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NOMENCLATURE

ATECs Adipose Tissue Endothelial Cells - Endothelial cells derived from fat tissue, mostly from adipose hu-
man subjects.

bFGF basic Fibroblast Growth Factor - An angiogenic growth factor secreted by fibroblasts.

BM Basement Membrane or Boundary Membrane. A fibre like structure underneath ECs

CPM Cellular Potts model

ECF Extracellular Fluid

ECM Extracellular Matrix - The mixture of proteins, growth-factors and carbohydrates surrounding cells in
vivo

ECs Endothelial Cells

HDVECs Human Dermal Vascular Endothelial Cells - ECs derived from the human dermis.

MDGFs Macrophage Derived Growth Factors

MMP Matrix metalloproteinases - A group of proteases degrading the basement membrane

PDE Partial Differential Equation

TNF-α Tumor Necrosis Factor alpha - A cytokine secreted by a variety of cells and adipose tissue.

TST Tissue Simulation Toolbox

uPA urokinase-type Plasminogen Activator - Protease degrading fibrin.

VE-cadherin Vascular Endothelial Cadherin

VEGF Vascular Endothelial Growth Factor

v





1
ANGIOGENESIS

1.1. INTRODUCTION
Angiogenesis is the biological mechanism by which new blood vessels sprout from existing ones. It differs
from vasculogenesis, which is the de novo growth of the primary vascular network from initially dispersed
endothelial cells (ECs). Vasculogenesis is predominant in embryonic tissue whilst new vasculature in the
adult body arises mostly from angiogenesis. ECs, lining the inside of blood vessels, react to different angio-
genic stimuli and inhibitors. Among the stimuli is the vascular endothelial growth factor (VEGF) which is
up-regulated in tissue where the vascular structure is damaged or insufficiently developed to meet oxygen
demand.

The identification of the processes involved in angiogenesis is quite recent and has stirred increased interest
in therapeutic applications [1]. One can think of tissue repair in wound beds, inhibition of growth of tu-
morous tissue or vascular reform during the female reproductive cycle. Rossiter et al. [2] showed that VEGF
induced angiogenesis is crucial for wound healing in an experiment where wounds were inflicted upon nor-
mal and VEGF-deficient mice. New vasculature ensures supply of oxygen and lymphocytes and disposal of
carbon dioxide and lactates, acceleration wound healing and tissue reconstruction. The increased creation of
new vasculature around tumorous tissue is believed to follow the same process and inhibiting angiogenesis
is therefore an important topic in clinical cancer research.

Biochemical experiments can be either hard, time consuming, expensive or unethical. Computational mod-
els can be used to provide an easy, quick and cheap way to get insights that are hard to obtain otherwise with-
out conducting a laboratory experiment. Computer simulation will never make lab experiments obsolete but
can provide guidance in targeting viable hypotheses before conducting real-life experiments. Mathematical
modeling of biological cellular processes dates back to the simulation by Glazier and Graner in 1992. They
describe natural sorting behavior of different cell types [3] and different re-arrangement patterns driven by
the differential adhesion hypothesis [4]. This hypothesis states that cells of different types have specific po-
tential energies upon adhesion, driving sorting behavior.

In these simulations, the cellular Potts model1 (CPM) is used. A CPM for vasculogenesis based on this work
was made by Merks et al. [5],[6] in which a layer of partial differential equations (PDE’s ) models the chemoat-
tractants. Later, Merks added Vascular Endothelial cadherin (VE-cadherin) caused contact-inhibited chemo-
taxis to simulate angiogenic-like structure formation [7]. From an initial clump of ECs in the model sprouting
behavior appears. Merks postulates that both vasculogenesis and angiogenesis must be driven by the same
principles. To produce these results, a generic library called the Tissue Simulation Toolkit (TST) was written
in C++ starting from 2004 modeling the CPM described by Glazier et al. [4] in a generic way. Merks [7] exten-
sively describes the advantages of a cell based approach over a continuum approach. However, his CPM is
computationally heavy, limiting the scalability of the possible problem domain.

1Also sometimes referred to as the large-Q Potts model or Glazier-Graner-Hogeweg model.
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2 1. ANGIOGENESIS

Vermolen and Gefen [8] have described tissue behavior using a semi-stochastic cell-based formalism to model
the migration of cells in colonies in the context of wound healing, tumor growth, bone ingrowth and contrac-
tion formation. Movement of cells is assumed to be the result of a strain energy density working as a mechan-
ical stimulus. The model tracks displacement and viability of individual spherical cells.

The aim of this research is to apply this semi-stochastic cell-based formalism to describe angiogenesis, hence
connecting this modeling approach with the subject of Merks’ work. The need for such a model is clearly
stated in the discussion of Vermolen’s work [9]. Thanks to the computational less heavy character compared
to the CPM, we hope to be able to simulate larger areas to get a better glance at large scale behavior whilst
still being able to benefit from the cell-based character of the model. We also make improvements to the bio-
chemical model for the substrate. The challenge will be to to transport the advantages of Merks’ CPM, like cell
shape specific behavior, tracking of elongation patterns and cell-cell contact behavior, to this new formalism.

To biochemically verify our results, we work together with the VU Medical Center Dermatology Department.
This department does in vitro laboratory research on many dermal cell types and dermal processes, among
which ECs, angiogenesis and its growth factors. The first aim of this research is to mimic their in vitro work
using our computational model, simulating the angiogenic response to different chemical stimuli like VEGF.

1.2. ANGIOGENESIS

1.2.1. IN VIVO ANGIOGENESIS

Sprouting angiogenesis is the formation of new blood vessels from existing ones, usually towards hypoxic tis-
sue to meet oxygen demand. In sprouting angiogenesis new microvascular structures “sprout” from existing
blood vessels. The process can be roughly divided in five phases depicted in Figure 1.1. Firstly, angiogenic
growth factors, like VEGF, are secreted by oxygen deprived cells. ECs in existing vessels get activated to form
new vasculature and a selected number of ECs differentiate in tip cells which lead the sprout. The tip cells
release proteases, among others matrix metalloproteinases (MMP) , which degrade the basement membrane
underneath the endothelium. The ECs than migrate into the surroundings, forming sprouts by degrading the
extracellular matrix (ECM) by proteases like the urokinase-type plasminogen activator (uPA) . In the morpho-
genesis phase, by the lack of VEGF, the sprouting stabilizes and new boundary membrane is formed around
the formed vasculature. Sprouting occurs at a rate of several millimeters per day.

Figure 1.1: Phases of sprouting angiogenesis

In intussusceptive angiogenesis, also splitting angiogenesis, ECs in an existing vessel connect to form two lu-
men, splitting an existing vessel into two vessels. This type of angiogenesis is not considered in this research.

1.2.2. EXPERIMENTAL SPROUTING ASSAY SETUP

The dermatology department of the VU University Amsterdam Medical Center carries out several in vitro
assays using either Adipose Tissue Endothelial Cells (ATECs) or Human Dermal Vascular Endothelial Cells
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(HDVECs) on different substrates like fibrin or gelatin gels. We are particularly interested in the sprouting
assay on fibrin gel which is carried out in a standard 96 well plate depicted in Figure 1.2.

Figure 1.2: 96 well plate. Wells are cylindrical with a diameter of 7 mm

On the first day, a 100 µl fibrin gel (3 mg/ml fibrinogen with 0.5 µg/ml thrombine IIa) is placed in each well
on top of which a 100 µl solution is poured containing around 20.000 EC’s. This entails a total height of the
fibrin and fluid in the well of 5.2 mm. Experimental observations show that typical EC’s have a diameter of
around 45 µm. The EC’s “sink” and adhere to the gel, thus forming a confluent mono layer covering almost
the complete surface of the fibrin as depicted in the microscopic images in Figure 1.3.

Figure 1.3: HDVEC type ECs on a fibrin gel.

On the second day, a 2 ng /ml Tumor Necrosis Factor alpha (TNF-α) concentration is added and either dif-
ferent concentrations VEGF or basic Fibroblast Growth Factor (bFGF) . TNF-α is a cytokine, in vivo secreted
by adipose tissue, that is added to activate the EC’s. The effect of both angiogenic stimuli VEGF and bFGF is
measured for different concentrations. VEGF is added in concentrations 25ng /ml , 10ng /ml , 3,3ng /ml ,
1,1ng /ml , 0,3ng /ml and 0,1ng /ml . bFGF is added in concentrations 10ng /ml , 3,3ng /ml , 1,1ng /ml ,
0,3ng /ml and 0,1ng /ml .

On either the fourth or fifth day, dependent on the donor specific cell motility, the substrates are fixated. The
sprouting into the fibrin gel is observed using microscopic images.
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1.2.3. DRIVING FORCES ON CELLS IN SPROUTING ANGIOGENESIS
We identify several factors driving the motility of cells on the fibrin matrix. To what extent each process is of
influence or even dominant is a topic of future research.

CHEMOTAXIS

Gamba [10] and Serini [11] describe chemotaxis as the movement of cells in response to a chemical stimulus.
One speaks of positive (negative) chemotaxis if the movement is in the (opposite) direction of the gradient and
the chemical is called a chemoattractant (chemorepellent). Chemoattractants may be, following the Keller-
Segel model formulated by Horstman [12], secreted by the cells themselves, thus forming isolated clusters of
cells. The chemotactic process is thanks to pseudopodia on the cell membranes “reaching” towards higher
concentrations of the chemoattractant and pulling the cell in this direction. Inflammatory mediators such as
TNF-α may increase the motility of cells.

HAPTOTAXIS

Cells “pull” on the ECM causing a strain by which other cells get pulled along the stress lines. As of 1995,
mathematical models for haptotaxis have been proposes by Vernon [13], Namy [14] and Manoussaki [15, 16].

1.2.4. CONTACT FORCES
Cells can adhere to each other by physically attaching their cell membranes using surface proteins like cad-
herins. ECs adhere to each other using Vascular Endothelial cadherin (VE-cadherin) bounds. VE-cadherin
at the same time works as in inhibitor of chemotactic movement caused by VEGF by binding to the same
receptor needed for chemotaxis. Merks describes this contact inhibition in his CPM in [17].

Cells also adhere to the ECM using transmembrane integrin receptors. This causes resistance in movement
caused by external forces.

ELASTICITY

ECs have an optimal, elliptic, shape and exercise forces on elastic deformation. Gefen [18] proposes a model
for these forces.

1.3. MODELING ANGIOGENESIS MATHEMATICALLY
In this section we explore the different methods of modeling angiogenesis mathematically. We distinguish
CPMs, Semi stochastic cell-based models and continuum models and compare them. It is important to note
that all models use PDEs to model the diffusion, reaction and production of chemoattractants and other
chemicals. The difference lies in the way the models describe cell behavior. The CPM models individual cells
as collections of lattice sites. The semi-stochastic cell based model proposes that individual cells are spheres.
Continuum models describes cell densities and therefore do not track movement of individual cells.

1.3.1. THE CELLULAR POTTS MODEL
The CPM for simulation of biological cells was first used by Glazier and Graner in 1992 [3]. It is a lattice-based
computational model derived from cellular-automaton models having stochastic evolvement. It assigns a
cell ID σ = 1, . . . , N (formerly “spin”) to a region of lattice sites. Lattice sites having the same ID form N bio-
logical cell. The model evolves by updating the lattice-sites one at a time according to probabilistic rules and
a Hamiltonian function H assigning an effective energy to each lattice-site.

At each step, a lattice site σ is picked randomly and immediately it’s cell ID i is changed to j whenever the
effective energy gain ∆H = H(σ j )−H(σi ) is negative (i.e. more energy efficient) and it is changed with a
probability whenever the gain is positive, i.e.

P(∆H) =
{

1 if∆H< 0,

e
−∆H

kT if∆H≥ 0.

Here, T is the temperature and k is a parameter governing the likelihood of energy inefficient changes. Cell
ID changes are only allowed to cell IDs of the adjacent lattice sites.
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The Hamiltonian plays a central role in the proliferation of the cells. Glazier and Graner [3] implemented a
Hamiltonian incorporating cell-cell adhesion, connectivity of the cells, elasticity (shape constraint) and target
volume. In the model by Merks [6], we see the Hamiltonian

H =Hcont act +Hshape +Hhaptot axi s

= ∑
x,x′

Jτ(x),τ(x′)

+ ∑
c∈cel l s

λar ea(τc )[A(c)− At ar g et (τc )]2 +λper i mi ter (τc )[P (c)−Pt ar g et (τ− c)]2

+ λhaptot axi s (c(x ′)− c(x)),

where x represents the current lattice site and x ′ represent the adjacent lattice sites. τ represents the cell ID.
The λ’s are scaling parameters to divide priority in the Hamiltonian between the different effects and At ar g et

and Pt ar g et are the desired cell area and perimeter.

A year later, Glazier and Graner added chemotaxis, the movement of cells in the direction of a gradient of a
chemoattractant c [4]. The chemotaxis in their model is based on a chemical gradient described by the PDE
(following their notation)

∂c

∂t
=αδσ(x),0 − (1−δσ(x),0)εc +∇2c,

solved by a finite difference scheme on a lattice coinciding with the CPM lattice. Here, δσ(x),0 is 1 inside cells
and 0 outside. α and ε are sourcing and reaction constants.

Although not necessarily shaped like this, CPMs mostly have a fixed square lattice. This can lead to coarse
shapes, especially for cells containing few lattice sites. The recursive lattice updates can be computationally
heavy. In older applications, the sequential modified Metropolis algorithm described by Chen [19] is used.
In 2007 Chen et al. introduced a parallel algorithm using checkerboard subgrids to speed up computations.
This allows for simulations with up to 107 lattice sites.

Merks claims that the CPM is beneficial in describing cell phenomenology like shape, elongation and cell-cell
contact interaction compared to continuum models. Furthermore he claims the model to be advantages in
describing how collections of exhibiting a certain phenomenology interact during biological morphogenesis
[5]. The TST was used to study the effects of cell elongation on vasculogenesis [6] and Merks conclude that
cell shape and cell-cell contact interaction are key in the process of angiogenesis.

1.3.2. SEMI-STOCHASTIC CELL-BASED MODEL

Vermolen and Gefen have formulated a semi-stochastic cell-based formalism for migration of cells in colonies
in [8]. In their work on a substrate Ω ⊂ R2, a set of N hemispherical cells is modeled. The choice for spheri-
cal cells is for computational reasons. For an overview of possibilities to include cell shape changes induces
by chemotaxis or mechanical influences, we refer the reader to [20]. They model four different types of cell
motility: haptotaxis, proliferation, random movement and elastic contact movement. Chemotaxis is not yet
implemented in this model, so we will consider this as an addition in upcoming work. We consider these
separately.

HAPTOTAXIS

The haptotactic response of cells to strain in the matrix is caused by the effect of traction forces of the cells
themselves. We first encounter this concept in a continuum model by Manoussaki in 1996 [15] and 2003 in
[16]. By this traction force, the substrate is distorted around the cell. This distortion is felt by other cells,
which distort the substrate as well by applying their own upward pulling forces. Individual cells sense the
distortion field through the strain energy density and then move along the stress lines. Vermolen and Gefen
[8] state that the strain energy density caused by an individual cell i , following Hooke’s law, is maximal at the
cell center ri
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M 0
i = F 2

i

2π2Es (ri )R4 ,

where Fi is the maximal traction force of cell i , Es (i ) is the local elasticity modulus of the substrate and R is
the cell radius. Furthermore, they approximate, according to the findings by Merkel in [21], that the strain
energy density decays exponentially with the radius with a rate proportional tot the ratio λi of the elasticity
modulus of the substrate Es (ri ) at the cell center ri and the elasticity modulus Ei of the cell itself, i.e.

Mi (r) = M 0
i exp

(
−λi

‖r− ri‖
R

)
= M 0

i exp

(
−Es (ri )

Ei

‖r− ri‖
R

)
. (1.1)

Then they argue that the total strain energy density is the sum of the strain energies of the individual cells and
evaluate the total strain energy density at a cell center ri to be

M(ri ) = M 0
i +

N∑
j=1 j 6=i

M 0
j exp

(
−Es (r j )

E j

‖ri − r j ‖
R

)
.

Now consider the displacement of a cell by means of the sensed mechanical stimulus. The displacement of
cell i caused by cell j is proportional to the strain energy density caused by cell j at cell center ri , i.e. M j (ri )

and in the direction of the line segment connecting cells i to j , i.e. vi j = ri−r j

‖ri−r j ‖ . Vermolen and Gefen argue

that the total displacement of cell i is parallel to the sum of the directional displacements zi caused by all
other cells, i.e.

zi =
N∑

j=1 j 6=i

M j (ri )vi j =
N∑

j=1 j 6=i

M 0
j exp

(
−Es (r j )

E j

‖ri − r j ‖
R

)
ri − r j

‖ri − r j ‖
.

One can normalize the direction of the total displacement ẑi = zi
‖zi ‖ . The displacement over time is propor-

tional to the strength of the mechanical signal and we have

ri (t +∆t )− ri (t )

∆t
=αi M(ri (t ))ẑi ,

ri (t +∆t ) = ri (t )+∆tαi M(ri (t ))ẑi ,

whereαi is a parameter with dimension
[

m3

N s

]
in which the force is directed along the substrate, perpendicular

to the upward force F . Finally, Gefen [18] argues that this quantity for viable cells equals

αi = βi R3

µFi
,

where βi quantifies the mobility of the cell surface of a cell and µ is a dimensionless quantity experimentally
tested to be 0.2 [18]. Especially for cells far away from each other, the strain energy M j (ri ) can attain very
small values, nullifying the contribution to zi . This advocates a detection threshold ε for the strain energy
density as a minimal signal strength that a cell can detect to reduce computational complexity. For details we
refer to Vermolen in [8].

In an additional paper, Vermolen and Gefen [22] add inertia to the movement of the cells and a slowing pa-
rameter depending on the lactate concentration in infected wound tissue. The concentration of the lactate is
modeled by a PDE where bacteria are added as point sources of lactate.

A topic open to research is how to extend this formalism to the 3 dimensional situation we want to model.

PROLIFERATION

Vermolen and Gefen introduce cell death and proliferation into the model using a stochastic process. At each
time step, each cell has a probability of dying, making the cell stationary and invariant of the strain energies.
Proliferation is modeled by adding a daughter cell and giving both cells a displacement as the mother cell
would have gotten with an extra tangent displacement ±R. Improvements upon this process can be made.
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RANDOM MOVEMENT

Vermolen and Gefen add random movement to the cells using a term ∆t (1−ui )w where

ui = ui (yi ) =
{

1, if yi ≤ pmp

0, if yi > pmp

for Yi ∼U (0,1) and some parameter pmp and w is a unit vector with stochastic angle.

In further research, we will use a different approach by adding a 3 dimensional Wiener process Wt = [W 1
t ,W 2

t ,W 3
t ]T

having W0 = 0, t → Wt continuous a.e. and for 0 ≤ s ≤ t having W i
t −W i

s ∼ N (0, t − s) for i = 1,2,3.

ELASTIC CONTACT MOVEMENT

Cells impinging upon each other will exercise repulsive forces. The direction of the force is along the line
segment connecting the cell centers and the magnitude is, according to elastic contact mechanics described
in [18], depending on the depth h both cells have to dent due to the collision. Using arguments from contact
mechanics from Johnson [23], Gefen describes the strain energy M i j due to a collision between cells i and j
to be

M i j = 4

15
p

2

E

π

(
h

R

)5/2

in which again R is the cell radius and E j is the elastic modulus. Since the contact forces are always in the op-
posite direction of the haptotactic forces, Vermolen subtracts this strain energy from the strain energy density
caused by the haptotactic cell forces in Equation 1.1, i.e. M̃i (r) = Mi (r)−M i j and use M̃i (r) in Equation ??.

CHEMOTAXIS

As with the CPM, chemicals in the tissue are modeled by PDE’s. Chemotaxis is not yet implemented in this
method but can be modeled by imposing forces on cells proportional to and in the direction of the chemical
gradient. This still is work for future research.

An alternative approach for modeling the chemicals is to model cells as point sources and use Greens func-
tions of the PDE’s to model the impulse response. We choose not to implement this approach.

1.3.3. CONTINUUM MODELING
To finalize our investigation of biological models in the field of angiogenesis, we focus on a large number of
continuum models consisting of systems of PDE’s. Alarcon and Chaplain [24] give an excellent overview of
continuum models up to the year 2005 for tumor induced angiogenesis as well as a list of advantages and
disadvantages of these models. Many early models, like those proposed by Gaffney [25] or Anderson [26] are
based on phenomenological arguments or design principles to describe the angiogenic process. Anderson
[26] came up with a continuum-discrete model including fibronectin induced haptotaxis as a governing fac-
tor. As the research into different angiogenic growth factors progressed, models following a more biochemical
reasoning appeared like those by Orme [27], Levine [28] and Vermolen [29]. Schugart et al. [30] and Xue et
al. [31] both propose elaborate models incorporating multiple cell types (ECs, fibroblasts, Tip cells and in-
flammatory cells) and different substances (oxygen, VEGF and ECM) in one coupled continuum system to
describe oxidative stress and angiogenesis in wound healing. An elaborate continuum model on wound clo-
sure incorporating contraction and angiogenesis is proposed by Vermolen and Javierre in [32]. We believe
that these models provide the most recent developments in continuum modeling of angiogenesis.

In both types of models, cells are modeled as densities or concentrations. To illustrate this, we briefly consider
the model by Gaffney [25] who models concentrations of tip cells n and ECs b incorporating behavior like
capillary sprouting, branching, tips joining each other (anastomosis) and tips joining other sprouts. The
coupled system derived from a conservation relation is given by

∂n
∂t =− ∂J (n)

d x + f (n,b),
∂b
∂t =−λ5

∂J (n)
d x + g (n,b),

where

J (n) =−D1
∂n

∂x
−D2n

∂b

∂x
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is the tip cells’ flux,

f (n,b) =λ2n =λ3n2 −λ4nb

describes the tip cells’ kinetics and

g (n,b) =λ2νb(b0 −b)+λ6χnb(b1 −b)+λ5(λ3n2 +λ4nb)

describes the kinetics of the ECs. The model replaces both haptotactic and chemotactic movement we saw
in previous models by a movement in the direction of decreasing blood vessel density. The parameter λ2

governs tip branching. λ3 governs the joining of tips to create a circuit and λ4 governs tips joining the side
of a capillary. λ5 ensures the proportionality between the flux of the tips and the flux of the ECs and is given
by the average number of ECs in a capillary sprout. Gaffney uses dimensionless scaling and stationary point
analysis to find the dynamics of the system. The parameters are estimated using experimental results. Finally,
boundary conditions and initial conditions are formulated and an analytical solution is found using pertur-
bation theory.

Maggelakis [33] proposed a widely used continuum model for angiogenesis in a circular wound bed of radius
R in in which capillary tips modeled by a density n act as main source of the oxygen concentration cO . Oxygen
diffuses with a rate DO , sources from the capillaries at a rate λn and is consumed by macrophages at a rate λO

from some critical oxygen level cθ at which macrophages appear at the wound site. The macrophages release
chemoattractants called Macrophage Derived Growth Factors (MDGFs) denoted by concentration cm . The
MDGFs diffuse at a rate Dm , are produced at a rate λm , react within the capillary tips at a rate λc and degrade
naturally at a rate λ. High concentrations of MDGFs trigger capillary logistic growth up to a certain maximal
vascular density L. The system of PDEs describing this process is given by

∂cO

∂t
= DO∇2cO +λnn −λO

cO

cθ
,

∂cm

∂t
=

{
Dm∇2cm −λcm +λm

(
1− cO

cθ

)
, for 0 ≤ r ≤ R,

Dm∇2cm −λcm −λc
cm

cmax
, for R < r ≤ Rmax.

∂n

∂t
=µcmn

[
1− n

L

]
.

Note that the behavior of the MDGFs is different inside and outside of the wound bed due to the presence of
macrophages.

1.3.4. COMPARISON OF THE METHODS
As was expected, all three types of models have their advantages and disadvantages. We discuss their merits
and demerits here briefly.

In the CPM, it is easy to track specific cell motility and implement cell shape and size specific behavior as
well as cell contact interface specific properties such as contact inhibited chemotaxis. However, the model is
computationally heavy and relies on many model choices such as the Hamiltonian function.

The semi-stochastic cell-based model is computationally less heavy but to some extend still benefits from the
possibility of tracking cell motility and involvement of contact mechanics. The model is not able to incorpo-
rate complicated contact inhibition like the CPM because of the simplified spherical shape of individual cells.

Possibly the main criticism of continuum models of angiogenesis stems from their inability to track indi-
vidual capillary tips and, hence, to reproduce accurately the patterns of vascular growth. They are however
computationally scalable to a very large extent, making them very useful for behavior of tissue on a large scale.

We conclude that the CPM is especially useful to model specific cell behavior on a small scale. The semi-
stochastic cell-based model works on a mid-large scale and the continuum models gives the desired results
on a large scale where both the CPM and the semi-stochastic cell-based models grow intractable.



2
UPDATING THE CHEMICALS AND THE

SUBSTRATE

In this chapter we formulate the differential equations governing the concentrations of the different chemi-
cals and substrate substances over time. We then derive the finite element discretization to approximate the
solution. We choose to do so in a 3 dimensional setting to closely mimic the lab work carried out by the der-
matology department at the VU University Amsterdam Medical Center. As this literature report was written,
this numerical scheme was already implemented in MATLAB.

The formulation of the cell movement is the subject of the next (not yet written) chapter.

2.1. DIFFERENTIAL EQUATIONS GOVERNING THE CHEMICALS IN THE in vitro
SITUATION - THE SEMI-DISCRETE CELL-BASED CASE

In our semi-discrete cell-based model, we also want to improve the chemical reactions and the composi-
tion of the substrate. We therefore model the substrate as fractions BM ρB and fibrin ρF continuously. We
consider the case where both substances can be degraded into Extracellular Fluid (ECF) which fraction is
denoted by ρE . This entails describing PDE’s for the fractions ρF , ρB and ρE too, adding up to 1 (100%).
The three equations modeling the substrate fractions must together constitute conservation of mass, i.e. the
amount of fibrin and BM degrading must be equal to the gain in mass for the ECM.

We introduce diffusive terms for the four chemicals dependent on the composition of the substrate. For the
diffusion of the concentration VEGF cV we for instance write DV = DV (ρF ,ρB ,ρE ). The rate at which the
BM degrades under influence of MMP is now proportional to both the fraction of BM and the concentration
of MMP cM , leading to a cross term in the reactive parts of the equations for the concentration MMP and
the fraction BM. The same holds for the fibrin fraction ρF and the UPa concentration cU . We then write the
concentration VEGF cV and the concentration DLL-notch cD . We get the following differential equations:

9
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Chemicals

VEGF
∂cV

∂t
=∇· [DV (ρF ,ρB ,ρE )∇cV ] − rV cV 1T i p,St alk ,

DLL-notch
∂cD

∂t
=∇· [DD (ρF ,ρB ,ρE )∇cD ] − rD cD1St alk + sD1T i p ,

UPa
∂cU

∂t
=∇· [DU (ρF ,ρB ,ρE )∇cU ] − rU cUρF + sU1T i p ,

MMP
∂cM

∂t
=∇· [DM (ρF ,ρB ,ρE )∇cM ] − rM cMρB + sM1T i p ,

Substrates

Fibrin
∂ρF

∂t
= − rF cUρF ,

BM
∂ρB

∂t
= − rB cMρB ,

ECF
∂ρE

∂t
= + rF cUρF + rB cMρB .

︸ ︷︷ ︸
Di f f usi on

︸ ︷︷ ︸
Reacti on

︸ ︷︷ ︸
Sour ci ng

2.2. GALERKIN EQUATIONS FOR THE PDE OF cM
We derive the Galerkin equations for the PDE of only one of these equations. The derivations for the other
equations follow the same principles. Consider the PDE on Ω ⊂ R3 for the concentration of MMP cM where
we abbreviate DM = DM (ρF ,ρB ,ρE ) to shorten notation:

∂cM

∂t
=∇· [DM∇cM ]− rM cMρB + sM1T i p ,

with a no-flux boundary condition ∂cM
∂n = 0 on the boundary Γ.

We multiply by a test function ϕ ∈ H 1(Ω) and integrate overΩ:∫
Ω

∂cM

∂t
ϕdV =

∫
Ω
∇· [DM∇cM ]ϕdV −

∫
Ω

rM cMρBϕdV +
∫
Ω

sM1T i pϕdV.

Using ∇· [DM∇cM ]ϕ=∇· [DM )∇cMϕ]− (∇ϕ) · (DM∇cM ) and Gauss’ divergence theorem we see∫
Ω

∂cM

∂t
ϕdV =

∫
Ω
∇· [DM∇cMϕ]dV −

∫
Ω

(∇ϕ) · (DM∇cM )dV −
∫
Ω

rM cMρBϕdV +
∫
Ω

sM1T i pϕdV ,

and

∫
Ω

∂cM

∂t
ϕdV =

∫
Γ

[DM∇cMϕ] ·ndΓ−
∫
Ω

(∇ϕ) · (DM∇cM )dV −
∫
Ω

rM cMρBϕdV +
∫
Ω

sM1T i pϕdV.

=
∫
Γ

D
∂cM

∂n
ϕdΓ−

∫
Ω

D(∇cM ) · (∇ϕ)dV −
∫
Ω

rM cMρBϕdV +
∫
Ω

sM1T i pϕdV.

Because of the boundary condition, we see that the boundary term drops out and we end up with the weak
formulation ∫

Ω

∂cM

∂t
ϕdV =−

∫
Ω

DM (∇cM ) · (∇ϕ)dV −
∫
Ω

rM cMρBϕdV +
∫
Ω

sM1T i pϕdV. (2.1)

We introduce a discretization into nel tetrahedral elements with in total n nodal points (nodes). We denote
the elements by el for l = 1, . . . ,nel . We denote the nodal points by n j for j = 1, . . . ,n and we denote their
spacial coordinates by x j = (x j , y j , z j )T . Corresponding with each node n j we introduce a piecewise linear
basis functionϕ j =α j +β j x+γ j y +δ j z. We choose the parametersα j , . . . ,δ j (inside each element) such that
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on each nodal point ni we have ϕ j = 1 if i = j and 0 otherwise, so called tent functions. Every element el has
four nodal points nel

p for p = 1, . . . ,4 and we denote their spacial coordinates by xel
p = (xel

p , yel
p , zel

p )T . On each
nodal point n j we introduce a parameter cm(n j ) which value coincides with the value of the concentration
MMP cM in that point. The parameters cm form a vector of length n. Note that for the concentration MMP
we use cM with capital M and for the corresponding parameter we use cm with lower case m. We can now
approximate the concentration cM ≈∑n

j=1 cm(n j )ϕ j . To sum up, we define

• elements el for l = 1, . . . ,nel ;

• nodes n j for j = 1, . . . ,n having spacial coordinates x j = (x j , y j , z j )T ;

• basis function ϕ j =α j +β j x +γ j y +δ j z on a node n j such that ϕ j (xi ) = 1 for i = j and 0 otherwise;

• the four vertices nel
p of an element el for p = 1, . . . ,4 having spacial coordinates xel

p = (xel
p , yel

p , zel
p )T ;

• a parameter cm(n j ) on each node n j equal to the value of cM at that nodal point;

• an approximation cM ≈∑n
j=1 cm(n j )ϕ j .

Substituting this approximation into the weak formulation in Equation 2.1 and choosingϕ=ϕi for i = 1, . . . ,n
we see

∫
Ω

∂

∂t

(
n∑

j=1
cm(n j )ϕ j

)
ϕi dV =−

∫
Ω

(∇ϕi ) · (DM∇
(

n∑
j=1

cm(n j )ϕ j

)
)dV

−
∫
Ω

rM

(
n∑

j=1
cm(n j )ϕ j

)
Bϕi dV +

∫
Ω

Sc1T i pϕi dV for i = 1, . . . ,n.

Changing the order of integration and summation yields a system M ∂cm
∂t +Scm = f where the matrix elements

Mi j and Si j and the vector elements fi are given by

n∑
j=1

∫
Ω
ϕ jϕi dV︸ ︷︷ ︸

Mi j

∂cm(n j )

∂t
+

n∑
j=1

∫
Ω

DM∇ϕi ·∇ϕ j + rMρBϕiϕ j dV︸ ︷︷ ︸
Si j

cm(n j ) =
∫
Ω

sM1T i pϕi dV︸ ︷︷ ︸
fi

for i = 1, . . . ,n.

We calculate the matrix entries Mi j and Si j and the vector elements fi by splitting up the integrals over all
elements, i.e.

Mi j =
∫
Ω
ϕ jϕi dV =

nel∑
l=1

∫
el

ϕ jϕi dV︸ ︷︷ ︸
M

el
i j

,

Si j =
∫
Ω

DM∇ϕi ·∇ϕ j + rMρBϕiϕ j dV =
nel∑
l=1

∫
el

DM∇ϕi ·∇ϕ j + rMρBϕiϕ j dV︸ ︷︷ ︸
S

el
i j

,

fi j =
∫
Ω

sM1T i pϕi dV =
nel∑
l=1

∫
el

sM1T i pϕi dV︸ ︷︷ ︸
f

el
i

.

2.3. THE ELEMENTS MATRICES AND VECTORS FOR DE PDE OF M
We derive approximations for the integrals M el

i j , Sel
i j and f el

i . For the integrals involving the basis functions,

we use the Holand-Bell integration formulas for linear basis functions over simplices proved in [34]. Each
element el has four corresponding nodes (vertices), denoted by nel

p for p = 1, . . . ,4. If ϕp are linear basis

functions on the nodes nel
p of the tetrahedral element el (simplex in 3d), then we have the exact integral
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∫
el

(ϕel
1 )a (ϕel

2 )b (ϕel
3 )c (ϕel

4 )d dV = ‖∆‖el
a! b! c ! d !

(a +b + c +d +3)!
, (2.2)

where ‖∆‖el

6 is the volume of the element el . We calculate ‖∆‖ is calculated by the determinant

‖∆‖el =

∣∣∣∣∣∣∣∣
1 1 1 1

xel
1 xel

2 xel
3 xel

4
yel

1 yel
2 yel

3 yel
4

zel
1 zel

2 zel
3 zel

4

∣∣∣∣∣∣∣∣ .

Next, we introduce Newton-Cotes integration for approximation of volume integrals of other than basis func-
tions over a tetrahedron el . We see∫

el

f (x)dV u
‖∆‖el

6

(
1

4

4∑
p=1

f (xel
p )

)
= ‖∆‖

24

4∑
p=1

f (xel
p ), (2.3)

where equality holds if f (x) is linear.

We apply Holand-Bell integration (Equation 2.2) to M el
i j . We note that, integrating over el , we only have non-

zero values for i , j ∈ {nel
p |p = 1, . . . ,4} and this entails

M el
i j =


0 for i , j ∉ {nel

p |p = 1, . . . ,4},
‖∆‖el

120 for i 6= j ,
‖∆‖el

60 for i = j .

We now calculate M el
i j for all combinations i , j i n{nel

p |p = 1, . . . ,4} and we call this M el :

M el = ‖∆‖el

120


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

 .

Note that M el is an n ×n matrix, but only the rows and columns of the nodes nel
p corresponding to element

el are shown here and the rest of the elements are equal zero.

We approximate Sel
i j by using Newton-Cotes integration (Equation 2.3) and Holand-Bell integration (Equation

2.2). Since the basis function on node i reads ϕi =αi +βi x +γi y +δi z, we see that ∇ϕi ·∇ϕ j = (βiβ j +γiγ j +
δiδ j ). Therefore

Sel
i j =

∫
el

DM∇ϕi ·∇ϕ j + rMρBϕiϕ j dV ,

=
{

0 for i , j ∉ {nel
p |p = 1, . . . ,4}

(βiβ j +γiγ j +δiδ j )
∫

el
DM dV + rM

∫
el
ρBϕiϕ j dV for i , j ∈ {nel

p |p = 1, . . . ,4}

≈


0 for i , j ∉ {nel

p |p = 1, . . . ,4}

(βiβ j +γiγ j +δiδ j ) ‖∆‖el

24

∑4
p=1 DM (ρF (xel

p ),ρB (xel
p ),ρE (xel

p )) for i 6= j ,

(β2
i +γ2

i +δ2
i ) ‖∆‖el

24

∑4
p=1 DM (ρF (xel

p ),ρB (xel
p ),ρE (xel

p ))+ rM
‖∆‖el

24 ρB (xel
i ) for i = j .

Here, by definition of the parameters for the different chemical variables, we have ρF (xel
p ) = ρ f (nel

p ), ρB (xel
p ) =

ρb(nel
p ) and ρE (xel

p ) = ρe (nel
p ), hence

Sel
i j ≈


0 for i , j ∉ {nel

p |p = 1, . . . ,4}

(βiβ j +γiγ j +δiδ j ) ‖∆‖el

24

∑4
p=1 DM (ρ f (nel

p ),ρb(nel
p ),ρe (nel

p )) for i 6= j ,

(β2
i +γ2

i +δ2
i ) ‖∆‖el

24

∑4
p=1 DM (ρ f (nel

p ),ρb(nel
p ),ρe (nel

p ))+ rM
‖∆‖el

24 ρb(nel
i ) for i = j .

Now, if we define
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Lel =

 β
el
1 γ

el
1 δ

el
1

...
...

...
β

el
4 γ

el
4 δ

el
4

 ,

then for an element el we see that the element matrix becomes

Sel = ‖∆‖el

24

4∑
p=1

DM (ρ f (nel
p ),ρb(nel

p ),ρe (nel
p ))Lel (Lel )T + rM

‖∆‖el

24

 ρb(nel
1 ) ;

. . .
; ρb(nel

4 )

 .

The mixed terms ρ f (nel
p ),ρb(nel

p ),ρe (nel
p ) must be taken explicit care of when we try to implement an implicit

time stepping scheme. More on this issue will follow in the time stepping chapter.

By the nature of the basis functions ϕel
p with p = 1, . . . ,4 within an element el , we know that they must attain

values 1 on their corresponding node p and attain values 0 at all other nodes. If we write ϕel
p = α

el
p +βel

p x +
γ

el
p y +δel

p z for p = 1, . . . ,4, we can write these equalities as a system
1 xel

1 yel
1 zel

1
1 xel

2 yel
2 zel

2
1 xel

3 yel
3 zel

3
1 xel

4 yel
4 zel

4



α

el
1 α

el
2 α

el
3 α

el
4

β
el
1 β

el
2 β

el
3 β

el
4

γ
el
1 γ

el
2 γ

el
3 γ

el
4

δ
el
1 δ

el
2 δ

el
3 δ

el
4

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

and we can solve for our parametersαel
p , . . . ,δel

p for p = 1, . . . ,4 by matrix inversion. Since our mesh is constant
in time, this can be done once prior to the time stepping.

We finally apply Holand-Bell integration to the element vector

f el
i =

∫
el

sM1T i pϕi dV = sM IT i p (el )
∫

el

ϕi dV =
{

0 for i ∉ {nel
p |p = 1, . . . ,4}

sM IT i p (el ) ‖∆‖
el

144 , otherwise,

where IT i p (el ) is a function approximating the percentage of volume of the element el taken up by tip cells.
For now, we choose this function to be the total volume of the cells with a center inside the tetrahedron
divided by the volume of the tetrahedron itself, i.e.

IT i p (el ) =
∑

i∈θ 4
3πr 3

i
‖∆‖el

6

= 8π

‖∆‖el

∑
i∈θ

r 3
i ,

where θ is the set of all tip cells having their center of mass inside the tetrahedron and ri are there radii. This
function does not take into account that cells and tetrahedra can partially overlap. Improvements upon this
can be made in the future.

2.4. REST OF THE ELEMENT MATRICES AND VECTORS
Likewise, we derive the elements matrices and vectors for all other equations. We use the same nodal points,
hence we have the same basis functions ϕ j and the same matrices L. We approximate

cV ≈
n∑

j=1
cv ( j )ϕ j , cD ≈

n∑
j=1

cd ( j )ϕ j , cU ≈
n∑

j=1
cu( j )ϕ j , cM ≈

n∑
j=1

cm( j )ϕ j ,

cF ≈
n∑

j=1
c f ( j )ϕ j , cB ≈

n∑
j=1

cb( j )ϕ j , cE ≈
n∑

j=1
ce ( j )ϕ j .

We write M el
V , . . . , M el

E and Sel
V , . . . ,Sel

E for the element matrices and f el
V , . . . , f el

E for the element vectors for each
variable. Hence we derive systems
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nel∑
l=1

(
M el

V

) ∂cv

∂t
+

nel∑
l=1

(
Sel

V

)
cv =

nel∑
l=1

f el
V ,

...
nel∑
l=1

(
M el

E

) ∂ce

∂t
+

nel∑
l=1

(
Sel

E

)
ce =

nel∑
l=1

f el
E ,

2.4.1. ELEMENT MATRICES M el FOR THE TIME DERIVATIVE

M el is the same for all PDE’s

M el = ‖∆‖el

120


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

 .

2.4.2. ELEMENT MATRICES Sel FOR THE SPACIAL DERIVATIVES

Sel is different for each PDE.

Sel
V = ‖∆‖el

24

4∑
p=1

DV [ρ f (nel
p ),ρb(nel

p ),ρe (nel
p )]Lel (Lel )T + rV IT i p,St alk (el )

‖∆‖el

720


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

 .

Sel
D = ‖∆‖el

24

4∑
p=1

DD [ρ f (nel
p ),ρb(nel

p ),ρe (nel
p )]Lel (Lel )T + rD ISt alk (el )

‖∆‖el

720


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

 .

Sel
U = ‖∆‖el

24

4∑
p=1

DU [ρ f (nel
p ),ρb(nel

p ),ρe (nel
p )]Lel (Lel )T + rU

‖∆‖el

24

 c f (nel
1 ) ;

. . .
; c f (nel

4 )

 .

Sel
M = ‖∆‖el

24

4∑
p=1

DM [ρ f (nel
p ),ρb(nel

p ),ρe (nel
p )]Lel (Lel )T + rM

‖∆‖el

24

 cb(nel
1 ) ;

. . .
; cb(nel

4 )

 .

Sel
F = + rF

‖∆‖el

24

 cu(nel
1 ) ;

. . .
; cu(nel

4 )

 .

Sel
B = + rB

‖∆‖el

24

 cm(nel
1 ) ;

. . .
; cm(nel

4 )

 .

Sel
E = [;]

2.4.3. ELEMENT VECTORS

f el is different for all variables

f el
V = [;],
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f el
D = sD IT i p (el )

‖∆‖el

144


1
1
1
1

 ,

f el
U = sU IT i p (el )

‖∆‖el

144


1
1
1
1

 ,

f el
M = sM IT i p (el )

‖∆‖el

144


1
1
1
1

 ,

f el
F = [;],

f el
B = [;],

f el
E =−rF

‖∆‖el

24

 cu(nel
1 ) ;

. . .
; cu(nel

4 )

c f (nel
1,...,4)− rB

‖∆‖el

24

 cm(nel
1 ) ;

. . .
; cm(nel

4 )

cb(nel
1,...,4).

2.5. IMPLICIT TIME STEPPING
We now approximate the time derivative for the equation for variable cm at time step k+1 by a Euler backward

discretization ∂cm
∂t ≈ ck+1

m −ck
m

∆tk
, for a time step ∆tk , possibly depending on the time step. We begin with the

original system

MM
∂cm

∂t
+SM cm = fM ,

which is integrated by

MM
ck+1

m − ck
m

∆tk
+Sck+1

m = fM ,

and gives

(MM +∆tk SM )ck+1
m = MM ck

m +∆tk fM ,

and can be rewritten to

ck+1
m = (MM +∆tk SM )−1(MM ck

m +∆tk fM ).

We would have liked to conclude that we have derived a fully implicit scheme. However, there are explicit
terms coming from the cross terms in the reactive parts in the matrices S and in the vector fE . Furthermore,
the diffusive functions and the indicator functions make the matrices S and the vectors f time dependent.
Fortunately, because both M and S are symmetric and non-diagonal, inverting (M +∆tS) is not computa-
tionally harder than inverting M as we would have to do in the explicit scheme.

We have to take special care when assembling the element vector fE . We want to maintain conservation of
mass and therefore the amount of Fibrin and BM dissolving must be added to the ECL. The amount of fibrin
dissolving at timestep k +1 in element el is equal to

rF
‖∆‖el

24


(cu(nel

1 ))k ;
. . .

; (cu(nel
4 ))k

 (ρ f (nel
1,...,4))k+1 = rF

‖∆‖el

24


(cu(nel

1 ))k (ρ f (nel
1 ))k+1

...
(cu(nel

4 ))k (ρ f (nel
4 ))k+1

 ,
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and we have a similar relation for the reaction of the BM. This together constitutes for the element vector for
the ECF f el

E :

f el
E =−rF

‖∆‖el

24


(cu(nel

1 ))k (ρ f (nel
1 ))k+1

...
(cu(nel

4 ))k (ρ f (nel
4 ))k+1

− rB
‖∆‖el

24


(cm(nel

1 ))k (ρb(nel
1 ))k+1

...
(cm(nel

4 ))k (ρb(nel
4 ))k+1

 .

Note that the signs change due to the fact that the source terms fE are on the right hand side of the equation
whilst the reactive counterparts are on the left hand side.

2.6. MESHING
For the 3d mesh generation we use an open source application ISO2Mesh created by Fang and Boas [35]. To
gain extra computational speed, we use Cuthill-McKee bandwith reduction [36] for our node ordering built
into MATLAB by the function symrcm.



3
EXPERIMENTING WITH MY OWN CELLULAR

POTTS MODEL

As a way of getting acquainted with the existing CPM model by Merks [17], a stripped down version of a CPM
mimicking the results by Merks was implemented. This chapter briefly summarizes the choices made in the
implementation of this model.

3.1. DIFFERENTIAL EQUATIONS GOVERNING THE CHEMICALS - THE CELLULAR-
POTTS CASE

In the in vitro situation, we have a fibrin matrix with a homogeneous dissolved concentration of VEGF with-
out cells. We assume that endothelial cells do not secrete any VEGF, and hence there is no need to keep track
of the oxygen concentrations, which influence the amount of VEGF secreted.

In analogy to Gamba [10], Serini [11] and Merks [5], the concentration of the chemoattractant VEGF V is
governed by the diffusion-reaction PDE

∂V

∂t
= DV ∇2V − rV 1T i p,St alk (x, y)V ,

where DV is a diffusive constant, rV is the reaction speed and 1(x, y) is an indicator function taking value 1
inside the cell and 0 otherwise, i.e.

1(x, y) =
{

1 if (x, y) is inside cell ,

0 otherwise.

Merks uses the Kronecker delta notation 1= δσx ,0. VEGF diffusion is assumed to be independent of the type
of medium it is in. Besides this assumption, VEGF reacts with endothelial cells at a rate that is proportional
to the concentration V .

The three enzymes MMP, u-PA and DLL-notch are secreted by tip cells. They diffuse through the tissue. MMP
reacts with the boundary membrane to degrade it. u-PA reacts with fibrin to degrade it. DLL-notch binds to
nearby endothelial cells to prevent them from becoming tip cells. The governing equations are

∂M
∂t = DM∇2M −rM1B M M +SM1T i p ,
∂U
∂t = DU∇2U −rU1F i br i nU +SU1T i p ,
∂D
∂t = DD∇2D −rD1St alk D +SD1T i p .

We model the boundary conditions as “no flux” boundaries. Chemicals can not pass through the boundaries.
This is unlike the model uses by Merks [5], where a Dirichlet boundary condition is used “absorbing” the
chemoattractant. Merks uses a 500×500 lattice where each site is around 4µm2 in area. Cells contain around
45 lattice sites, modeling them to have a radius of 7.5 µm.

17
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3.2. STOCHASTIC DEVELOPMENT OF THE SUBSTRATE
The BM degrades into ECM stochastically respectively to the concentration MMP.

Give some mathematical formalisms for this.
Fibrin degrades into ECM stochastically respectively to the concentration u-PA.

Stalk cells are deterministically chosen in the initial distribution of cells.
BM can form stochastically between stalk cells (not tip cells) and either fibrin or the ECM. The concentration
MMP should be sufficiently small.

3.3. STOCHASTIC ELONGATION OF THE CELLS
Many studies have been devoted to the dynamics of ECs [1], [37], [38]. We implement the following dynamics.
Both tip and stalk cells chemotact towards a gradient of VEGF. Stalk cells also chemotact towards a gradient
of DLL-notch.

Cells add lattice sites more easily in ascending order from the BM, Lumen, Fibrin and ECM. Cells never add
any lattice sites from the boundary. The Hamiltonian energies are chosen such that this order is attained.

Cells tend to be limit their aspect ratio. Lattice sites in the cell further away from the center of gravity get
negative energies.

Cells tend to stick together. Lattice sites directly adjacent to lattice sites in other cells get positive energies.

Cells tend to stick to the BM. Lattice sites directly adjacent to elements in the BM get positive energies.

Cells stay at the same size. Every time step, the most positive and the most negative lattice site in the cell and
it’s surrounding is calculated and they are acquired and repulsed respectively. This is the largest difference
compared to the CPM implemented by Merks.

3.4. MODEL UPDATES
In our computational model, we solve the PDEs on a grid identical to the lattice sites using a finite volumes
scheme. Each time step consists of three phases. First, the chemicals are updated. Based on the new distri-
bution of the chemicals, the substrate sites are stochastically degraded. At last, we calculate the maximal and
minimal energy lattice site for each cell and acquire and repel the lattice sites successively.



4
POSSIBLE EXTENSIONS TO THE in vivo

SITUATION

4.1. DIFFERENTIAL EQUATIONS GOVERNING THE CHEMICALS FOR THE in vivo
SITUATION - THE SEMI-DISCRETE CELL-BASED CASE

In the in vivo situation, we have cells contained in the ECM and in between the fibrin that consume oxygen
and secrete VEGF when deprived of oxygen. Hence, we additionally have to monitor the oxygen concentra-
tions and this constitutes to a more complex system with more reaction and source terms.

Oxygen sources from the lumen elements at a constant rate and reacts in the fibrin, stalk and tip elements
proportional to the concentration. Furthermore, it diffuses and we assume that the diffusion is independent
of the type of medium it is in. Hence, we have a diffusion-reaction-source equation governing the concentra-
tion of oxygen cO :

∂cO

∂t
= DO∇2cO − rO1F i br i n,T i p,St alk cO +SO1Lumen ,

where DO is the diffusion constant, SO is the source strength and rO is the reaction constant.

The cells within the fibrin secrete VEGF reversely proportional to the oxygen concentration. For a certain

concentration cOs , the secretion of VEGF stops. Hence the source strength is proportional to max
(
0,1− O

Os

)
.

Furthermore, the VEGF diffuses assuming to be independent of the type of medium it is in. At last, the VEGF
reacts with endothelial cells, proportional to the concentration. The diffusion-reaction-source equation gov-
erning the concentration of VEGF V looks like:

∂cV

∂t
= DV ∇2cV − rV 1T i p,St alk cV +SV max

(
0,1− cO

cOs

)
1F i br i n ,

where DV is the diffusion constant, SV is the source strength and rV is the reaction constant.

The three enzymes MMP, u-PA and DLL-notch are secreted by tip cells. They diffuse through the tissue. MMP
reacts with the boundary membrane to degrade it. u-PA reacts with fibrin to degrade it. DLL-notch binds to
nearby endothelial cells to prevent them from becoming tip cells. The governing equations are

∂cM

∂t
= DM∇2cM − rM1B M cM +SM1T i p ,

∂cU

∂t
= DU∇2cU − rU1F i br i ncU +SU1T i p ,

∂cD

∂t
= DD∇2cD − rD1St alk cD +SD1T i p .

This model to some extent follows the reasoning of Maggelakis in [33].
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A
GLOSSARY OF BIOCHEMICAL TERMS AND

PROCESSES

A.1. PROCESSES
• Angiogenesis: Creation of new blood vessels from pre-existing vessels.

• Vasculogenesis: Creation of new blood vessels by forming endothelial cells from mesoderm cells.

• Proliferation: Cell division.

• Chemotaxis: Active cell migration in response to a chemical stimulus. Mostly in the direction of the gra-
dient of a concentration field solvent in the surroundings. The substance that cells are being attracted
towards is called the chemoattractant.

• Haptotaxis: Active cell migration in response to a chemical gradient positionally fixed in the extracellu-
lar matrix. Fibronectin is an example of a protein in the basement membrane causing haptotaxis.

• Elongation: Changing shape towards an attractant.

• Contact Inhibition: A cell not being respondent to autocrine chemotaxis when the membrane is in
contact with another cell. For example, VE-cadherin which binds cells together causes cells to not
respond to autocrine chemotaxis.

• Autocrine Chemotaxis: Chemotaxis caused by a chemical gradient secreted by the cell itself.

• Anastomosis: The process in angiogenesis where sprouts join. Sprouts can join tip-to-tip or the tip cell
of a sprout can joint halfway into another sprout.

A.2. PHYSIOLOGICAL DEFINITIONS
• Endothelial cells: Cells that line the inside of a blood vessel in a mono-layer. They rest on the basement

membrane.

• Endothelium: The mono-layar of endothelial cells forming the inner layer of a blood vessel.

• HUVECs. Human Umbilical Vein Endothelial Cells. Endothelial cells acquired from the Umbilical Vein.

• Motility: Ability to move and migrate.

• Mesoderm: The skin layer between the ectoderm and the endoderm.

• Fibroblast: Cells that, among other functions, form the ECM.

• Granulation Tissue: New connective tissue in the wound healing process that is filled with blood vessels
formed by angiogenesis. It is deposited by fibroblasts, which rely on oxygen from the blood vessels to
do so.
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• ECM: Extra Cellular Matrix. Everything outside the cells in a multi-cellular structure. Consists of fiber
like structures such as collagen or fibrin. The Basement membrane is part of the ECM.

• Basement membrane: Thin sheet of fibres beneath the endothelium.

• Hypoxic tissue: Tissue that is low on oxygen supply. Hypoxic tissue secretes, among other things, VEGF.

• Matrix: A substance used to grow cell cultures on. Examples are fibrin matrices or Matrigel matrices.

• Sprout: Start of a new hair vessel.

• Tip Cells: Endothelial cells that are leading the growth of a sprout. Tip cells secrete a signal substance
that withholds stalk cells to start behaving like tip cells. Tip Cells secrete proteases that degrade the
fibrin matrix. The selection of the tip cell is regulated by DLL4 and Notch1. [39]

• Stalk Cells: Endothelial cells that follow a tip cell.

• Lumen: The space between endothelial cells in which blood can flow.

A.3. SUBSTANCES
• Angiogenesis inhibitor: Group of substances that can slow down the process of angiogenesis.

• Angiogenetic Growth Factors: Group of substances that can speed up the process of angiogenesis.

• VEGF: Vascular Endothelial Growth Factor. An angiogenetic growth factor. A signal protein given off
by hypoxic tissue to induce angiogenesis. It activates endothelial cells in pre-existing blood vessels to
degrade the basement membrane.

• bFGF: basic Fibroblast Growth Factor, sometimes FGF-2. An angiogenetic growth factor.

• Collagen: Structural protein in skin.

• Fibrin: Structural protein in skin.

• VE-cadherin: A homophilic, trans-membrane cell-adhesion cadherin type protein that binds cells to
one another. Besides it’s adhesive function, it plays an inhibiting role in the VEGF signalling pathway
[40]. The contact inhibited chemotaxis is modeled after this effect [17].

• Proteolytic enzymes: Enzymes that degenerate proteins.

• TNFα: Tumor necrosis factor alpha. Induces receptor bound u-PA (urokinase-type plasminogen ac-
tivator) activity, a proteolytic enzyme, which degrades fibrin matrices. It is used in fibrin mono layer
experiments to maintain the mono-layer.

• MMP: matrix metalloproteinase. A proteolytic enzyme secreted by tip cells to degenerate the boundary
membrane.

• u-PA: urokinase-type plasminogen activator. A proteolytic enzyme secreted by tip cells to degenerate
fibrin.

• VEGF DLL-notch: Enzyme secreted by tip cells to prevent stalk cells to transform into tip cells and
make them chemotactically move towards the tip cell.

• fibronectin: a matrix macromolecule which occurs in two distinctly different forms. 1. As a soluble
glycoprotein found in various body fluids (including blood), known as plasma fibronectin. 2. As an
insoluble constituent of the extracellular matrix and basement membranes of cells, known as cellular
fibronectin
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