dimensionless form it is clear that the most important parameter in the left hand side

of this equation is the parameter k0. It can be shown that a (deep) cavity has two characteristic

lengths. One is the depth and the second one is the diameter d. It turns out that the diameter is

the most important characteristic length scale. Therefore, k0 is defined as k0 := dk∗0 .

21
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2.2.3 Dependence of RCS on the dimensionless wavenumber
According to Knott et al. (ref. 6), the RCS of a scattering body has a strong relationship with

the non-dimensional wavenumber k0. The following classification for the RCS depending on the

value of k0 is made:

1. Rayleigh region: 0.1 < k0 < 1

In this region the geometry is not a very important parameter. Only the characteristic di-

mensions of the object are of importance.

2. Resonance region: 1 < k0 < 10

In this region the geometry has an important role in the interaction between the fields scat-

tered by different components of the body.

3. Optics region: 10 < k0 < 100

In this region there is almost no interaction between different components of the scattering

body.

See Figure 2.2.2 for an illustration.

10
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1

RCS of perfect sphere versus Frequency

Circumference / λ

R
C

S
 / 

(π
r2 )

Resonance region

Optics region

Rayleigh region

Fig. 2.2.2 The RCS σ of a metallic sphere with radius a illustrates the three scattering regions

From a computational point of view, the following discussion about a comparison in the dimen-

sionless wavenumber is included. Suppose that there are two dimensionless wavenumbers k1 and

k2 with k1 > k2 and recall the relations ki = 2πdi
λi

and the ratios Li
di
, i = 1, 2 (all other parame-

ters are fixed).
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It is worth mentioning that in this case with k1 > k2, there are two important things to note:

1. for equal accuracy of the solution, the total number of unknowns N required for discretiza-

tion in case k1 will increase compared to case k2 with factor
(
k1

k2

)3

.

2. there is a negative effect on the indefiniteness2 of the system matrix

Ad. 1 In Hooghiemstra (ref. 8, Section 6.2) it is explained that there is a close relationship be-

tween ki, for i = 1, 2 and the number of unknowns per wavelength, hence there is also a rela-

tionship between ki, for i = 1, 2 and the total number of unknowns N . Therefore the assumption

k1 > k2 results in N1 > N2.

Ad. 2 The discretization matrix of the systems with k1 > k2, will also show a very important

difference to mention. The ki, for i = 1, 2 appears on the main diagonal of the discretization

matrix and therefore can be the originator of the matrix to become indefinite. Indefinite matrices

are not favorable because:

- the property of indefiniteness has a negative effect on the convergence rate of iterative

methods used to solve a (linear) system of equations.

- some iterative methods cannot be used at all, as they rely of the definiteness of the system

in order to converge.

In the next section the finite element discretization method will be discussed.

2.3 Finite element discretization method
From the ongoing research on computational electromagnetics it is known that the following

numerical methods can be used to numerically solve systems derived from electromagnetic prob-

lems: the method of moments (MOM), the finite difference method (FDM) and the finite element

discretization method (FEM). In problems with inhomogeneous materials, the MOM has the dis-

advantage that the computational complexity increases rapidly because of the usage of a volume

formulation, rather than a surface formulation and a full matrix structure is the result. The ap-

plication of a FDM however, results in a sparse system which is computationally efficient. The

major drawback of these FDM’s is that they rely on rectangular grids. The FEM can remove all

of these difficulties associated with the MOM and the FDM. Another great favorable point as-

sociated with the FEM is that they can be used in problems where discontinuous coefficients are

involved. In computational electromagnetics, these problems will occur in the case of discontinu-

ities in the material properties (permittivity and permeability). To overcome these discontinuities,

the so called ‘weak formulation’ is a natural method to use.

In order to combine efficiency and accuracy in the FEM, higher order vector basis functions will

be used. Important in higher order methods are the higher order geometrical modeling and the
2see for definition of definiteness Section 2.4
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higher order representation of the unknown quantities. For the FEM these unknown quantities

can be the electric or magnetic field as seen in the Maxwell equations.

Also important to mention is the usage of vector basis functions. The most useful functions in

this class are the curl or divergence-conforming bases functions because of their ability to have

continuous tangential or normal components. In the discretization of the Maxwell equations in

this thesis, the continuity in the tangential components will be used. The last remark concerning

the justification of these vector basis functions is that they do not allow so called spurious solu-

tions, as opposed to node based finite element discretization.

In the context of the FEM used here, the higher order vector basis functions proposed by Graglia,

Wilton and Peterson (ref. 18) are used. The following setup is stated:

• consider a curvilinear tetrahedral element in the xyz-space3

• tetrahedra can be mapped to a rectilinear element in the ξ-space. The mapping is given by:

r =
10∑

j=1

ϕj(ξ1, ξ2, ξ3, ξ4)rj

• the shape functions ϕj are defined in terms of the parametric coordinates ξ1, ξ2, ξ3, ξ4 as:

ϕ1 = ξ1(2ξ1 − 1) ϕ2 = ξ2(2ξ2 − 1) ϕ3 = ξ3(2ξ3 − 1)

ϕ4 = ξ4(2ξ4 − 1) ϕ5 = 4ξ1ξ2 ϕ6 = 4ξ1ξ3
ϕ7 = 4ξ1ξ4 ϕ8 = 4ξ2ξ3 ϕ9 = 4ξ3ξ4

ϕ10 = 4ξ2ξ4
Note that ξ1 + ξ2 + ξ3 + ξ4 = 1; ξ = (ξ1, ξ2, ξ3, ξ4)

• the i-th face of the dimensional tetrahedra is the zero-coordinate surface for the normalized

coordinate ξi
• the edges of the faces of the tetrahedra must be consistently numbered for successful im-

plementation (see edge definition in the table below and Figure 2.3.1)

• the four nodes of the tetrahedra are labeled as (γ, β,m, n) and the face opposite node γ is

called γ as well

• normalized coordinate ξi varies linearly across the element attaining the value 1 at the face

opposite the zero-coordinate surface (e.g.: ξm or ξn has value 1 at node m or n and 0 on

face m or n)

• an independent set of three coordinates is selected and indexed in a “right-handed” sense

such that 5ξ3 · (5ξ1 ×5ξ2) is strictly positive

• the vector basis function associated with the edge shared by faces γ and β is given by:

Nγβ(r) = ξn 5 ξm − ξm 5 ξn (2.3.1)
3Tetrahedral elements are easily extended from triangular elements in two dimensions
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Edge i Node n1 Node n2

1 1 2

2 1 3

3 1 4

4 2 3

5 4 2

6 3 4

Table 1 Edge definition for a tetrahedral element

• it can be shown that the basis functions Nγβ have tangential components only on faces γ

and β and they guarantee the continuity of the tangential field while allowing the normal

component to be discontinuous, as occurs at the interface between two media with differ-

ent permeability

1

2

3

4
1

23

4

5
6

Fig. 2.3.1 The ordering of Table 1 is used here to number the edges of the tetrahedron

In the literature, the vector basis functions defined above are referred to as zeroth order basis

functions, but obviously that would imply that no grid convergence (O(1)) would be achieved.

These zeroth order basis functions are used to define the higher order interpolatory vector basis

functions as follows. The zeroth order basis functions Nγβ are multiplied by a set of interpola-

tory polynomial functions, which are complete to specified order, say p.

In this setup, the polynomials of Silvester are used:

Ri(p, ξ) =

{
1
i!

∏i−1
k=0(pξ − k), 1 ≤ i ≤ p

1, i = 0
(2.3.2)

Using these Silvester polynomials to define the shifted Silvester polynomials results in:

R̂i(p, ξ) = Ri−1

(
p, ξ − 1

p

)
(2.3.3)
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These polynomials are used to effect scalar Lagrangian interpolation on the canonical elements

as follows:

α̂ijkl(ξ) = R̂i(p+ 2, ξ1)R̂j(p+ 2, ξ2)R̂k(p+ 2, ξ3)R̂l(p+ 2, ξ4) (2.3.4)

To define the higher order vector basis functions, the following definitions must be made:

• the value `(ijkl)
γβ = |`γβ | at the interpolation point

ξγβ
(ijkl) =

(
i

p+ 2
,

j

p+ 2
,

k

p+ 2
,

l

p+ 2

)

with i+ j + k + l = p+ 2

• the normalization factor Kγβ
ijkl defined as4:

Kγβ
ijkl =

p+ 2
p+ 2− iγ − iβ

`
(ijkl)
γβ

where iγ ∈ {i, j, k, l}, γ ∈ {1, 2, 3, 4} and similarly for iβ

Using all these preparations the higher order interpolatory vector bases functions are given by:

Nγβ
ijkl(r) = Kγβ

ijkl

(p+ 2)2ξγξβα̂ijkl(ξ)
iγiβ

Nγβ(r) (2.3.5)

Fig. 2.3.2 Tetrahedral elements for domain Ω

This subsection will be concluded with some remarks about the number of degrees of freedom for

the basis functions of order p on a tetrahedron (= number of basis functions needed). Equation
4The ranges of γ and β are such as to include the six zeroth order bases functions in (2.3.1) i.e. γ < β
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(2.3.5) provides one basis function for an interpolation node on an edge of the tetrahedron. As a

face has three edges, one face is associated with three basis functions. However, the tangential

field on a face is spanned by two independent basis functions and therefore one of the three basis

functions associated with a face must be discarded. Taking a closer look at an interior interpola-

tion node, results in six basis functions among which there are obviously only three independent

ones. Adding all basis functions results in 1
2(p+1)(p+3)(p+4) basis functions/degrees of free-

dom. In the current application p = 2: there are 45 basis functions needed for the second order

tetrahedral element.

A final remark about the elements used in the current application. In the setup proposed by Graglia

et al. (ref. 18), curvilinear elements are considered. In the current application however, rectilin-

ear elements are used, to improve the efficiency of the algorithm.

In the next subsection the formulation of the linear system is considered.

2.3.1 Formulation of the linear system
In this subsection it is explained how to obtain the linear system which must be solved. In ap-

plying the FEM, two things must be realized. First, inside the cavity volume the space is divided

into small elements; in the current application tetrahedral elements are used. The surface field is

discretized using compatible triangular elements. Therefore there are two relations needed:

- one for describing the vector basis functions for the approximation within an element (e): equa-

tion (2.3.6)

- one for describing the surface (s) field expansion: equation (2.3.7)

Ee(x) =
45∑
i=1

Ee
i N

e
i (x) = {Ee}T {Ne(x)} (2.3.6)

ẑ ×Es(x) =
15∑

k=1

Ee
kS

s
k(x) = {Ee}T {Se(x)} (2.3.7)

where Se
k = ẑ ×Ne

i is a compatible expansion

Substituting5 these relations in the functional and applying Ritz’s method, results in the follow-

ing functional:

F =
1
2

M∑
e=1

{Ee}T [Ke]{Ee}+
1
2

Ms∑
s=1

Ms∑
t=1

{Es}[P st]{Et} −
Ms∑
s=1

{Es}T {bs} (2.3.8)

5Note that {.} is used to denote a vector with elements that are a vector itself
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Here the following is used:

? M = total number of volume elements in the cavity

? Ms = total number of surface elements on the mantle

?matrix [Ke] =
∫∫∫

V e

[
1
µr
{5 ×Ne} · {5 ×Ne} − k2

0εr{Ne} · {Ne}

]
dV (2.3.9)

? {bs} = −2jk0Z0

∫∫
Ss

{Ss ·Hinc}dS (2.3.10)

?matrix [P st] is obtained from the boundary integral and is defined as

[P st] = 2
∫∫

Ss

{5 · Ss}

{∫∫
St

{5′ · St}TG0dS
′

}
dS−

2k2
0

∫∫
Ss

{Ss} ·

{∫∫
St

{St}TG0dS
′

}
dS (2.3.11)

The integrals [Ke] and {be} are computed numerically by Gauss’ Quadrature formulas and for

the matrix [P st] Duffy’s method must be used to handle the singularity in the Green’s function.

2.3.2 Resolution of the field
It can be shown that the accuracy of the computed RCS pattern is dominated by the dispersion

error ε in the electric field on the aperture, given by6:

ψ̃out = ψout + ε

Here ψout denotes the exact phase difference after reflection through the cavity and ψ̃out the

computed phase difference which differs from the exact one. It is very important to note the pos-

sibility of waves to fortify or to partially cancel each other. In both cases the result is a specific

distribution of maximal and minimal values of the radar cross section. In the case that waves for-

tify each other, the maximal value will be different compared to the case that waves oppose each

other. When the dispersion error is high, the interference will be predicted incorrectly and hence

the accuracy of the computed RCS pattern will be poor.

In the following, the influence of the dispersion error is illustrated schematically in the following

way (Figure 2.3.3). In the left picture the wave front enters the cavity with incidence angle φ.

Two waves (red and blue) with initial phase difference ψin = λ
4 are followed. After reflection

through the cavity there is an accumulated phase error ε. In the middle picture the exact phase

difference ψout is depicted and in the right figure the computed phase difference ψ̃out. Also note

the difference in the maximal and minimal values.
6For a complete analysis of this subject, the reader is referred to [8, Chapter 6]
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Fig. 2.3.3 Left: The wave front enters the cavity with incidence angle φ. Two waves with initial

phase difference ψin = λ
4 are followed. After reflection through the cavity there is an

accumulated phase error ε – Middle: The exact phase difference ψout – Right: The

computed phase difference ψ̃out.

The challenge here is to minimize the dispersion error because in the current application there is

a deep cavity. In this case the dispersion error accumulates and leads to inaccurate results. One

way to achieve this is has already been discussed, namely using higher order elements. To get

an idea of the total number of unknowns needed for a specified dispersion error, the following

outline is given.

As already seen in Subsection 2.2.2, the dimensionless wavenumber k0 is very important. When

the scattering object size and the radar frequency f are known, it holds that:

λ =
2dπ
k0

Here d denotes the diameter of the geometrical cross section of the cavity. According to Jin et al

(ref. 10), the maximum phase error per wavelength is an important quantity in this analysis. It is

defined as:

δp =

(
λ

h∗

)−2(p+α)

Here the following is used:

• h denotes the mesh size and p the order of the basis functions used

• h∗ :=
h

p+ 2

• λ

h∗
is the number of unknowns per wavelength

• α ∈ [1, 2] is the structuredness of the grid (α ≈ 1 for a structured mesh)

According to Hooghiemstra (ref. 8) the number of elements per wavelength required to achieve a

accumulated dispersion error ε is:

D(p) =
λ

h
=

(
2L

ελcosφ

) 1
2(p+α) 1

p+ 2
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Knowing λ and thus D(p) gives h. Using h as input parameter for the mesh generator, results in

the grid which can be used in the problem.

2.4 Properties of the linear system
After applying all the operations described in the previous sections, the final discretized system

can be written in the form: Au = f . In the following some properties of the matrix A from the

current application will be listed and discussed:

• Matrix A consists of a sparse part and fully populated part. See Figure 2.4.1

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

# nonzeros = 19189

Sparsity pattern of the discretization matrix A

Fig. 2.4.1 A ∈ Cn×n, n = 723, h = 0.25. Dimensions rectangular cavity: 1.5λ× 1.5λ× 0.6λ. Fully

populated block consists of 9801 nonzeros. The total number of nonzeros is 19.189.

The complex valued part of the matrix consists of the unknowns on the aperture

only.

• Matrix A is ‘nearly’ symmetric, but not Hermitian. The sparse part is symmetric as it orig-

inates from the Galerkin FEM inside the cavity: the test function equals the basis function.

The fully populated part however, is not completely symmetric because this part is the re-

sult of the boundary integral in equation (2.3.11), in which the outer and inner integrals are

evaluated differently when both are evaluated on the same triangular element.

Although A is complex, it is not a Hermitian (or self-adjoint) matrix. This reduces the

choice of Krylov subspace methods that can be used.

• Matrix A is ill conditioned and hence the convergence of iterative methods is negatively

affected. Ill conditioned means a very large condition number κ(A). The condition num-

ber with respect to some norm ||.|| is defined as:

κ(A) = ||A||.||A−1||

Here A ∈ Cn×n and A nonsingular. Of course, this definition depends on the choice of

norm.
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• An (n × n) matrix M is called positive (semi)definite if 〈x,Mx〉 > (≥)0 and negative

(semi)definite if 〈x,Mx〉 < (≤)0. The consequence of this definition is that for symmetric

or Hermitian matrices M ,the eigenvalues of M are greater than (or equal to) zero or the

eigenvalues of M are less than (or equal to) zero.

The matrix A in the current application has positive and negative eigenvalues and hence

the matrix is said to be indefinite. The property of indefiniteness of the matrix limits the

choice of and has a negative effect on the convergence of linear solution methods that can

be used.

In the next chapter iterative solution methods for the linear system will be outlined.
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3 Iterative solutions of the linear system

3.1 Introduction
In this chapter the solution of linear system

Au = f (3.1.1)

will be considered with A ∈ CN×N a square nonsingular matrix, u, f ∈ CN and N the total

number of unknowns. First direct solution methods will be compared to iterative methods, fol-

lowed by some important properties of basic iterative methods. Hereafter, the so called Krylov

subspace methods will be discussed in Section 3.2. The subject of Section 3.3 is precondition-

ing and in Subsection 3.3.2 a special class of preconditioners for the Maxwell equations will

we introduced, namely the shifted Laplace preconditioner. Finally in Subsection 3.3.3 the block

preconditioner will be considered, that is necessary to handle the partially fully and partially

sparsely populated matrix in the current application (recall Figure 2.4.1).

3.2 Direct methods versus iterative methods
One way of solving the linear system (3.1.1) is by using direct solution methods. Direct methods

solve the problem by a finite sequence of operations and deliver an exact solution (e.g. Gaussian

elimination). Direct methods work well when the system matrix A is dense but unfortunately,

when the total number of unknowns N becomes very large, the time to solve the system becomes

unacceptably high. In addition, direct methods are sensitive to rounding errors.

Alternatively iterative methods try to solve the linear system by finding successive approxima-

tions to the solution starting from an initial guess. In Table 21 these two types of methods are

compared to each other where after a classification of iterative methods will be given.

In general the following classification of iterative methods can be made:

• basic iterative methods

• Krylov subspace methods

- short recurrence methods

- long recurrence methods

- induced dimension reduction methods

3.2.1 Basic iterative methods
It is already stated that the linear system considered here has the form Au = f . Consider the

following splitting of matrix A:

A = B + (A−B)

1Error smoothing will be discussed in Chapter 4
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Direct methods Iterative methods

- Computational work increases with O(N3) - Computational work depends on the method

chosen and for single grid basic iterative

methods this will be of order O(Nα), α > 1

- The storage requirements increase with O(N2) - The storage requirements increase with O(N)

- Sensitive to rounding errors - Also sensitive to rounding errors

- Perform well when A is dense - Are very effective if A is sparse

- Performance does not depend on the spectrum - Performance strongly depends on the

of the eigenvalues of A eigenvalue spectrum of A

- Can be effectively used as error smoothers

Table 2 Direct methods versus iterative methods

such that matrix B is an “easily invertible” matrix (B is nonsingular). Substituting this splitting

in the original system, results in

Bu+ (A−B)u = f

When this is used to derive a iterative procedure for ui+1 using ui, an obvious choice would be:

Bui+1 + (A−B)ui = f

and rewritten for ui+1 results in:

ui+1 = ui −B−1(Aui − f)

= ui +B−1(f −Aui) := ui +B−1ri (3.2.1)

Here ui denotes the approximation of u before iteration i and ui+1 denotes the approximation of

u after iteration i. I denotes the identity, B−1 denotes the inverse of matrix B and ri is called the

residual (or defect).

Equation (3.2.1) is called a basic iterative (or stationary) method and different methods can be

distinguished depending on the choice of the splitting.

The Jacobi iteration is obtained when the following splitting is chosen: A = D − E, with D the

diagonal elements of A : D = diag(A). In terms of matrix B: choose B = D.

The Gauss-Seidel iteration is obtained using the splitting A = L−U , with L lower and U strictly

upper triangular matrices respectively. (B = L)

When equation (3.2.1) is rewritten as:

ui+1 = Qui + s, (i = 0, 1, 2, . . .)
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Q is called the iteration matrix and the spectral radius ρ(Q) of a (N ×N) matrix Q is defined as:

ρ(Q) = max
{
|λ| : λ eigenvalue of Q

}
The iterative method will converge if the spectral radius of Q is smaller than one:

ρ(Q) < 1

Furthermore, convergence of a iterative method implies that the sequence u0, u1, u2, . . . con-

verges to a limit u, independent of the choice of u0.

The spectral radius can also be seen as the asymptotic convergence rate (in some norm) of the

iteration:

||u− ui+1|| ≤ ρ(Q)||u− ui||, for i→∞

This means that the closer ρ(Q) is to one, the slower the convergence.

For the convergence of the Jacobi and Gauss-Seidel method for the two dimensional Poisson

equation on a Cartesian unit square grid with Dirichlet boundary conditions, the following spec-

tral radii can be derived (see Vuik and Oosterlee, ref.2):

• ρ(QJAC) = cos(πh) = 1− 1
2
(πh)2 +O(h4)

• ρ(QGS) = cos(πh)2 = 1− (πh)2 +O(h4)

Note that these convergence factors are close to one and hence the result is a slowly converging

method. Another disadvantage is that the total number of unknowns N is related to h as N =

( 1
h)dim and therefore a decreasing h will lead to an increase of N2. Unfortunately, this is typical

for basic iterative methods (e.g.: for the methods above. If h = 1
64 then ρ(QJAC) = 0.998 and

ρ(QGS) = 0.9976).

To speed up the convergence compared to basic iterative methods, Krylov subspace methods can

be used and will be discussed in the following subsection.

3.2.2 Krylov subspace methods
Consider once again equation (3.2.1). When starting with an initial guess u0, initial residual

r0 := f − Au0 and proceeding with the first two steps of the iteration process, the following

is obtained:

u0

u1 = u0 + (B−1r0)

u2 = u1 + (B−1r1) = u0 +B−1r0 +B−1(f −Au0 −AB−1r0)

= u0 + 2B−1r0 −B−1AB−1r0

...

2here dim denotes the dimension of the problem
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This implies that

ui ∈ u0 + span{B−1r0, B−1A(B−1r0), . . . , (B−1A)i−1(B−1r0)}

and therefore the following definition is made.

Definition (Krylov space)

The subspace Ki(A; r0) := span(r0, Ar0, A2r0, . . . , Ai−1r0) is called the Krylov space of di-

mension i corresponding to matrix A and initial residual r0

Remark

ui calculated by a basic iterative method is an element of u0 +Ki(B−1A;B−1r0)

Krylov subspace methods work in the following way: they start with an initial (residual) vector

r0, use r0 to compute vector Ar0, use Ar0 to compute vector A2r0, and so on. Proceeding in this

way, Krylov subspace methods form an orthogonal basis3 of the sequence of successive matrix

powers times the initial (residual) vector. In the favorable case, the approximation to the solution

is calculated by minimizing the residual over the subspace formed, in some norm to be speci-

fied. The conjugate gradient method (CG) and the generalized minimal residual method (GM-

RES) are examples of Krylov subspace methods that minimize the residual. Other examples of

Krylov subspace methods are the biconjugate gradient method (Bi-CG), the Bi-CGSTAB (stabi-

lized biconjugate gradient) method, the Lanczos method using the Lanczos iteration scheme for

Hermitian matrices and the Arnoldi method using the Arnoldi iteration scheme for more general

matrices. In the next two subsections the properties of short and long recurrence methods will be

discussed. Short recurrence methods are characterized by their efficiency in storage requirements

while long recurrence methods result in an optimal minimization of the residual. In theory, CG

and full GMRES are finite methods and will converge in N iterations. In practice however, per-

forming N iterations is not favorable. Therefore these methods are only useful if the number of

iterations is significantly smaller than N .

3.2.2.1 Short recurrence methods
It is already remarked that the basis of the Krylov subspace Ki(A; r0), formed by the vectors

r0, Ar0, A2r0, . . . , Ai−1r0 is generally not useful in numerical computations. i.e. the basis is ill

conditioned. A well conditioned, at best orthogonal basis is needed in order to prevent loss of in-

formation due to the repeated matrix-vector multiplications performed in an algorithm. Another
3Unfortunately the basis formed by this procedure is generally not usable for use in numerical computations
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important aspect is the efficiency of a method. In order to be efficient, it is desirable to generate

the orthogonal basis with a short recurrence. This means that in each iteration step only a few

of the latest basis vectors are required to generate the new basis vector. One of the commonly

discussed methods in the literature is the Conjugate Gradient (CG) method. When applying the

CG method, the assumption must be made that the system matrix A is symmetric and positive

definite (SPD). The CG method has the following nice properties:

1. the approximation of the CG method is an element of Ki(A; r0)

2. the error is minimized with respect to a certain norm: so there is a optimality property

3. CG methods use short recurrences

It can be shown that it is not possible to obtain other Krylov subspace methods which have all

these properties for general matrices, as is the case in the current application. However, the idea

behind CG methods forms the basis for deriving other Krylov methods. In this thesis the Bi-

Conjugate Gradient (Bi-CG) method will be discussed as an example of a short recurrence method.

Bi-CG is based on the non-symmetric Lanczos algorithm and relaxes the condition on the matrix

to be positive definite.

This non-symmetric algorithm builds a pair of bi-orthogonal bases for the following two sub-

spaces:

1. Ki(A, v1) = span{v1, Av1, . . . , Ai−1v1} := Ki

2. Ki(AT , w1) = span{w1, ATw1, . . . , (AT )i−1w1} := Li

Here v1 and w1 are vectors and i is as before the dimension of the Krylov subspace. To see the

algorithm that achieves the two bases, the reader is referred to Saad (ref. 26, Chapter 7).

The Bi-CG method can be derived from the Lanczos algorithm and the Bi-CG algorithm is a

projection process onto Ki orthogonal to Li.

Here v1 =
r0

||r0||2
and w1 is arbitrary provided that (v1, w1) 6= 0, but is often chosen to be

equal to v1. In the following setup the necessary steps to derive the Bi-CG algorithm will be out-

lined:

• let the matrix Vi be the (N × i) matrix with columns v1. . . . , vi

• write the LU decomposition of a tri-diagonal matrix Ti := V T
i AVi as Ti = LiUi. Here the

matrix Li is unit lower bi-diagonal and Ui is upper bi-diagonal

• define Pi := ViU
−1
i

• βi are scalars obtained from the Lanczos algorithm

• let ei be the i-th column of the (N ×N) identity matrix
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• express the solution ui as:

ui = u0 + ViT
−1
i (βe1)

= u0 + ViU
−1
i L−1

i (βe1)

= u0 + PiL
−1
i (βe1) (3.2.2)

• when the dual system ATu∗ = f∗ is solved, then w1 is obtained by scaling the initial

residual r∗0 := f∗ − ATu∗0. With this construction the vectors rj and r∗j are in the same

direction as vj+1 and wj+1 respectively and hence form a bi-orthogonal sequence

• in the same way as Pi define the matrix P ∗i := WiL
−T
i

• with these definitions the column vectors p∗i of P ∗i and pi of Pi are A-conjugate:

(P ∗i )TAPi = L−1
i W T

i AViU
−1
i = L−1

i TiU
−1
i = I

Finally, see Saad (ref. 26) the Bi-CG algorithm is given by:

Biconjugate Gradient Method

- Compute r0 := f −Au0 for some initial guess u0 and

choose r∗0 such that (r0, r∗0) 6= 0 (e.g. r∗0 = r0 )

- Set p0 := r0 and p∗0 := r∗0

- For j = 0, 1, . . . , until convergence, Do

αj :=
(rj , r∗j)

(Apj , p∗j)
uj+1 := uj + αjpj

rj+1 := rj − αjApj

r∗j+1 := r∗j − αjAT p∗j

βj :=
(rj+1, r∗j+1)

(rj , r∗j)
pj+1 := rj+1 + βjpj

p∗j+1 := r∗j+1 + βjp∗j

- EndDo

Remark

When one is interested in the dual system with AT , then instead of defining r0 := f − Au0, one

should define r∗0 := f∗ − ATu∗0 and the update u∗j+1 := u∗j + αjp∗j should be inserted after

the update of uj+1.
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Proposition (Saad, ref. 26)

The vectors produced by the Bi-CG algorithm satisfy the following orthogonality properties:

(rj , r∗j) = 0, for i 6= j

(Apj , p∗j) = 0, for i 6= j

This subsection will be concluded with some remarks concerning the Bi-CG method and in the

next section long recurrence methods will be discussed.

1. In general it cannot be guaranteed that there exists an LU decomposition of the tri-diagonal

matrix Ti. In that case, the Bi-CG algorithm will breakdown. This breakdown can be

avoided in the Bi-Lanczos formulation of this Bi-CG scheme. The algorithm is not repro-

duced here and the reader is referred to Barrett et al. (ref. 17, page 22).

2. There is a recursive update of the solution vector, which avoids storage of the intermediate

vectors r0 and r∗0. Hence this method is indeed a short recurrence method.

3. The Bi-CG method also solves the dual system, which is usually not required. Therefore

this dual system is often ignored in the formulations of the algorithms.

4. Bi-CG has short recurrences, but does not minimizes the residual.

5. Two other commonly used methods that can be derived from the Bi-CG method are the

CGS () and the Bi-CGSTAB method. For more about these methods the reader is referred

to Vuik and Oosterlee (ref. ? , p. 81-82).

3.2.2.2 Long recurrence methods
To explain the idea of long recurrence methods, the so called GMRES type methods will be used

in this thesis. GMRES stands for Generalized Minimal Residual Method. The long recurrences

imply that the amount of work and the required memory per iteration grow for an increasing

number of iterations. Therefore, in practice, it is not possible to use the full algorithm (full GM-

RES), and instead two variations on this method, namely restarted or truncated GMRES are

used. These two variations will be shortly discussed after the basic GMRES algorithm is ex-

plained.

The GMRES method is a projection method and therefore there are two subspaces needed, say K
and L, with dim(L) < dim(K). More specifically: the residual vector r := f −Au is constrained

to be orthogonal to m linearly independent vectors. For more details about projection methods

the reader is encouraged to read Chapter 5 from Saad (ref. 26).

The GMRES method characterizes itself by the following choices for the two subspaces men-

tioned before: K = Km and L = AKm where Km is the Krylov subspace with dimension m and
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v1 as in the Bi-CG method defined as: vi =
ri−1

||ri−1||2
. With these choices, the GMRES method

will minimize the residual norm over all vectors in {u0 + Km}. As in the previous subsection,

first the setup will be given and then the template of the GMRES method:

• let the matrix Vm be the (N × m) matrix with columns v1. . . . , vm. The columns are re-

quired to be independent and orthonormal

• let y be a vector of length m. Than for any vector u ∈ {u0 + Km} it holds that it can be

written as: u = u0 + Vmy (?1)

• define J(y) := ||f −Au||2 = ||f −A(u0 + Vmy)||2 (?2)

• using the definition of J(y) it holds that:

f −Au = f −A(u0 + Vmy

= r0 −AVmy

= βv1 − Vm+1H̄my

= Vm+1(βe1 − H̄my)

• since the columns of Vm are independent, they span the Krylov subspace. As they are also

orthonormal, J(y) can be rewritten as:

J(y) := ||f −A(u0 + Vmy)||2 = ||βe1 − H̄my||2 (?3)

• the GMRES approximation is the unique vector u ∈ {u0 +Km} that minimizes (?2)

• using (?1) and (?3) the GMRES approximation can be obtained as:

um = u0 + Vmym

ym = argminy||βe1 − H̄my||2 (ym minimizes the function J(y))
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Finally, the GMRES method is given as:

Generalized Minimal Residual Method

- Compute r0 := f −Au0 for some initial guess u0, β := ||r0||2 and v1 :=
r0

β
- For j = 1, 2, . . . ,m, Do

Compute wj := Avj

- For i = 1, 2, . . . , j Do

hij := (wj , vi)

wj := wj − hijv
i

- EndDo

- hj+1,j = ||wj ||2. If hj+1,j = 0 set m := j and proceed with defining the

Hessenberg matrix

- vj+1 =
wj

hj+1,j

- EndDo

- Define the (m+ 1)×m Hessenberg matrix H̄m = {hij}1≤i≤m+1,1≤j≤m

- Compute minimizer of ||βe1 − H̄my||2 : ym and um = u0 + Vmym

An important difference in contrast to the Bi-CG method is that the GMRES method is a stable

method and breakdowns as in the case of Bi-CG can not occur. There are no denominators to

give rise to problems. The case β = 0 means that the residual equals zero, hence the problem

would be solved. Therefore it can be assumed that β 6= 0. If hj+1,j = 0, vj+1 will not be calcu-

lated, hence also in this case there will be no problem with a denominator being zero. Note that

if hj+1,j = 0, then uj = u, and in this case there is a “lucky” breakdown (also see Proposition

6.10 in Saad (ref. 26)). In the following, a theorem will be reproduced from Vuik and Oosterlee

(ref. 2), and the proof can be found in Saad and Schultz (ref. 25, page 866). This theorem gives

an indication of the bounds on the norm of the residual for a general eigenvalue distribution of

the eigenvalues of a matrix.

Theorem (Saad and Schultz, ref. 25)

Suppose that matrix A has N eigenvectors and is diagonalizable so that A = XDX−1. Here the

columns of X are the eigenvectors and D is a diagonal matrix with on the diagonal the eigen-

values of A. Let Pm be the space of all polynomials of degree less than m and let

σ = {λ1, . . . , λN} represent the spectrum of A. Define:

ε(m) := min p∈Pm

p(0)=1

maxλi∈σ|p(λi)|

K(X) := ||X||2.||X−1||2
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Then the residual norm of the m-th iterate satisfies:

||rm||2 ≤ K(X)ε(m)||r0||2

If furthermore all eigenvalues are enclosed in a circle centered at C ∈ R : C > 0 and having

radius R < C, then

ε(m) ≤
(
R

C

)m

This subsection will be concluded with the restarted GMRES and the truncated version (these

processes concern the Arnoldi orthogonalization procedure). Recall that a long recurrence method

becomes impractical when the number of iterations becomes very large: the memory and compu-

tational requirements increases with the number of iterations (see Table 3).

Restarted GMRES Truncated GMRES

1. Compute r0 := f −Au0, u0, β := ||r0||2 Run a modification of the GMRES

and v1 :=
r0

β
algorithm in which the Arnoldi

2. Generate the Arnoldi basis and the matrix H̄m process is replaced by the

using the Arnoldi algorithm starting with v1 incomplete orthogonalization

3. Compute ym which minimizes ||βe1 − H̄my||2 process and all other

and um = u0 + Vmym computations remain unchanged

4. If satisfied then STOP, else set u0 := um

and go to step 1

Table 3 Restarted GMRES and truncated GMRES

A great disadvantage of the restarted GMRES is that this method fails when the matrix is not

positive definite, as is the case in the current application (see Saad, ref. 26, p. 172). The trun-

cated version may save computational work, but will not optimize the storage: also in this ver-

sion all the vectors vi must be stored. Hence, GMRES type methods are no option to solve the

linear system obtained in the current application. For a more elaborate discussion of these meth-

ods, the reader is referred to Saad (ref. 26).

3.2.2.3 Induced dimension reduction methods
In this subsection the recent work of Sonneveld and Van Gijzen (ref. 19) will be briefly dis-

cussed. Their work concerns the Induced Dimension Reduction methods (IDR) and these meth-

ods combine the efficiency of the short recurrence methods with the fact that they can compute

the exact solution of a linear system of dimension N , in at most 2N steps (matrix-vector multi-

plications) in exact arithmetic.
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The IDR methods are based on the Induced Dimension Reduction theorem, which is stated be-

low:

Theorem (IDR) Let A be any matrix in CN×N , let v0 be any nonzero vector in CN and let G0 be

the complete Krylov space KN (A, v0). Let S denote any proper subspace of CN such that S and

G0 does not share a nontrivial invariant subspace of A. Define the sequence Gj , j = 1, 2, . . . as

Gj = (I − ωjA)(Gj−1 ∩ S)

where the ω′js are nonzero scalars. Then:

(i) Gj ⊂ Gj−1, for all j > 0

(ii) Gj = 0, for some j ≤ N

Proof. Uses induction: see Sonneveld and Van Gijzen (ref. 19, page 3).

In fact, this theorem states that it is possible to generate a sequence of nested subspaces of de-

creasing dimension and that, under mild conditions, the smallest possible subspace is {0}. As the

template of the algorithm can be seen in Sonneveld et al. (ref. 19, page 6), it will not be copied

here. Instead some remarks will be listed:

• The IDR algorithm as stated by Sonneveld et al. may break down in two ways. For both

types of breakdowns suggestions are made in their work to repair this.

• The IDR algorithm can be used to make an extension to the so called IDR(s) algorithms.

In these type of methods s is a parameter greater than zero, used to make a distinction be-

tween several types of IDR methods (e.g. IDR(1) and Bi-CGSTAB are mathematically

equivalent).

• The maximum number of matrix-vector products to reach the exact solution for Bi-CG

type methods is 2N . For IDR(s) the maximum number is (N + N
s ) and increasing s will

lead to a faster convergence.

• Unfortunately, like other Krylov subspace methods, also IDR(s) methods are sensitive to

round-off errors.

• The resulting family of IDR(s) uses short recurrences and hence a limited amount of mem-

ory.

• For problems with a non-symmetric or indefinite system matrix, IDR(s) is an efficient

method. For illustration: for a 3D-Helmholtz type problem, Sonneveld et al. (ref. 19) com-

pared Bi-CGSTAB and IDR(6). It turned out that IDR(6) outperformed Bi-CGSTAB by a

factor of six.
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3.3 Preconditioning
In general Krylov subspace methods will show slower convergence behavior, when directly ap-

plied to linear systems of equations derived from applications in fluid dynamics or electromag-

netics. This is also the case in the current application with the Maxwell equations. This conver-

gence behavior strongly depends on the eigenvalue distribution of the coefficient matrix A. The

great disadvantage is that the system matrix is ill-conditioned and the eigenvalue spectrum is not

favorable for the convergence of the Krylov subspace methods. To improve the efficiency, con-

vergence and robustness of the iterative methods, preconditioning can be used. In this subsection

the general idea of preconditioning will be discussed using GMRES instead of Bi-CG4 where

after some classical preconditioning techniques will be discussed.

A general description of preconditioning is a transformation of the original linear system into

one with the same solution, but easier to solve with an iterative method. This transformation will

be achieved by using a nonsingular preconditioning matrix M ∈ CN×N , to which the following

requirements are made:

• the eigenvalues of M−1A should be clustered around 1 (in order to obtain a more favor-

able eigenvalue spectrum)

• it should be possible to obtain M−1y at low cost (for a vector y ∈ CN ).

Here the original system will be denoted by Au = f and for the preconditioned system there are

three known possibilities:

1. left preconditioning: the preconditioner can be applied from the left of the original matrix

A, resulting in

M−1Au = M−1f

2. right preconditioning: the preconditioner can be applied from the right of the original ma-

trix A, resulting in

AM−1x = f, x := Mu

3. split preconditioning: when the preconditioner can be factored as M = MLMR, with ML

and MR triangular matrices, the preconditioned system looks like:

M−1
L AM−1

R x, x := Mu

Also for GMRES (or other non-symmetric iterative solvers), the above three options can be ap-

plied. An important observation is that the right preconditioned version gives rise to a so called

flexible variant: the preconditioner is allowed to change at each step. This can be very useful in
4Note that for the current application there is a high interest in short recurrence methods because of the efficiency

in the storage requirements. For the long recurrence methods all the basis vectors must be stored.
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some applications. This is not generally used and for more on left, right and flexible GMRES,

the reader is referred to Langou et al (ref. 11 and 21).

In GMRES the Arnoldi loop is used, and for e.g. the left preconditioned system, the Krylov sub-

space is constructed such that the approximate solution is found by constructing the iterants uj in

such a way that:

uj ∈ u0 +Ki(M−1A, r0), with i > 1 the dimension of the subspace

For a detailed description of the preconditioned GMRES, the reader is referred to Saad (ref. 26,

Subsection 9.3).

3.3.1 Classical preconditioning techniques
In this subsection some remarks about the choices of the preconditioning matrix M will be out-

lined. One of the simplest ways is to perform an incomplete LU factorization of the original sys-

tem matrix A. This decomposition can be written as A = LU −R, where L and U have the same

nonzero structure as the lower and upper parts of A respectively and R is the residual or error

matrix of the factorization. In the literature this incomplete factorization is referred to as ILU(0).

The advantage of this method is that it is easy and cheap to compute; the disadvantage is that

generally it is not very effective for the current application. Also for e.g. ILU(0.01) (Erlangga,

ref. 7, p. 38), the storage requirements can become unacceptably high and the convergence is

sensitive to the gridsize. Other preconditioners use successive overrelaxation (SOR), symmetric

SOR (SSOR), the separation of variables preconditioner (Erlangga, ref. 7) and the approximate

inverse preconditioner (Hooghiemstra, ref. 8, p. 94).

It has been shown by Erlangga (ref. 7) and Hooghiemstra (ref. 8) that using the ILU or the ap-

proximate inverse as preconditioner does not significantly improve the convergence of the iter-

ative method used, to solve the system of equations derived from Helmholtz or Maxwell equa-

tion(s). Therefore these classical preconditioning techniques will not be used in the current ap-

plication. In the next section a special class of preconditioners for the Maxwell equations will we

discussed, namely the shifted Laplace preconditioners. To be able to solve the shifted Laplace

preconditioner efficiently, multigrid solution methods are used. These will be discussed in the

next chapter.

3.3.2 The shifted Laplace preconditioner
Due to the disadvantages mentioned in the previous section, a lot of research has been done

for preconditioners applied to indefinite linear systems. In the work of Erlangga (ref. 7), the

shifted Laplace operator has been discussed as preconditioner for the Helmholtz equation. As the

Maxwell equations are the vector form of the Helmholtz equation, it is expected that the shifted
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Laplace preconditioning technique will also be an effective preconditioner for the discretized

Maxwell equations. This is supported by the results obtained by Hooghiemstra (ref. 8 and 9).

Recall the dimensionless vector wave equation:

5×5×E− k2
0E = −ık0Z0J (3.3.1)

The class of preconditioners in this section is constructed by discretization of the following shifted

Laplace operator:

M(β1,β2) := −4−(β1 − ıβ2)k2
0, β1, β2 ∈ R and ı2 = −1. (3.3.2)

By using various combinations of (β1, β2), several preconditioners can be constructed in order to

improve the convergence of an iterative method. In Erlangga (ref. 7, Section 4.1), the one dimen-

sional Helmholtz equation is considered with a real (β2 = 0) and a complex shift. In Section 4.2

of ref. 7 the spectral properties of the shifted Laplace preconditioner are analyzed. The analysis

shows that, in the one dimensional case with real shift, the leading part of the Helmholtz equa-

tion (the Laplacian term) is advisable for small wavenumbers5. When the wavenumber becomes

very large, the condition number of the preconditioned system becomes very large which is not

desirable. Setting β1 = −1 leads to a fast converging preconditioned iterative method. When the

complex shift is analyzed, it appeared that for β1 ≤ 0, β2 ∈ R,M0,1 is an optimal precondition-

ing operator for the Helmholtz equation. For both the real and complex shift, the preconditioner

is used in combination with the CG method, applied to the normal equations.

Erlangga (ref. 7) also performed GMRES convergence analysis for the discrete two dimensional

Helmholtz equation, preconditioned by the shifted Laplace operator and several types of bound-

ary conditions are considered.

One final remark from the work of Erlangga (ref. 7) concerns the h-dependence of the conver-

gence behavior for the shifted Laplace preconditioner. It has been shown that this is mainly de-

termined by the smallest eigenvalue of the operator being considered. In Section 4.4 in Erlangga

(ref. 7) the convergence behavior is considered by using GMRES as iterative solver on different

grid sizes. It appears that different values of h do not affect the number of iterations needed to

get satisfying convergence.

In extension of the spectral analysis performed in Section 4.2 of Erlangga (ref. 7), Van Gijzen,

Erlangga and Vuik (ref. 16) introduced a different approach to the spectral analysis of the dis-

crete Helmholtz operator preconditioned by the shifted Laplace operator. They showed that the

eigenvalues of the preconditioned matrix are located either in or on a circle, or in a half-plane.

This location of the eigenvalues of course depends on the value of the shift.
5this one dimensional case is considered for analytical purpose which motivates the development of the shifted

Laplace preconditioner
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As in the current application the system matrix also consists of a fully populated block, hence not

fully sparse, direct application of the shifted Laplace preconditioner is not efficient. To handle

the fully populated block originating from the discretization of the boundary conditions, another

type of preconditioner will be used. These so called block preconditioner will be discussed in the

next subsection.

3.3.3 Block preconditioner
The system matrix A of the current application has a special block structure (recall Figure 2.4.1).

However, before the idea of block preconditioning can be explained, the concept of the Schur

complement is defined first:

Definition (Schur complement)

Let A11, A12, A21 and A22 be (n× n), (m× n), (n×m) and (m×m) matrices respectively and

assume that A11 is invertible (note that n+m = N ). Write

A =

[
A11 A12

A21 A22

]
∈ R(n+m)×(n+m) (3.3.3)

Then the Schur complement of block matrix A11 is defined as the (m×m) matrix S where

S = A22 −A21A
−1
11 A12 (3.3.4)

Schur complements originate from the Gaussian elimination procedure applied to block matrices.

Note that when the matrix A is defined as in equation (3.3.3), the block LU decomposition can

be written as

A =

[
A11 A12

A21 A22

]
=

[
In 0

A21A
−1
11 Im

][
A11 A12

0 S

]
(3.3.5)

The block preconditioner that can be used looks like

PT =

[
A11 A12

0 S

]
(3.3.6)

The block preconditioner PT that can be used, results in a favorable spectrum for AP−1
T (see

Benzi, ref. 1). He has shown that the spectrum of the matrix AP−1
T is equal to

σ(AP−1
T ) = σ(P−1

T A) = {1}.
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Hence the only eigenvalue is λ = 1 with multiplicity n + m. So the requirement on a precon-

ditioning matrix to cluster the eigenvalues around 1 has been fulfilled. However, it should be re-

marked that the matrix AP−1
T is not normal (for a normal matrix B it holds that BTB = BBT ).

Therefore there is no basis of eigenvectors and it is very difficult to apply spectral/convergence

analysis (for e.g. GMRES) on AP−1
T . The matrix AP−1

T is also not symmetric and therefore

there will be no convergence in one iteration, although the eigenvalues are clustered around 1

(for a symmetric matrix B it holds that B = BT ).

In the remainder of this section the system matrix of the current application will be considered,

preconditioned by the shifted Laplace operator combined with the block preconditioner PT . This

is done analogous to Hooghiemstra (ref. 9, chapter 4).

Note that A has a block structure similar as equation (3.3.3) where the blocks A11, A12 and A21

are sparsely populated and the block A22 is fully populated. As AP−1
T uses the inverse from A11

which is not desirable, Hooghiemstra (ref. 9) tested several block preconditioners to approximate

P−1
T , which are included below.

The first three preconditioners have two diagonal blocks:

MI =

[
A11 0

0 I22

]
,MII =

[
I11 0

0 A22

]
,MIII

[
A11 0

0 A22

]
(3.3.7)

The last three preconditioners use an extra off-diagonal block:

MIV =

[
A11 0

A21 A22

]
,MV =

[
A11 A12

0 A22

]
,MV I =

[
A11 A12

0 A22 −A11(diag(A11)−1)A12

]
(3.3.8)

Hooghiemstra (ref. 9) tested the first five preconditioners in Matlab and concluded that precon-

ditioner MV yields a fast converging method. Therefore the preconditioner that is chosen by

Hooghiemstra is MV . For simplicity this will be denoted by:

M1 := MV =

[
A11 A12

0 A22

]
(3.3.9)

Note that M1 is exactly the Schur complement when the last term in (3.3.4) is rejected. Precondi-

tioner MV I is proposed as another preconditioner to approximate the Schur complement.
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Since M1 is an upper triangular block matrix, M1 is also called a triangular preconditioner. To

explain more about these block preconditioned system(s), the following notation is used:

• original system: Ax = b

• initial guess: x0

• initial residual: r0 = b−Ax0

• residual i : ri

• (first) preconditioned system: M1s
k = rk−1 (?M )

Note that (?M ) can be written as:[
A11 A12

0 A22

](
sk
1

sk
2

)(
rk−1
1

rk−1
2

)
(3.3.10)

The first system to solve would be: A22s
k
2 = rk−1

2 by applying an LU decomposition to the ma-

trix A22. As block A22 is very small compared to the other blocks, this decomposition is cheap

to perform and has to be computed only once. Once sk
2 is solved, the next system to solve is:

A11s
k
1 = rk−1

1 −A12s
k
2 (3.3.11)

The system in equation (3.3.11) is a very large system and is very expensive to compute with a

direct solver. Therefore this system has to be solved using a second preconditioned Krylov sub-

space method. Two remarks about this system:

1. Since the search direction sk
1 in (3.3.11) is approximated, the number of outer iterations

will increase. This increase can be bounded if the system is solved with a high accuracy

(see Hooghiemstra, ref. 9, Chapter 5).

2. The system matrix A11 in (3.3.11) corresponds to the discretization of the vector wave

equation inside the cavity. Therefore A11 is sparsely populated and is very similar to the

matrix originating from the discretization of the Helmholtz equation obtained by Erlangga

in reference 7.

As Erlangga (ref. 7) showed that the shifted Laplace preconditioner is an efficient preconditioner

for the Helmholtz equation, Hooghiemstra (ref. 9) used the following preconditioner for the vec-

tor wave equation:

M(β1,β2) = − 1
µr
52 −k̂2

0εr, where β1, β2 ∈ R, k̂0 = (β1 − iβ2)k0 and i2 = −1.

(3.3.12)

The matrix obtained from the finite element discretization of (3.3.12), denoted by M2, is used as

preconditioner for system (3.3.11). It has already been discussed in Section 3.3.2 that the choice

of (β1, β2) strongly influences the convergence behavior of the solution method applied to the
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second preconditioner system (3.3.11). Choosing (β1, β2) = (1, 0.5) yields a fast converging it-

erative method for the Helmholtz equation, if this system is solved using a multigrid method: see

Chapter 6 from ref. 7 (Erlangga used multigrid as a very efficient solver for this second precondi-

tioned system).

Summarizing
A (triangular) block preconditioner M1 is constructed from the blocks of the original matrix A

followed by a second preconditioner M2 constructed to improve the convergence of the iterative

method to solve the sparse matrix A11. M2 is obtained from the finite element discretization of

(3.3.12).

The idea proposed by Hooghiemstra (ref. 9, p. 41) is to combine the triangular preconditioner

with the shifted Laplace preconditioner, resulting in:

Mnew =

[
M2 A12

0 A22

]
(3.3.13)

and the new preconditioned system to be solved is given by:

Mnews
k = rk−1 (3.3.14)

This is also done in two steps:

1. solve A22s
k
2 = rk−1

2 (3.3.15)

with a precomputed LU decomposition of A22(note that this decomposition

has to be computed only once)

2. solve M2s
k
1 = rk−1

1 −A12s
k
2 (3.3.16)

Hooghiemstra (ref. 9) used GCR to solve (3.3.16). In the current application

multigrid will be used as solver for this preconditioner system.

This chapter will be concluded with the following discussion about the type of boundary condi-

tion used in the discretization. In Section 2.3.1 it has been explained that the matrix [P st] from

equation (2.3.11) is obtained from the boundary integral and gives rise to the fully populated part

in the system matrix A. Therefore these integral equations depend on the boundary conditions.

In the current formulation a global radiation boundary condition is imposed on the aperture. The

latter boundary condition will, within the accuracy of the discretization, make the electric field

comply exactly with the theoretically correct far-field behavior and be completely transparent.

Global refers here to the tight coupling of the degrees of freedom on the aperture, the discretiza-

tion of which leads to a fully populated matrix.
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Alternatively, a local boundary condition can be imposed. Local radiation boundary conditions

of arbitrary order of accuracy can be derived, where the locality of the operator decreases with

increasing order. Discretization of the local boundary condition leads to a sparsely populated

matrix. Local boundary conditions are only accurate when imposed sufficiently removed from

the domain of interest, most often by extending the computational domain.

However, an operator based on a local radiation boundary condition could be a viable alternative

preconditioner to replace the currently used block preconditioning approach. It is recommended

to further investigate the advantages of a local radiation boundary condition for the precondi-

tioner matrix.

In the next chapter, multigrid methods to solve the preconditioner system (3.3.16) will be treated.

50



NLR-TR-2008-282

4 Multigrid methods

4.1 Introduction
As already seen in Chapter 3, Krylov subspace methods (KSMs) can be used to solve (linear)

systems arising from the discretization of partial differential equations (PDEs). In most applica-

tions these methods perform better than basic iterative methods. One drawback, however, is that

the KSMs show an unsatisfying convergence behavior as the number of unknowns N increases:

Krylov subspace methods are said to be dependent on the mesh size h. The class of methods de-

scribed in this chapter, the multigrid (MG) methods, are independent of the mesh size. Another

advantage of these MG methods is that they can solve a linear system with N unknowns, in cN

arithmetic operations (c is a constant).

A natural way to explain the basics of multigrid methods, is by analyzing Geometric Multigrid.

Hence this will be discussed in this thesis, combined with the one dimensional Laplace equation,

in Section 4.2 (referred to as Model Problem1). These results will be compared to the one di-

mensional Helmholtz equation (Model Problem2) and the conclusion will be made that multigrid

can not be applied directly to the indefinite matrices which may arise in discretizing this equa-

tion, for large values of the wave number. As the Maxwell equations show very similar behavior,

this will also be the case in the current application. Furthermore, in the examples discussed in

this chapter, structured rectangular grids and finite differences are used, but in the current appli-

cation however, an unstructured grid will be used. To handle unstructured grids, a specific multi-

grid type method will be used namely Algebraic Multigrid, combined with the finite element

discretization method. It will also be explained how AMG can be incorporated in the current al-

gorithm for the solution of an indefinite system, by means of a definite preconditioner. Since it is

not likely that, due to lack of time, algebraic multigrid can be implemented in the existing algo-

rithm, other solutions has to be sought. It is known that there are several AMG black box solvers

available. Therefore Subsection 4.6 considers some requirements on an AMG black box solver

for the discretized vector wave equation.

Before proceeding with multigrid methods in the next section, Model Problem1 and 2 are stated

below. These model problems will be used to explain the components of (geometric) multigrid.

Model Problem1
The discrete Poisson equation in one dimension with Dirichlet boundary conditions:

−4huh(x) = −uxx = fΩ
h (x), x ∈ Ωh (4.1.1)

uh(x) = fΓ
h (x), x ∈ Γh = ∂Ωh, where
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• Ω = (0, 1) ⊂ R
• Γ = {0} ∪ {1}
• n ∈ N → h =

1
n

• finite differences approximation of the partial differential operator L: Lh = −4h

• Lh =
1
h2

[
−1 2 −1

]

Model Problem2
The discrete Helmholtz equation in one dimension with Dirichlet boundary conditions:

− (4h + k2
0)uh(x) = −uxx − k2

0u = fΩ
h (x), x ∈ Ωh (4.1.2)

uh(x) = fΓ
h (x), x ∈ Γh = ∂Ωh, where

• Ω = (0, 1) ⊂ R
• Γ = {0} ∪ {1}
• n ∈ N → h =

1
n

• k0 is the dimensionless wavenumber

• finite differences approximation of the partial differential operator L̃: L̃h = −4̃h

• L̃h =
1
h2

[
−1 2− k2

0h
2 −1

]

4.2 Motivation of multigrid methods
From the theory of basic iterative methods, it is known that the success of these methods lies

in the relaxation of one or more coordinates in the residual (error)vector and that they are ter-

minated when satisfactory convergence is obtained. MG techniques take advantage of faster

convergence of the components of the residuals in a specific direction i.e. the direction of those

eigenvectors of the iteration matrix corresponding to the largest eigenvalues in the spectrum of

the iteration matrix. These eigenvectors are known as the oscillatory or high1 frequency modes.

The low frequency (or smooth) modes can not be efficiently damped on the fine grid, because

they converge much slower than the high frequency modes. This is the main reason for basic iter-

ative methods to converge slow when the systems to solve become larger and larger.

To overcome this difficulty, MG methods use several representations of the error (or residual)

vector on different meshes. Starting with a fine grid and corresponding mesh size h, MG meth-

ods can recursively repeat this process called error-smoothing on a coarser grid, with e.g. mesh
1For the definition of high and low frequency modes, the reader is referred to (4.2.7)
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size H = 2h. The consequence of this coarsening is that the low frequency modes on the fine

grid are naturally mapped into high frequency modes on the coarser mesh and then the process

can be repeated. This will be outlined in Subsection 4.2.1. Mappings between representations of

the error vector on different grids by means of so called Transfer Operators will be the subject of

Subsection 4.2.3. The remarks above concerning the convergence behavior of the MG methods

will be the subject of Section 4.4.

4.2.1 Error smoothing analysis
The multigrid approach is based on two main aspects:

1. error smoothing

2. coarse grid correction

In this subsection some useful properties of MG methods will be discussed and later in this chap-

ter these two aspects are defined more precisely. To begin, the following two principles are stated

(from Trottenberg et al. (ref. 20, page 16):

Smoothing principle Many classical iterative methods (Gauss-Seidel etc.), if

appropriately applied to discrete elliptic problems, have a strong smoothing effect

on the error of any approximation

Coarse grid principle A smooth error term is well approximated on a coarse grid.

A coarse grid procedure is substantially less expensive (substantially fewer grid points)

than a fine grid problem

To explain the idea of error smoothing, two classical iteration methods known as Gauss-Seidel

and Jacobi type methods will be discussed (used in this context these methods are also referred

to as relaxation or smoothing methods).

The first is the lexicographical (see Figure 4.2.1) Gauss-Seidel method (GS-LEX) for the one

dimensional Poisson equation. The grid function oriented notation is used and some notational

issues are given:

• the differential operator: L

• mesh size h with corresponding grid Ωh, e.g. Ωh = (0, h, 2h, . . . , Nh), with N the total

number of unknowns

• the approximation of L: Lh with the assumption that L−1
h exists

• xi ∈ Ωh

• discrete (linear) boundary value problem: Lhuh = fh in Ωh

• approximation of uh(xi) before an iteration: um
h

• approximation of uh(xi) after an iteration: um+1
h
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• the error: vm
h (xi) = uh(xi)− um

h (xi)

• the identity operator on Ωh : Ih
• relaxation parameter θ

1 2 3 4 5 6 1 2 34 5 6

Fig. 4.2.1 Left: lexicographic ordering of grid points – Right: red-black ordering of grid points

Using the notation above, the following iteration formula for GS-LEX is obtained:

zm+1
h (xi) =

1
2
[h2fh(xi) + um+1

h (xi − h) + um
h (xi + h)]

um+1
h = zm+1

h (4.2.1)

The iteration can also be formulated in terms of the error v in the following way:

vm+1
h (xi) =

1
2
[vm+1

h (xi − h) + vm
h (xi + h)] (4.2.2)

Note that this is an averaging of the errors over the neighbors of point xi.

The iteration formula for the Jacobi iteration looks like:

zm+1
h (xi) =

1
2
[h2fh(xi) + um

h (xi − h) + um
h (xi + h)]

um+1
h = zm+1

h (4.2.3)

When equation (4.2.3) is applied to Model Problem1, the error of the iteration becomes smooth

after a few iteration steps, but not necessarily smaller (see Figures 4.2.2 and 4.2.3).
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Fig. 4.2.2 The initial guess and the first iteration with Jacobi on a randomly chosen initial error.

Iteration #1 : ||error||∞ = 3.3222.10−01
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Fig. 4.2.3 The last two iterations: iteration #3 : ||error||∞ = 1.1288.10−02 and iteration #4 :

||error||∞ = 2.1015.10−03

To explain the further details of the error smoothing process, Model Problem1 and a Jacobi type

iteration method will be used:

The Jacobi iteration can be rewritten as follows:

um+1
h = Shu

m
h +

h2

2
fh, where the iteration operator Sh = Ih −

h2

2
Lh.

This iteration can be generalized by including a relaxation parameter ω: the so called ω-(damped)

Jacobi relaxation, abbreviated by ω-JAC:

um+1
h = um

h + ω(zm+1
h − um

h ) (4.2.4)

The iteration operator for ω-JAC reads:

Sh(ω) = Ih −
ωh2

2
Lh =

ω

2

[
1 2( 2

ω − 1) 1
]
h

Recall that the subject of this section is not the convergence behavior of the error components,

but the smoothing properties. Therefore the eigenfunctions2 and eigenvalues of the iteration op-

erator Sh are listed first and then the explanation of the smoothing properties follows:

eigenfunctions of Sh : ϕk
h = sin(kπx), x ∈ Ωh : k = 1, . . . , n− 1 (4.2.5)

corresponding eigenvalues of Sh : λk
h = λk

h(ω) = 1− 2ω(sin2(kπh)) (4.2.6)

Notes
1. The eigenvalues and the eigenfunctions of the iteration operator for ω-JAC are the same

as the eigenvalues and eigenfunctions of Lh. This simplifies the analysis and therefore the
2actually: the j-th component of the k-th eigenfunction should be denoted by ϕk,j

h , 1 ≤ k ≤ n− 1, 0 ≤ j ≤ n
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analysis for this method will be included in this thesis. To see results for the Gauss-Seidel

iteration matrix, the reader is referred to Briggs et al. (ref. 24, page 22).

2. When multigrid uses the ω-JAC as smoothing operator, Sh depends on the relaxation pa-

rameter ω.

In Section 4.2, some general remarks about high and low frequency modes were made. Impor-

tant in the error smoothing process is the smoothing of highly oscillating eigenfunctions, i.e. the

high frequency modes. To give an idea of how to define high and low frequencies, Model Prob-

lem1 will be used with the choice H = 2h. Consider the following two specific eigenfunctions:

ϕk, ϕn−k

It turns out that when these eigenfunctions are represented on the coarse grid ΩH , they are re-

lated in the following sense:

ϕk(x) = −ϕn−k(x) for x ∈ ΩH .

So for k = n
2 , the eigenfunctions ϕk vanish on ΩH . See Figures 4.2.4 and 4.2.5: here n = 8 and

the eigenfunctions illustrated here are in context of Model Problem1. The coarse grid is denoted

by ‘*’. Consider the left picture first: when the values of ϕ7 are calculated on the coarse grid, the

resulting function would be exactly −ϕ1. The same holds for the right picture when the values of

ϕ6 are considered on the coarse grid points: the resulting line would be −ϕ2.
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Fig. 4.2.4 ϕ1 (black) and ϕ7 (blue)
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Fig. 4.2.5 ϕ2 (blue) and ϕ6 (red)

Remark The k-th mode consists of k
2 full sine waves and has a wavelength of ` = 24h

k = 2
k

(when an interval of length 1 is considered); mode k = n
2 has wavelength ` = 4 and

mode k = n − 1 has wavelength ` = 2h. Therefore waves with a wavenumber greater than

n(→ ` < n), cannot be represented on the grid. Actually, waves with ` < 2h can be seen on a

grid with a wavelength greater than 2h.

Definition (in context of Model Problem1)

For k ∈ {1, . . . , n− 1}, ϕk denotes an eigenfunction (or component) of

− low frequency if k <
n

2
− high frequency if

n

2
≤ k < n (4.2.7)

Above definition is reason to the next classification for the eigenfunctions:

Let Ψ denote the collection of all the eigenfunctions. Let Ψh denote the collection of all high

frequency and Ψl the collection of all low frequency eigenfunctions. Corresponding to Ψh and

Ψl let the eigenvalues be elements of Θh and Θl.
3 Note that in defining the (error) smoothing

factor, the largest eigenvalue λk
h corresponding to a eigenfunction with high frequency modes is

important.

3Ψh ∪Ψl = Ψ. If Θ is the collection of all eigenvalues, then also Θh ∪Θl = Θ
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Therefore the following definition is made:

Definition (Smoothing factor of θ-JAC for Model Problem1)

The smoothing factor µ(h; θ) of Sh(θ) is defined as:

µ(h; θ) := max
{
|λk

h(θ)| ∈ Θh

}
(4.2.8)

µ∗(θ) := sup
h∈H

µ(h; θ), where H denotes the set of allowed mesh sizes

The smoothing factor represents the worst factor by which the high frequency error components

are reduced per relaxation step. So after ν smoothing steps, the amplitude of the high frequency

components are reduced by a factor (µ∗(θ))ν or smaller. So in order to guarantee damping (or

smoothing) of the high frequency error components it must hold that µ∗(θ) < 1 . 4

To illustrate these definitions, consider the eigenvalues of Sh in equation (4.2.6). From the defini-

tion of the smoothing factor it follows that:

Ψh = {ϕk
h = sin(kπx) : x ∈ Ωh ∧

n

2
≤ k ≤ n− 1}

Θh = {λk
h(θ) = 1− 2θ(sin2(kπh)) ∧ n

2
≤ k ≤ n− 1}

µ(h; θ) = max
{
|1− 2θ(sin2(kπh))| : n

2
≤ k ≤ n− 1

}
µ∗(θ) = max{|1− θ|, |1− 2θ|}

Note

When θ = 0 or θ = 1 then µ∗(θ) = 1

Recall that it is required to have 0 < µ∗(θ) < 1, in order to have smoothing of the error.Therefore,

if µ∗(θ) ≥ 1 there is no smoothing and the following can be concluded in order to have no

smoothing:

• µ∗(θ) = |1− θ| ≥ 1 ⇒ θ ≤ 0 ∨ θ ≥ 2

• µ∗(θ) = |1− 2θ| ≥ 1 ⇒ θ ≤ 0 ∨ θ ≥ 1

In other words: to obtain a smoothing factor smaller than one for θ-JAC, choose θ ∈ (0, 1). Also

note that for λ1 it holds that ∀θ ∈ (0, 1) :

λ1 = 1− 2θsin2(
πh

2
) ≈ 1− θπ2h2

2
⇒ λ1 close to 1

4note that it is not necessary to use the absolute value of µ∗(θ) because it is defined as the supremum of positive

values
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In fact, the discussion above stated that there is no value of θ that will reduce the smooth com-

ponents of the error effectively. Also, the smaller the mesh size h, the closer λ1 is to 1 ⇒ im-

proving the accuracy of the solution by decreasing the mesh size, will worsen the convergence

of the smooth components of the error. On the other hand, when the mesh size is increased, as is

the case on a coarser grid, λ1 is bounded away from 1. Hence the convergence will improve on a

coarser grid. This so called coarse grid correction will be the subject of Subsection 4.2.2

The discussion about the smoothing principle is ended with one remark:

Remark If e.g. µ∗(4
5) = 3

5 , it follows that in one iteration step of θ-JAC with this choice of θ, a

reduction of all high frequency error components (eigenfunctions) is obtained by at least a factor

of 3
5 , independent of the mesh size h. This is an important property in the setup of the multigrid

methods.

4.2.2 Coarse grid correction
In this subsection the coarse grid correction scheme will be explained. Before doing that, first

some basic notation is given. The mesh size will be denoted by h, the corresponding grid by Ωh

and the discrete (linear) system is of the form:

Lhuh = fh, on grid Ωh (4.2.9)

In the following subsections the following notation will be used:

• the operator LH on a coarser grid ΩH (e.g.: mesh size H = 2h), with the assumptions that

LH : G(ΩH) → G(ΩH) with dim G(ΩH) < dim G(Ωh) and that L−1
H exists

• the (linear) restriction operator IH
h : G(Ωh) → G(ΩH)

• the (linear) prolongation (or interpolation) operator Ih
H : G(ΩH) → G(Ωh)

The basic idea in MG methods is that the (linear) system is (repeatedly) solved on several grids:

start on a fine grid Ωh and proceed on the coarser grid. See Figure 4.2.6.

Below the coarse grid correction steps are included (see Trottenberg et al., ref. 20, page 37):

Coarse Grid Correction um
h → um+1

h

- Compute the defect dm
h = fh − Lhu

m
h

- Restrict the defect (fine-to-coarse transfer) dm
H = IH

h d
m
h

- Solve on ΩH LH v̂
m
H = dm

H

- Interpolate the correction (coarse-to-fine transfer) v̂m
h = Ih

H v̂
m
H

- Compute a new approximation um+1
h = um

h + v̂m
h
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Fig. 4.2.6 A sequence of grids starting with h = 1
8

This subsection is concluded with some remarks about the choice of the coarse grid operator LH .

One obvious choice is to use the operator Lh as basis and use that on grid ΩH . In terms of Model

Problem1:

LH =
1
H2

[
−1 2 −1

]
H

This is a natural choice and for most basic MG methods a good operator. For other MG methods

however, different coarse grid operators perform much better. One of them is the Galerkin coarse

grid operator and is defined as:

LH := IH
h LhI

h
H (4.2.10)

A discussion of the Galerkin operator will be postponed until Section 4.6.

The coarse grid correction steps include an restriction and an interpolation operator. The next

subsection considers these so called transfer operators.

4.2.3 Transfer operators
As seen in the introduction, one of the main aspects in the success of MG methods requires spe-

cial mappings referred to as transfer operators. Because it turns out that this process can be de-

fined recursively, an analysis for transferring between ΩH (coarse grid) and Ωh (fine grid) will

be sufficient for H = 2h. The operators needed will define mappings from the fine grid to

the coarse grid and vice-versa5. The next subsection starts with the operator mapping from the

coarse to the fine grid.

4.2.3.1 The prolongation operator
As can be seen in the coarse grid correction scheme in Section 4.2.2, a restriction and a prolon-

gation operator are necessary. It will turn out that, in a special case, the restriction operator can

be ‘derived’ from the prolongation operator. Therefore, the prolongation operator is discussed

first. Another word for prolongation is interpolation, in other words: an approximation of the
5It should be noted that handling the boundaries ‘sometimes’ requires special adjustments
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error on the fine grid is needed, using information of the error on the coarse grid (recall the defi-

nition of the error: vm
h = uh − um

h ). For most multigrid methods, the simple linear interpolation

will perform very well. It will be denoted Ih
2h, and is defined as:

vh
2j = v2h

j

vh
2j+1 =

1
2
(v2h

j + v2h
j+1), 0 ≤ j ≤ n

2
− 1 (4.2.11)

Or written in vector notation: Ih
2hv2h = vh (see Figure 4.2.7). Note that from this definition it

follows that Ih
2h : R

n
2
−1 → Rn−1.

Below is an example for the case n = 8 :

Ih
2hv2h =

1
2



1

2

1 1

2

1 1

2

1




v1

v2

v3


2h

=



v1

v2

v3

v4

v5

v6

v7


h

= vh (4.2.12)

It is important to mention that if the assumption is made that the error on the fine grid is smooth

(in practice that is not known of course), the interpolation of the error on the coarse grid to the

fine grid, also produces a smooth error. In this case, the interpolation operator gives a good ap-

proximation of the error. However, when a oscillatory error is assumed on the fine grid, the inter-

polation operator gives a very bad approximation to the error. So prolongation is very effective

when the error is smooth. Fortunately, for the restriction operator, it is the other way around: an

oscillatory error on the fine grid results in a smoother error on the coarse grid.

4.2.3.2 The restriction operator
This section is started with the restriction operator which is related to the prolongation operator

in the previous subsection: the full weighting (FW) operator. This operator uses the values on the

fine grid to make a weighted average to obtain the values for the coarse grid vector (see Figure

4.2.8). It is defined as I2h
h vh = v2h, where:

v2h
j =

1
4
(vh

2j−1 + 2vh
2j + vh

2j+1), 1 ≤ j ≤ n

2
− 1 (4.2.13)

Another important fact of this operator is the following relation:

Ih
2h = c(I2h

h )T , c ∈ R (4.2.14)
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Fig. 4.2.7 Interpolation of a vector on coarse grid ΩH to fine grid Ωh

as illustrated in the following example (also for n = 8):

I2h
h vh =

1
4


1 2 1

1 2 1

1 2 1





v1

v2

v3

v4

v5

v6

v7


h

=


v1

v2

v3


2h

= v2h (4.2.15)

Another, somewhat natural, restriction operator is the injection operator and is defined as:

I2h
h vh = v2h, where v2h

j = vh
2j . So the value in the coarse grid point is simply the value of the

corresponding fine grid point.

4.3 From the two-grid Cycle to multigrid
As all the necessary ingredients to obtain a simple iterative method are discussed, the following

scheme of the so called two-grid method is given below. This is a combination of the already

mentioned smoothing process and the coarse grid correction (CGC) (see Trottenberg et al.: ref.

20, page 39). It is possible to perform some smoothing processes before the CGC process and

also after the CGC process. These are referred to as presmoothing and postsmoothing respec-

tively. Presmoothing can be used to eliminate oscillatory error components on the fine grid and

postsmoothing can additionally be applied when the error components after the CGC steps are

not satisfactory smoothed.
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Fig. 4.2.8 Restriction by full weighting of a fine-grid vector to the coarse grid

Note that the two-grid cycle involves two grids where the necessary operations are performed.

In complex problems, however the coarse grid (with for example mesh size H = 2h) may still

contain too many unknowns to use e.g. a direct method or some other solution method to obtain

the desired solution. To overcome this, a coarser grid with e.g. mesh size Ĥ = 2H = 4h can be

used. This process can be repeatedly used, until a reasonably coarse grid is obtained where it is

possible to get a good approximation of the solution. This repeated usage of several coarse grids

leads to the Multigrid cycle. As before, first some notation is given to understand the scheme

below. The coarsest grid has mesh size h0 and the finest grid has mesh size h` and using this the

following sequence of grids can be defined:

Ωh`
,Ωh`−1

, . . . ,Ωh0 (4.3.1)

For simplicity hk will be denoted by the index k.

The multigrid cycle described here is an (` + 1)-grid cycle to solve Lkuk = fk (on Ωk) for a

fixed ` ≥ 1.
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Two-grid cycle um+1
h = TGCYCLE(um

h , Lh, fh, ν1, ν2)

1. Presmoothing

- Compute ūm
h by applying ν1 ≥ 0 steps of a given smoothing procedure (e.g.

Jacobi or Gauss-Seidel) to um
h :

ūm
h = SMOOTHν1(um

h , Lh, fh)

2. Coarse grid correction

- Compute the defect d̄m
h = fh − Lhū

m
h

- Restrict the defect (fine-to-coarse transfer) d̄m
H = IH

h d̄
m
h

- Solve on ΩH LH v̂
m
H = d̄m

H

- Interpolate the correction (coarse-to-fine transfer) v̂m
h = Ih

H v̂
m
H

- Compute the corrected approximation um,after CGC
h = ūm

h + v̂m
h

3. Postsmoothing

- Compute um+1
h by applying ν2 ≥ 0 steps of the given smoothing procedure to

um,after CGC
h :

um+1
h = SMOOTHν2(um,after CGC

h , Lh, fh)

Note
In (4.3.3) in the multigrid cycle, the parameter γ appears twice. As argument of the MGCYCLE

it indicates which cycle type must be used and the appearance as a power, indicates the number

of cycles to be performed on the current coarse grid level. The case γ = 1 is referred to as a V-

cycle and the case γ = 2 as a W-cycle. See Figures 4.3.1 and 4.3.2.

coarse grid level:  1coarse grid level:  1coarse grid level:  1

coarse grid level:  2

coarse grid level:  3

Fig. 4.3.1 V-cycles for different coarse grid levels and γ = 1
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coarse grid level:  1coarse grid level:  1coarse grid level:  1

coarse grid level:  2

Fig. 4.3.2 W-cycles for different coarse grid levels and γ = 2

Multigrid cycle um+1
k = MGCYCLE(k, γ, um

k , Lk, fk, ν1, ν2)

1. Presmoothing

- Compute ūm
k by applying ν1 ≥ 0 smoothing steps to um

k :

ūm
k = SMOOTHν1(um

k , Lk, fk)

2. Coarse grid correction

- Compute the defect d̄m
k = fk − Lkū

m
k

- Restrict the defect (fine-to-coarse transfer) d̄m
k−1 = Ik−1

k d̄m
k

- Compute an approximate solution v̂m
k−1 of the defect equation on Ωk−1:

Lk−1v̂
m
k−1 = d̄m

k−1, using the following (4.3.2)

I If k = 1, use a direct or fast iterative solver for (4.3.2)

I If k > 1, solve (4.3.2) approximately by performing γ(≥ 1) k−grid

cycles using the zero grid function as a first approximation:

v̂m
k−1 = MGCYCLEγ(k − 1, γ, 0, Lk−1, d̂

m
k−1, ν1, ν2) (4.3.3)

- Interpolate the correction (coarse-to-fine transfer) v̂m
k−1 = Ik

k−1v̂
m
k−1

- Compute the corrected approximation on Ωk um,after CGC
k = ūm

k + v̂m
k

3. Postsmoothing

- Compute um+1
k by applying ν2 ≥ 0 smoothing steps to um,after CGC

k :

um+1
k = SMOOTHν2(um,after CGC

k , Lk, fk)
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In the following pictures some results are included, obtained from a multigrid V-cycle program

in Matlab. Model Problem1 is considered discretized with the standard finite difference dis-

cretization. In all figures there are four pictures corresponding to four iterations and started in

a similar initial pattern as in Figure 4.2.2.

In the figures here, the effect of pre- and post-smoothing are demonstrated by using different val-

ues of ν1 and ν2. In Figure 4.3.3, ν1 = ν2 = 0, so there is no smoothing: the MG approximation

does not converge to the exact solution.

In Figures 4.3.4 and 4.3.5, there is one pre and one post smoothing respectively. The conver-

gence is almost similar in both cases.

The smoothing method used is again of Jacobi type. Note the very fast smoothing for ν1 = 2 and

ν2 = 2 in Figure 4.3.7.
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Fig. 4.3.3 ν1 = 0 and ν2 = 0
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Fig. 4.3.4 ν1 = 1 and ν2 = 0
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Fig. 4.3.5 ν1 = 0 and ν2 = 1
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Fig. 4.3.6 ν1 = 1 and ν2 = 1
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Fig. 4.3.7 ν1 = 2 and ν2 = 2
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So far Model Problem2 has not been used. This model problem will now be used to illustrate that

the convergence of multigrid strongly depend on the definiteness of the system matrix. The sys-

tem matrix of the discrete Helmholtz operator will become indefinite if the wave number k2
0 be-

comes larger than the smallest eigenvalue λ1
Lh

of the discrete Laplace operator Lh. In all pictures

below ν1 = 2, ν2 = 2, λ1
Lh

= 9.8617 and the first four MG iterations are presented. So when

k2
0 > 9.8617, multigrid will diverge (when k0 = 0 the pictures look the same as the pictures in

Figure 4.3.7).

In Figure 4.3.8 k0 < λ1
Lh

, so the system matrix is still definite. Therefore there is no divergence,

but the convergence is slower compared to the convergence in e.g. Figure 4.3.7. In Figure 4.3.9

k0 = λ1
Lh

resulting in no divergence but also no reasonable approximation. In Figures 4.3.10,

4.3.11 and 4.3.12, k0 > λ1
Lh

. Hence the system matrices become indefinite and there is no con-

vergence at all. Note the ‘explosive’ character (109 on the y-axis) when k0 = 49.

0 0.5 1
−0.1

0

0.1

0.2

0.3

x axis

 

  MG Approx

Exact Solution

0 0.5 1
0

0.05

0.1

0.15

0.2

x axis

 

  MG Approx

Exact Solution

0 0.5 1
0

0.05

0.1

0.15

0.2

x axis

 

  MG Approx

Exact Solution

0 0.5 1
0

0.05

0.1

0.15

0.2

x axis

 

  MG Approx

Exact Solution

Iteration 3

Iteration 2Iteration 1

Iteration 4

Fig. 4.3.8 wavenumber k0 =
√

9.8617− 2

As the Maxwell equations in the current application have similar properties as the one dimen-

sional Helmholtz equation, it is likely that a direct application of a multigrid solution method on

the discretized linear system will result in a diverging method. Therefore multigrid will be ap-

plied on a preconditioner version of the current application.
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Fig. 4.3.9 wavenumber k0 =
√

9.8617
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Fig. 4.3.10 wavenumber k0 =
√

9.8617 + 1
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Fig. 4.3.11 wavenumber k0 =
√

9.8617 + 10
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In the next section it will be explained why the two-grid cycle converges and because this is the

basis for the (full) multigrid cycle, the analysis for the two-grid cycle will be sufficient.

4.4 Convergence analysis
As already mentioned in the previous section, the two-grid cycle forms the basis of the MG

cycles. For this reason, the two grid cycle will be analyzed first. Note the following statement

(Trottenberg et al., ref. 20, Section 3.2):

Statement If a given two-grid method converges sufficiently well, i.e.

||TH
h ||Ah

≤ σ,

with σ small enough and independent of h, then the corresponding multigrid method will

have similar convergence properties, under natural assumptions

Here TH
h denotes the two-grid operator (see equation (4.4.1)). For a detailed description about

convergence factors for the two-grid and multigrid methods, the reader is referred to Trottenberg

et al. (ref. 20).

4.4.1 Analysis of the two-grid cycle – Two important subspaces
Recall the necessary processes in the two-grid cycle in Section 4.3:

- Presmoothing

- Coarse grid correction

- Postsmoothing

Each of these processes lead to an operation on the operator Ah on the finest grid with mesh size

h. When there are no pre- and postsmoothing processes, only the coarse grid correction is of im-

portance. In Section 4.2.3 the coarse grid correction steps are outlined and the resulting operator

can be denoted by:

TH
h = I − Ih

HA
−1
H IH

h︸ ︷︷ ︸
:=Bh

Ah (4.4.1)

Note that Bh is the preconditioning matrix associated with this iteration.

It can be shown (Saad, ref. 26, p. 425) that when AH := IH
h AhI

h
H , then the coarse grid correc-

tion operator TH
h is a projector6 that is orthogonal with respect to the Ah-inner product. Further-

more, the range of TH
h is Ah-orthogonal to the range of IH

h . This information will be useful in

6For the definition of a projector, the reader is referred to appendix B
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defining two subspaces to finally arrive at an important theorem which explains why MG meth-

ods converge.

Before the two important subspaces can be defined, some preparation is necessary. When Qh is

defined as follows:

Qh = Ih
HA

−1
H IH

h Ah (4.4.2)

the following holds:

1. Qh is an Ah-orthogonal projector onto the subspace Ωh ⇒ I−Qh is also an Ah-orthogonal

projector. Using fundamental relation (FR I) combined with the properties in Appendix B,

it can be shown that:

Ωh = Ran(Qh)⊕ Ker(Qh) := Ran(Qh)⊕ Ran(I −Qh) (4.4.3)

2. Ran(Qh) ⊂ Ran(Ih
H)

3. It can also be proved that the inclusion in point 2. above also holds the other way around:

take a vector z in the range of Ih
H ⇒ z = Ih

Hy for a certain y ∈ Ωh. With the definition of

AH it then follows that:

Qhz = Ih
HA

−1
H IH

h AhI
h
Hy = Ih

Hy = z

This shows that z ∈ Ran(Qh). Hence: Ran(Qh) ⊃ Ran(Ih
H)

4. Combining point 2. and 3. results in: Ran(Qh) = Ran(Ih
H).

Summarizing:

• Qh is the Ah-orthogonal projector onto the space Ran(Ih
H)

• TH
h is the Ah-orthogonal projector onto the orthogonal complement: the range of (I −Qh)

which is also the null space of Qh according to fundamental relation (FR II)

• Using fundamental relation (FR I) again results in:

Ωh = Ran(Ih
H)⊕ Ker((Ih

H)T ) = Ran(Qh)⊕ Ker((Ih
H)T )︸ ︷︷ ︸

Ker(IH
h )

(4.4.4)

• Using equation (4.4.3) results in:

Ker(Qh) = Ker(IH
h )
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Finally the two fundamental subspaces can be defined as follows:

I Sh := Ran(Qh): consisting of the smooth components

I Th := Ran(TH
h ): consisting of the oscillatory components

with the following relations:

1. Ωh = Sh ⊕ Th

2. Sh = Ran(Qh) = Ker(TH
h ) = Ran(Ih

H)

3. Th = Ker(Qh) = Ran(TH
h ) = Ker(IH

h )

Note that relation 1. here states that the subspace Ωh can be decomposed into two other sub-

spaces Sh and Th. It is also true that Ωh can be decomposed into a subspace consisting of the

smooth components (Sh) and a subspace consisting of the oscillatory components (Th). Let s be

a smooth mode and t a oscillatory one. Then the action of the two-grid operator roughly trans-

lates into:

TH
h s ≈ 0 TH

h t ≈ t

In contrary, for Qh the opposite is true:

Qhs ≈ s Qht ≈ 0

To illustrate the properties above, the following example is given:

In the context of Model Problem1, consider the prolongation operator IH
h corresponding to the

one dimensional full weighting (FW) case. Let wk be an eigenmode with components sin(jθk)

for j = 1, . . . , n and θk = kπ
n+1 . When FW is applied onto eigenmode wk, the following is

obtained:

(IH
h wk)j =

1
4
[sin((2j − 1)θk) + 2sin(2jθk) + sin((2j + 1)θk)]

=
1
4
[2sin(2jθk)cos(θk) + 2sin(2jθk)]

=
1
2
(1 + cos(θk))sin(2jθk)

= cos2

(
θk

2

)
sin(2jθk)

Now distinguish between the following two cases:

1. Suppose k ≈ n (i.e. k is large). Then θk ≈ π → cos2( θk
2 ) ≈ 0 ⇒ IH

h wk ≈ 0. This

shows that wk is near the null space of IH
h and with k being large wk is a oscillatory node

→ oscillatory modes are close to being in the null space of IH
h , or equivalently, the range

of TH
h . In terms of fine and coarse grids: the restriction operator will transform mode wk

into a constant (cos( θk
2 )) times the same mode on the coarser grid.
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2. When k is small, then wk is a smooth mode and the constant cos( θk
2 ) ≈ 1. Therefore

the interpolation operator produces the equivalent smooth mode in subspace ΩH without

damping it. //

In the next subsection first some notation will be introduced where after two important properties

will be stated. These will be used to derive the important convergence theorem for the two-level

iteration.

4.4.2 Convergence of multigrid
In this subsection the convergence for the Galerkin case is analyzed in which the Ah-norm7 is

used. The 2-norms weighted by D
1
2 or D− 1

2 are convenient, where D = diag(A).

The following notation will be used for a arbitrary vector x and (error)vector e:

||x||D = (Dx, x)
1
2 := ||D

1
2x||2

||e||AhD−1Ah
= (D−1Ahe,Ahe)

1
2 := ||Ahe||D−1

Using the notation introduced above, the next two properties can be shown:

? The smoothing property:

||She
h||2Ah

≤ ||eh||2Ah
− α||Aeh||2D−1 ∀eh ∈ ωh (SP)

In this equation α is a positive constant. Furthermore, this property holds independent of

the choice of h and characterizes the smoother.

? The approximation property:

min
uH∈ΩH

||eh − Ih
He

H ||2D ≤ β||eh||2Ah
(AP)

In this equation β is independent of h and this property characterizes the discretization.

Theorem (Convergence of the two-level iteration)

In this theorem the following assumptions are made:

- matrix A is symmetric and positive definite (SPD)

- the restriction and prolongation operator are linked as follows:

Ih
H = 2d(IH

h )T

where d is the dimension of the space and Ih
H is of full rank

7For the definition of a norm, the reader is referred to Appendix B
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- inequalities (SP) and (AP) are satisfied for a certain smoother and α, β > 0

When all these assumptions are fulfilled, the following three statements hold:

1. α < β

2. the two-level cycle converges

3. the norm of the smoother and two-cycle operator ShT
H
h is bounded as follows:

||ShT
H
h ||Ah

≤
√

1− α

β
(4.4.5)

Proof. Recall from the previous subsection that Ran(TH
h ) = Th is Ah-orthogonal to Ran(Ih

H) =

Sh. Therefore:

(eh, Ih
He

H)Ah
= 0 ∀eh ∈ Ran(TH

h ) ⇒ ||eh||2Ah
= (Ahe

h, eh − Ih
He

H) ∀eh ∈ Ran(TH
h )

Using the Cauchy-Schwarz inequality for any eh ∈ Ran(TH
h ) gives:

||eh||2Ah
= (D− 1

2Ahe
h, D

1
2 (eh − Ih

He
H))

≤ ||D− 1
2Ahe

h||2||D
1
2 (eh − Ih

He
H)||2 (4.4.6)

= ||Ahe
h||D−1 ||eh − Ih

He
H ||D

Using (AP) on (4.4.6) implies that:

||eh||Ah
≤
√
β||Ahe

h||D−1 ∀eh ∈ Ran(T h
H) ≡ ||TH

h eh||2Ah
≤ β||AhT

h
He

h||2D−1 ∀eh ∈ Ωh

Finally using (SP) results in:

0 ≤ ||ShT
H
h eh||2Ah

≤ ||TH
h eh||2Ah

− α||AhT
H
h eh||2D−1

≤ ||TH
h eh||2Ah

− α

β
||TH

h eh)||2Ah

=
(
1− α

β

)
||TH

h eh||2Ah

(?)
≤

(
1− α

β

)
||eh||2Ah

(?) is allowed because of the fact that TH
h is an Ah-orthogonal projector.

Before completing this section, one must note the following important remark: The convergence

theorem in this subsection is based on the assumption that the matrix A is SPD. In the current

application the system matrix is ‘nearly’ symmetric and indefinite. Hence direct application of

multigrid on the discretized version of the Maxwell equations will probably not result in a con-

verging method. Therefore multigrid will be used as solution method to the linear system stem-

ming from the discretization of the shifted Laplace preconditioner. In the next section the short-

comings of geometric multigrid will be mentioned when applied to the current problem.
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4.5 Algebraic multigrid
So far geometric multigrid has been explained and it can be concluded that these methods are

very effective solvers for large (linear) systems arising from discretization of several types of

PDEs and when the system matrix is SPD. Unfortunately there are some drawbacks when classi-

cal MG methods are used to solve systems arising from e.g. physical problems with anisotropic8,

strongly varying or discontinuous coefficients. Another drawback of geometric multigrid is that

they require structured grids for their successful application. Also the definition of the interpola-

tion (and thus restriction) operator are dependent on the operator being considered in the origi-

nal equation: operator-dependent interpolation. In the current application there is no structured

grid and to overcome the other shortcomings and at the same time take advantage of all the good

properties of the classical MG methods, an extension has to be made to Algebraic Multigrid. It

will turn out that the Galerkin approach that will be used in algebraic multigrid will deal with

the operator-dependent interpolation. It is also favorable that the Galerkin operator can be con-

structed pure algebraically because no grid specification is needed.

In this section Algebraic multigrid (AMG) will be discussed. Actually, the AMG approach is

opposite to the geometric approach. Geometric multigrid first fixes the coarse grids and then de-

fines suitable operators and smoothers, while the AMG approach can roughly be written as:

- fix smoother (e.g. Gauss-Seidel or Jacobi)

- choose coarse grids and prolongation operator Ih
H such that the error not reduced by relax-

ation is in Ran(Ih
H)

- define other MG components so that coarse-grid correction eliminates error in Ran(Ih
H)

(e.g. use Galerkin principle)

For classical AMG methods, the system matrix is assumed to be an M -matrix. For these type of

matrices, the convergence of Jacobi and Gauss-Seidel is well understood.

In Subsection 4.5.1 the basic steps of algebraic multigrid will be outlined and after this short in-

troduction, AMG for complex valued systems will be introduced in Subsection 4.5.2. Finally in

Subsection 4.5.3, AMG for the finite element discretization will be discussed.

4.5.1 Basic tools of algebraic multigrid
Another property of geometric multigrid methods is that they require a given problem to be de-

fined on a grid known a priori. So the coarsening process itself is fixed and kept as simple as pos-

sible. Algebraic multigrid does not require these but operates directly on sparse linear systems:
8if certain material properties are not equal in all directions
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Ahu
h = fh or

N∑
j=1

ah
iju

h
j = fh

i (i = 1, 2, . . . , N) N denotes the total number of unknowns

(4.5.1)

In the discussion about geometric multigrid the following terms were used: grids, subgrids and

grid points. When these terms are replaced by sets of variables, subsets of variables and single

variables respectively, AMG can be formally described in the same way as geometric multigrid.

Before the basics are discussed, the following remark is stated where after the two necessary

ingredients of AMG are stated:

Remark:
It is important to realize that although the discussion in this thesis is written in terms of

a (given) matrix A, the power of AMG also covers a class of matrices A; e.g.: the class

consisting of all M -matrices.

AMG needs two basic ingredients for the setup:

1. a way of defining the coarse subspace XH from a fine subspace Xh. Note that h no longer

denotes a mesh size but an index to a certain level and H is used to index a coarser level.

Also note that Ωh is now replaced with a subspace Xh of Rn at a certain level h.

2. a way to define the interpolation operator IH
h from Xh to XH . In AMG, the coarse-level

problem(∗1) is defined using the Galerkin approach which has already been seen in Sub-

section 4.2.3:

AH = IH
h AhI

h
H , fH = IH

h f
h (4.5.2)

The restriction (IH
h ) and prolongation (Ih

H) operator are both defined pure algebraically

and are related by:

IH
h = (Ih

H)T (4.5.3)

A minimal assumption that must be made on the prolongation operator is that it must be of

full rank. The direct consequence of this assumption is that the restriction operator is also

of full rank.

(∗1) Note that the coarse-level problem is denoted by:

AHu
H = fH or

N∑
j=1

aH
iju

H
j = fH

i (i ∈ XH) (4.5.4)

Before it is possible to define a scheme for coarsening, a distinction must be made analogous to

the distinction of smooth and oscillatory modes in the geometric case. This extension of smooth

and oscillatory modes is the subject of the next subsection.
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4.5.1.1 Smoothness in AMG
In AMG an error is also decomposed into smooth and oscillatory components. The difference

with geometric MG is that in the AMG case this decomposition will now be defined with re-

spect to the ability or the inability of the chosen smoother to reduce these components. This can

be formulated as follows: an error s is smooth when its convergence with respect to the chosen

smoother Sh is slow. Mathematically written this looks like:

||Shs||A ≈ ||s||A

Here the energy norm is used9.

As AMG employs simple smoothing processes, a typical smoother uses e.g.:

- Gauss-Seidel relaxation: Sh = Ih − Q−1
h Ah, with Qh being the lower triangular part of

Ah, including the diagonal

- ω-Jacobi relaxation: Sh = Ih − ωD−1
h Ah, with Dh = diag(Ah)

If s satisfies the smoothing property (SP), it holds that:

||As||D−1 � ||s||Ah

Using the definition of ||.||Ah
and the Cauchy-Schwarz inequality gives:

||s||2Ah
= (D− 1

2Ahs,D
1
2 s)

≤ ||D− 1
2Ahs||2||D

1
2 s||2

= ||Ahs||D−1 ||s||D

Since ||As||D−1 � ||s||Ah
, this means that ||s||Ah

� ||s||D

⇒ (As, s) � (Ds, s) (4.5.5)

When v := D
1
2 s then

(D− 1
2AD− 1

2 v, v) � (v, v)

These requirements demand the Rayleigh quotient10 of D
1
2 s to be small, which in turn implies

that the vector v is a linear combination of the eigenvectors of A with smallest eigenvalues. In

particular, (As, s) ≈ 0 also implies that As ≈ 0:

aiisi ≈ −
∑
j 6=i

aijsj (4.5.6)

9For the definition of the energy norm, the reader is referred to Appendix B
10For the definition of Rayleigh quotient, the reader is referred to Appendix B
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Equation (4.5.6) above heuristically characterizes a smooth error. This is true because interpola-

tion should average the error out → eliminate highly oscillating components in Xh and produce a

function that becomes smooth in XH .

When (As, s) above is expanded, the notation in terms of matrix coefficients looks like:

(As, s) =
∑
i,j

aijsisj

=
1
2

∑
i,j

−aij

(
(sj − si)2 − s2i − s2j

)
=

1
2

∑
i,j

−aij(sj − si)2 +
∑

i

(∑
j

aij

)
s2i

If equation (4.5.5) is rewritten in terms of ε with 0 < ε � 1 and the assumption is made that

the row sums of the matrix are zero and the off-diagonal elements are negative, the following

fundamental relation (4.5.7) can be derived:∑
j 6=i

|aij |
aii

(si − sj

si

)2
� 1 (4.5.7)

For (4.5.7) to hold,
|si − sj |

si
must be small when |aji

aii
| is large. In other words: the components

of s vary slowly in the direction of the strong connections. This observation is at the basis of

many AMG techniques and will be used in the next subsection when interpolation operators will

be defined.

4.5.1.2 Interpolation in AMG
In the last paragraph of the previous subsection it was remarked that the components of s vary

slowly in the direction of the strong connections. So before the interpolation operator can be de-

fined, it is necessary to distinguish between different couplings between nodes. To achieve this,

(4.5.7) will be used as follows:

• let i be a coarse node; its adjacent node with index j such that aij 6= 0

• when |aij

aii
| is smaller then a certain threshold σ, i and j are said to be weakly coupled

• when |aij

aii
| is greater then a certain threshold σ, i and j are said to be strongly coupled

To understand “smaller” in the context above, a splitting in coarse and fine nodes is needed, a so

called CF-splitting (see Figure 4.5.1). The smaller filled black circles represent the fine nodes

and the thin dashed lines represent weak connections. The dash-dot lines represent the strong

connections.

In the context here, the definition of strong connections is given as:

Si =
{
j : −aij ≥ θmax

k 6=i
{aik}

}
, for some fixed θ ∈ (0, 1) (4.5.8)
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(a typical choice for parameter θ is θ = 0.25)

Using the CF-splitting, the following notation11 of Xh is introduced for three types of nodes

among the nearest neighbors of a fine node i:

- Ci: denotes the set of coarse nodes (⇒ Fi is the set of fine nodes)

- F s
i : set of fine nodes strongly connected with i (⇒ F s

i = Fi ∩ Si)

- Fw
i : set of fine nodes weakly connected with i (⇒ Fw

i = Fi ∩ F s
i )

C

C

C

C

F

F

F

F

Fig. 4.5.1 Example of nodes adjacent to a fine node i (center). Fine mesh nodes are labeled

with F , coarse nodes with C.

As already mentioned, equation (4.5.6) heuristically characterizes the smooth error, and will now

be used to produce an interpolation function. Using the CF-splitting mentioned above, equation

(4.5.6) can be rewritten as:

aiisi ≈ −
∑
j∈Ci

aijsj −
∑
j∈F s

i

aijsj −
∑

j∈F w
i

aijsj (4.5.9)

Starting from equation (4.5.9), first the weak connections will be handled by adding their result

into the diagonal term aii and secondly the ‘combine and write technique’ should be used to ex-

press the right hand side of the formula in terms of coarse grid points only. The end result is a

formula that only depends on the coarse grid points, which will be included in this thesis. For the

complete derivation of this formula, the reader is referred to Saad (ref. 26, p. 439). The resulting
11Note that Xh = Ci ∪ F s

i ∪ F w
i
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formula looks like:

si =
∑
j∈Ci

wijsj , with wij := −
aij +

∑
k∈F s

i

aikakj

δk

aii +
∑

k∈F w
i
aik

and δk :=
∑
l∈Ci

akl (4.5.10)

When the weights wij are determined, the resulting interpolation formula generalizes the formu-

las seen for geometric multigrid:

(Ih
Hx)i =

{
xi, if i ∈ XH∑

j∈Ci
wijxj , otherwise

(4.5.11)

This subsection will be ended with some remarks about the interpolation and the CF-splitting.

Remarks
1. In order to achieve fast convergence, the algebraically smooth error needs to approximated

well by the interpolation.

2. As the size of the coarse-level operator strongly depends on the total number of C-variables,

it is desirable to limit the number of C-variables, while still guaranteeing that all F -variables

are sufficiently strongly connected to the C-variables. The goal however, is not to mini-

mize the total number of C-points. It is important to create CF-splittings which are as uni-

form as possible with F -variables being “surrounded” by C-variables to interpolate from.

3. Recall equation (4.5.1) rewritten as:

Ahu
h = fh or

∑
j∈Xh

ah
iju

h
j = fh

i (i ∈ Xh) (4.5.12)

where Xh denotes the indexing set {1, 2, 3, . . . , n}.

For theoretical investigations, it is convenient to write a given CF-splitting of (4.5.12) in

block form as follows:

Ahu =

[
AFF AFC

ACF ACC

](
uF

uC

)
=

(
fF

fC

)
= f (4.5.13)

For more about the usefulness of this block notation and all the theorems that can be de-

rived, the reader is referred to Trottenberg et al. (ref. 20, Appendix A).

This block notation will also be used in the next subsection where the coarse spaces in

AMG are defined, using multilevel ILU.

4.5.1.3 Coarse spaces in AMG
To define a coarse space XH from a fine subspace Xh, the mechanism that will be used is called

coarsening. In this thesis one way of getting to a two-level cycle will be discussed. For other

derivations of two-level methods the reader is encouraged to read e.g. Trottenberg et al. (ref. 20,
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p.427) and fore more details about the coarsening strategies in AMG, the reader is referred to

Trottenberg et al. (ref. 20, p.472).

The simplest way to achieve a coarsening scheme uses e.g. the idea of independent set orderings

(ISOs)12. ISOs transform the original system (4.5.12) into the following form:[
B F

E C

](
x

y

)
=

(
f

g

)
, where block B is a diagonal matrix. (4.5.14)

A block LU factorization of the previous system looks like:[
B F

E C

]
=

[
I 0

EB−1 I

][
B F

0 S

]
, where S is the Schur complement S := C − EB−1F

(4.5.15)

To understand the link with AMG-type methods, the demand on B being diagonal, may be dropped.

It is then possible to derive a generalization of the factorization shown above. As ISOs work with

independent set orderings, this generalization will use block or group independent sets13.

When the unknowns in a independent group are permuted such that those associated with the

group independent set are listed first, followed by the other unknowns, the original coefficient

system will take the form (4.5.14), where now matrix B is a block diagonal matrix. When an

exact or complete LU factorization of B is performed: B = LU + R, the original system can be

factorized as follows:

A =

[
B F

E C

]
≈

[
L 0

EU−1 I

][
I 0

0 S

][
U L−1F

0 I

]
:= LDU (4.5.16)

The factorization in (4.5.16) is analogue to the two-grid cycle seen in geometric multigrid. Using

this factorization, the following setup can be stated:

• solve with the L-matrix: take a vector with components u, y in the fine and coarse spaces

respectively, to produce the vector yH = y − EU−1u in the coarse space

• the Schur complement S can now be solved in some unspecified manner

• solve back with the U-matrix: take a vector from the coarse space and produce the u vari-

able from the fine space as u := u− L−1Fy

12For more about ISOs, the reader is referred to Appendix C
13See Appendix C
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This setup can be used to derive the following two-level block algorithm:

1. f := L−1f

2. g := g − EU−1f

3. Solve Sy = g

4. f := f − L−1Fy

5. x = U−1f

When this two-level algorithm is extended using a recursive definition, a possible variation of an

algebraic multigrid method is achieved. See for an example of an algebraic recursive multilevel

solver (ARMS) Saad (ref. 26, Chapter 13, page 444).

One disadvantage in AMG methods is that the sparse structure of the used matrices will be lost,

as the number of levels increases. To maintain sparsity, small elements can be dropped in the

block factorization (as is done in ARMS).

In the next subsection AMG will be briefly discussed for complex valued systems, as the system

matrix in the current application is complex valued.

4.5.2 Algebraic multigrid for complex valued systems
In this subsection it is assumed that the system matrix is complex-valued symmetric or Hermitian

and the results are analogous to the results of Maclachlan and Oosterlee (ref. 15).

When the AMG algorithm is to be generalized to complex-valued matrices, it must be ensured

that the relaxation performs as expected. In this thesis the (weighted) Jacobi or Gauss-Seidel

were mentioned as smoothers, and when the extension is made to complex-valued systems, it

must be certain that the smoothing properties are provided for a reasonable class of problems.

The complex generalization of M -matrices are the H-matrices, which is defined as follows:

Definition (Comparison matrix – H-matrix)

Let A ∈ Cn×n be such that its comparison matrix,

(M(A))ij =

{
|aii|, if i = j

−|aij |, if i 6= j

is an M -matrix. Then A is called an H-matrix.

For this class of H-matrices, the following theorem is reproduced from Varga (ref. 22):
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Theorem
First define the following:

- for any nonsingular H-matrix, A ∈ Cn×n, let D be the diagonal of A and −L be the

strictly lower triangular part of A. Then U = A− (D − L) is strictly upper triangular

- define Jω(A) = I − ωD−1A to be the error propagation operator for the weighted Jacobi

iteration with weight ω

- define Gω(A) = I−ω(D−ωL)−1A to be the error propagation operator for the weighted

Gauss-Seidel (SOR) iteration with weight ω

- let ρ(A) denote the spectral radius of matrix A

Then the following holds:

• ρ(J1(A)) ≤ ρ(J1(M(A))) < 1

• for any ω ∈
(
0,

2
1 + ρ(J1(A))

)
: ρ(Jω(A)) ≤ ωρ(J1(A)) + |1− ω| < 1

• for any ω ∈
(
0,

2
1 + ρ(J1(M(A)))

)
: ρ(Gω(A)) ≤ ωρ(J1(A)) + |1− ω| < 1

The first part of this theorem covers the convergence of the different types of Jacobi and Gauss-

Seidel type relaxations. Maclachlan et al. (ref. 15) also performed local Fourier analysis to say

more about the spectra of the Jacobi and Gauss-Seidel iteration matrices. This is done because of

the main interest of the performance of these schemes as smoothers. The results are not copied

here.

In the next subsections the components of AMG for complex systems will be discussed.

4.5.2.1 Interpolation
In this subsection a simple extension of the classical AMG (for M -matrices) is used. To get an

idea of how strong connections can be defined in the complex case for H-matrices, a simple ex-

tension of the classical strong-connection measure in equation (4.5.8) can be used:

Si =
{
j : |aij | ≥ θmax

k 6=i
|aik|

}
, for some fixed θ ∈ (0, 1) (4.5.17)

Using this measure in the complex case, it must also be the case that, for H-matrices, algebraically

smooth errors vary slowly between strongly connected points. Furthermore, using this defini-

tion, AMG coarse grids may be selected using a maximal independent set algorithm as already

discussed in this thesis (ISOs). It is worth mentioning that the choice of strong connections and

AMG coarsening in general, is still an area of active research. To see another interesting rela-

tionship between multigrid approaches for non symmetric real matrices and their equivalent real

form of a complex matrix, consider the following setting:

• let A(R), A(I) ∈ Rn×n
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• write A ∈ Cn×n as A = A(R) + ıA(I) (ı2 = −1)

• let u = u(R) + ıu(I), u(R),u(I) ∈ Rn

• let b = b(R) + ıb(I), f(R), f(I) ∈ Rn

• then the complex system Au = b can be expressed in terms of its real parts as:[
A(R) −A(I)

A(I) A(R)

](
u(R)

u(I)

)
=

(
b(R)

b(I)

)
(4.5.18)

In this thesis, two ways of constructing an interpolation operator are discussed. The first one is

the following: it can be shown, using local Fourier analysis, that for (non-symmetric) matrices,

the interpolation procedure should be constructed based on the symmetric part of the operator

being considered (see Wienand and Oosterlee, ref. 23). For an Hermitian operator, the equivalent

real form is symmetric and for a complex symmetric operator the symmetric part of the equiv-

alent real form is a block diagonal matrix. So building the interpolation procedure in this way,

means that one determines the information only on the real part of matrix A. It appears that this

way of constructing the interpolation operator is too restrictive to apply in all interesting cases

as a black box solver. To deal with this, a natural complex extension of the coefficients wij in

(4.5.11) has to be made to define the interpolation operator.

For more details about this relationship between multigrid approaches for non symmetric real

matrices and their equivalent real form of a complex matrix, the reader is referred to Maclachlan

et al. (ref. 15, p. 1553).

In the next subsection the restriction operator will be briefly discussed.

4.5.2.2 Restriction
In the work of Maclachlan et al. (ref. 15) three ways of constructing a restriction operator are

discussed. These three ways are summarized below:

1. The first way of getting to a restriction operator is to choose a ‘simple’ injection-type op-

erator. However, the assumption must be made that the residuals at F -points are so small

that actually, they can be neglected in the coarse grid problem. Therefore this choice is not

commonly used in AMG. Furthermore, in the Hermitian-definite or complex-symmetric

cases, using injection as restriction operator leads to poor convergence.

2. The second approach is suggested by Dendy (ref. 4) and considers complex non-symmetric

operators. He suggests that, theoretically, the restriction operator should be determined

as the adjoint of the interpolation operator (he based his suggestion on experiments with

convection-diffusion problems). Note that this approach is the generalization of the setup

in the case of classical AMG (in the classical AMG case the interpolation and restriction

86



NLR-TR-2008-282

were related by the transpose). To use this approach, it is necessary to define an appro-

priate norm. However in general, the matrix A itself cannot be used to define this norm.

Therefore the normal form A∗A must be used, where A∗ denotes the Hermitian of A. The

disadvantage here can be the costs of forming A∗A in order to perform a restriction step.

However, if the basic AMG-interpolation scheme is adapted to these complications, this

approach can be very effective (it is not always necessary to store both the matrices A and

A∗).

3. The third approach uses an appropriate subspace decomposition of Rnand requires the sys-

tem matrix A to be Hermitian and definite (as this is not the case in the current application,

this approach will be briefly treated). The subspace is decomposed into the range of the

AMG-interpolation operator and its A-orthogonal complement. When a two-level multi-

grid cycle is performed, the coarse grid correction phase, eliminates the errors which lie in

the range of the AMG-interpolation operator (the algebraically smooth errors), while er-

rors that are A-orthogonal are reduced on the fine grid by a relaxation method. For more

details, the reader is referred to Maclachlan et al. (ref. 15).

As already seen, the power of AMG is strongly connected with the fact that AMG does not rely

on geometric information about the problem to be solved. However, as in the current problem

the finite element discretization method is used, there is some useful information available in the

element stiffness matrices that can be used. In the next subsection, algebraic multigrid will be

briefly considered for the finite element discretization method.

4.5.3 Algebraic multigrid for finite element discretization
In this subsection some remarks will be made about the work of Brezina et al. (ref. 13). In their

work, algebraic multigrid is considered based on element interpolation. They refer to their ap-

proach as AMGe. This AMG-type method is an algebraic multigrid method for solving the dis-

crete equations that arise in Ritz-type finite element methods for partial differential equations.

As this is the case in the current application, some remarks about the work of Brezina et al. are

included in this thesis.

AMGe assumes access to the element stiffness matrices in the finite element method and uses

theory and remarks derived in the classical multigrid theory. Some of them are summarized be-

low:

• The error in the direction of an eigenvector associated with a relatively large eigenvalue in

the spectrum of the system matrix, is rapidly reduced by relaxation.

• The error in the direction of an eigenvector associated with a relatively small eigenvalue

in the spectrum of the system matrix, is reduced by a factor that may approach 1 as the

eigenvalue approaches 0.
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• Smooth error varies slowest in the direction of strong connection.

• Interpolation must be able to approximate an eigenvector with an error bound proportional

to the size of the associated eigenvalue.

The properties listed above provide the basis for constructing effective interpolation and coars-

ening operators for AMG(e). In the work of Brezina et al. (ref. 13) the interpolation process is

analyzed.

This subsection is ended with some concluding remarks about the paper of Brezina et al. (ref.

13). They presented two local measures based on finite element theory and classical multigrid

approximations properties. These two quantities measure how well the local coarsening process

determines algebraically smooth error while they provide a basis for constructing better coars-

ening. Using some numerical experiments, they also confirmed that the resulting interpolation

operators lead to improved AMG convergence rates for their test problems: a Poisson equation

discretized on stretched quadrilaterals and a plane-stress cantilever beam.

In the next subsection, some concluding remarks are made about algebraic multigrid combined

with the shifted Laplace preconditioner.

4.6 An AMG solver as part of the shifted Laplace preconditioner
It is not likely that in the time available, a full algebraic multigrid solver can be realized for in-

corporation in the existing algorithm, and on the other hand there are many AMG black box

solvers available. The task is to formulate certain requirements for an AMG black box solver in

order to incorporate it in the existing algorithm with minimal effort. In this section the following

requirements on the black box solver will be discussed:

- vectorization

- matrix-free implementation

- parallel computing

4.6.1 Vectorization
As the main computing platform used at NLR is a NEC SX-8R 8 processor shared memory vec-

tor machine, an appropriate formulation of the black box code is necessary: it should be able to

perform vector calculations. To give an intuitive feeling for vectorization, consider the follow-

ing example. A matrix-multiplication A × B = C for 5 rows and 5 columns would mean that

a ‘traditional’ machine without vector optimization would need 52 = 25 steps of addition and

multiplication for getting the result C.

A vector machine deals with a whole row and column at once, resulting in only 5 clockcycles. In

other words: “traditional” iterative approaches require O(N2) clockcycles to perform an matrix-
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multiplication, whereas vector-approaches run linear in O(N), if N is the total number of un-

knowns.

Another property of vectorization is the need for so called direct addressing in loop structures:

the location of the variables in memory handled in the next step of the loop, can be computed

trivially.

This will be explained by the following example:

The goal is to compute the product y = Ax which can be achieved by: y(i) =
∑

k A(i, k)x(k),

for a certain i. Note that one way of storing a sparse matrix A is by using the following arrays:

• A(i, k) : the value aik

• L(i) : the number of the row i

• K(i, k) : the number of the column k

Assume that matrix A has dimensions N ×N . To perform the product, direct addressing uses the

vectorization as follows:

For a certain i = 1..N

for k = 1..N

y(i) = A(i, k) ∗ x(k)
end

End

This is done in O(N) clockcycles.

Opposite to direct addressing is indirect addressing:

For a certain i = 1..N

for k = 1..L(i)

y(i) = A(i, k) ∗ x(K(i, k))

end

End

This is done in O(N × length(L(i))) clockcycles. When length(L(i)) = N , this indirect multi-

plication is performed in O(N2) clockcycles.

Finally, a direct consequence of vectorization is the need of a matrix-free implementation, which

will be treated in the next subsection.
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4.6.2 Matrix-free implementation
In this subsection the matrix-free implementation in the existing algorithms will be explained.

The direct solver and the iterative solver proposed by Hooghiemstra (ref. 8 and 9) both use the

matrix-free implementation. The direct solver avoids assembling the element matrices in the

system matrix analogous to the iterative solver proposed by Hooghiemstra. In addition, this it-

erative solver also avoids indirect addressing. Incorporating algebraic multigrid in the existing

algorithm, should preferably also avoid assemblage and use direct addressing.

In the next subsections these three approaches are discussed.

4.6.2.1 Direct solver
It is well known that greatest disadvantage of direct solvers are the large memory requirements.

An example of a direct solver that can be used with the finite element method, is the frontal

solution method. This method keeps track of a number of active variables and by continuously

adding new variables, other variables are fully summed and will be eliminated. In general there

are only a few variables in action at the same time which form a front, explaining the name of

the method. For more about this method, the reader is referred to Hooghiemstra (ref. 8, Section

4.2.2).

In the next subsection, the solution procedure proposed by Hooghiemstra will be discussed.

4.6.2.2 Present implementation – GCR as iterative solver for the preconditioner system
The idea proposed by Hooghiemstra is already explained in Subsection 3.3.3 and is repeated here

for convenience: the idea is to combine the triangular preconditioner with the shifted Laplace

preconditioner, resulting in:

Mnew =

[
M2 A12

0 A22

]
(4.6.1)

and the new preconditioned system to be solved is given by:

Mnews
k = rk−1 (4.6.2)

This is done in two steps:

1. solve A22s
k
2 = rk−1

2 with a precomputed LU decomposition of A22 (this has to be com-

puted only once)

2. solve M2s
k
1 = rk−1

1 −A12s
k
2 using GCR

This preconditioner is constructed in an efficient way and the matrix M2 originates from the fi-

nite element discretization of the shifted Laplace operator. The product in the second step above

is performed matrix-free, which means that the matrix M2 is not assembled from the element
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matrices14. The advantage here is that it is not necessary to store the complete matrix and for

large sparse matrices this leads to a huge saving in memory. Furthermore, the multiplication

with the sparse matrix is done as a sequence multiplications with the densely populated element

matrices, eliminating the need for indirect addressing. However, when the total number of un-

knowns increases, the total work to store the entire Krylov base for the GCR method becomes

unacceptably high (recall that GCR is a long recurrence method).

In the next subsection the idea of using algebraic multigrid as solver for the preconditioner sys-

tem will be discussed.

4.6.2.3 Present implementation – AMG as iterative solver for the preconditioner system
Another way of solving the preconditioner system M2s

k
1 is by using algebraic multigrid as itera-

tive solver. It is expected that using AMG will lead to the following advantages:

• the preconditioner will remain constant

• a constant preconditioner makes it possible to use a short recurrence method

• a short recurrence method leads to an considerable reduction in the storage requirements

Note
The fact that multigrid methods can solve a system of M unknowns in cM arithmetic operations,

will not lead to a great gain compared to the work of using GCR as proposed by Hooghiemstra

(ref. 8). The main reason for GCR to perform poor, are the storage requirements when M in-

creases (when M ≥ 5.0 · 105 the memory requirements can not be met). Here M denotes the

number of degrees of freedom. This is not necessarily equal to the total number of unknowns N .

As in the current application the element matrices are used without assembling, it would be ad-

vantageous to do that also when using AMG. Furthermore, as the element matrices contain use-

ful information for computational aspects, it is required that the AMG black box solver uses the

element matrices as one of the input parameters, instead of the whole system matrix.

In the next subsection a final requirement for the black box solver is stated.

14Note that the size of the element matrices depends on the order of the vector basis functions used. In the current

application, second order tetrahedral elements are used, which results in 45 basis functions ⇒ size of element matrix

is 45
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4.6.3 Parallel computing
The present algorithm is not parallelizable and hence it runs on a single processor. When a do-

main decomposition method would be applied, it is possible to parallelize the algorithm. As

one property of multigrid methods is the possibility of parallel application, the AMG black box

should be usable for parallel computing.

4.7 Choosing the most appropriate AMG black box solver
Based on the criteria for the algebraic black box solver formulated in the previous section, an ap-

propriate algebraic multigrid black box algorithm must be chosen. Unfortunately, at the moment,

there are no black box solvers available which are suitable for vector computations nor black box

solvers which have a matrix-free implementation. However, these requirements do not have to be

fulfilled to be able to proof the concept of AMG acceleration for this application. According to

the information about available multigrid solvers (S.P. Maclachlan and C.W. Oosterlee, ref. 14),

the most suitable black box solver for the current application is a Multilevel (ML) Precondition-

ing Package developed by Sandia National Laboratories.

ML is designed to solve large sparse linear systems of equations arising primarily from elliptic

PDE discretizations. ML is used to define and build multigrid solvers and preconditioners, and

it contains black-box classes to construct highly-scalable smoothed aggregation preconditioners.

ML preconditioners have been used on thousands of processors for a variety of problems, includ-

ing the Maxwell equations (see ref. 12). When it turns out that this AMG concept significantly

improves the solution procedure, alternative ways to fulfill the requirements of vector computa-

tions and matrix-free implementation will be sought.
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5 Conclusion & recommendations

In this thesis a multigrid solution method is considered in order to accelerate the solution of the

discretized vector wave equation. This equation is discretized by the finite element discretization

method, using tetrahedral elements and higher order vector based basis functions. The resulting

system can be denoted by

Au = f

where matrix A is indefinite, ill-conditioned, ‘nearly’ symmetric (but not Hermitian), partly

sparse and partly fully populated.

In ref. 7, Erlangga proposed an iterative method to effectively solve the discrete Helmholtz equa-

tion in two and three dimensions at very high wavenumbers. He showed that multigrid can be

applied to a properly chosen preconditioning operator, namely the shifted Laplace operator. As

the Helmholtz equation and the Maxwell’s equations have similar properties, it is expected that

multigrid will also be very effective to use in the present implementation.

Using multigrid in order to optimize the storage requirements in the current application, will re-

sult in a so called constant preconditioner (in the present implementation the preconditioner is

changed every iteration). When the preconditioner remains constant, the GCR method used in

the current algorithm can be replaced by a short recurrence method e.g. Bi-CGSTAB. As short

recurrence methods use only a few of the latest basis vectors to generate the new basis vector, the

memory requirements will be reduced significantly compared to the existing implementation.

Multigrid methods can be classified as geometric or algebraic depending on the availability of

the underlying grid and the definitions of the smoothing operators. Geometric multigrid strongly

depends on structured grids, which is not the case in the current application. Therefore, alge-

braic multigrid will be used to be incorporated in the current solution algorithm. Since it is not

possible to implement a full algebraic multigrid solver in the time available, and given the fact

that several algebraic black box solvers are available, it is recommended to choose an appropri-

ate black box solver to incorporate in the existing algorithm. To achieve this efficiently, the black

box solver also has to fulfill certain requirements discussed in Section 4.6:

• vectorization

• matrix-free implementation

• parallel computing

Unfortunately, at the moment, there are no black box solvers available which are suitable for

vector computations nor black box solvers which have a matrix-free implementation. The most

suitable black box solver for the current application is a Multilevel (ML) Preconditioning Pack-
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age developed by Sandia National Laboratories. This AMG algorithm will be incorporated in the

existing algorithm.
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6 Future research

The chosen AMG algorithm will be incorporated in the iterative solver of Hooghiemstra (ref. 8

and 9), and will replace the solution algorithm for the preconditioner solve. Hereafter, the depen-

dence of the AMG algorithm on different parameter settings, will be evaluated (e.g.: number of

pre- and postsmoothings, cycle type, etc.).

Additionally, the GCR algorithm used by Hooghiemstra, will be replaced by an appropriate short

recurrence method, e.g. Bi-CGSTAB or IDR(s).
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Appendix A Electromagnetic quantities

In this appendix the basic SI (International System of Units) are discussed. In Table 4 the quanti-

ties used in Chapter 2 are given with their units and corresponding SI units.

In Chapter 2 also the vacuum values ε0 and µ0 were introduced. Their values are given by:

µ0 = 4π ∗ 10−7 F

m
and ε0 =

1
c2µ0

= 8.8542 ∗ 10−12Wb

Am
,

where c is the speed of light with value c = 2.9979 ∗ 108m

s

Quantity Name Units SI units

ε permittivity
[

farads
m

]
[kg−1m−3A2s4]

µ permeability
[

henry
m

]
[kgms−2A−2]

σ conductivity
[

siemens
m

]
[kg−1m−3s3A2]

Table 4 List of quantities with their units and SI units
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Appendix B Useful definitions and fundamental relations

In this appendix some useful definitions and important relations are recalled.

(Vector) Inner product
An inner product on a (complex) vector space X is any mapping s from X× X into C,

x, y ∈ X → s(x, y) ∈ C,

that satisfies the following conditions:

1. s(x, y) is linear with respect to x:

s(λ1x1 + λ2x2, y) = λ1s(x1, y) + λ2s(x2, y) ∀x1, x2 ∈ X,∀λ1, λ2 ∈ C

2. s(x, y) is Hermitian:

s(y, x) = s(x, y) ∀x, y ∈ X

3. s(x, x) is positive definite:

s(x, x) ≥ 0 and s(x, x) = 0 iff x = 0

An inner product will be denoted by: (., .)

Vector norm
A vector norm on a vector space X is a real-valued function x → ||x|| on X that satisfies the

following three conditions:

1. ||x|| ≥ 0 ∀x ∈ X and ||x|| = 0 iff x = 0

2. α||x|| = |α|||x|| ∀x ∈ X ∀α ∈ C
3. ||x+ y|| ≤ ||x||+ ||y|| ∀x, y ∈ X (triangle inequality)

Hölder p-norms
The most commonly used vector norms in numerical linear algebra are special cases of the Hölder

norms:

||x||p =

(
n∑

i=1

|x|p
) 1

p

These special cases are p = 1, 2 or p = ∞:

||x||1 = |x1|+ |x2|+ . . .+ |xn|

||x||2 = [|x1|2 + |x2|2 + . . .+ |xn|2]
1
2

||x||∞ = max
i=1,...,n

|xi|
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Matrix norms
For a general matrix A ∈ Cn×m the following is defined:

||A||pq = sup
x∈Cm,x 6=0

||Ax||p
||x||q

Subspaces
A subspace of Cn is a subset of Cn that is also a complex vector space. The set of all linear com-

binations of a set of vectors G of Cn is a vector subspace called the linear span of G.

Two important subspaces that are associated with a matrix A ∈ Cn×n are its:

• Ran(A) = {Ax|x ∈ Cm}
• Ker(A) = {x ∈ Cm|Ax = 0}

Remark The range of A is equal to the linear span of its columns.

Fundamental relation I

Cn = Ran(A)⊕ Ker(AT ) (FR I)

Projector A projector P is any linear mapping from Cn to itself that is idempotent:

P 2 = P

Fundamental relation II
If P is a projector, then so is (I − P ) and the following relation holds:

Ker(P ) = Ran(I − P ) (FR II)

and the following two important properties:

• the two subspace Ker(P ) and Ran(P ) intersect only at the element zero

• Cn = Ker(P )⊕ Ran(P )

Ah-orthogonal
Ah-orthogonality is denoted by (., .)Ah

and is defined as

(x, y)Ah
:= (Ahx, y) for x, y ∈ Cn
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Energy norm
When a matrix B is symmetric and positive definite, the mapping

x, y → (x, y)B := (Bx, y)

from Cn × Cn to C is a proper inner product on Cn.

The associated norm is referred to as the energy norm or B-norm:

||.||B :=
√

(x, y)B

Rayleigh quotient
An eigenvalue λ of any matrix A satisfies the relation

λ =
(Au, u)
(u, u)

(B.0.1)

where u is an associated eigenvector.

Define the (complex) scalars µ(x) as

µ(x) =
(Ax, x)
(x, x)

(B.0.2)

for any nonzero vector x ∈ Cn.

The ratios in (B.0.1) and (B.0.2) are called Rayleigh quotients.

A small Rayleigh quotient implies that a vector v is a linear combination of the eigenvectors of A

with smallest eigenvalues.

The set of all possible Rayleigh quotients is bounded by the 2-norm of A:

|µ(x)| ≤ ||A||2,∀x ∈ Cn

and is called the field of values of A.
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Appendix C Independent and group sets

In this appendix independent set orderings are treated followed by group independent sets (also

see Saad, ref. 26, Chapter 3).

Independent set ordering

ISOs are effectively applied on matrices with the following structure:

A =

[
D E

F C

]
(C.0.3)

in which D is diagonal and C,E and F are sparse matrices. The upper diagonal block corre-

sponds to unknowns from the previous levels of refinement and its presence is due to the order-

ing of equations in use. As new vertices are created in the refined grid, they are given new num-

bers and the initial numbering of the vertices in unchanged. since toe old connected vertices are

“cut” by new ones, they are no longer related by equations. Such sets are called independent sets

and they are especially useful in parallel computing for implementing direct and iterative meth-

ods.

Referring to the adjacency graph G = (V,E) of the matrix and denoting by (x, y) the edge from

vertex x to vertex y, an independent set S is a subset of the vertex set V such that:

if x ∈ S, then {(x, y) ∈ E or (y, x) ∈ E} → y 6∈ S

So elements of S are not allowed to be connected to other elements of S either by incoming of

outgoing edges.

An independent set is maximal if it cannot be augmented by elements in its complement to form

a larger independent set (a maximal independent set is not necessarily the largest possible inde-

pendent set that can be found).
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Group independent set

A group independent set is a collection of subsets of unknowns such that there is no coupling be-

tween unknowns of any two different groups. Unknowns within the same group may be coupled

(see Figure C.0.1).

No coupling

Fig. C.0.1 Group (or block) independent sets
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