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Reservoir simulation. Porous media flow

Figure: Geological model and well setup for the Norne example. Colours show
the horizontal permeability.
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Problem formulation

1 Darcy’s law

v⃗ = −K
µ

(∇p − gρ∇z)

2 Mass-Balance equation

∂(φρ)
∂t

+∇ ⋅ (ρv⃗) = ρq

3 Pressure equation

−∇ ⋅ [ρK
µ

(∇p − gρ∇z)] = q ⇐⇒ −∇ ⋅K∇Φ = q

Boundary conditions

• Neumann: v⃗ ⋅ n⃗ = 0 for x⃗ ∈ ∂Ω;

• Dirichlet: p(x⃗) = pa(x⃗ , t) for x⃗ ∈ Γa ⊂ ∂Ω.
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Discretization. Two-Point Flux Approximation (TPFA)

• approximate the flux across an interface by using the pressure
difference between the pressure points of the two adjacent cells;

• monotone, robust, and relatively simple to implement, and is
currently the industry standard for reservoir simulation;

• only consistent and convergent if the grid is K -orthogonal.
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Discretization. Multi-Point Flux Approximation (MPFA)

• suitable for non-orthogonal grids;

• uses a generalization of the harmonic mean of permeabilities;

• has different variations: O-method, U-method and L-method.

Figure: MPFA-O method
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Preconditioning

Ax = b ⇐⇒ M−1Ax =M−1b

Classical preconditioners

• Jacobi: M = diag(A);

• Gauss-Seidel: M = L +D;

• Incomplete LU factorization: M = LapproxUapprox ;

Algebraic MultiGrid (AMG)

• extremely robust in terms of algorithmic efficiency;

• unconditional option for porous media flow simulation;

• drawbacks: weakly scalable, expensive setup;
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Multiscale approach: the main idea

1 Discretized and linearized initial fine-scale system, incorporating all
details of geological model

−∇ ⋅ λ∇p = q ⇐⇒ Ax = q

2 Multiscale expansion: using constructed basis functions, restrict
fine-scale system and right-hand side

Ax = q ⇐⇒ RAP(P−1x) = Rq ⇐⇒ Acxc = qc

where R and P are restriction and prolongation operators

3 Solve reduced system and prolongate to obtain approximate
pressure

xc = A−1
c qc ⇒ x = Pxc
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Multiscale Restriction-Smoothed Basis Method (MsRSB)

• current robust state-of-the-art method, showing good performance
on multiphase (in)compressible flow as well as black oil models;

• unlike other methods, basis functions are obtained by restricted
smoothing: starting from a constant, prolongation operators are
computed iteratively on the fine-scale grid in a such way as to be
consistent with the local properties of the differential operators,
while the restriction operator is determined via either a Galerkin
operator or control volume summation operator:

Pn+1
j = (I − ωD−1A)Pn

j , D = diag(A) and ω = 2/3

RG = PT or (RCV )ij = 1Ωi
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Deflation

• ill-conditioned Ax = b, A ∈ Rn×n with extreme eigenvalues (due to
severe discontinuities in the reservoir properties, e.g. large jumps)

• remove extreme eigenvalues, but leave remainder eigenvalues
unchanged

Deflation preconditioning

• define E = ZTAZ , E ∈ Rd×d (d << n) and P1 = I −AZE−1ZT

• columns of Z span deflation subspace

• deflated system P1Ax̂ = P1b

• original solution is calculated using P2 = I − ZE−1ZTA

x = (I − P2)x + P2x = ZE−1ZTb + P2x
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Deflation vectors I

Approximated eigenvalues and eigenvectors may be computed using
Krylov subspace methods including Rayleigh-Ritz procedure in
combination with Arnoldi algorithm. In order to solve the general
eigenvalue problem Ax = λx we consider the decomposition
AVk = VkHk,k , where Vk is unitary and Hk,k is upper Hessenberg matrix

Ritz deflation

• x̂
(k)
j ∈ Kk(A, v1), r

(k)
j ⊥ Kk(A, v1)

• VH
k r
(k)
j = VH

k (Ax̂(k)j − λ̂(k)j x̂
(k)
j ) = Hk,kz

(k)
j − λ̂(k)j z

(k)
j = 0

Harmonic Ritz deflation

• x̂
(k)
j ∈ Kk(A, v1), r

(k)
j ⊥ AKk(A, v1)

• (AVk)H r
(k)
j = (AVk)H(Ax̂(k)j − λ̂(k)j x̂

(k)
j ) = 0
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Deflation vectors II

Physics-based deflation

• subdomain deflation

• levelset deflation

• subdomain-levelset deflation
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Adaptive Deflated Multiscale Solvers: Motivation

• Existing multiscale solvers use a sequence of aggressive restriction,
coarse-grid correction and prolongation operators to handle
low-frequency modes on the coarse grid;

• High-frequency errors are resolved by employing a smoother on the
fine grid;

• Deflation preconditioning improves matrix properties, i.e., damps
slowly varying errors, corresponding to extreme eigenvalues, in the
linear solver residuals.

▸ Various Adapted Deflated Multiscale Solvers are proposed as a
robust alternative to AMG in order to detect the low-frequency
modes instead of relying on the residual map and complement
today’s state-of-the-art advanced iterative multiscale strategies
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Adaptive Deflated Multiscale Solvers I

For the preconditioned deflated system

P1A
f p̂f = P1b

f

the following methods to construct a coarse pressure system in three
different ways are proposed

Fully ADMS (F-ADMS)

P1A
f pf = P1b

f ⇐⇒ RP1A
f Pp̂c = RP1b

f , where Pp̂c = pf

⇒ p̂c = (RP1A
f P)−1RP1b

f

⇒ pf ≈ ZE−1ZTbf + P2Pp̂
c = [ZE−1ZT + P2P(RP1A

f P)−1RP1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M−1
F−ADMS

bf
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Adaptive Deflated Multiscale Solvers II

Decoupled ADMS (D-ADMS)

• the most trivial way of coupling deflation method with the
multiscale solver

• pf ≈ [ZE−1ZT + P(RAf P)−1R]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

M−1
D−ADMS

bf

Mixed ADMS (M-ADMS)

• employs an enriched set of basis functions, consisting of the
conventional multiscale local basis functions and globally
constructed deflation vectors

• pf ≈ P̂ (R̂Af P̂)−1
R̂

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M−1

M−ADMS

bf , where P̂ = [P;Z ] and R̂ = P̂T
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MATLAB Reservoir Simulation Toolbox (MRST)

• add-on modules: basic fluid functionality, TPFA and MPFA-O
discretizations for Poisson-type pressure equation, MsRSB method;

• public datasets: SPE10;

• third-party packages: grid partitioning using METIS.

Figure: Original fine grid, 11 864 cells. Topological coarsening using METIS,
175 blocks.
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Test problems

1 ”Islands” model problem;

2 Fractured reservoir;

3 Layer of the SPE10 Comparative Solution Project, Model 2.

Figure: SPE10 layer, logarithm of horizontal and vertical permeability
seen from below.
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Results. ”Islands” model problem
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Results. ”Islands”. Preconditioners performance

Figure: 32 subdomains, physics-based deflation
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Results. ”Islands”. ADMS comparison

number of deflation matrix
subdomains Zpb Zms Zt

16 120 95 67

32 113 77 61

64 14 16 6

Table: GMRES iterations using decoupled ADMS

subdomains Decoupled ADMS Mixed ADMS Fully ADMS
16 38 16 10

32 29 12 9

64 14 10 6

Table: ADMS performance using physics-based deflation
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Results. ”Islands”. ADMS comparison

Figure: Comparison between ADMS modifications

21 / 31



Results. Fractured reservoir
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Results. Fractured reservoir. Matrix
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Results. Fractured reservoir. Preconditioners performance

Figure: Preconditioners performance comparison using Zms
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Results. Fractured reservoir. Decoupled ADMS

Figure: Decoupled ADMS convergence with different deflation matrices
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Results. SPE10 layer
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Results. SPE10 layer

Figure: Preconditioners performance comparison using Zms
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Results. SPE10 layer. Decoupled ADMS

Figure: Decoupled ADMS convergence with different deflation matrices
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Results. SPE10 layer. Decoupled ADMS

Figure: Decoupled ADMS convergence for different grid partitioning
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Conclusion and recommendations

• ADMS show good performance especially for heterogeneous
domains with long coherent structures with high contrasts;

• Fully ADMS outperforms Mixed and Decoupled versions in terms
of the number of required iterations, however in some cases Mixed
ADMS performance is comparable to Fully ADMS and is much
easier to implement;

• If physics-based deflation vectors cannot be constructed intuitively,
then (Harmonic) Ritz values and multiscale basis functions should
be considered as an alternative option;

• Even relatively coarse partitioning leads to the fast convergence
rate in case of real-world reservoir examples (SPE10 layer).
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Questions and feedback

Thank you!

Questions?
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