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Abstract

An isogeometric finite element method for incompressible fluid film equations is presented. The method
can be applied to numerically model the behaviour of thin cellular membranes, such as lipid bilayers.
The membranes are represented by infinitely thin closed surfaces. Both the surface parametrization
and analysis are based on state-of-the-art polar spline spaces. These spaces are defined such that a C1

continuous genus 0 surface can be constructed. At the discrete setting, point-wise conservation of mass
is attained, using the framework of discrete exterior calculus. Therefore, the polar spline spaces are
called divergence conforming. Time discretization of the highly non-linear system is done via the fixed-
point iterations. It is found that for certain non-uniformly curved domains, the iterations converge and
time stepping can be performed. However, for surfaces that are closely resembling a perfect sphere, the
iterations are not stable for any ∆t. The solution is parameter-dependent and this indicates a possible
bug in the Matlab code.
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1 | Introduction

In this master thesis a computational method that
can be used to study the behavior of thin fluid
membranes is investigated. A biological example
of these membranes is the cell boundary of eukary-
otic cells. The eukaryotic cell is very common
in almost all non-bacterial living organisms [1]
and its membrane consists of two layers of lipids,
called lipid bilayers. Lipid bilayers possess a very
interesting fluid-solid duality: in-plane, the lipids
are able to flow, while out-of-plane, the surface behaves like a hyperelastic solid material [2]. The cell
membrane plays a key role in cell behavior and interaction with the cell surroundings. It can undergo
vast shape deformations to enable all kinds of cellular processes that often involve budding [3]. The
importance of the cell membrane can be seen, for example, in endocytosis, which is the process of
bringing both nutrients and pathogens into the cell [4–6] and in cytokinesis, the process where a mother
cell divides into two daughter cells [7]. Additionally, the behavior of the cell membrane is crucial for
membrane repair [8, 9] and cell adhesion [10, 11]. Another interesting example of the role of the cell
membrane is the red blood cell, where a skeleton-bilayer interaction results in a very flexible but tough
membrane [12–14]. Furthermore, cell migration, is closely related to the properties of the cell membrane
and the presence of local curvature [15–18].

The motivation for this research is twofold. On the one hand, it is useful to get experience with
the equations related to thin fluid membranes and how to solve these in an elegant and reliable way.
Among others this concerns the circumvention of the use of Lagrange multiplayer’s or penalty methods
to enforce in-plane flows or divergence free flows on curved surfaces and how to parameterize these
surfaces. These experiences can be deployed later to extend the methods. On the other hand, these
models find different applications including numerical weather prediction [19] and the already mentioned
cellular membranes. modeling the behaviour of fluid cell membranes and cell interaction finds its use
in, for example, the understanding of the process of the HIV virus fusion with immune cells [20].

Typically, the in-plane behavior of lipid bilayers is that of a viscous and almost incompressible fluid
[2, 21]. As a consequence of the incompressiblility constraint, the in-plane and out-of-plane behavior
is intertwined, leading to a coupled system of equations. For the in-plane flow description the surface
Stokes equation is very suited, as a consequence of the low Reynolds number. On top of that, the surface
itself is time-evolving, described by an out-of-plane shape equation. Taking the limit to infinitely thin
membranes, leads to the Stokes equation on a two dimensional curved surface that evolves in time. It is
also known as the fluid film equation [22]. The fluid film equation is used in modeling foam behavior and
foam life time [23], which is valuable in multiple engineering branches such as material design [24–26].
Fluid film equations also find usage in numerically modeling fluid interfaces, a phenomenon that has a
very wide range of applications, including lipid bilayers [27–30].

Numerical solutions to partial differential equations (PDEs) do not, in general, satisfy fundamental
conservation laws, possibly leading to instability and inconsistency of the numerical method [31, 32].
Instabilities cause failure of the method, while inconsistencies often lead to conservation-violating solu-
tions that can easily remain unnoticed [33]. Therefore, the formulation of numerical methods that mimic
important conservation properties of the physical problem at the discrete level, are of great importance
[34]. This importance is emphasized by the high complexity of surface PDEs compared to PDEs in
Euclidean space, especially if the domain itself is time-evolving. A framework that can be utilized to
represent conservation laws in a discrete but point-wise exact manner, is called discrete exterior calculus
(DEC) [35, 36]. Exterior calculus is the study of n-dimensional differentiable manifolds, and it relies
heavily on differential forms to express scalar and vector fields. It is the foundation of finite element
exterior calculus [37, 38], where the properties of differential forms are maintained on the discrete level.
Examples of differential forms used in surface (Navier-)Stokes finite element formulations can be found
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in Refs. [39–41]. Formulating a PDE in terms of differential forms has the benefit of an obvious sepa-
ration of conservation laws (that one wants to discretize exactly) and constitutional models (that will
be approximated) [34].

The cell membrane will be represented by a 2-dimensional midsurface with zero thickness, much
akin to the Kirchoff-Love (KL) thin shell model [42–45]. The use of this model is popular because of
its simplicity and efficiency in terms of degrees of freedom per control point. A downside of the KL
model is the minimum requirement of C1 surface continuity, which guarantees that surface quantities,
such as the curvature tensor, are well defined. An elegant and effective way to overcome this problem
is by representing the geometry with Ck continuous (k ∈ N) B-spline basis functions. These replace
the standard piece-wise polynomial basis functions, which are only C0 smooth on element boundaries.
Additionally, the same B-spline basis functions that represent the geometry are used for analysis. Ex-
actly this is the concept of isogeometric analysis (IGA) as introduced in Refs. [46, 47]. The term IGA
refers to ’re-using’ the geometry function spaces for analysis and not necessarily to the use of smooth
functions such as B-splines. Nonetheless, in this research IGA will also incorporate the employment of
these B-spline basis functions. While the higher order continuity of the geometry is the main reason
of adopting IGA in this research, IGA has other desirable features. In general, IGA is more efficient
[48, 49] and more robust [50] than ordinary finite element analysis (FEA). Moreover, as a consequence
of the higher order smoothness, the existence of higher order derivatives of discretized FE functions is
guaranteed. State-of-the art polar spline spaces [41, 51] will be used to construct sphere-like surfaces
that are C1 everywhere, even at the poles where element boundaries are collapsed to singular points.

The goal of this research is to numerically model the surface Stokes equation coupled to the out-
of-plane deformation of a thin sphere-like surface, using divergence conforming spline spaces. The
direct focus will be on the development of a numerical method that is naturally consistent with the
continuous conservation laws, without resorting to penalty methods or Lagrange multipliers to enforce
the desired properties. Specifically, the governing fluid film differential equations for cell membranes and
lipid bilayers will be solved, adopting previously derived constitutional models [39, 52]. The research
question reads

How can thin membranes be numerically modeled using divergence conforming isogeometric
analysis?

To answer this main question a few different subjects need to be addressed. These can be formulated
as two sub-questions of the research question:

1. How to formulate and implement a divergence conforming computational method based on discrete
exterior calculus and isogeometric analysis?

2. How to perform time integration for this highly non-linear system of discrete equations?

The field of research is a combination of viscous flows on curved surfaces, out-of-plane deformations of
thin shells, divergence conforming exterior finite elements and state-of-the-art C1 smooth polar spline
spaces. The novelty of this research lies in the time-integration of the coupled system of equations on
a polar spline defined geometry.

In this report, chapter 2 reviews the available literature concerning computational methods for lipid
bilayers and corresponding models. Next, chapter 3 will introduce several preliminary mathematical
concepts. Subsequently, in chapter 4 the strong formulations and their continuous weak formulations
will be presented. Chapter 5 will then describe the domain- and time-discretizations of the problem,
and in chapter 6 results will be discussed. Finally, concluding remarks and recommendations for future
work are given in chapter 7.



2 | Literature review

This section gives a brief overview of the relevant literature related to this research. Firstly, lipid
bilayers are introduced and a few examples of its role in cellular processes in presented. Subsequently,
in section 2.2 various constitutional models that have been proposed are summarized. This includes
models for interfacial flows, elastic thin solid shells and coupled equations for both. Lastly, in section
2.3 an overview of computational methods applied to lipid bilayers is given.

2.1. The role of lipid bilayers in biology
The cell boundary membrane of non-bacterial
cells, such as the human red blood cell, almost
always consists of a lipid bilayer [53]. The lipid
bilayer separates the interior fluid from an exte-
rior bulk fluid in which the cell lives, and is vital
for the surviving of the cell. Lipid bilayers are
made out of two layers of lipids that consist of a
head and a tail part. The heads are hydrophilic
and are oriented towards the water-like fluids on
the interior (for the inner layer) and towards the exterior of the cell (for the outer layer). The tails
are hydrophobic and are oriented towards the interior of both layers. See the figure on the right for
visualization. This cell membrane plays an important role in cellular processes such as endocytosis [4],
cytokinesis [7] or cell migration [16]. Endocytosis, which is the process of nutrients traveling toward
the cell interior, plays a key role in the transportation and effectivity of medicine at cell level [6]. In
addition, endocytosis is used by pathogens to enter the cell.

Interestingly, lipid bilayers are out-of-plane elastic materials, while in-plane, the material behaves
like a nearly area-incompressible fluid [54]. Due to this incompressibility constraint, the liquid needs to
flow in-plane to accommodate any shape changes of the cell membrane. This indicates the importance of
the coupling between out-of-plane deformation and in-plane flow while modeling lipid bilayers. Would
the membrane be modeled using out-of-plane elastic effects only, then this does not capture the full
properties of the membrane [55].

2.2. Constitutional models for cell membranes
Several models are available for both the in-plane and the out-of-plane behavior of cell membranes.
Included are solid hyperelastic thin shells, thin fluid film equations and the coupling of in-plane flow
with out-of-plane deformations. This section will provide a brief overview of theoretical models that
have been proposed for lipid bilayers

2.2.1. Interfacial flows
The pioneering work of Scriven [22] was crucial in understanding the behavior of interfacial flows. He
used differential geometry to represent the flows and other quantities on arbitrarily curved surfaces,
instead of using Cartesian-, cylindrical- or spherical-coordinates. The choice of curvilinear coordinates
led to a very general set of equations. This elegant setup was extended to three-dimensional flows by
Aris [56]. The framework proposed by these two papers is still widely used in today’s theoretical models
for lipid bilayers [39, 57–59]. An introduction to numerical methods related to interfacial flows is given
in Ref. [60].

2.2.2. Elastic thin shells
The first models for thin biological membranes only incorporated the out-of-plane elastic effects, ne-
glecting any liquid behavior. Examples are the bending energy minimisation models of Helfrich and
Canham [61, 62], proposed in the early 70s. The extension to a general Euler-Lagrange equation corre-
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2.2. Constitutional models for cell membranes 4

sponding to the Helfrich-Canham bending model, called the shape equation, was derived more than a
decade later [63, 64] and numerical efforts to solve it can be found in Refs. [65, 66]. The models and
Euler-Lagrange equations where extended to the non-axisymmetric setting by [67] and continued to be
developed [68, 69]. A special case of Helfrich bending energy is the Willmore energy, which describes
the total bending energy of a surface shape. A thorough description of the theory and computational
techniques with regards to Helfrich bending is described in [70].

Closely connected to the mentioned models of the past decades are thin shell models which describe
the behavior of thin and very thin structures. Cell membranes typically are very thin compared to
their diameter (R/r ≈ 1000 for R the diameter length and r the membrane thickness [62, 71]) and
can therefore be considered thin shells. Thin shell theories capture the elastic effects of shells with
respect to bending and membrane stiffness. One of the simplest and oldest models for thin shells is
the Kirchhoff-Love (KL) thin shell theory, which is a product of the plate theory of Kirchhoff [72] and
its extension to shells by Love in 1888 [73]. The theory knows an enormous amount of variations and
extensions, see Ref. [74] for an overview of the historical impact of the papers of Kirchhoff and Love.
In the theory the shell is completely described by a midsurface and the thickness coordinate is given by
the normal direction. It is assumed that transverse normal stresses are neglected and that each normal
vector remains straight and normal during deformation. The consequence of these central assumptions
is the fact that transverse shear strains dissolve, with the advantage that each control point only has
three degrees of freedom (DOFs), in stead of five or more. The downside is that the surface kinematics
of the KL theory requires C1 continuity throughout the shell elements and boundaries. This constraint
is not easily met by the standard piece-wise polynomial finite elements method. This is probably the
reason why, despite the theoretical simplicity of the model, the KL theory is not widely adopted in
(older) finite element codes.

Other popular shell models are the Reissner–Mindlin (RM) [75] model and its extensions. The
RM model only requires C0 continuity throughout the elements and their boundaries, which is easily
satisfied making use of classical finite element analysis (FEA). It is more complex than the KL model:
in addition to the three DOFs associated with the displacement, two other parameters are introduced,
describing the rotation of the shell elements. This explains why the RM model is also referred to as
a 5-parameter shell model and allows for shear stresses. In case of thicker shells (with R/r < 20 for
length scale R and shell thickness r), the model is more suitable than the KL model [45]. Despite
the additional complexity, the RM model has been more popular due to the more relaxed continuity
constraints. Extensions to 7-parameter models are proposed, based on additional strain variables [76]
or displacement variables [77] among others. An extensive description of these models can be found in
[45]. A 6-parameter solid shell model is recently proposed as an extension of the KL model [78]. In
this model both the midsurface and the normal vector are treated as unknown quantities of three DOFs
each, releasing the need for C1 continuous elements.

In this research the KL theory will be adopted to describe the out-of-plane deformation of the system.
It is a simple and efficient model and it is well suited for thin structures such as cellular membranes. In
section 2.3 it is described how the C1 continuity requirement will be met.

2.2.3. Coupled equations
A coupling of the elastic effects to the in-plane flow, the diffusion of proteins and/or the surrounding
bulk fluid was made for simple geometries [79–81]. In 2009, the general equations for a single component,
arbitrarily curved and deforming lipid membranes coupled to in-plane viscous flow were determined for
the first time [39]. The authors of this last work use variational methods and exterior calculus. Their
elastic out-of-plane component is based on the previously mentioned Helfrich bending energy [61]. A
mistake in Ref. [39] concerning the presence of inertia terms, is corrected in the work of Yavari [58]
and the momentum conservation is formulated more sharply in [82]. Variations on the model have been
made by introduction of an area difference elastic model [83], an extra coupling to in-plane protein
diffusion [55] and by using balance laws to derive the equations [59, 82]. A more general approach is
taken in [84–86], were a theoretical framework is established that leaves room for different solid and
liquid constitutional models for biological membranes. A pure membrane version of these papers is
described in [44]. Other constitutive models in context of the KL theory, applicable to liquid shells and
membranes, is presented in Ref. [87]
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2.3. Computational methods for cell membranes
In this section a brief overview is given of computational methods for lipid bilayers. Initially, isogeo-
metric analysis (IGA) is introduced and a brief overview of papers that use IGA as a computational
method is provided. Subsequently, papers related to discrete exterior calculus are mentioned. Lastly,
a general overview of computational methods for lipid bilayers is provided.

2.3.1. Isogeometric analysis
The concept of isogeometric analysis (IGA) was first introduced by Hughes et al. in 2005 [46]. Its original
idea came from a desire to integrate computer aided design CAD and the finite element method (FEM)
more tightly with each other. In stead of re-meshing an object when switching from the design process
to analysis, it would be possible to work with the exact same geometry, saving lot of time. In CAD
software Non-uniform rational B-splines (NURBS) have become a standard method to build geometries.
By replacing the polynomial shape functions of classical FEM with NURBS, both the geometry and the
analysis use the same basis functions while the geometry is represented in an exact manner. Especially
for complex shaped geometries, this would lead to significantly improved convergence properties [46,
47]. For the mathematical description of the IGA concept and the usage of B-splines or NURBS, we
refer to these last to papers. Additionally, IGA is superior to standard piecewise-polynomial based FEA
in terms of robustness and efficiency [48–50]

In this research the main reason for adopting the IGA method is directly related to the C1 continuity
requirements that follow from the KL thin shell theory. This requirement is easily attained using
IGA, while with standard FEA it is not so straight forward. As a consequence, many (older) FEM
implementations only approximately satisfy the C1 smoothness [88, 89], use discontinuous Galerkin [90]
or triangular loop subdivision FEA [91, 92]. Often these kind of methods are less efficient as additional
degrees of freedom need to be introduced. One of the first applications of IGA to KL models is done
by Kiendl et al. [42, 43] and further extended to elasto-plastic systems in Ref. [93]. These pioneering
papers are used in theoretical models of, for example, structure analysis [94], solid phase thin shells
[85] and thin floating object [95]. IGA and KL based computational methods are also applied to lipid
bilayers [86, 96, 97]. Furthermore, IGA is even used for the RM shell model [98–100] due to its more
appealing accuracy and efficiency properties.

2.3.2. Discrete exterior calculus
Conservation laws of continuous differential equation are not necessarily attained in their discrete coun-
terparts used in computational methods. If this is not the case, for example if mass conservation of a
incompressible fluid is not attained at the discrete setting, the method is called inconsistent. Inconsis-
tent computational methods run the risk of systematically converging to wrong solutions. Especially
in complex systems this is dangerous, as it is hard to notice the error with the human eye. A coupled
system of surface Stokes flow on a time-evolving domain is an example of such a complex system and
one would like to prevent any inconsistencies. A way of doing this is by means of exterior FEA [37, 38],
relying on the framework of discrete exterior calculus (DEC) [35, 36].

2.3.3. Review of computational methods
A few of the very first examples of computational methods for elastic membranes include a consistent FE
formulation [101] and a model of the behavior of (sometimes incompressible) rubber membranes [102,
103]. Other, more recent publications in the category of elastic membranes, examine wrinkling behavior
in thin shells [104], find an application in woven fibre membranes [105] or use C1-conforming subdivision
surfaces to attain the C1 smoothness requirement from the KL theory [91, 92]. Phase changes and phase
separation of lipid membranes have been numerically modeled [97, 106, 107]. Among others, this can be
applied to modeling the fusion of HIV with cell membranes. Concerning curvature elasticity, Willmore
flow is the geometric flow of a surface shape to minimal Willmore energy (for genus 0 surfaces this is
a sphere). The Willmore energy is a special case of the Helfrich bending energy [108]. The Willmore
energy functional is used to numerically model Willmore flow [106, 109–112] (were Ref. [112] uses
IGA) and to model the behaviour of fluid membranes [12, 85, 113]. The Willmore and Helfrich energy
have also been used for computational methods that model budding behaviour of liquid cell membranes
[86, 96, 107, 114] and solid cell membranes [115]. Apart from these out-of-plane deformation models,
in-plane fluid behaviour of membranes is examined using the surface (Navier-)Stokes equation. FE
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implementations of the surface (Navier-)Stokes equation for static surfaces include the usage of the
discrete exterior calculus framework [40, 116] and standard FEA [30, 117]. However, Refs. [30, 116,
117] use Lagrange multiplayer’s or a penalty method to enforce tangential surface flow. Additionally,
there are some examples of papers that model the surface (Navier-)Stokes equation, without using FEA
[118, 119].

The coupled out-of-plane deformation and in-plane flow of liquid membranes are numerically mod-
eled using the thin film equations (without bending) [52, 120] or by incorporating bending via the
Helfrich or Willmore energies [13, 55, 59, 121]. An extension of the latter setting also involves a cou-
pling to the surrounding bulk (Navier-)Stokes equation [14, 39, 83, 122]. Ref. [52] is the only mentioned
paper of this paragraph, that employs IGA for the coupled equations. However, in the paper an addi-
tional projection step is needed in order to attain the inf-sub conditions [123] and full genus 0 surfaces
are not addressed. The coupling of in- and out-of-plane effect is also modeled for an instantaneous
out-of-plane velocity, using a special case of IGA that relies on polar splines [41]. It is emphasized that
this paper does not include time-evolving surfaces.



3 | Mathematical Preliminaries

This section introduces several concepts that are used extensively in this research. Firstly, B-spline basis
functions are introduced in section 3.1. In section 3.4.3 B-splines are then extended to polar splines.
Subsequently, sections 3.2 and 3.3 introduce the surface kinematics and differential calculus framework,
respectively. The latter is used in defining divergence conforming discrete spline spaces.

3.1. B-splines
Especially in the area of computer-aided design, B-spline curves, surfaces and solids are used to represent
the shapes of objects in development. In this research B-splines are used both to represent the arbitrarily
curved domain of cellular membranes and to perform analysis. Exactly the same B-spline function spaces
will be used for both. This is called the isogeometric concept: the basis for the geometry is also used
to approximate the solution.

Firstly, the univariate B-spline basis functions will be introduced (see section 3.1.1 - 3.1.3), which are
used to define arbitrary curves and surfaces. Also, two different refinement types, h- and p-refinement,
are described. Note that B-spline solids will be excluded from this introduction as these will not be
needed throughout the research. This section is mainly based on [46, 47] and the references therein.

3.1.1. Knot vectors & basis functions
The B-spline basis functions (also called shape functions) live on a parametric space, where their corre-
sponding knot vector is defined. A knot vector Ξ is a sequence of increasing values, which indicate the
boundaries of elements in parametric space. A general knot vector is given by

Ξ = [ξ1, ξ2, ξ3, . . . , ξnsh+r, ξnsh+r+1] (3.1)
with ξ1 ≤ ξ2 ≤ ξ3 ≤ . . . ≤ ξnsh+r ≤ ξnsh+r+1. Here nsh indicates the number of basis functions (or
shape functions), while r indicates their order. A knot vector for basis functions of order r is said to be
open if the first and last knots are repeated r+ 1 times, that is, the first and last r+ 1 knots are equal.
Definition. B-spline basis functions are defined by the Cox-deBoor recursive formula’s [47, 124],

for r = 0 : B0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise
(3.2a)

for r > 0 : Br
i (ξ) =

ξ − ξi
ξi+r − ξi

Br−1
i (ξ) +

ξi+r+1 − ξ

ξi+r+1 − ξi+1
Br−1

i+1 (ξ). (3.2b)

These formulas use the definition 0
0 := 0. The formulas are easily understood, but are not so suited

for practical uses as far more efficient algorithms exist to generate the basis functions [51, 125–127].
B-spline basis functions have the following appealing properties. First of all, assuming maximal

smoothness, basis functions sum up to unity,
n∑

i=1

Br
i (ξ) = 1 ∀ξ. (3.3)

The basis functions have local support, that is, basis function Br
i (ξ) is non-zero on the interval

[ξi, ξi+r+1] only. Another very important property is that each B-spline basis functions of order r
has r − 1 continuous derivatives and can be differentiated r times on the whole domain, including the
element boundaries. This property is one of the main reason B-splines are adopted in this research.
Furthermore, the basis functions are linearly independent.

To make all this more concrete, observe the basis functions of order r = 0, 1, 2 that are presented in
figure 3.1. Their corresponding open knot vectors are given by

Ξ = [ 0, . . . , 0︸ ︷︷ ︸
r+1 times

, 1, 2, 3, 4, 5, . . .] (3.4)
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3.1. B-splines 8

(a) Order r = 0 (b) Order r = 1 (c) Order r = 2

Figure 3.1: Order 1, 2, 3 B-spline basis functions corresponding to knot vector of Eq. (3.4)

As can be seen, the basis functions of order 0 and 1 are identical to the standard FE basis functions of
the same order. However, from order 2 onward this does not hold.

3.1.2. B-spline curves
To obtain a B-spline curve C, each basis function is multiplied with a control point (essentially a vector).
The summation over all basis functions and control point pairs defines the curve,

C(ξ) =
nsh∑
i=1

Br
i (ξ)Ri, (3.5)

with control points Ri (vectors). An example of such a curve can be found in figure 3.2, with knot
vector Ξ = [0, 0, 0, 1, 2, 3, 4, 4, 5, 6, 6, 6]. In this figure an important property of the control points is
visualised: in general, the control points do not interpolate the curve. In the figure there are three
exceptions. The two outer control points do interpolate the curve due to the repeated boundary knots
of the open knot vector. Also, control point ξ = 4 interpolates the curve due to double occurrence. This
is the only location where the curve is C0 smooth in stead of C1 smooth. In general, a B-spline curve
is Cr−mi smooth for basis functions of order r and multiplicity of mi of knot ξi.

3.1.3. Refinement types
There exist different refinement possibilities for B-spline based functions spaces. Some of these have an
analogous operation in standard, piecewise polynomial based FEA.

Knot insertion (h-refinement)
Let Ξ = [ξ1, ξ2, . . . , ξnsh+r+1] be a knot vector and let ξ̄ ∈ [ξk, ξk+1). Define a new knot vector Ξ =[
ξ1, ξ2, . . . , ξk, ξ̄, ξk+1, . . . , ξnsh+r+1

]
. The new basis functions corresponding to this new knot vector

are defined by Eq. (3.2). This refinement type enriches the solution space and produces an improved
approximation of the exact solution. The support of each individual function is decreased, leading to
a relatively more sparse mass matrix. In order to keep the geometry identical, the original control
points {R1,R2, . . . ,Rnsh} are substituted by new control points {R̄1, R̄2, . . . , R̄nsh+1}, where nsh is
the original number of basis functions. These new control points are defined by

Ri = αiRi + (1− αi)Ri−1 with (3.6)

αi =


1, 1 ⩽ i ⩽ k − r
ξ−ξi

ξi+r−ξi
, k − r + 1 ⩽ i ⩽ k,

0, k + 1 ⩽ i ⩽ n+ r + 2

(3.7)
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Figure 3.2: Quadratic B-spline curve and corresponding basis functions. Knot vector:
Ξ = [0, 0, 0, 1, 2, 3, 4, 4, 5, 6, 6, 6]

Figure 3.3: h-refined B-spline curve and corresponding basis functions. Knot vector:
Ξ =

[
0, 0, 0, 1

2
, 1, 1 1

2
, 2, 2 1

2
, 3, 3 1

2
, 4, 4, 4 1

2
, 5, 5 1

2
, 6, 6, 6

]

Figure 3.4: p-refined B-spline curve and corresponding basis functions. Knot vector:
Ξ = [0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6]
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It is possible to insert a knot that already exists. This is the same as repeating a knot, and it lowers
the order of continuity of the curve at this knot. For example, see knot ξ = 4 of figure 3.2. The
process of knot insertion of very analogous to h-refinement of standard FEA, where the mesh is refined.
An example of knot refinement is performed on the curve of figure 3.2 resulting in figure 3.3. The
corresponding knot vectors are

Original : Ξ = [0, 0, 0, 1, 2, 3, 4, 4, 5, 6, 6, 6]

h-refined : Ξ = [0, 0, 0, 1
2 , 1, 1 1

2 , 2, 2 1
2 , 3, 3 1

2 , 4, 4, 4 1
2 , 5, 5 1

2 , 6, 6, 6].
(3.8)

Note that the curves remain identical to each other.

Order elevation (p-refinement)
Elevating the order of the basis functions is another way to obtain an enriched solution space. In most
literature, the character p (and q) is reserved to indicate the order. However, in this document the order
is indicated by r (and s for the second coordinate), as p and q will refer to test or trial functions of the
weak formulation. Elevating the original order r0 to order r1 > 0 leads to Cr1−mi smooth functions,
where mi indicates the multiplicity of knot ξi. This is an important difference with p-refinement of
standard FEA. The smoothness on the element boundaries of standard FEA will always remain C0,
independent of the order of the piecewise polynomial basis functions.

To keep the B-spline geometry identical after order elevation, each knot of the corresponding knot
vector needs to be repeated r1 − r0 times. For example, if the order of the curve of figure 3.2 is to be
elevated to r1 = r0 + 1 (one order higher), it will result in figure 3.4. The corresponding knot vectors
are

Original : Ξ = [0, 0, 0, 1, 2, 3, 4, 4, 5, 6, 6, 6]

h-refined : Ξ = [0, 0, 0, 0 , 1, 1, 2, 2, 3, 3, 4, 4, 4 5, 5, 6, 6, 6, 6].
(3.9)

3.1.4. B-spline surfaces and geometric mapping
Let Ω̂ = [0, 1] × [0, 1] be a 2D square domain with coordinates (ξ) = (ξ1, ξ2). The above concept of
B-spline curves can be extended to surfaces. The multivariate basis functions are defined by means of
the tensor product of univariate basis functions:

B
(r,s)
ij (ξ) = Br

i (ξ
1)Bs

j (ξ
2) (3.10)

Here Bs
j (ξ

2) are the order s basis functions corresponding to knot vector H = {η1, η2, . . . , ηmsh+s+1}
and msh indicates the number of basis functions in the η direction. A B-spline surface is now defined
by

x(ξ) =

nsh∑
i=1

msh∑
j=1

B
(r,s)
ij (ξ)Rij . (3.11)

The concept of B-spline surfaces is applied to define the geometric domain Ω, using a B-spline
geometric mapping x(ξ) : Ω̂ −→ Ω from the parametric to the geometric domain. The mapping x
is defined as in Eq. (3.11). The canonical basis of Ω reads as (x) = (x1, x2), but the domain is
parametrized by the parametric coordinates, called curvilinear coordinates. The inverse x−1(x) = ξ(x)
is assumed to exist. For 2D vectors Rij , an example of this mapping is found in figure 3.5. Note that
the gradient of this mapping ∇x, the Jacobian matrix J , is given by

∇x = J =
[
x,1(ξ) x,2(ξ)

]
=

[
x1
,1(ξ) x1

,2(ξ)
x2
,1(ξ) x2

,2(ξ)

]

=

nsh∑
i=1

msh∑
j=1

B
(r,s)
ij,1 (ξ)Rij

nsh∑
i=1

msh∑
j=1

B
(r,s)
ij,2 (ξ)Rij

 ,

(3.12)

where each element of this matrix can be expressed in terms of the derivatives of the basis functions.
Extension to a surface embedded into 3D space is done by simply extending the 2D control points
Ri,j to 3D. Consequently, the corresponding Jacobian matrix of Eq. (3.11) is not square anymore, as
x =

[
x1 x2 x3

]T .
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Figure 3.5: Mapping x(ξ) defining a geometric domain Ω.

3.1.5. B-spline functions
B-spline functions are build using the same basis functions as for the geometry. A B-spline function,
living on Ω̂, is given by

û(ξ) =

nsh∑
i=1

msh∑
j=1

B
(r,s)
ij (ξ)ûij . (3.13)

ûij denote the control variables of the function and the hat indicates functions and control variables
on the parametric domain Ω̂. The same function u(x), but of different form, defined on the geometric
domain Ω can be constructed using a composition of û(ξ) and the inverse of the mapping. This will be
further discussed in section A.3.3.

3.2. Surface kinematics
Here, surface quantities that are needed to express PDEs on surfaces embedded into 3D space are
presented. An important ingredient is the curvilinear coordinates framework with parameters ξ that
describe the surface position x(ξ) [45, 128]. Among others, this section introduces surface quantities
that are later used in the fluid film equations. Introductory section of [42, 43, 52, 84, 87, 129, 130] are
followed in the description.

Take a point x on the surface Ω. There exists a natural covariant basis for the tangential plane at
x, given by

aα := x,α =
∂x

∂ξα
, (3.14)

and unit-length normal vector n = (a1 × a2) /|a1 × a2|. Here and from now on Greek sub- and
superscripts span the set {1, 2}. The two parametric derivatives are denoted by (·),α for readability.

Using the natural basis aα, the metric tensor, gαβ = aα · aβ , is introduced. It is also known as the
first fundamental form). It is concisely written as

g =

[
g11 g12
g21 g22

]
. (3.15)

It is easy to see (using Eq. (3.12)) that g = JTJ holds. A dual contravariant basis aα for the tangent
plane at x is defined by aα ·aβ = δβα, where δβα is the Kronecker delta. The corresponding contravariant
metric tensor reads

gαβ := aα · aβ , with g−1 =

[
g11 g12

g21 g22

]
, (3.16)

and it is the matrix inverse of the covariant metric tensor, [gαβ ] = [gαβ ]
−1. It follows that the sets

{a1,a2,n} and {a1,a2,n} form a basis for R3. Note that both pairs aα and aα are not necessarily an
orthogonal or unit-length pair of vectors, but n is always orthogonal to both aα and aα.

Any surface vector v can now be expressed in terms of both in-plane bases,

v = vαaα

w = v♭ = vαa
α.

(3.17)
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Here, and throughout the rest of the report, Einsteins summation convention is adopted: for every
Greek sub or super script that occurs twice in the same term, a summation over the span of this index
is suppressed for readability. For example, fαgα reads as

fαgα =
∑

α∈{1,2}

fαgα. (3.18)

In Eq. (3.17) vα and vα are contravariant and covariant components of v and v♭, respectfully. The ’flat’
symbol (·)♭ indicates that the indices of in-plane vector components are lowerd. Raising the component
indices is denoted by the ’sharp’ symbol (·)♯ and so w♯ = v. Lowering and raising indices involve the
components of the metric tensor g: vα = gαβv

β and vα = gαβvβ . Note that physically, there is no
difference between v and v♭. Both vectors represent the same ’arrow’, but are expressed in terms of a
different basis. A general 3D vector V , can be expressed as

V = v + vmn = v♭ + vmn. (3.19)

vm is the normal component of V . This component is not dependent on the used in-plane basis, due
to the orthogonality of n.

As the coordinate systems {aα,n} and {aα,n} are dependent on the position x on the manifold,
the derivatives of aα do not have the desired properties that fixed orthonormal coordinate systems do
have. A new notion of differentiation is therefore introduced, called the covariant derivative,

vα;β = vα,β + Γα
γβv

γ

vα;β = vα,β − Γγ
αβvγ ,

(3.20)

where the Christoffel symbol Γγ
αβ is given by

Γγ
αβ = aγ · aα,β . (3.21)

Note that Γγ
αβ is symmetric in its lower indices.

Another surface quantity is the curvature tensor (or second fundamental form) k in covariant com-
ponents,

[kαβ ] = n · aα,β = n,β · aα. (3.22)

It can also be expressed in mixed component and contravariant component form, kαβ = kγβg
γα and

kαβ = kβγ g
γα, respectively. Each tensor is symmetric. The mean curvature of the surface is given by

H :=
1

2
kαα =

1

2
gαβkαβ (3.23)

while the Gaussian curvature reads as

K =
k

g
. (3.24)

g and k are the determinants of g and k, respectively.

3.3. Introduction to differential calculus
Differential forms are objects that represent integrands over curves, surfaces or solids. It is a framework
that generalises the fundamental theorem of calculus, the Stokes’ circulation theorem and Gauss’ di-
vergence theorem [34]. Differential forms have a close relationship with exterior calculus, which is the
study of n-dimensional (n ∈ N) differentiable manifolds. In this research only surfaces embedded into
3D Euclidean space are observed and, therefore, this introduction is restricted to n = 2. For a more
complete and more general introduction of exterior calculus and differential forms see Refs. [37, 38]. In
this introduction mostly Refs. [34, 41] are followed.

For a 2D manifold Ω, there are three different types of differential forms, called k-forms for k = 0, 1, 2.
They correspond to spaces Λk(Ω) for k = 0, 1, 2, respectively. Elements of Λk(Ω) are skew-symmetric
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Figure 3.6: The length of the cross product v ×w is equal to the surface of the parallelogram
defined by the two vectors v and w. In much the same sense, the wedge product of basis vectors

a1 and a2 defines a surface 2-form a1 ∧ a2.

k-linear forms on TxΩ× . . .×TxΩ, where TxΩ is the tangent 2D space at x ∈ Ω. Let ω(0) ∈ Λ0(Ω) be a
0-form. ω(0)(x) actually is a very well known object, namely a scalar function. A 1-form Λ1(Ω) ∋ ω(1) =
ωαa

α is identical to a covector as introduced in Eq. (3.17), with ωα the covariant components. The
contravariant basis aα ensures that ω(1) lies in the tangent plane of Ω at x ∈ Ω. Lastly, let ω(2) ∈ Λ2(Ω)
be a 2-form. This form can be written as ω(2) = ω12 a

1 ∧ a2, where a1 ∧ a2 is called the volume form.
Since only surfaces (n = 2) are used, this form will be referred to as the surface form. From now on
ω(k) will denote a k-form in Λk(Ω).

The operator ∧ is borrowed from the framework of exterior calculus, and its is called the exterior
product or wedge product. It is given by the mapping ∧: Λj ×Λk −→ Λj+1. The best way to intuitively
understand its working is by interpreting the exterior product as a cross product between vectors in the
3D space. The length of the resulting vector is the surface area of the parallelogram spanned by the
two input vectors, hence the name surface form. Its direction is a vector normal to the induced surface.
(See figure 3.6) The exterior product has properties similar to the cross product:

Property. The exterior product has the following properties:

1. It is skew symmetric, that is, a1 ∧ a2 = −a2 ∧ a1.
2. The exterior self product ai ∧ ai = 0 is zero for i = 1, 2.
3. It has the property of distribution over addition and multiplication.
4. It is associative, such that (ω(i)∧β(j))∧γ(k) = ω(i)∧(β(j)∧γ(k)). (Contrary to the cross product.)

As an example, take two 1-forms ω(1) = ωαa
α and β(1) = βαa

α. Using the mentioned properties,
their exterior product is given by(

ω1a
1 + ω2a

2
)
∧
(
β1a

1 + β2a
2
)
= (ω1β2 − ω2β1)a

1 ∧ a2. (3.25)

There are a few other important operations on differential forms that will be introduced. Firstly,
the Hodge star ⋆ : Λk −→ Λn−k is defined in terms of the metric and its inverse [41]. For 0-, 1- and
2-forms it is given by, respectively,

⋆ω =
√
gω12 a

1 ∧ a2

⋆ωα a
α =

√
gωαg

αγϵγδ a
δ

⋆ω12 a
1 ∧ a2 =

1
√
g
ω.

(3.26)

Here, ϵ12 = 1, ϵ21 = −1, and 0 otherwise.
Essentially the Hodge star is the bridge between the (sub)space Λk(Ω) and its orthonormal (sub)space(

Λk
)⊥

(Ω) = Λn−k(Ω) for k = 0, 1, 2. It has the following properties

⋆ ⋆ ω(k) = (−1)kω(k), (3.27a)
β(k) ∧ ⋆ω(n−k) = ⟨β(k), ω(n−k)⟩g dS, (3.27b)

for surface form dS = a1 ∧ a2. See figure 3.7 for an example of the Hodge star operator applied to a
1-form ω(1). The figure provides an intuitive understanding of property (3.27a).
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Another important operator is the exterior derivative d: Λk(Ω) −→ Λk+1(Ω). The exterior derivative
is a coordinate independent generalization of vector calculus gradient, divergence and curl operators
[34]. Applying d to a k-form produces a unique k + 1-form given by

dω(0) =
∂ω(0)

∂ξα
aα (3.28)

dω(1) =

(
∂ω2

∂ξ1
− ∂ω1

∂ξ2

)
a1 ∧ a2. (3.29)

Furthermore, d dω(k) = 0 for any k-form and for ω(i) ∈ Λi(Ω) and β(j) ∈ Λj(Ω) the Leibniz rule with
respect to the wedge product is satisfied:

d(ω(i) ∧ β(j)) = dω(i) ∧ β(j) + (−1)iω(i) ∧ dβ(j) (3.30)

The co-differential operator d⋆ : Λk(Ω) −→ Λk−1(Ω) is given by d⋆ = − ⋆d ⋆ such that(
ω(k−1),d⋆β(k)

)
=
(

dω(k−1), β(k)
)
−
∫
∂Ω

ω(k−1) ∧ ⋆ β(k). (3.31)

It follows that d⋆ is the Hilbert space adjoint of the exterior derivative, up to a boundary term.
Differential forms can be interpreted as integrand objects inducing a natural integral. Let ω(k) be a

k-form. Its natural integral is given by ∫
Ωk

ω(k) (3.32)

for Ωk a k-dimensional (sub)manifold. For k = 0 this boils down to the function evaluation∫
{x0}

ω(0) = ω(0)(x0). (3.33)

For k = 1, 2 the integral can be written as, respectively, a Riemann line- or surface integral∫
C
ω(1) =

∫
C
fα aα = o(C)

∫
C
ω1 dx1 + ω2 dx2 (3.34a)∫

S
ω(2) =

∫
S
ω a1 ∧ a2 = o(S)

∫∫
S
ω dx1dx2. (3.34b)

Here C and S are a curve and a surface, respectively. o(·) = ±1 is a function indicating the orientation
of the domain. Note that this is convention and is related to the chosen direction of the tangent or
normal vector.

A L2 inner product on Λk(Ω) can be defined using the Hodge star operator. Let ω(k), β(k) ∈ Λk(Ω)(
ω(k), β(k)

)
Ω
=

∫
Ω

(
ω(k), β(k)

)
dΩ =

∫
Ω

ω(k) ∧ ⋆ β(k). (3.35)

Figure 3.7: The Hodge star operator applied to the 1-form ω(1). For simplicity it is assumed
that the metric tensor g is the identity matrix. From the figure it is clear why − ⋆ ⋆ω(1) = ω(1).
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It is worth noting that the integrand of the last integral is a 2-form, regardless of the value for k.
Lastly, let G : Ω̂ −→ Ω be the geometric mapping defining Ω (see section 3.1.4). The pullback

G⋆ : Λi(Ω) −→ Λi(Ω̂) of G is defined such that the following holds∫
Ω

ω(k) =

∫
G(Ω̂)

ω(k) =

∫
Ω̂

G⋆(ω(k)) (3.36)

for f a k-form. G⋆ commutes with both the exterior product ∧ and the exterior derivative d, which
makes it extremely useful as will be seen.

3.3.1. Outer oriented differential forms
There are two different interpretations of a system of differential forms, the inner oriented (or ordinary)
differential forms and the outer oriented (or twisted) differential forms. Their spaces (for a 2-dimensional
manifold) are given schematically by

Inner oriented R // Λ0(Ω)
OO

⋆

��

d // Λ1(Ω)
OO
⋆

��

d // Λ2(Ω)
OO
⋆

��

// 0

Outer oriented 0 Λ2(Ω)oo

−d⋆

��
Λ1(Ω)

doo

−d⋆

��
Λ0(Ω)

doo R.oo

(3.37)

Both horizontal sequences of differential forms, connected by the exterior derivative d are called de
Rham complexes. In formulating differential equation in terms of differential forms, one of both options
for the de Rham complex should be chosen. Depending on the problem that will be discretized, the
inner and outer oriented complexes have different properties. This has everything to do with the fact
that d is a metric free operation, while d⋆ = − ⋆d ⋆ is not. It means that d is independent of the
underlying coordinates and allows for an exact discrete representation [34].

3.4. Discrete differential forms and polar spline spaces
For isogeometric based FEA the discrete versions of the introduced differential forms are used. Discrete
differential forms are represented by B-spline basis functions as introduced in section 3.1. However, the
basis functions will be slightly modified. This section summarises some aspects of the construction of
polar spline spaces as described by Toshniwal and Hughes [41]. For details it is referred to this paper
and to Ref. [51], where only polar spline surfaces of C1 smoothness are discussed.

3.4.1. Periodic univariate B-spline basis functions
Periodic B-spline basis functions are defined such that the end and starting point of a domain are
identical. The periodic basis functions are denoted by P

(r)
i to distinguish them from the non-periodic

functions. In the knot vector, each knot occurs only once, unless lower continuity is desired. There is
no boundary and the number of basis functions is equal to the number of knots. As an example of a
periodic B-spline curve, see figure 3.8 which is a variation of the original non-periodic curve given in
figure 3.2. Note that even at the starting point of the curve, the C1 smoothness (for quadratic basis
functions) is attained. Again, the only C0 continuous point is the consequence of a repeated knot vector.

3.4.2. Semi-periodic tensor product space
The semi-periodic bilinear space is defined by combining the periodic basis functions of the previous
section with the non-periodic basis function of section 3.1.1. It leads to a shape with the topology of a
cylinder as visualised in figure 3.9a.

N
(0,0)
ij (ξ) = Pi(ξ)Bj(η), N

(1,0)
ij (ξ) = P i(ξ)Bj(η),

N
(0,1)
ij (ξ) = Pi(ξ)Bj(η), N

(1,1)
ij (ξ) = P i(ξ)Bj(η).

(3.38)

The scaled basis functions are defined as

P
2

i = 2P 1
i , B

2

i = 2B1
i (3.39)
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Figure 3.8: Quadratic periodic B-spline curve and corresponding periodic basis functions.
Knot vector: Ξ = [0, 1, 2, 3, 4, 4, 5, 6 ≡ 0]

In Eq. (3.38) it is recognised that the highest order of the basis functions is always in superscript. In
this report the order will always be equal to 2, and it will be suppressed for readability.

Let

S(0,0) := span
{
N

(0,0)
ij :

i = 0, . . . , n1 − 1,

j = 0, . . . , n2 − 1

}
, n(0,0) := dim

(
S(0,0)

)
= n1 × n2 (3.40a)

S(1,0) := span
{
N

(1,0)
ij :

i = 0, . . . , n1 − 1,

j = 0, . . . , n2 − 1

}
, n(1,0) := dim

(
S(1,0)

)
= n1 × n2 (3.40b)

S(0,1) := span
{
N

(0,1)
ij :

i = 0, . . . , n1 − 1,

j = 0, . . . , n2 − 1

}
, n(0,1) := dim

(
S(0,1)

)
= n1 × n2 (3.40c)

S(1,1) := span
{
N

(1,1)
ij :

i = 0, . . . , n1 − 1,

j = 0, . . . , n2 − 1

}
, n(1,1) := dim

(
S(1,1)

)
= n1 × n2. (3.40d)

The following spaces are defined for tensor product 0-, 1- and 2-forms, respectively:

Λ0
T = S(0,0), Λ1

T =
{
fαa

α : f1 ∈ S(1,0), f2 ∈ S(0,1)
}
, Λ2

T =
{
f a1 ∧ a2 : f ∈ S(1,1)

}
(3.41)

Let ω ∈ Λ0
T, u ∈ Λ1

T, and q ∈ Λ2
T. In terms of basis functions, these differential forms read as

ω =
∑
i,j

PiBjωij =
[
N (0,0)

]
· [ω] (3.42a)

u =
∑
i,j

P iBju
1
ij a

1 +
∑
i,j

NiBju
2
ij a

2 =
[
N (1,0)

]
·
[
u1
]
a1 +

[
P (0,1)

]
·
[
u2
]
a2 (3.42b)

q =
∑
i,j

N iBjqij a
1 ∧ a2 =

[
N (1,1)

]
· [q] a1 ∧ a2. (3.42c)

Without going into details, it can be shown that for Λ1
T ∋ f := dω and Λ2

T ∋ h := du the discrete
exterior derivatives can be represented by a few matrices, D(1,0), D(0,1), D(2,0) and D(0,2) [41], such
that

f = dω :=
[
N (1,0)

]
·D(1,0)[ω] a1 +

[
N (0,1)

]
·D(0,1)[ω] a2 and

h = du :=
[
N (1,1)

]
·
(
−D(2,0)[u1] +D(0,2)[u2]

)
a1 ∧ a2.

(3.43)

3.4.3. Polar splines
Polar spline spaces are used to construct sphere-like surfaces (with genus 0) that are C1 continuous
everywhere. This is done by collapsing two lines of the parametric domain to singular points called
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(a) A cylinder-like surface (b) A 3x3 element grid with two collapsed poles.

Figure 3.9: Collapsing both the red and the blue edges of the cylinder to two points, leads to
two singularities called ’poles’ as depicted on the right

poles. (See figure 3.9.) Again, a geometric mapping similar to Eq. (3.11) defines the surface Ω, but the
basis functions are different. Following Ref. [41], there exist matrices

E(0),pol, E(1),pol, E(2),pol (3.44)

that will be used to define the polar basis functions. Using the semi-periodic basis functions of the
previous paragraph, the polar basis functions are defined by,

N (0),pol = E(0),polN (0,0),

N (2),pol = E(2),polN (1,1),
N (1),pol =

[
N (1,0),pol

N (0,1),pol

]
= E(1),pol

[
N (1,0)

N (0,1)

]
. (3.45)

The geometric mapping x is now given by

x(ξ) =

n(0),pol∑
A=1

N
(0),pol
A Rpol

A . (3.46)

Note that this mapping is singular at the poles. This does not result in any problems, as the imple-
mentation of this setting generally involves the evaluation of quadrature points in the element interiors
only.

The polar basis functions define the corresponding spaces

Λ0
S(Ω) := span

{
N

(1),pol
A : A = 0, . . . , n(0),pol − 1

}
(3.47a)

Λ1
S(Ω) := span

{
N

(1,0),pol
A a1 +N

(0,1),pol
A a2 : A = 0, . . . , n(1),pol − 1

}
(3.47b)

Λ2
S(Ω) := span

{
N

(2),pol
A a1 ∧ a2 : A = 0, . . . , n(2),pol − 1

}
, (3.47c)

and their functions can be written as,

ω =
∑
A

N (0),polωA =
[
N (0),pol

]
· [ω] (3.48a)

u =
∑
A

N (1,0),polu1
A a

1 +
∑
A

N (0,1),polu2
A a

2 =
[
N (1,0),pol

]
·
[
u1
]
a1 +

[
N (0,1),pol

]
·
[
u2
]
a2

(3.48b)

q =
∑
A

N (2)polqA a
1 ∧ a2 =

[
N (2),pol

]
· [q] a1 ∧ a2 (3.48c)



3.4. Discrete differential forms and polar spline spaces 18

Similar to the discrete representation of the exterior derivative of Eq. (3.43) in the semi-periodic
setting, there is a similar representation for the polar setting [41]. The relations read as

f = dω :=

[
N (1,0),pol a1

N (0,1),pol a2

]
·D(0),pol [ω] , h = du :=N (2),pol ·D(1),pol [u] a1 ∧ a2. (3.49)

It is important to note that the polar basis functions
{
N

(k),pol
A

}n(k),pol

A=1
have properties similar to

the basis functions defined in section 3.1. That is, they form a partition of unity
∑nP

A=1 PA = 1, each
PA is C1 continuous and they are linear independent from each other [41, 127]. Furthermore, the local
support of the polar basis function is analogous to the ordinary B-spline basis function. Only at the
poles, the functions are quite different.



4 | Continuous strong and weak forms

This chapter presents the differential equations corresponding to fluid films. The full system is rewritten
in terms of differential forms and the continuous weak formulation is derived.

4.1. Strong formulation of the fluid film equations
The strong formulation as derived in Ref. [39] is presented. These equations are equivalent to the fluid
film equations of Ref. [52]. On the domain Ω the following holds

− gradΩ p+ µ
[
−
(
d⋆ dvb

)♯ − 2(k − 2Hg)♯ · gradΩ vm + 2Kv
]
+ f = 0 (4.1a)

divΩ · v − 2vmH = 0 (4.1b)
−2Hp+ 2µ

(
∇v : k −

(
4H2 − 2K

)
vm)+ fn = 0. (4.1c)

subject to Dirichlet boundary conditions,

v = v∂ on ∂Ω. (4.2)

The strong formulation contains an in-plane equation (Eq. (4.1a)), which, together with the incompress-
ibility constraint (Eq. (4.1b)), forms the surface Stokes equation. Eq. (4.1c) describes the out-of-plane
or normal behavior of the domain. In the equations, p is the pressure, which is the negative of the
surface tension. v is the in-plane velocity vector field and vm the mesh velocity normal to the surface.
Note that v and vm appear in both the in-plane and the out-of-plane equations. This indicates the
coupling between surface flow and normal velocities. f is the surface forcing, while fn is the pressure
difference between the inner and outer bulk fluids. Both of them are known. The surface quantities
g,k,H,K are the metric tensor, the curvature tensor, the mean curvature and the Gaussian curvature,
respectively. All these quantities depend on the shape of the surface. Note that in some papers (like
in Refs. [39, 41]), H denotes twice the mean curvature, in stead of just the mean curvature. The term
containing the double dot product ’:’ in Eq. (4.1c) reads as,

∇v : k =Tr(∇v · k) = Tr
([

g1γv1;γ g2γv1;γ
g1γv2;γ g2γv2;γ

]
·
[

k11 k12
k12 k22

])
= gαγvβ;γkβα = vα;βk

αβ (4.3)

Lastly, µ is the viscosity of the fluid.

4.2. The fluid film equations in terms of differential forms
The Strong formulation presented at the start of this section is now rewritten in terms of differential
forms. The choice of outer oriented differential forms will first be motivated in section 4.2.1. Subse-
quently the final strong formulation that is used in this research is presented.

4.2.1. Outer oriented differential forms
For the Stokes discretization of this research, a pointwise satisfaction of the incompressibility constraint
is desired to prevent numerical inconsistencies in the IGA formulation. In order to do so, the outer
oriented complex is adopted [34, 131], such that the expression divΩ · v = 0 can be represented by

du = 0 (4.4)

in a discrete, but point-wise exact manner (see section 3.3.1). Here u = ⋆v♭ is an outer oriented 1-form.
If one observes figure 3.7, it becomes clear why u is called a twisted form: u is orthogonal to v. It is
noted that v♭ is an inner oriented 1-form, and that v is a proxy field (that is, corresponding vector field)
of u.

19
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The variables in the strong formulation of Eq. (4.1) are: the fluid surface velocity given by the
vector field v = vαaα; the pressure function p; the surface normal velocity component vm. The
originals v, p, vm are in fact proxy fields (that is, scalar of vector field corresponding to 0-, 1-, or 2-
forms) for the corresponding outer oriented differential forms u ∈ Λ1(Ω), q, ν ∈ Λ2(Ω), respectively.
Their relationships are given by u = ⋆v♭, q = ⋆ p, ν = ⋆ vm. Lastly, a new unknown is introduced: the
voriticity 0-form,

Λ0 ∋ ω = d⋆u. (4.5)

This is the last ingredient needed for the vorticity-velocity-pressure formulation of the Stokes equation
and the out-of-plane shape equation expressed in terms of the outer oriented differential forms. It
is noted that in the discrete setting, Eq. (4.5) will not be represented exactly, a sacrifice for exact
satisfaction of Eq. (4.4).

4.2.2. Restatement of Strong form
The strong formulation as in Eq. (4.1) expressed in terms of the proxy fields is now restated in terms of
the corresponding differential forms. The restated strong formulation will be the final version used in
this research. Set µ = 1 and f = 0 for the surface forcing. Substituting the outer oriented differential
forms into Eq. (4.1a) results in

− gradΩ ⋆ q + (d⋆ d ⋆u)
♯ − 2(k − 2Hg)♯ · gradΩ ⋆ ν − 2K(⋆u)♯ = 0. (4.6)

Now (· · · )♭ and ⋆ are consecutively applied to each term of the Eq. (4.6) which gives

− ⋆d ⋆ q − ⋆ ⋆d ⋆d ⋆u− ⋆ 2(k − 2Hg) · d ⋆ ν − ⋆ ⋆ 2Ku = 0
=⇒ d⋆q − d d⋆u− ⋆ 2(k − 2Hg) · d ⋆ ν + 2Ku = 0. (4.7)

Similarly, the outer oriented differential forms are substituted into Eq. (4.1b),

⋆d ⋆v − 2Hvm = 0,

=⇒ ⋆du− 2H ⋆ν = 0

=⇒ du− 2Hν = 0. (4.8)

and into Eq. (4.1c),

−2Hp+ 2∇v : k −
(
H2 − 2K

)
vm = −fn

=⇒ −2H ⋆ q − 2∇ ⋆u : k − 2
(
(2H)2 − 2K

)
⋆ ν = −fn. (4.9)

The vorticity (Eq. (4.5)) is introduced and the static strong formulation reads as

ω − d⋆u = 0 (4.10a)
−dω + 2Ku+ d⋆q − ⋆(2(k − 2Hg) · d ⋆ ν) = 0 (4.10b)

du− 2Hν = 0 (4.10c)
−2H ⋆ q − 2∇ ⋆u : k − 2

(
4H2 − 2K

)
⋆ ν = −fn. (4.10d)

The surface is closed and, therefore, no boundary terms are needed.
Since the surface evolves in time, the surface evolution equation is added to the system. Note that

all known and unknwon quantities of the above strong formulation are depending on both the position
x (or ξ) and time t. The surface position x(ξ, t) is defined by its initial position x(ξ, t0) at time t0 and
the surface velocity vm(ξ, t) = ⋆ ν(ξ, t) integrated over time,

x(ξ, t) = x(ξ, t0) +

∫ t

t0

vm(ξ, s)n(ξ, s)ds (4.11)

Note that Eqs. (4.10a)-(4.10c) are identical to the strong formulation of [41].
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4.2.3. Weak formulation
The weak formulation corresponding to Eq. (4.10) will now be derived. The equations of the strong
formulation correspond to a 0-form, 1-form, 2-form and another 0-form equation, respectively. These
indicate the corresponding test functions spaces. Multiplying with the test functions and integrating
the strong formulation leads to:

Find ω ∈ Λ0(Ω), u ∈ Λ1(Ω), q ∈ Λ2(Ω) and ν ∈ Λ2(Ω) such that for all ζ0, ζ ′0 ∈ Λ0(Ω),
ζ1 ∈ Λ1(Ω) and ζ2 ∈ Λ2(Ω) the following holds:

(ζ0, ω)Ω − (ζ0,d⋆u)Ω = 0 (4.12a)
− (ζ1,dω)Ω + (ζ1, 2Ku)Ω + (ζ1,d⋆q)Ω − (ζ1, ⋆ 2[k − 2Hg] · d ⋆ ν)Ω = 0 (4.12b)

(ζ2,du)Ω + (ζ2, σ)Ω − (ζ2,Hν)Ω = 0 (4.12c)(
ζΣ2 , q

)
Ω
= 0 (4.12d)

− (ζ ′0, 2∇ ⋆u : k)Ω − (ζ ′0, 2H ⋆ q)Ω − 2
(
ζ ′0,
[
(2H)2 − 2K

]
· ⋆ ν

)
Ω
= − (ζ ′0, f

n)Ω (4.12e)

Note that two extra terms are included. Eq. (4.12d) counteracts the rank deficiency of the associated
linear system by requiring a mean surface tension of 0. The term (ζ2, σ)Ω is simply the transpose of(
ζΣ2 , q

)
Ω

.



5 | Discretization

In this section the discretization process will be described. In section 5.1 the discrete weak formulation
is obtained, while time is discretized in section 5.2. In appendix A.3, the simpler 2D Stokes equation
is also discretized. In the appendix section, the reader can get more familiar with the transformations
that are used for the 0-, 1-, and 2-forms.

5.1. Space discretization of the fluid film equations
Now remember the relation between d and d⋆ given by Eq. (3.31). Note that ∂Ω = ∅. This will be
used to express the weak formulation fully in terms of the exterior derivative d:

Find ω ∈ Λ0
S(Ω), u ∈ Λ1

S(Ω), q ∈ Λ2
S(Ω) and ν ∈ Λ2

S(Ω) such that for all ζ0, ζ ′0 ∈ Λ0
S(Ω),

ζ1 ∈ Λ1
S(Ω) and ζ2 ∈ Λ2

S(Ω) the following holds:
(ζ0, ω)Ω − (d ζ0,u)Ω = 0 (5.1a)

− (ζ1,dω)Ω + (ζ1, 2Ku)Ω + (d ζ1, q)Ω − (ζ1, ⋆ 2[k − 2Hg] · d ⋆ ν)Ω = 0 (5.1b)
(ζ2,du)Ω + (ζ2, σ)Ω − (ζ2,Hν)Ω = 0 (5.1c)(

ζΣ2 , q
)
Ω
= 0 (5.1d)

− (ζ ′0, 2∇ ⋆u : k)Ω − (ζ ′0, 2H ⋆ q)Ω − 2
(
ζ ′0,
[
(2H)2 − 2K

]
⋆ ν
)
Ω
= − (ζ ′0, f

n)Ω (5.1e)

The associated linear system (for fixed Ω) reads as

Mψ = f (5.2)

with known

M =


M ζ0ω M ζ0u

M ζ1ω M ζ1u M ζ1q M ζ1ν

M ζ2u M ζ2σ M ζ2ν

M ζΣ
2 q

M ζ′
0u M ζ′

0q M ζ′
0ν

 , f =


0
0
0
0

f ζ′
0

 (5.3)

and unknown control variables

ψ =


[ω]
[u]
[q]
[σ]
[ν]

 . (5.4)

The submatrices of matrix M are expressed as MAB where A and B indicate the related trial functions
(rows) and test functions (columns), respectively. The submatrices are constructed using Gaussian
quadrature on each of the elements to evaluate the integrals of the weak form. The matrices are not
constructed entry by entry, rather for each element the corresponding integrals are calculated using
Gaussian quadrature points. Integrals of integrands that include basis function that are known to be
zero a-priori (due to the local support) are omitted for efficiency.

Observe the submatrix of M ,

MStokes =


M ζ0ω M ζ0u

M ζ1ω M ζ1u M ζ1q

M ζ2u M ζ2σ

M ζΣ
2 q

 . (5.5)

It is exactly equal to the left-hand side matrix associated with the final weak formulation of Ref. [41]
(Eq. (121)) and MStokes = MT

Stokes.
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5.2. Time discretization of surface evolution
Remember that the surface evolution equation of is given by Eq. (4.11). In the weak formulation
of Eq. (5.1) the occurring surface characteristics K,H,k, g, the differential calculus operators ⋆, d
and the inner products depend on the surface position x(ξ, t) of Ω(t) at time t. As a consequence, the
system is non-linear in time. However, keeping the surface momentarily fixed, leads to a linear system of
equations. The time discretization of the surface evolution equation (Eq. (4.11)) will be performed using
an implicit-Euler scheme. Is described in the following subsections, the system is solved by alternating
between solving the shape equation and the Stokes equation. The solutions for both the shape equation
and the Stokes equation at a new time step, which directly influences the surface deformation, will be
computed iteratively using the fixed-point method.

A summary of time stepping and of the the fixed-point iterations can be found in the pseudo code of
algorithm 1. Here subscripts n denotes the time, while subscripts i indicates the iteration. A schematic
summary of the algorithm, including data flow, can be found in figure 5.1. Lastly, the online repository
for the Matlab code can be found here. The following subsection go into details of the algorithm. For
readability, the time and iteration subscripts are sometimes suppressed in the text.

5.2.1. Notation
Let ∆t be the size of the time step, such that the sequence t0 < t1 < . . . < tn < . . . < tend−1 < tend
increases with ∆t. Ωn denotes the surface at time tn defined by geometric mapping,

x(ξ) =
∑
A=1

N
(0),pol
A Rpol

A , (5.6)

with time dependent control points [Rn] = [R] (tn). The discrete fundamental unknown functions at
time tn are given by ωn, un, qn, σn (the Stokes variables) and νn the normal velocity defining the
surface deformation. The control variables and the control variable offsets of the Stokes unknowns are
stored in, respectively,

[ϕn] =


[ωn]
[un]
[qn]
[σn]

 , [∆ϕn+1] =


[∆ωn+1]

[∆un+1]

[∆qn+1]

[∆σn+1]

 , (5.7)

such that

[ϕn+1] = [ϕn] + [∆ϕn+1] . (5.8)

Additionally, [νn] represents the control variables of the normal velocity 2-form, and [vm
n ] and [∆vm

n+1]
represent the control variables of the corresponding 0-form mesh velocity and its offset function, respec-
tively.

5.2.2. Adjustments of the linear system
In the fixed-point iterations, solving the Stokes equation and the shape equation is done in two separate
steps (figure 5.1). First, the shape equation is solved given the control points of the in-plane velocity
[un+1]i and the pressure [qn+1]i at the previous iteration, expressed by the vectors

[hu
n+1]i = [M

ζ′
0u

n+1]i · [un+1]i and [hq
n+1]i = [M

ζ′
0q

n+1]i · [qn+1]i , (5.9)

respectively. Furthermore, the unknown normal velocity 2-form ν, replaced by the mesh velocity 0-form
vm, such that the third term of Eq. (5.1e) becomes

−2
(
ζ ′0,
[
(2H)2 − 2K

]
⋆ ν
)
Ω
−→ −2

(
ζ ′0,
[
(2H)2 − 2K

]
vm)

Ω
, (5.10)

leading to a square matrix M ζ′
0v

m . The corresponding linear system reads,

[M
ζ′
0v

m

n+1 ]i ·
[
vm
n+1

]
i+1

=
[
f shape
n+1

]
i
, (5.11)

https://gitlab.tudelft.nl/hmverhelst/lipid-bilayers
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where [
f shape
n+1

]
i
= f

ζ′
0

n+1 − [hu
n+1]i − [hq

n+1]i. (5.12)

Subsequently, the Stokes equation is solved given the control variables [νn+1]i+1 of the normal velocity.
For the Stokes equation there is no adjustment needed. However, since the shape equation is solves for
the mesh velocity

[
vm
n+1

]
i+1

, the input variable

[νn+1]i+1 =
[
⋆ vm

n+1

]
i+1

(5.13)

is obtained by applying the Hodge star. This operation can not be performed exactly and in stead, ⋆ vm

is projected on to 2-form space Λ2
S . It is performed by multiplying Eq. (5.13) with a test function and

integrating, leading to a weak form:

Find ν ∈ Λ2
S(Ω̂) such that for all ζ2 ∈ Λ2

S(Ω̂), the following holds:
(ζ2, ν)Ω̂ = (ζ2, ⋆ v

m)Ω̂. (5.14)

It can be expressed in terms of a linear system,[
M ζ2q

n+1

]
i+1

· [νn+1]i+1 =
[
hvm

n+1

]
i+1

, (5.15)

where M ζ2q and hvm correspond to (ζ2, ν)Ω̂ and (ζ2, ⋆ v
m)Ω̂, respectively.

The Stokes system now reads as[
MStokes

n+1

]
i
[ϕn+1]i =

[
fStokes
n+1

]
i+1

, (5.16)

where

[
fStokes
n+1

]
i+1

=


0[

M ζ1ν
n+1

]
i
· [νn]i+1[

M ζ2ν
n+1

]
i
· [νn]i+1

0

 . (5.17)

5.2.3. Geometry evolution
The movement of the surface (Eq. (4.11)) is discretized in time by the backwards-Euler method,

xn+1 = xn +∆t∆vm
n+1n, (5.18)

with normal vector n and time step ∆t = tn+1 − tn. Rewriting Eq. (5.18) in terms of the geometry
control points gives

[Rn+1]i+1 = [Rn+1]i +∆t
[
∆vm

n+1

]
i+1

⊙ [nn+1]i . (5.19)

Here, [R] ∈ RnP×3 are the control vectors of Ωn, [∆vm] ∈ RnP×1 are the mesh velocity offset control
points (0-form) and [n] ∈ RnP×3 are the control vectors of the discrete normal vector (0-form). ⊙
indicates a row-wise multiplication. [n] is obtained in much the same way as [ν] is obtained in Eq.
(5.15). However, this time a projection onto the 0-form space Λ0(Ω̂) is performed using the system,

M ζ0ω [n] = hn. (5.20)

Here, hn is a three-column matrix corresponding to

(ζ0, n
i)Ω for i ∈ {1, 2, 3} (5.21)

Note that this left-hand-side matrix is identical to the top left matrix of M (of Eq. (5.2)).
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While 

Initiate

Change in DOFs

Delta mesh velocity

New timestep

Assemble_shape_matrix

Solve for

Assemble_Stokes_matrix

Solve for

Update geometry

Project on 2-form space

0-form normal vector

Figure 5.1: Flow chart of the fixed point loop. The black arrows indicate the sequence of steps,
while the red arrows visualize the data dependencies.



5.2. Time discretization of surface evolution 26

Algorithm 1: Matlab pseudo code for time step and fixed point loops

1 for t_step = 1:t_end
2 time = time + D_t;
3

4 % Initiate DOFs:
5 % - phi (Stokes DOFs: vorticity (0-form), in-plane vel (1-form), pressure (2-form))
6 % - v_m (out-of-plane vel (0-form))
7 % - spline_space (geometry spline space)
8 [phi_new, v_m_new, spline_space] = initiate_DOFs();
9 [D_phi, D_v_m] = initate_deltas();

10

11 while norm(D_phi)/norm(phi_new) > TOL
12 itCount = itCount + 1;
13

14 % Set old DOFs
15 phi_old = phi_new;
16 v_m_old = v_m_new;
17

18 % Assemble & solve shape Eq given the Stokes variables, phi
19 [LHS_shape, RHS_shape] = assemble_shape_matrix(spline_space, params, phi_old);
20 v_m_new = LHS_shape\RHS_shape; % 0-form
21 D_v_m = v_m_new - v_m_old; % Delta vel
22

23 % Project normal vector --> 0-form space
24 Mass = CS_assemble_mass_matrix(spline_space, params);
25 RHS_nrml = L2_projection_normal_RHS(spline_space, params);
26 normal = Mass{1}\RHS_nrml; % 0-form
27

28 % Update geometry & spline space
29 v_m_vector = D_v_m.*normal; % element-wise multiplication
30 spline_space = update_geometry(spline_space, D_t, v_m_vector);
31

32 % Project v_m (0-form) --> nnu (2-form)
33 Mass = CS_assemble_mass_matrix(spline_space, params);
34 RHS_nnu = L2_projection_2form_RHS(spline_space, params, v_m_new;
35 nnu = Mass{3}\RHS_nnu; % 2-form
36

37 % Assemble & solve Stokes Eq given nnu
38 [LHS_Stokes, RHS_Stokes] = assemble_Stokes_matrix(spline_space, params, nnu);
39 phi_new = LHS_Stokes\RHS_Stokes;
40

41 % Delta Stokes DOFs
42 D_phi = phi_new - phi_old;
43 end
44 end



6 | Results

In this chapter the results of Stokes flow on a curved polar-spline geometry, with and without out-of-
plane deformation, is discussed. After the gained experience with the self-written code (see appendix
A.4), the Matlab implementation of Ref. [41] was utilized. This code is first used to reproduce the results
of the paper for static surfaces with a prescribed instantaneous normal velocity field. Subsequently, in
section 6.2, the code is extended to the full discrete system as presented in Eq. (5.1) by incorporating
time evolution of the domain.

Latitude

Longitude

Figure 6.1: The basic domain on the coarsest level. The latitudinal
and longitudinal coordinate directions are indicated.

6.1. Stokes flow on a static closed surface
In this research, the code corresponding to Ref. [41] is adopted and extended. Therefore, it is only
natural to include the bi-polar surface as constructed in this paper (for order p = 2). The domain is
visualized for the coarsest level in figure 6.1 (3× 3 elements) and will from now on be called the basic
domain. The latitudinal and longitudinal coordinate directions are also indicated in the figure.

The Stokes flow on the basic domain with a prescribed instantaneous velocity is now presented. A
result of Ref. [41] is reproduced, using the weak formulation of Eq. (5.1a)-(5.1d) with a prescribed
normal velocity 2-form,

νex =
√
gf12 a

1 ∧ a1 with f12 = cos
(
2πξ1

) (
cos
(
2πξ2

)
− 1
)2

. (6.1)

However, the result presented in figure 6.2 differs form the result found in Ref. [41] (Fig. 15a), because
of a resolved error in the original code. The implementation error had effect on the mean curvature H
in the mesh velocity term of Eq. (5.1b). The mean curvature of Eq. (5.1c) was implemented correctly.
The error led to an inconsistency in the normal velocity source terms, with a non-physical solution as
the consequence.

Observing figure 6.2, positive and negative instantaneous normal velocities lead to low and high
pressures, respectively. Note that the negative of the pressure equals the surface tension. As expected,
the in-plane fluid flows away from high pressures areas and towards low pressure areas and the flow
supports the out-of-plane deformation.

6.2. Time-evolving fluid film
The problem of the Stokes equation on a time-evolving domain is described in sections 5.1 and 5.2.
The system is driven by a uniform pressure difference, bn = 1, which corresponds to a higher interior
pressure compared to the exterior of the surface. As pointed out in Ref. [59], this makes sense if one does
not account for viscous bulk interactions. Time stepping is performed using the iterative fixed-point
method.
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Figure 6.2: The solution to the Stokes equation on the static basic domain is visualized here. Left shows the vorticity
ω; in the middle the blue arrows indicate the in-plane fluid flow v = (− ⋆u)♯ and the red arrows show the prescribed

instantaneous normal velocity (⋆ νex)n; the right figure corresponds with the pressure q. Note that the pressure equals
the negative of the surface tension.

6.2.1. The basic domain
For different refinement levels of the basic domain, the results for the iterations of the first time step can
be found in figure 6.3. For convenience the grids of i, h-refinements is denoted by Hi. The convergence
plots show the relative norm of the solution increment. For example, the value for the vorticity at time
step n and iteration i is reads ∣∣∣∣∣∣[ωn]i − [ωn]i−1

∣∣∣∣∣∣
2∣∣∣∣∣∣[ωn]i−1

∣∣∣∣∣∣
2

. (6.2)

Iterations
Observing the results of figure 6.3, it stands out that the convergence rate is highest for the H1 grid
and lowers as the grid becomes finer. Note that for the fixed-point iteration we expect a convergence
rate of order O(1), while for the H3 grid, it takes about 7 iterations to reach order O(1) improvement.
Nevertheless, the convergence rates are steady and do not flatten after a certain number of iterations.
For the coarse domain, the normal velocity vm is constant along the latitudinal direction. This is not
what is expected, as a relation between the curvature of the surface and the normal velocity should be
visible, and is due to low solution resolution on the coarse mesh. For the H2 and H3 grids, the solution
is good in the sense that the normal velocity vm is inversely related to the curvature depending term
4H2 − 2K form Eq. (4.10d). (See also figure (6.4)). It is therefore expected that the normal velocity
is higher at the more ’flat’ parts of the surface. This is reflected in the figure. The solutions on these
grids do differ slightly: the normal velocity at the poles is a little higher for the H3 grid compared to
the H2 grid.

Time steps
For the basic domain with the H2 grid, time steps are carried out. The results can be found in figure
6.4. As time increases the surface grows and gets closer to a sphere-like domain. The normal velocity
vm should be inversely related to the term 4H2 − 2K, due to Eq. (4.10d), leading to a higher velocity
at the more flat parts of the surface. This is exactly what happens in the figure.



6.2. Time-evolving fluid film 29

O
ne

h
-r

efi
ne

m
en

t

2 4 6 8 10 12 14

Iteration number

10-12

10-10

10-8

10-6

10-4

10-2

100

R
el

at
iv

e 
no

rm

 vorticity
 velocity
 pressure
 mesh vel

T
w

o
h

-r
efi

ne
m

en
ts

2 4 6 8 10 12 14

Iteration number

10-5

10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
no

rm

 vorticity
 velocity
 pressure
 mesh vel

T
hr

ee
h

-r
efi

ne
m

en
ts

2 4 6 8 10 12 14

Iteration number

10-3

10-2

10-1

100

R
el

at
iv

e 
no

rm

 vorticity
 velocity
 pressure
 mesh vel

Figure 6.3: The results on the basic domain for different refinement levels. One, two or three h-refinements are
performed corresponding to the first, second and third row, respectively. The left most figure of each row shows the

iteration number versus the relative norms of the solution increments as described in Eq. (6.2). The other figures show
the solution at the final time step. The middle figures are colored by the pressure, and the blue arrows indicate the

in-plane flow. In the right figures both the surface color and the red arrows represent the out-of-plane velocity of the
domain.
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(a) t = 0.01 (b) t = 1.00 (c) t = 2.20 (d) t = 3.50

Figure 6.4: The basic domain at four different time steps. The top figures show the domain from a side angle and the
surfaces are colored by the value of 4H2 − 2K. The bottom row shows the same domains seen from above. These figures

are colored by the pressure q (minus the surface tension). As time increases the domain grows in size and slowly
approaches a more sphere-like domain. The animation corresponding to this figure can be found here.

(a) Simple sphere (b) Best sphere (c) Least squares approximation of a half
circle.

Figure 6.5: Two approximations of a sphere on the coarsest level. The surfaces are colored by the term 4H2 − 2K. In
the latitudinal direction the control points are spaced uniformly on a circle. In the longitudinal direction the best sphere

approximates a half circle using least squares.

6.2.2. Comparison of two sphere-like domains
The convergence rates of the solutions on the basic domain of the previous section are not per-
fect.Therefore, it is interesting to investigate the behaviour of other domains. For simplicity two
sphere-like domains are introduced (see figure 6.5), called the simple sphere (8 × 5 elements) and the
best sphere (8× 6 elements). The surfaces of figure 6.5 are colored by the term 4H2− 2K that occurs in
Eq. (4.10d). For a perfect sphere the mean curvature H = 1

r and the Gaussian curvature K = 1
r2 , such

that 4H2 − 2K = 2 for a sphere of radius 1. As it is not possible to construct a perfect sphere using
polar splines, both geometries are approximations only. The control points of both domains are spaced
uniformly on circles in the latitudinal direction (circling around the poles). The domains differ in the
longitudinal direction (toward the poles): for the simple sphere the domain is initiated as two layers of
control points that define the poles. Subsequently, new layers are created in the longitudinal direction
until the right number of elements is reached. For the best sphere, least squares approximates the half
circle as shown in figure 6.5c in the longitudinal direction.

https://youtu.be/YBrJwtOAqZ8
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The simple sphere
The results on the simple sphere are presented in figure 6.6. H0, H1, H2 refer to the coarse mesh, and
the h-refined meshes, respectively. The solutions behave analogous to the solutions on the basic domain.
The convergence rate of the coarse geometry is close to order O(1), as expected. As the grid becomes
finer, the convergence rate worsens. For the H0 grid, the solution is constant along the latitudinal
direction. Refining the mesh, leads to solutions that also vary in the latitudinal direction. This is what
one expects, as the domain is an imperfect approximation of the sphere.

The best sphere
The results of the best sphere are presented in figure 6.7. It is easy to see that the iterations do not
converge. Contrary, the solution blows up in a few iterations. To get a little intuition for the initial
behaviour of the solution, the first three iterations of the once-refined grid are presented in figure 6.8.
The normal velocity of the first iteration is something that one would expect. Similar to the simple
sphere the normal velocity is constant along the latitudinal direction, and points outwards. However,
the range of the normal velocity is more narrow. In the second iteration, the in-plane flow and the
pressure of the previous iteration have a high impact on the normal velocity. Subsequently, the in-plane
flow reverses and is much stronger. Note that the solution as a whole is more or less flipped in sign.
The solution at the third iteration is comparable in sign to the solution of the first iteration. The scales
are very different, though.
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Figure 6.6: The results on the simple sphere. The coarse mesh, the mesh after one or two h-refinements, correspond to
the first, second and third row of figures. The left most figure of each row shows the iteration number versus the relative

norms of the solution increments as described in Eq. (6.2). The other figures show the solution at the final time step.
The middle figures are colored by the pressure, and the blue arrows indicate the in-plane flow. In the right figures both

the surface color and the red arrows represent the out-of-plane velocity of the domain.
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Figure 6.7: Error plots for the best sphere with ∆t = 0, pratically leading to no geometry update. The top row
corresponds to the absolute values of the Stokes DOFs (ϕ from Eq. (5.7)). The bottom row presents the relative

solutions increments as seen before.
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Figure 6.8: Three subsequent iterations of the best sphere after one h-refinement. ∆t equals 0. The top surfaces are
colored by the pressure, and the blue arrow indicate the in-plane flow (not scaled to each other). In the bottom figures,

both the surface color and the arrows indicate the normal velocity.



7 | Conclusion

In this thesis a computational method that solves the fluid film equation has been proposed. This
has its applications in, for example, the behavior of biological membranes such as lipid bilayers. The
framework of discrete exterior calculus was utilized to formulate a consistent numerical method, where
the unknowns are expressed as differential forms. Specifically, the properties of differential forms are
applied to construct divergence conforming spline spaces for incompressible flows on curved surfaces.
The big advantage of this setup is, that one does not have to resort to penalty methods or Lagrange
multipliers to enforce tangential surface flow or mass conservation. Additionally, the concept of iso-
geometric analysis was used to construct C1 continuous geometries. This smoothness restriction is a
necessity for the existence of the weak formulation corresponding to the problem. A specific type of
B-splines, called polar splines, have been adopted to construct C1 smooth genus 0 surfaces with two
collapsed singular points at both poles. Starting from the strong formulation, the weak formulation
has been derived and has been discretized in space using the polar spline spaces. Time-discretization
was done using the backwards (or implicit) Euler method, resulting in a non-linear system of equations.
Using the iterative fixed-point method the system was solved for different time steps.

It can be concluded that the solutions for the basic domain and the simple sphere behave well.
As expected, for a uniform pressure difference, the domains grow in size. The deformation is high-
est at relatively flat (low curvature) locations and the in-plane fluid supports the deformation. The
convergence rates of these solutions vary from good (order O(1)) to poor (7 iterations for order O(1)
improvement) and seem to be related to the fineness of the grid. Interestingly, for the most uniform
geometry thinkable, the best sphere, the iterations are not stable. Yet, it is unclear where this insta-
bility comes from. As the other sphere-like domain does behave well, it seems that the instability is
parametrization dependent. This indicates that there might be a bug in the implementation. Assuming
that the original Stokes implementation is correct, the bug must be in the implementation of the shape
equation. Since the inverse relation between 4H2 − 2K and the normal velocity vm can be confirmed
from the results, the problem could possibly be laying with the implementation vectors [hu

n+1]i and
[hq

n+1]i of Eq. (5.11). Note that from literature it is known that the fluid film is unstable due to lack
of bending terms. Although this might influence the results of this research, it can not explain the
parametrization dependent solutions and diverging results.

Returning to the research questions, and sub-questions, that were stated in the introduction of this
report, it can be concluded that all the steps of formulating and implementing a divergence conforming
method to solve the fluid film equations have been carried out. Time integration is performed using
the fixed-point method. Issues are encountered concerning low convergence rates and non-converging
solutions for some geometries. However, time stepping has successfully been carried out for certain
geometries.

7.1. Recommendations for future work
In this sections follow recommendations for future work. A distinction is made between solving the
possible implementation error and extending the present research.

7.1.1. Implementation error
As is concluded above, there is probably an implementation error in the Matlab code corresponding to
this research. Unfortunately, the problem has not been solved, and due to lack of time efforts had to
be put on hold. The following is recommended:

• The Stokes implementation of [41] has been adopted in this research. Assuming that this part of
the implementation does not contain any errors, the current bug must be in the shape equation.
Since the relation between the shape of the domain and the normal deformation is in order, matrix
[M

ζ′
0v

m

n+1 ]i of Eq. (5.11) should be fine. It is recommended to focus on the implementation of the
vectors [hu

n+1]i and [hq
n+1]i of this same equation.

34
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• The results of this report show that the solutions on two comparable approximations of a unit
sphere behave very differently. It is interesting to investigate the cause for this deviant behaviour.
Experimenting with geometries that lie in-between both sphere-like shapes might lead to new
insights. For example constructing a simple sphere and a best sphere using the same number
of elements in both directions gives two sets of control points. Taking the the mean position of
each matching control point pair creates such an in-between surface. One can also mutate both
sphere-like geometries.

• As presented in algorithm 1, the equations are solved in two alternating steps. Solving the
equations at once, might lead to new insights.

• A last extension might be to perform time steps for the simple sphere and observe whether the
iterations will become instable after a while or not.

7.1.2. Extensions
The research can be extended in different ways. Based on the results and the literature the following
recommendations for future work are given:

• The fluid film equation is known to be unstable due to the absence of a stabilising term. Incor-
porating bending into the equations is a possible way to overcome this instability. For example,
combining the fluid film equation with Willmore flow, which minimizes the bending energy of
a surface, could be promising. Computational methods that combine Willmore flow with the
(Navier-)Stokes equations are found in Refs. [13, 55, 59, 121]. Other examples of Willmore flow
are found in Refs. [82, 109, 110, 112].

• In this research the pressure difference bn is set to a constant value. However, it may also depend on
the interior volume enclosed by the surface, such that the the pressure difference becomes smaller
when the volume grows. As is suggested in Ref. [82], Willmore energy can be incorporated into
bn by including a dependency on the domain shape.

• A different way to extend the model is by incorporating the 3D bulk fluid flow into the model.
The bulk flow is coupled to the in-plane surface flow and makes the model more realistic in terms
of, for example, cell interaction with the surrounding [83].

• Another improvement might be to elevate the degree of the basis functions. It can be observed
what effects are of higher order of smoothness of the surface and the solution.

• To deal with the non-linearity’s in the system of equations, the fixed-point iterative method has
been used. It is an easy-to-implement method, but generally it converges very slowly. Setting up
a Newton-Raphson iteration would lead to faster convergence.

• In the results section of this report, geometries keep on growing due to a pressure difference.
The incompressibility constraint is still attained since it also depends on the normal velocity.
Adding a surface area constraint [84] would lead to total area preserving solutions, applicable to
in-extensible membranes.

• Concerning biological applications, one could compare mathematical results with biological obser-
vations for validation. For example, the shape of the red blood cell can be compared with real
world observations as is done in [13].
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A | Stokes on a static and strictly 2D do-
main

In this appendix the general Stokes flow on a 2D domain is described, along with its weak formulation
and corresponding function spaces. The weak formulation is discretized in time, it is pulled back onto
parametric space. Lastly, preliminary results for this setting are presented.

A.1. Strong formulation
Let Ω be a flat (that is strictly 2D) surface. Figure 3.5 gives an example of such a domain. We assume
that Ω does not evolve in time and will therefore have zero normal velocity, i.e. vm = 0. This also
means the the shape equation of Eq. (4.1c) is redundant. These assumptions will simplify the strong
formulation of Eq. (4.1) to

− gradΩ p−
(
d⋆ dvb

)♯
+ 2Kv + f = 0 (A.1a)

divΩ · v = 0, (A.1b)

where the superscript of f s is suppressed for readability.
As Ω is assumed to be flat, K = 0 holds and the surface gradient and divergence operators simplify

to the 2D gradient and divergence operators, divΩ · v = vα,α = ∇ · v and gradΩ p = ∇p, respectively.
The term

(
d⋆ dvb

)♯ is a generalization of the curl-curl operator [39]. In the case of a flat 2D surface
this expression is equivalent to

−
(
d⋆ dvb

)♯
= −∇×∇× v = ∇2v. (A.2)

The last equality follows from the fact that ∇ · v = 0. By substituting these simplifications into Eq.
(A.1), the well known 2D stokes equation is recovered

−∇2v +∇p = f , on Ω (A.3a)
∇ · v = 0, on Ω (A.3b)

v = v∂ , on ∂Ω. (A.3c)

In Eq. (A.3) the first vector equation is the momentum balance, the second equality corresponds to
the mass conservation and the last vector equation is the boundary conditions of the problem. v is the
velocity of the fluid while p is the pressure. Together, these form the unknowns of the problem.

The system can alternatively be described by introducing an additional variable: the vorticity ω :=
∇ × v. The strong form of the vorticity-velocity-pressure formulation of the Stokes equation is given
by

ω = ∇× v, on Ω (A.4a)
∇× ω +∇p = f , on Ω (A.4b)

∇ · v = 0, on Ω (A.4c)
v = v∂ , on ∂Ω, (A.4d)

The advantage of this additional vorticity variable is a lower smoothness requirement of the velocity v
in the corresponding continuous and discrete weak formulations.

A.2. Continuous weak formulation
In order to derive the continuous weak formulation of the Stokes equation, Eqs. (A.4) are multiplied
with with a corresponding test function, after which the equations are integrated. The weak formulation
is given by:

43
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Find ω ∈ W, v ∈ Vv∂
and p ∈ P such that for all α ∈ W, w ∈ V0 and q ∈ P the following holds:∫

Ω

αω dΩ+

∫
Ω

α,1v2 − α,2v1 dΩ =

∫
∂Ω

αv∂ · dΓ (A.5a)∫
Ω

w1ω,2 − w2ω,1 dΩ−
∫
Ω

p∇ ·w dΩ =

∫
Ω

w · f dΩ (A.5b)∫
Ω

q∇ · v dΩ = 0. (A.5c)

To obtain Eq. (A.5a), ∫
Ω

α∇× v dΩ =

∫
Ω

∇× (αv) dΩ−
∫
Ω

∇α× v dΩ (A.6)

and Stokes’ circulation theorem are used. Eq. (A.5b) is obtained using∫
Ω

w · ∇p dΩ = −
∫
Ω

p∇ ·w dΩ+

∫
Ω

pw · ν dΩ

= −
∫
Ω

p∇ ·w dΩ.

(A.7)

ν is the outward pointing normal vector, defined on the boundary ∂Ω.
Minimum smoothness requirement for test and trial functions, as implied by the weak formulation,

can be found in table A.1. For ω, α and p, q this is quite obvious. Recognizing that ∇ · v = v1,1 + v2,2
indicates that of component vα only the derivative in the xα direction is needed.

Function Minimum smoothness requirement
First coordinate Second coordinate

ω, α C0 C0

v1, w1 C0 C−1

v2, w2 C−1 C0

p, q C−1 C−1

Table A.1: Smoothness requirements for the test and trial functions as implied by the
occurring derivatives in the weak formulation of Eq. (A.5).

The smoothness requirements for the test and trial functions have a direct consequence for the
function spaces they live in. In order to characterize these spaces, first the Sobolev space Hk(Ω) is
introduced [132, 133]. Let σ = {σ1, σ2} be a multi-index with |σ| = σ1 + σ2. Define

Dσf =
∂|σ|f

∂(x1)σ1∂(x2)σ2
(A.8)

the Sobolev space of order k is given by

Hk(Ω) =
{
f : Dσf ∈ L2(Ω), |σ| ≤ k

}
. (A.9)

The function spaces of the test and trial functions of Eq. (A.5) are given by

W := H1(Ω), (A.10a)
V :=

{
f : ∇ · f ∈ H0(Ω)

}
, (A.10b)

P := H0(Ω), (A.10c)

and

Vg = {f ∈ V : f · ν = g · ν on ∂Ω} . (A.11)

Note that these are the minimum requirements for the function spaces. There are no restrictions with
regards to higher order spaces.
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A.3. Discretization of the weak formulation
In the following subsection it is described how the continuous weak formulation of the flat 2D Stokes
equation as introduced in Eq. (A.5), is discretized. However, before the actual discretization can be
carried out, a few things need to be introduced. First of all, notations and definitions are introduced.
Next, the discrete function spaces of the parametric domain will be defined (see section A.3.2). Lastly,
three functions transformations that connect the discrete parametric spaces with their geometric coun-
terparts are given in section A.3.3. These basics are utilised to obtain the discrete weak formulation as
defined on the parametric domain, and to obtain the linear system to be solved.

A.3.1. Notation
As discussed in Eq. (3.10), the bivariate basis functions B

(r,s)
ij are given by the tensor product of two

univariate functions of order r, s ∈ {0, 1, 2}. From now on, if a linear combination of basis functions is
expressed, the lower indices are denoted by a single capital letter and the lower and upper limits of the
sum are suppressed. For example, Eq. (3.11) is abbreviated by

x(ξ) =

nsh∑
i=1

msh∑
j=1

B
(r,s)
ij (ξ)Rij

=
∑
A

B
(r,s)
A RA

(A.12)

Here A denotes the global index of the basis functions such that A = nsh · (j − 1) + i. Note that the
upper limits nsh and msh are depending on both the order and the length of the corresponding knot
vector. The upper limit of A can therefore be deduced from the multivariate B-spline function order and
the number of elements. Throughout this section capital letters A and B will indicate the global index
related to the coordinate specific coordinates i, j, k, l. The coordinate specific sub scripts of control
points or control variables exhibit the same global index relation. Note that nsh and msh can always
be deduced using the order of the basis functions.

A.3.2. Discrete function spaces
The discrete function spaces corresponding to the parametric domain will be introduced. The to-be
introduced transformations will then define the functions spaces counterparts living on the geometric
domain. Define r̆ := r − 1, s̆ := s − 1, n̆sh := nsh − 1 and m̆sh := msh − 1. This notation will be used
to improve readability. The discrete spaces on the parametric domain Ω̂ are given by,

Ŵh =

{
f̂ : f̂(ξ) =

∑
A

B
(r,s)
A (ξ)fA

}
, (A.13a)

V̂1
h =

{
f̂ : f̂(ξ) =

∑
A

B
(r,s̆)
A (ξ)fA

}
, (A.13b)

V̂2
h =

{
f̂ : f̂(ξ) =

∑
A

B
(r̆,s)
A (ξ)fA

}
, (A.13c)

P̂h =

{
f̂ : f̂(ξ) =

∑
A

B
(r̆,s̆)
A (ξ)fA

}
, (A.13d)

and V̂h = V̂1
h × V̂2

h. Furthermore, let ν̂ be the outward pointing normal vector of Ω̂. Define

V̂ϕ,h =
{
f ∈ V̂h : f · ν̂ = ϕ · ν̂ on ∂Ω̂

}
(A.14a)

The corresponding knot vectors are now introduced. Define the knot vectors in the first parametric
coordinate direction as

Ξr = [ξr1 , ξr2 , ξr3 , . . . , ξrnsh+r−1, ξrnsh+r, ξrnsh+r+1]

Ξr̆ = [ ξr̆1 , ξr̆2 , . . . , ξr̆n̆sh+r̆, ξr̆n̆sh+r̆+1 ] .
(A.15)
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Here ξr1 = . . . = ξrr+1 and ξrnsh = . . . = ξrnsh+r+1 are the first and last r + 1 repeated knots of Ξr,
respectively, making it an open knot vector. The same holds for Ξr̆ where ξr̆1 = . . . = ξr̆r̆+1 and
ξr̆n̆sh

= . . . = ξr̆n̆sh+r̆+1 are the first and last r̆ + 1 = r repeated knots, respectively. Note the alignment
of the knots of both knot vectors in Eq. (A.16), this indicates that the aligned knots are equal. The
only difference between knot vectors Ξr and Ξr̆ is one extra repetition of the first and last knot of the
former.

The exact analogue is defined for the second parametric coordinate direction:

Hs = [ηs1, ηs2, ηs3, . . . , ηsmsh+s−1, ηsmsh+s, ηsmsh+s+1]

Hs̆ = [ ηs̆1, ηs̆2, . . . , ηs̆m̆sh+s̆, ηs̆m̆sh+s̆+1 ] .
(A.16)

As above, the first, respetively, last s+ 1 knots of Hs and the first, respectively, last s̆+ 1 = s̆ knots of
Hs̆ are equal.

A.3.3. Transformation of discrete functions in 2D
In this section the relation between the discrete function spaces of (A.13) and their geometric counter-
parts is discussed. This relation is a key element in translating the weak formulation of Eq. (A.29) to
an equivalent weak from, defined on the parametric domain, such that the incompressibility constrain
on v is maintained. Furthermore, the function spaces of equation (A.13) are only valid divergence
conforming spline spaces for certain function relations. This section gives these relations.

Let ω̂ ∈ Ŵh, v̂ ∈ V̂h and p̂ ∈ P̂h

ω̂(ξ) : Ω̂ → R, v̂(ξ) : Ω̂ → R2, p̂(ξ) : Ω̂ → R. (A.17)

The geometric forms, ω(x), v(x) and p(x), corresponding to the parametric functions of Eq. (A.17),
are constructed such that the following holds.

ω̂(ξ) := T0ω(x) = ω ◦ x(ξ) : Ω̂ → R
v̂(ξ) := T1v(x) =

√
gJ−1v ◦ x(ξ) : Ω̂ → R2,

p̂(ξ) := T2p(x) =
√
gp ◦ x(ξ) : Ω̂ → R.

(A.18)

Here T0, T1 and T2 are the transformations corresponding to the spaces Ŵh, V̂h and P̂h, respectively.
The geometric counterparts of Ŵh, V̂h, P̂h as introduced in Eq. (A.13), are defined by

Wh :=
{
f : T0f ∈ Ŵh

}
, (A.19a)

Vh :=
{
f : T1f ∈ V̂h

}
, (A.19b)

Ph :=
{
f : T2f ∈ P̂h

}
(A.19c)

and

Vg,h = {f ∈ Vh : f · ν = g · ν on Ω} (A.20)

The transformations of Eq. (A.18) can be inverted in order to obtain the relations

Wh ∋ ω(x) = T−1
0 ω̂(ξ) = ω̂ ◦ ξ(x) : Ω → R

Vh ∋ v(x) = T−1
1 v̂(ξ) = 1√

gJ v̂ ◦ ξ(x) : Ω → R2

Ph ∋ p(x) = T−1
2 p̂(ξ) = 1√

g p̂ ◦ ξ(x) : Ω → R,
(A.21)

and note that

√
gJ−1 =

√
g

1
√
g
Jadj = Jadj =

[
x2
,2(ξ) −x1

,2(ξ)
−x2

,1(ξ) x1
,1(ξ)

]
(A.22a)

1
√
g
J =

(
Jadj)−1

=

[
ξ2,2(x) −ξ1,2(x)

−ξ2,1(x) ξ1,1(x)

]
(A.22b)
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for Jadj = adjoint(J(ξ)). Note that the parametric and the geometric functions can be evaluated on
both the parametric and the geometric via the mapping. For readability, the function argument will
from now on be omitted where possible.

The following holds for a function transforming according to T0.

∂

∂xα
ω =

∂ξβ

∂xα

∂

∂ξβ
ω̂ = ξβ,αω̂,β = ξβ,α

∑
A

B
(r,s)
A,β ωA, (A.23)

where the multi-dimensional product rule for differentiation is used. ω is expressed as a linear combi-
nation of basis functions by

ω = ω̂ =
∑
A

B
(r,s)
A ωA. (A.24)

For functions v transforming according to T1 the following equality holds.

2 v̂ =

 ∑A B
(r,s̆)
A v1A∑

A B
(r̆,s)
A v2A

 (A.25a)

v(x) =
1
√
g
J

[
v̂1

v̂2

]
=

1
√
g

[
x1
,1v̂

1 + x1
,2v̂

2

x2
,1v̂

1 + x2
,2v̂

2

]
=
(
Jadj)−1

[
v̂1

v̂2

]
=

[
ξ2,2v̂

1 − ξ1,2v̂
2

−ξ2,1v̂
1 + ξ1,1v̂

2

] (A.25b)

Using the same mapping, the following equality can be deduced for the parametric and geometric
divergence:

∇x · v = ∇x ·

 ξ2,2v̂
1 − ξ1,2v̂

2

−ξ2,1v̂
1 + ξ1,1v̂

2

 =

= ξ2,12v̂
1 + ξ2,2v̂

1
,αξ

α
,1 − ξ1,12v̂

2 − ξ1,2v̂
2
,αξ

α
,1

− ξ2,12v̂
1 − ξ2,1v̂

1
,αξ

α
,2 + ξ1,12v̂

2 + ξ1,1v̂
2
,αξ

α
,2

= v̂1,α
(
ξ2,2ξ

α
,1 − ξ2,1ξ

α
,2

)
+ v̂2,α

(
ξ1,1ξ

α
,2 − ξ1,2ξ

α
,1

)
=

1
√
g

(
v̂1,1 + v̂2,2

)
=

1
√
g
∇ξ · v̂.

(A.26)

This is a very important identity, as it guarantees mass conservation to also hold in the parametric
function spaces. It follows that

∇x · v =
1
√
g
∇ξ · v̂ =

1
√
g

(∑
A

B
(r,s̆)
A,1 v1A +

∑
A

B
(r̆,s)
A,2 v2A

)
. (A.27)

Lastly, a general function p transforming according to T2 is described. The derivatives of these
functions are not needed for the discretization of the Stokes equation. Only the expression in terms of
basis function is of interest:

p =
1
√
g
p =

1
√
g

∑
A

B
(r̆,s̆)
A pA (A.28)

A.3.4. Discrete weak formulation on parametric space
In this section the continuous weak formulation of Eq. (A.5) is discretized. The integrals are pulled
back to the parametric domain using the transformations T0 , T1 , T2 that were described in section
(A.3.3). Subsequently, it is indicated how the corresponding matrix is composed.
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The discrete weak formulation on Ω is given as follows:

Find ω ∈ Wh, v ∈ Vv∂ ,h and p ∈ Ph such that for all α ∈ Wh, w ∈ V0,h and q ∈ Ph, it holds that∫
Ω

αω dΩ+

∫
Ω

α,1v
2 − α,2v

1 dΩ =

∫
∂Ω

αv∂ · dΓ (A.29a)∫
Ω

w1ω,2 − w2ω,1 dΩ−
∫
Ω

p∇ ·w dΩ =

∫
Ω

w · f dΩ (A.29b)∫
Ω

q∇ · v dΩ = 0. (A.29c)

Here Γ = x(γ) is a parametrization of the boundary ∂Ω and γ : [0, 4] → R2 is the parametrization of
the parametric boundary ∂Ω̂. γ = γ1 ⊕ γ2 ⊕ γ3 ⊕ γ4 is given by

γ1 : [0, 1) → Ω̂; γ1(ℓ) = (ℓ, 0),

γ2 : [1, 2) → Ω̂; γ2(ℓ) = (1, ℓ− 1),

γ3 : [2, 3) → Ω̂; γ3(ℓ) = (3− ℓ, 1),

γ4 : [3, 4) → Ω̂; γ4(ℓ) = (0, 4− ℓ).

(A.30)

In order to keep things readable the inner product on Ω̂ is introduced.

Definition. For arbitrary C0 continuous functions f̂(ξ) and ĝ(ξ) the inner product defined on Ω̂ is
denoted by

(f̂ , ĝ)Ω̂ =

∫
Ω̂

f̂ ĝ dΩ̂. (A.31)

In appendix B the integrals of Eq. (A.29) are pulled back to the parametric domain. The resulting
weak formulation defined on Ω̂ reads as

Find ω̂ ∈ Ŵh, v̂ ∈ V̂v∂ ,h and p̂ ∈ P̂h such that for all α̂ ∈ Ŵh, ŵ ∈ V̂0,h and q̂ ∈ P̂h,

(α̂, ω̂
√
g)Ω̂ −

(
α̂,β

√
ggβ2, v̂1

)
Ω̂
+
(
α̂,β

√
ggβ1, v̂2

)
Ω̂
=

∫ 4

0

α̂v∂ Jγ′ (A.32a)

(
ŵ1,

√
ggβ2ω̂,β

)
Ω̂
−
(
ŵ1

,1,
1
√
g
p̂

)
Ω̂

−
(
ŵ2,

√
ggβ1ω̂,β

)
Ω̂
−
(
ŵ2

,2,
1
√
g
p̂

)
Ω̂

=
(
ŵ1, xα

,1f
α
)
Ω̂

+
(
ŵ2, xα

,2f
α
)
Ω̂

(A.32b)

(
1
√
g
q̂, v̂1,1

)
Ω̂

+

(
1
√
g
q̂, v̂2,2

)
Ω̂

= 0. (A.32c)

Substituting the basis functions and recognising that the test function control variables can be
chosen arbitrarily, leads to the following discrete weak formulation on parametric space Ω̂:∑

B

ωB

(
B

(r,s)
A , B

(r,s)
B

√
g
)
Ω̂
−
∑
B

v1B

(
B

(r,s)
A,β

√
ggβ2, B

(r,s̆)
B

)
Ω̂

+
∑
B

v2B

(
B

(r,s)
A,β

√
ggβ1, B

(r̆,s)
B

)
Ω̂
=

∫ 4

0

B
(r,s)
A v∂ Jγ′ ds

(A.33a)

∑
B

ωB

(
B

(r,s̆)
A ,

√
ggβ2B

(r,s)
B,β

)
Ω̂
−
∑
B

pB

(
B

(r,s̆)
A,1 ,

1
√
g
B

(r̆,s̆)
B

)
Ω̂

=
(
B

(r,s̆)
A , x1

,1f
1 + x2

,1f
2
)
Ω̂

(A.33b)

−
∑
B

ωB

(
B

(r̆,s)
A ,

√
ggβ1B

(r,s)
B,β

)
Ω̂
−
∑
B

pB

(
B

(r̆,s)
A,2 ,

1
√
g
B

(r̆,s̆)
B

)
Ω̂

=
(
B

(r̆,s)
A , x1

,2f
1 + x2

,2f
2
)
Ω̂

(A.33c)

∑
B

v1B

(
1
√
g
B

(r̆,s̆)
A , B

(r,s̆)
B,1

)
Ω̂

+
∑
B

v2B

(
1
√
g
B

(r̆,s̆)
A , B

(r̆,s)
B,2

)
Ω̂

= 0 (A.33d)



A.4. Preliminary results 49

Eq. (A.33) forms a linear system of equations

Mdh = rh, (A.34)

with

M =


F C1 C2

A1 G1

A2 G2

D1 D2

 , dh =


ωh

v1h
v2h
ph

 , rh =


th
f1
h

f2
h

0

 . (A.35)

The matrix entries are defined by the inner products on the left-hand sides of the equations in (A.33).
The position of the inner products is matched with the position of the submatrices. For example,

[F ]AB =
(
B

(r,s)
A , B

(r,s)
B

√
g
)
Ω̂
,[

C1
]
AB

=
(
B

(r,s)
A,β

√
ggβ2, B

(r,s̆)
B

)
Ω̂
,[

C2
]
AB

=
(
B

(r,s)
A,β

√
ggβ1, B

(r̆,s)
B

)
Ω̂
.

(A.36)

The analogue holds for the other submatrices. Note that for each submatrix the ranges of A and B
depend on the specific basis functions associated with it.

Due to the Dirichlet boundary conditions some of the control variables in the vectors v1h and v2h
are in fact known. They are obtained by projecting v∂ onto the space of discrete velocities. These
boundary terms will then contribute to the right-hand-side of Eq. (A.34), and the corresponding rows
and columns at the left-hand-side are eliminated.

A.4. Preliminary results
The steady state Stokes flow on a flat 2D geometry has been implemented from scratch using Matlab. It
uses the discrete weak formulation of Eq. (A.32) on parametric space and the 2-dimensional geometric
mapping as defined in Eq. (3.11). A manufactured solution is created in order to verify the convergence
rates of the implementation. The manufactured solution on geometric space is given by

ω = 2π sin(x1π) sin(x2π), v =

[
sin(x1π) cos(x2π)

− cos(x1π) sin(x2π)

]
,

p = π cos(x1π) cos(x2π) + 1, f =

[
π2 sin(x1π) cos(x2π)

−3π2 cos(x1π) sin(x2π)

] (A.37)

and the geometry is found in figure 3.5. The results can be found in figure A.1. Furthermore, a
convergence plot of each of the discrete functions can be found in figure A.2. As the figures indicate,
the discrete solution converges to the the exact solution with order pmin for the H1-norm and order
pmin+1 for the L2-norm, as expected.

Unfortunately, in some cases, an implementation error interferes with the solution. For example,
taking the same manufactured solution as before, but changing the geometry to the one found in figure
A.3, leads to the error in that same figure.
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Figure A.1: Resulting plots of (from left to right) the discrete solutions, the exact solutions and their difference. The
plots show the vorticity ω, the velocity v and the pressure p on the geometric domain.
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Figure A.2: On the left a plot of the discrete divergence which is 0 up to computer precision.
On the right a convergence plot of the vorticity, both coordinates of the velocity and the

pressure.

(a) A 2D domain (b) Divergence of v

Figure A.3: The combination of the manufactured solution of Eq. (A.37) and the geometry on
the left, gives a non-zero divergence of v.



B | Pullback of the 2D weak formulation

In order to derive the weak formulation on Ω̂, the integrals of Eq. (A.29) need to be pulled back to the
parametric domain. First, note that

ξβ,1x
2
,2 − ξβ,2x

1
,2 =


√
g
(
ξ1,1ξ

1
,1 + ξ1,2ξ

1
,2

)
=

√
g a1 · a1 =

√
gg11, for β = 1

√
g
(
ξ2,1ξ

1
,1 + ξ2,2ξ

1
,2

)
=

√
g a2 · a2 =

√
gg12, for β = 2,

−ξβ,1x
2
,1 + ξβ,2x

1
,1 =


√
g
(
ξ1,1ξ

2
,1 + ξ1,2ξ

2
,2

)
=

√
g a1 · a2 =

√
gg12, for β = 1

√
g
(
ξ2,1ξ

2
,1 + ξ2,2ξ

2
,2

)
=

√
g a2 · a2 =

√
gg22, for β = 2.

(B.1)

Transformations T0, T1, T2 will be used to obtain the pulled back integrals. Starting with Eq. (A.29a),
the pull-back of the left-hand side is equivalent to

(α̂, ω̂ |J |)Ω̂ +

(
ξβ,1α̂,β ,

1

|J |
[
x2
,αv̂

α
]
|J |
)

Ω̂

−
(
ξβ,2α̂,β ,

1

|J |
[
x1
,αv̂

α
]
|J |
)

Ω̂

=⇒ (α̂, ω̂ |J |)Ω̂ −
(
α̂,β [−ξβ,1x

2
,1 + ξβ,2x

1
,1], v̂1

)
Ω̂
+
(
α̂,β [ξ

β
,1x

2
,2 − ξβ,2x

1
,2], v̂2

)
Ω̂

=⇒ (α̂, ω̂ |J |)Ω̂ −
(√

ggβ2α̂,β , v̂1
)
Ω̂
+
(√

ggβ1α̂,β , v̂2
)
Ω̂
.

(B.2)

To obtain the right-hand side, the boundary integral is represented as an one dimensional integral
over parameters γ. The following identity is used∫

∂Ω

αv∂ · dΓ =

∫ 4

0

α(x(γ(s))) v∂(x(γ(s))) · x,s(γ(s)) ds

=

∫ 4

0

α̂(γ(s)) v∂(x(γ(s))) · Jγ′(s) ds

=

∫ 4

0

α̂v∂ · Jγ′ ds.

(B.3)

Note that

Jγ′ =


a1, on ∂Ω̂B , ℓ ∈ [0, 1)

a2, on ∂Ω̂R, ℓ ∈ [1, 2)

−a1, on ∂Ω̂T , ℓ ∈ [2, 3)

−a2, on ∂Ω̂L, ℓ ∈ [3, 4).

(B.4)

The pullback of Eq. (A.29b) is equivalent to(
1

|J |
[
x1
,αŵ

α
]
, ξβ,2ω̂,β |J |

)
Ω̂

−
(

1

|J |
[
x2
,αŵ

α
]
, ξβ,1ω̂,β |J |

)
Ω̂

−
(

1

|J |
∇ξ · ŵ,

1

|J |
p̂ |J |

)
Ω̂

=

(
1

|J |
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x1
,αŵ

α
]
, f1 |J |

)
Ω̂

+

(
1

|J |
[
x2
,αŵ

α
]
, f2 |J |

)
Ω̂

.

(B.5)

Rearranging terms gives(
ŵ1, [−ξβ,1x

2
,1 + ξβ,2x

1
,1]ω̂,β

)
Ω̂
−
(
ŵ1

,1,
1

|J |
p̂

)
Ω̂

−
(
ŵ2, [ξβ,1x

2
,2 − ξβ,2x

1
,2]ω̂,β

)
Ω̂
−
(
ŵ2

,2,
1

|J |
p̂

)
Ω̂

=
(
ŵ1, xα

,1f
α
)
Ω̂
+
(
ŵ2, xα

,2f
α
)
Ω̂

(B.6)
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and so (
ŵ1,

√
ggβ2ω̂,β

)
Ω̂
−
(
ŵ1

,1,
1

|J |
p̂

)
Ω̂

−
(
ŵ2,

√
ggβ1ω̂,β

)
Ω̂
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(
ŵ2
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1

|J |
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Ω̂

=
(
ŵ1, xα

,1f
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Ω̂
+
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ŵ2, xα

,2f
α
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Ω̂
.

(B.7)

Lastly, the pullback of (A.29c) reads as (
1

|J |
q̂,

1

|J |
∇ξ · v̂ |J |

)
Ω̂

= 0

=⇒
(

1

|J |
q̂, v̂1,1

)
Ω̂

+

(
1

|J |
q̂, v̂2,2

)
Ω̂

= 0.

(B.8)
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