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1 Introduction

Spray drying is a widely used technology in industries such as the food, paint and pharmaceutical industry.
Spray drying converts droplets into powders, through hot air. The droplets will enter at the top of
the spray chamber, where the droplets are exposed to a heated airflow, introduced by air inlets. The
resulting powder leaves the spray chamber at the bottom, see Figure 1. During the drying, droplets
will start colliding, coalesce, and agglomerate. Furthermore, droplets in different drying stadiums are
involved, which increases the complexity. This will significantly influence the end-product in terms of
consistency and quality; e.g. particle-size and morphology. The morphology is of great importance since
this determines the properties of the end-product, such as density and solubility, which influences the
end-product usability.

Figure 1: A schematic overview of a spray dryer, where the yellow arrow is the droplet inlet and the red
arrow represents the hot air inlet [19].

The current way to get the desired powder properties is by trial-and-error. A new product involves
time-consuming and costly production-trials, where in case the end-product is not satisfactory it will
be discarded. A way to avoid such costly production-trials is by introducing computer models that can
simulate a spray drying process. However, current models lack the complexity, that is needed to properly
simulate a drying process. To be able to provide more realistic simulations, a deeper understanding
of the complex internal processes at droplet scale level is needed. We will focus in simulating more
realistic droplet collisions. An obstacle for simulating realistic droplet collisions is the implementation of
the correct ”rheological” fluid properties, where rheology is the science of deformation and flow. With
traditional numerical methods (e.g. finite elements and computational finite difference) the fluid rheology
is added through a constitutive equation1. However, finding the right constitutive equation and solving
it, leads to a complex and troublesome task. To avoid usage of such complex constitutive equations,
a different method will be investigated, namely Particle Interaction Forces (PIF). Important to note is
that PIF can only be implemented in particle based numerical methods. The considered PIF generates
an attraction force for distant particles and repulsion for close particles. PIF is implemented in the
numerical method Smoothed Particle Hydrodynamics (SPH). Aside from the ability to implement PIF,
other advantages of SPH are: the ability to deal with large deformations, complex (free) surfaces and
multi-phases. A disadvantage, however, is the difficulty in obtaining second-order global convergence

1A constitutive equation approximates the response of a specific material to an external stimulus, i.e. relates stresses in
the material to strains and strain rates
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[27]2. In Linde [21] it has been shown that PIF can be used to simulate the fluid rheology and although
in [30, 3, 15] it has been shown that PIF also influences the surface tension, it is yet unknown to what
extend PIF will affect the surface tension. At the droplet scale level, the surface tension is an important
factor in determining if droplets will coalesce or bounce [34, 14]. Hence, to achieve realistic simulations
of colliding droplets, the fluid rheology and surface tension has to be correctly modelled.

The aim of this thesis is to investigate the influence of PIF on the surface tension in order to simulate
realistic fluids; i.e., how can PIF be used to tune the fluid rheology and surface tension independently?

To be able to answer the main question, we will first briefly explain the concept of rheology (Chapter
2). After which we will give a detailed explanation of SPH and discuss the convergence issue (chapter 3).
Next, we will investigate the possible tuning methods for the surface tension (chapter 4). In chapter 5,
we will first explain the (analytical) methods that will be used to validate the numerical implementation
and to measure the surface tension. Furthermore, we will explain the small amplitude oscillatory shear
(SAOS) method that will be used to measure the fluid rheology. Lastly, we will conclude the literature
study by stating the main research question and the sub questions.

2Order of convergence represents how fast the numerical method approaches its limit, i.e. how fast the approximated
function equals the function. For a numerical method, to keep the computational time reasonable, a minimum of second
order converge is needed.
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2 Rheology

In this section, we will first introduce the Navier-Stokes equations for incompressible Newtonian fluids.
Furthermore, the concept of non-Newtonian fluids is briefly explained. Lastly, viscoelastic fluids are
explained.

2.1 Navier-Stokes equations

We will omit the derivation of the momentum and continuum equations and just state them. However,
if desired the derivation can be found in [25]. The equations are given by

ρ
Du

Dt
= −∇p−∇ · τ + Fbody (1)

Dp

Dt
= −ρ∇ · u, (2)

where D
Dt is the material derivative, ρ is the density, p is the pressure, Fbody is the collection of all

contributing body forces (e.g. gravity, surface tension and boundary forces), u is the velocity vector and
τ is the stress tensor. The stress tensor relates the fluid stress to deformation. An expression that specifies
τ is called a constitutive equation. For an incompressible Newtonian fluid (∇ · u = 0) the constitutive

equation is given by [25]3

τ = −µ
[
∇u + (∇u)

T
]
, (4)

where µ is the viscosity. Now substituting expression (4) into expression (1) and assuming that the only
body force is due to surface tension yields4

ρ
Du

Dt
= −∇p+ µ∆u + Fsurf , (5)

Furthermore, the continuum equation for an incompressible fluid reduces to

∇ · u = 0. (6)

Equations (5) and (6) are known as the Navier-Stokes equations for an incompressible Newtonian fluid.
A fluid is called non-Newtonian if it exhibits behavior that is not predicted by the Newtonian constitutive
equation given by expression (4) [25].

2.2 Viscoelastic fluids

Rheology is the science of deformation and flow of all kinds of material [25]. An important step to
accurately predict the fluid rheology is the formulation of a constitutive equation. Determining a consti-
tutive equation for non-Newtonian fluid is a difficult challenge mainly because non-Newtonian fluids can
behave differently over time when a certain stress or strain rate is applied. For example, when apply-
ing large stresses, one fluid can exhibit shear-thinning, while the other fluid exhibits shear-thickening5.
Furthermore, rheological properties can be time and temperature dependent. Apart from the (viscous)

3Expression (4) is also known as the (viscous) Newtonian constitutive equation and is often written in the form of

τ = −µγ̇ (3)

, where γ̇ is the rate of strain tensor.
4Rewriting into Einsteins notation is used to get expression (5) , see appendix A for an introduction to tensor calculus.
5Shear-thinning is characterized by a decreasing viscosity due to increased shear rates, while shear-thickening means an

increasing viscosity when the shear rates are increased [25]. Viscosity is a measure of a fluid’s resistance to flow.
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Newtonian constitutive equation, a constitutive equation for a purely linear elastic material is given by
Hooke’s law of elasticity [25]:

τ = −Gγ, (7)

where G is the elastic modulus. In this thesis, we will consider non-Newtonian fluids that can display
both viscous and elastic behaviour6, i.e. viscoelastic fluids. Viscoelastic behaviour for example can
be measured by applying an oscillatory strain on the liquid and measuring the resulting stress or vice
versa. For a purely elastic material, the stress and strain responses are in phase and for a purely viscous
material, the strain will have a 90◦ phase shift. A viscoelastic material will have a delayed strain response
in between that of 0◦ phase (purely elastic material) or a 90◦ phase shift (purely viscous material), see
Figure 2. The viscous and elastic phase shifts can easily be deduced by using expressions (3) and (7).
That is, considering an oscillating stress in the form of a sine function. We then observe from expression
(7) that the strain is proportional to the stress up to a constant, which explains the zero phase shift
between the responses. However, for a viscous material, the stress and strain are related by the derivative
of the strain. The derivative of a sine function results in a cosine, hence a 90◦ phase shift.

Figure 2: Stress and strain response for a purely elastic, purely viscous and a viscoelastic material, where
δ is the phase shift [16].

The phase shift that determines the viscoelastic behaviour can be expressed in terms of the storage
modulus G′ and the loss modulus G′′ by

tan δ =
G′′

G′
, (8)

where the storage modulus is the in-phase (elastic) component and the loss modulus is the out-of-phase
(viscous) component. Furthermore, for a sine changing shear strain7, the stress response can be repre-
sented in terms of the storage and loss modulus:

τxy(t) = γ0 [G′(ω) sinωt+G′′(ω) cosωt] , (9)

where ω is the frequency and γ0 is the strain amplitude.

6Note, that we consider the fluids only in its linear regime, i.e in the regime where the stress and strain have a linear
relation.

7i.e. γ(t) = γ0sin(ωt).
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3 SPH: Smoothed Particle Hydrodynamics

In this section, based on the articles of Liu [22] and Hirschler et al. [14] we will explain the basics behind
SPH and discus the method that is used to simulate an incompressible flow, namely Incompressible SPH
(ISPH). Furthermore, we will derive the SPH discretization of the incompressible Newtonian Navier-
Stokes equations. After, which the implementation of a free surface boundary condition is discussed.
Then, the consistency of the numerical method is discussed and finally the choice of the smoothing
functions is explained.

3.1 Basics SPH

In SPH the computational domain is represented by a finite set of particles, where each particle carries
the material properties. The interaction between the particles is controlled by a smoothing function; the
smoothing function defines the mutual influence between particles based on their distance. However, we
will first consider the smoothing function for a continuous field. The smoothing function is based on the
following identity [22]:

f(r) =

∫
Ω

f(r′)δ(r− r′)dr′, (10)

where r is the position vector and δ(r− r′) is the Dirac delta function8. However, the delta function has
only ”one point” support and hence cannot be used to establish a discrete numerical model [22]. Now,
replacing the Delta function with a smoothing function W (r, h), we get the smoothed function

f(r) ≈ 〈f(r)〉 :=

∫
Ω

f(r′)W (r− r′, h)dr′, (11)

where h is the smoothing length, which is proportional to the radius of the kernel support domain Ω, see
Figure 3 for an illustration of the smoothed function.

Figure 3: Illustration of a smoothed function/kernel in 2D [22].

8The Dirac delta function is non zero whenever r = r′ and everywhere else zero, furthermore
∫
Ω δ(r− r′)dr

′
= 1
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For a function to be employed as an SPH smoothing function, the function needs to have the following
properties [22]:

• Unity:
∫

Ω
W (r− r′, h)dr′ = 1

• Compact support: outside of the supported domain the smoothing function should be equal to zero,
that is

W (r− r′, h) = 0, whenever |r− r′| > κh, (12)

where κ is a scaling factor. Note: κh is called the cut-off radius.

• Positivity: W (r− r′, h) ≥ 0 for any point in the domain.

• Decay: W (r− r′, h) decreases monotonously as |r− r′| increases.

• Delta function approximation: limh→0W (r− r′, h) = δ(r− r′), such that < f(r) >→ f(r).

• Symmetric property: smoothing function values for an equal distance size should be of equal value.

Properties and states such as density and velocity for the (discretized field) particles are calculated by
an approximation of expression (11), that is

〈f(ri)〉 ≈
N∑
j=1

f(rj)W (ri − rj , h)∆Vj =

N∑
j=1

mj

ρj
f(rj)W (ri − rj , h), (13)

where N is the total number of particles within the influence area of particle i, mj is the corresponding
mass of particle j, ρj is the density of particle j and ∆Vj is the volume occupied by particle j. In the last
step of expression (13) we used that a volume without a fixed shape can be written as a mass to density
ratio, that is ∆Vj =

mj

ρj
. Note that the gradient of expression (13) can be calculated exact by

〈∇ · f(ri)〉 ≈
N∑
j=1

mj

ρj
f(rj) · ∇iW (ri − rj , h). (14)

For convenience, we will later on write W (ri−rj , h) as Wij . In the literature two different expressions for
a particle derivative are used, which can be confusing and leads to wrong application of the expressions.
The first expression is given in equation (14) and the second expression is given by

〈∇ · f(ri)〉 ≈ −
N∑
j=1

mj

ρj
f(rj) · ∇jWij . (15)

Observe that the first expression has a derivative taken with respect to particle i and the second expression
has a derivative with respect to particle j. However, often in literature the notification with which respect
the derivative is taken is left out. The two expression are, however equivalent. To show this, first note
that the derivatives can be expressed as

∇iW (ri − rj , h) = W ′(ri − rj , h)
∂(ri − rj)

∂ri
= W ′(ri − rj , h)

ri − rj
|ri − rj |

∇jW (ri − rj , h) = W ′(ri − rj , h)
∂(ri − rj)

∂rj
= −W ′(ri − rj , h)

ri − rj
|ri − rj |

,

(16)

resulting in ∇iW (ri − rj , h) = −∇jW (ri − rj , h). Both can be used, however a specific mention, with
respect to which derivative is taken is needed.
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3.2 Incompressible flow in SPH

When considering an incompressible flow, the solution methods can be divided into two classes, namely
Weakly Compressible SPH (WCSPH) and Incompressible SPH (ISPH). In this thesis, we will use ISPH.
The three reasons for choosing ISPH over WCSPH are [4]:

• WCSPH requires a very short time step in order to enforce low compressibility, leading to large
computational times.

• WCSPH can have negative pressures, leading to instability.

• ISPH leads to a more accurate pressure representation.

The ISPH method uses a predictor-corrector scheme in combination with a first-order Euler method in
order to solve the incompressible Navier-Stokes equations. In the predictor step, the intermediate velocity
(u∗) is calculated by solving the momentum equation excluding the pressure force, for a Newtonian fluid
this yields: [30]

u∗i = uni + (µ∆uni + Fsurf )
∆t

ρ
, (17)

where uni is the particle velocity at the previous timestep. Note, that the particle position is not changed
in the predictor step. In the corrector step the Pressure Poisson Equation (PPE) is solved to enforce
incompressiblilty:

∇ ·
(

1

ρ
∇pn+1

)
i

=
∇ · u∗i

∆t
. (18)

After the above linear system is (iteratively) solved, the particle velocity and position (r) at the next
time step are calculated by [18, 7]

un+1
i = u∗i −

(
1

ρ
∇pn+1

)
i

∆t (19)

rn+1
i = rni +

(
un+1
i + uni

2

)
∆t. (20)

In order to increase the stability, the particle shifting method introduced by Xu, Stansby, and Lau-
rence [32] is used. The ISPH method is implemented in the SPH software called ”SiPER”9. In this
software, the linear system given in expression (18) is solved using the algebraic multigrid preconditioner
boomerAMG and a Bi-CGSTAB solver from the PETSc library. Lastly, since semi-implicit timestepping
is used the time step is limited. The limited time step is given by

∆t = min (∆tCFL,∆tvisc) , (21)

where ∆tCFL and ∆tvisc are given by

∆tCFL = αCFL
L0

umax

∆tvisc = αdiff
L2

0

νmax
,

(22)

with αCFL = 0.05, L0 the initial particle distance, umax is the magnitude of the maximum velocity,
αdiff = 0.125 and νmax the maximum kinematic viscosity [14].

9SiPER is a program package from the University of Stuttgart. For more details see their website: https://www.icvt.

uni-stuttgart.de/en/research/siper/.
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3.3 SPH discretization

The discretization of the pressure term can be rewritten in many different forms, each with it own
advantages and disadvantages. However, a detailed comparison about their performance is rarely done
[6]. Because of this, we will give the two most used expressions and compare their performance. However,
we will first show why direct discretization is not often done in practice. Direct discretization of the
pressure term results in (

1

ρ
∇p
)
i

≈ 1

ρi

N∑
j=1

mj

ρj
pj∇iWij . (23)

Now, by noting that ρDu
Dt = −∇p in combination with conservation of linear momentum (Fi = −Fj) and

only considering the force of particle i on j and vice versa, we have 10

Fi = −mimj

ρiρj
pj∇iWij 6= −

mjmi

ρjρi
pi∇jWij =

mjmi

ρjρi
pi∇iWij = −Fj . (25)

Note that the inequality follows from pi 6= pj . Now from expression (25) we can conclude that direct
discretization does not conserve linear momentum. To satisfy linear momentum the pressure term is first
rewritten, after which the pressure term is discretized. Resulting in a symmetric interaction between the
particles.

For the first discrete pressure expression, we note that the pressure gradient can be rewritten as

∇p
ρ

= ∇
(
p

ρ

)
+ p
∇ρ
ρ2
. (26)

This follows from ∇
(
p
ρ

)
= 1

ρ∇ (p) + p∇
(

1
ρ

)
and applying the quotient rule to the last term on the

right-hand side. The first discrete pressure term can now be given by(
∇p
ρ

)
≈

N∑
j=1

mj

ρj

pj
ρj
∇iWij +

pi
ρ2
i

N∑
j=1

mj

pj
pj∇iWij

=

N∑
j=1

mj

(
pj
ρ2
j

+
pi
ρ2
i

)
∇iWij .

(27)

The second expression is given by11:

∇p
ρ
≈

N∑
j=1

mj

ρiρj
(pi + pj)∇iWij . (30)

10This results from expression (5), in the case of that the pressure force is the only acting force. Furthermore, we can
express Fi as

Fi = miai. (24)

11This is derived by rewriting ∇p as
∇p = ∇p+ p∇1, (28)

and by noting that the SPH discretization of ∇1 is given by

∇1 ≈
N∑
j=1

mj

ρj
∇iWij . (29)
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The SPH discretizations for the PPE are given by:

∇ ·
(

1

ρ
∇p
)
i

≈
N∑
j=1

mj

ρj

4

ρj + ρi

pijrij
|rij |2

· ∇iWij (31)

(∇ · u∗)i ≈
N∑
j=1

mj

ρj
(u∗j − u∗i) · ∇iWij , (32)

where rij = ri − rj for the distance vector between the particles. The derivation of the discrete pressure
force is based on the following integral approximant

∇ ·
(

1

ρ
∇p
)
≈
∫ [

1

ρ(r′)
+

1

ρ(r)

]
[p(r)− p(r′)] (r− r′) · ∇rWrr′

|r− r′|2
dr′. (33)

Using Taylor series about r, we can verify that the integral approximant is of second order accuracy
[23]12. The integral approximant in SPH form is

∇ ·
(

1

ρ
∇p
)
i

≈
N∑
j=1

mj

ρj

[
1

ρj
+

1

ρi

]
pijrij
|rij |2

· ∇iWij , (34)

with pij = pi−pj . However, Cleary and Monaghan [8] showed that a correction term is needed, whenever
the flux is discontinuous. The correction term is given by

4 1
ρi

1
ρj

1
ρi

+ 1
ρj

, (35)

resulting in the final SPH discretization given in equation (31). Note that the SPH discretization of the
intermediate velocity gradient is a result of rewriting with means of the product rule and applying basic
SPH discretization. Now using the same correction term given by (35) leads to the following discrete
equation for the viscous term in the momentum equation:(

µ

ρ
∆u

)
i

≈
N∑
j=1

4mj (µi + µj)

ρj

(
rij
|rij |2

· ∇Wij

)
(ui − uj) . (36)

3.4 Free surface

At the free surface, a boundary condition in the form of a prescribed pressure is used. However, the
particles belonging to the free surface first need to be identified. This is done through the usage of a
Shepard-kernel [14]:

Si =

N∑
j=1

mj

ρj
Wij . (37)

Due to a truncated kernel, the particles near the free surface will have a lower value. Particles with a
value lower than Si < 0.78 are labelled as free surface particles [14]. In our case, we will impose a zero
pressure boundary condition. Resulting, that for free surface particles the PPE is replaced by [4]:(

∇ · 1

ρ
∇p
)
i

≈
N∑
j=1

mj
8

(ρi + ρj)
2

(2pi − pj) rij · ∇Wij

‖rij‖2
. (38)

12For a more in depth derivation of the integral in multiple dimensions, see [23]
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3.5 Kernel and particle consistency

The consistency13 of the SPH method depends on the kernel approximation and the particle approx-
imation. Using Taylor expansion the requirements for zero and first order consistency for the kernel
approximation are given by [22]14 ∫

Ω

W (r− r′, h)dr′ = 1 (39)∫
Ω

(r− r′)W (r− r′, h)dr′ = 0. (40)

Observe that expressions (39) and (40) are the unity and the symmetric properties of a smoothing func-
tion. Since, these properties are already satisfied, it can be concluded that the kernel approximation has
up to C1 consistency in regions without boundaries. For regions truncated with boundaries, the require-
ments (39) and (40) are not satisfied, leading to lacking even C0 consistency. In Figure 4, we observe that,
due to boundary truncation, W (r− r′, h) is no longer an even function. As a result (r− r′)W (r− r′, h)
is no longer an odd function and when taking the integral the positive and negative parts no longer cancel
each other out. Hence, equation (40) is not equal to zero resulting in the consistency requirements given
by the Taylor expansion being violated.

By introducing a normalization factor, C0 consistency can be restored. Furthermore, with the usage
of corrective kernels C1 consistency for interior regions can be achieved. A 1D example of a corrective
kernel approximation for a function f(x) at particle i is given by [22]15.

fi ≈
∫
f(x)Wi(x)dx∫
Wi(x)dx

, (42)

from where we can observe that for an interior region the corrective kernel has C1 consistency and for a
boundary region it has C0 consistency, due to the normalization factor, which makes sure that equation
(39) is satisfied.

13The order of consistency refers to which n’th order the numerical method can reproduce a polynomial exactly [22].
14Note achieving higher order consistency by solemnly relying on a smoothing function is impossible without violating the

positivity requirement [22]. A smoothing function, which can be negative is undesirable, since it can result in unphysical
solutions, such as negative density and negative energy.

15By Taylor expansion of f(x) at a nearby point xi and multiplying both sides with W and integrating over the entire
computation domain, we get ∫

f(x)Wi(x)dx = fi

∫
Wi(x)dx+ fi,x

∫
(x− xi)Wi(x)dx+

fi,xx

2

∫
(x− xi)2Wi(x)dx+O(∆x)3).

(41)

Combining expressions (41) and (42) the consistency statements about the correction kernel can be derived [22].
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Figure 4: One-dimensional visual representation of the influence of a boundary (a) and particle disorder
(b) on the consistency [22].

For the consistency of the particle approximation, we consider the discrete versions of (39) and (40)

N∑
j=1

W (ri − rj , h)∆Vj = 1 (43)

N∑
j=1

(ri − rj)W (ri − rj , h)∆Vj = 0. (44)

In general, C0 consistency is not achieved, since requirement (43) is violated due to particle disorder or
truncation of the support domain by boundaries. A way to restore C0 consistency is by renormalization
[22].

In Di G. Sigalotti et al. [10] the requirement for C2 consistency is derived16, that is〈
x2
〉
− 〈x〉2 = 0, (45)

where 〈 〉 is the kernel approximation. Expression (45) is only achieved when N → ∞, h → 0, and
N →∞, with N the number of particles within the kernel support and N the total number of particles.
However, the increase in kernel particles, whenever the total number of particles increases, demands
the use of a Wendland-type kernel [11]. The reason behind this is that when N attains large values,
standard SPH smoothing kernels become unstable due to particle clumping. A Wendland-type kernel
avoids particle clumping for all values of N [9]17. Furthermore, an error bound for the SPH estimate of
a function is given in Di et al. [11]. Due to the complexity and high chance for wrong interpretation, we
refer to Di et al. [11] for the expression and derivation of the error bound. Furthermore Di et al. [11]
concluded that the particle approximation converges to the kernel approximation independently of h,
when the following scaling is satisfied18

N ∝ hn−β , (46)

where n is the spatial dimension, N is number of kernel particles and β > n.

16Provided that C0 and C1 consistency is already satisfied. Furthermore the requirement is derived in the 1D case, but
can be extended to higher dimensions.

17This follows from a linear stability analysis performed by Dehnen and Aly [9]. Dehnen and Aly [9] conclude that smooth-
ing kernels whose Fourier transform is negative will inevitably trigger pairing instability for large enough N . Wendland
kernels have been constructed with the condition that they need to posses a non-negative Fourier transform.

18When N → ∞, we need to have that the particle mass scales with h as m ∝ hβ , with β < n. This results in the
requirement that m→ 0 as h→ 0, which leads to the scaling N ∝ hn−β [11].
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3.6 Kernel type

Throughout this thesis, we use a Wendland C4 kernel [17]:

W (r− r′, h) =
αd
hd
K

(
r− r′

h

)
, (47)

with αd = 9
21 ,

3π
4 and 165π

256 and where d stands for the different spatial dimensions, namely d = 1, 2 and
3. Furthermore, K is defined by

K(ξ) =

{ (
1−

∣∣∣ ξ2 ∣∣∣)6 (
35
4 ξ

2 + 9|ξ|+ 3
)

0 ≤ |ξ| ≤ 2

0 |ξ| > 2.
(48)

The main reason for choosing a Wendland-type kernel is the earlier mentioned immunity to particle
clumping. Furthermore, from a comparison with different kernels (Cubic spline, Gauss and Quintic
kernels) it followed that the Wendland-type kernel has the best ”ability” to obtain the highest accuracy
[28].
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4 Rheology and surface tension in SPH

4.1 Tuning of rheological fluid properties

The main objective of this thesis is to be able to tune the surface tension independently of the viscoelastic
fluid properties. In previous studies [21] it has been shown that particle interaction forces (PIF) can be
used to tune rheological properties of the simulated fluid. Particle interactions introduce an additional
force, that generates an attraction force for distant particles and repulsion for close particles. There are
multiple ways to express and implement a PIF. An example of the total force acting on a particle is given
by [21]

F i =

N∑
j

Fij
rj − ri
|rj − ri|

, (49)

where Fij is

Fij =

{
Sij

p

(
− (rij − q)2

+ p
)
, q =

x2
1−x

2
2

2x1−2x2
, p = (x2 − q)2, rij ≤ x2

0, rij > x2.
(50)

The tunable parameters are the interaction strength (Sij), the range of the particle interaction (x2) and
the ratio of repulsive/attractive force (x1). The visual representation of equation 50 is given in Figure 5.

Figure 5: Visual representation of the particle interaction force given in equation 50, where on the
horizontal axis we have rij and on the vertical axis we have Fij [21].

We will now state the side effects due to the particle interaction force. However, since this is dependent
on the final used particle interaction force, it will be written at the end of the thesis (the particle force
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can change). However, the for now known side effect is an additional pressure due to a difference in the
amount of repulsive and attractive forces.

It has already been show in [3, 30] that the particle interaction force has an influence on the surface
tension. Two methods are considered for further tuning of the surface tension, namely the Continuum
Surface Force (CSF) method and a particle interaction surface minimization force (PISMF) method.
Both methods are based on a force that minimises the surface area. We will first discus the CSF method
after which the PISMF method will be explained.

4.2 Continuum surface force method

The CSF method translates the surface tension into a volumetric force. The force acts as a smoothing
for high curvature regions in order to minimize the surface area. The volumetric force is given by [24]

Fs = σκn̂δs, (51)

where σ is the surface tension coefficient, n̂ is the unit surface normal, κ is the curvature and δs is the
surface delta function.

The drawbacks of the CSF method are that the accuracy depends on the normal vector calculation
and curvature estimation, where the later is prone to errors. Most common methods use a colour function
to calculate the normal and the curvature, where the colour function identifies each fluid [5]19. To resolve
the error prone calculations of the curvature, many corrections were introduced, each with its own pros
and cons. In Adami and Account [2] a comparison of the most popular correction methods is presented.
From the comparison, it followed that the classical method developed by Sirotkin and Yoh [29] is the most
stable one. They used a correction matrix to solve the problem of the decreased number of interpolation
points near the free surface for one-fluid phases, resulting in more accurate results. Furthermore, a
transition band (multiple layers of surface particles) for the calculation of the curvature is introduced.
Other methods, such as presented by [1] and [24] tend to underestimate the curvature near the surface.
However, stability still remains to be an issue, since it will depend on many other factors such as the
pressure force, order of viscosity force and the density calculation near the free surface.

Despite all the corrections, the methods are still depending on the amount of particles; the methods
become less reliable when handling thin liquid layers with few particles. He et al. [13] developed another
method that is able to handle thin film features. The difference between the methods is that He et al. [13]
uses |∇c|2 instead of ∇c, with the advantage that the normal direction is no longer needed, which causes
high errors in thin film sheets. This turn out to improve robustness against particle sparsity.

In a promising new study, Duan, Sun, and Jiang [12] formulated a method based on improving
the following two drawbacks of the CSF method: (i) curvature calculations may be subjected to large
and nonphysical errors, (ii) instability with the increase of the computational resolution. The main
improvement is the different way of calculating the curvature20. The curvature is calculated by the
surface divergence instead of the divergence of the unit normal21, that is

κ = −∇S · n. (54)

19The color function in single-phase is equal to one for all fluid particles. Often the following smoothing of the color
function is used:

ci =
∑
j

cjVjWij , (52)

where cj is the color function [12].
20Also a different method for tracking the surface particles is implemented, namely the Marrone algorithm. For more

details see Duan, Sun, and Jiang [12]
21Normally the curvature is calculated by

κ = −∇ · n (53)
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According to [5] the gradient tangent to the interface can be expressed as

∇S = ∇−∇N . (55)

In a theoretical case ∇N · n is equal to zero, since all the interior particles are aligned with normal n on
the surface (see Figure 6), hence

∇ · n = ∇S · n. (56)

However, due to numerical discretization this is no longer the case. The particles are no longer perfectly
aligned with normal n, resulting in that ∇ · n is no longer zero and hence

∇ · n 6= ∇S · n. (57)

When in the numerical case ∇ · n is used, it will results in computational errors.

Figure 6: The theoretical situation in which the derivatives are equal. However, due to numerical
discretizations the particles will no longer arrange in the same way [12].

4.3 Particle interaction surface minimization

The PISMF method introduces an additional force, that counteracts the surface curvature. The first step
of the PISMF method is to compute the normal vector based on the gradient of the density field [3, 15]

ni = h

N∑
j=1

mj

ρj
∇iW (|rij |), (58)

where h is the smoothing length. To give an expression for the minimization force, we use the assumption
that the magnitude of ni is proportional to the curvature. The minimization force is then given by

Fcurvi = −γmi

N∑
j=1

(ni − nj) , (59)

where γ is a coefficient to control the strength of the surface tension. It can be easily verified that Fcurvi

increases, whenever the curvature increases. Furthermore, for flat regions and inside the fluid, the force
is equal to zero. This is exactly what we wanted. The force should only influence the surface area and
must act as a minimization. The particle surface force is then given by

Fsurfi = Ki (Fi + Fcurvi ) , (60)
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where

Ki =

N∑
j=1

2ρ0

ρi + ρj
(61)

is a symmetrized correction factor, with ρ0 the rest density of the fluid22. The advantages of the PISMF
method are:

• Avoids explicit computation of the surface curvature. Hence, improving sensitivity to particle dis-
order.

• Avoids normalization of ni.

• Symmetric force.

Yang et al. [33] improved the accuracy by introducing an anisotropic filtering term 23

Fi := TiFi, (62)

where Ti is the anisotropic filtering term24. The anisotropic filtering term scales the particle interaction
force. In an isotropic case Ti is equal to the identity matrix, however in the anisotropic case Ti scales
the interaction forces of each particle differently [33], see Figure 7.

Figure 7: Illustration of how the anisotropic filtering works. Left: isotropic case, resulting in equal scaling
factors (blue arrows). Right: anisotropic case, resulting in different scaling factors. Green boundary
represents the influence domain of the (considered) red particle [33]

.

22Question: since we assume with PPE that the density is not allowed to change is ρi not equal to ρj
23This method omitted Fcurvi and only used Fi.
24For a detailed mathematical description, explicit expression of the filtering term and a derivation see [33].
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5 Numerical experiments

In this section, we will first describe the SPH simulation in general. Secondly, we will state two ways
that will be used to measure the surface tension, where the first one is valid for both Newtonian and
non-Newtonian fluids and the second one is only valid for Newtonian fluids. Lastly, we will explain the
SAOS method.

5.1 Simulations details

The desired fluid will be simulated in a box (partially) filled with fluid particles. The particles will be
initialized on a grid, where the particle placement is defined in terms of the (initial) particle diameter
L0. The particle diameter is defined by

L0 =
Lx

Nparticles
, (63)

where Lx is the length of the box in the x-direction (meters) and Nparticles is the maximum possible
number of particles in the x-direction25, see Figure 8. The particles can now be placed on the grid by
expressing their coordinates x, y and z in terms of L0. Important to note is that when Lx = Ly and
the maximum number of particles in the y-direction is larger than in the x-direction, the particles will
cram/merge together.

The boundaries of the box are periodic, i.e. the box is extended in every direction through attaching
a copy of the whole box at every border, see Figure 9. Due to the period box, two restrictions are needed
to prevent computational errors from occurring, these restrictions are

• The cut-off distance should be smaller than the dimensions of the box divided by two.

• When a particle leaves the box at a certain boundary, the particle should enter the box at the
opposite boundary.

The first restriction follows from that due to the periodic box, particles can interact not only with the
central box, but also with the ”copied” particles. To avoid errors, a single particle should only interact
with the original neighboring particle or only with a single copy. Resulting in the restriction on the
cut-off distance, see Figure 9. The second restriction is more a definition of periodic boundaries, then it
is a restriction.

25L0 is solemnly based on the x-direction.
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Figure 8: Visualisation of initial particle place-
ment in 2D. When we take Lx = 2 m, we have
that L0 = 1

2 m, since the maximum number of
particles is equal to 4.

Figure 9: Example of a 2D periodic box, where
the dashed line indicates the cut-off radius of
the red particle and the yellow box represents
the central box. Observe, that if the cut-off dis-
tance is increased, the red particle will interact
with multiple blue particles.[26]

5.2 Surface tension

The first method involves simulating a stationary droplet. The surface tension force acts as a minimization
of the droplet surface, which increases the droplets pressure. When the droplet is in a stationary phase,
the surface tension is in equilibrium with the pressure gradient at the interface of the droplet. Using the
Young-Laplace equation, this balance is expressed as [20]

Pin − Pout =
σ

Re
, (64)

where Re is the equilibrium radius of the droplet and Pin and Pout are the pressure inside and outside the
droplet. The numerical method can now be verified by computing the difference between the calculated
and the expected surface tension. This method is also used to determine the PIF influence on the surface
tension.

The second method simulates an oscillating Newtonian droplet with small-amplitudes and low viscos-
ity. In the case that the surface tension is the driving force, the theoretical period is given by [20]

T = 2πRe

√
Re (ρd + ρl)

6σ
, (65)

where ρd is the droplets density and ρl is the surrounding density. Since the simulations involve periodic
boundaries, it is important that the particles do not interact with the boundaries of the box. To guarantee
this, we make the dimensions of the central box many times larger than the dimensions of the fluid, see
Figure 10. This will have no affect on the computational time, since except from the fluid particles the
box will be empty.
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Figure 10: 2D visualization of the initialization particle placement for the droplet simulations.

5.3 SAOS: Small Amplitude Oscillatory Shear

Making use of the in section 2.2 explained viscous and elastic stress-strain responses, we can determine the
viscoelastic fluid behaviour through SAOS. The goal of SAOS is to obtain the characterizing viscoelastic
properties, which are the storage and loss modulus. To obtain the loss and storage modulus, a body
force Fsin is applied to a periodic box. The body force results in a delayed velocity field, which is used
to determine the loss and storage modules. The imposed body force only acts in the x-direction, given
by [21]

Fsin = Asin(ly)sin(ωt), (66)

where l is the wavelength, A is the amplitude (determines the strength) and ω is the frequency. The
visualisation of the body force is given by Figure 11. The body force has the following properties

• Fsin is a sinusoidal force.

• The wave period equals the box length (in the y-direction), that is l = 2π
lboxwidth

.

• Fsin only acts in the x-direction.

• sin(ωt) changes the amplitude of the standing wave Asin(ly) in time.

Figure 11: A schematic overview of the body force. The force is a standing wave, where the oscillations
are due to the sinusoidal time force. Furthermore, the force at time t is constant in the x-direction and
hence varies only in the y-direction[21].
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From Linde [21], it follows that the storage and loss modulus can be expressed in terms of the force
amplitude A, force frequency ω, wave length l and the velocity amplitudes v0 and w0

26. That is, G′ and
G′′ can be expressed as [21]

G′ =
ρω2

l2
+

Aω

l2v0

(
ω0

v0
+ v0

ω0

) (68)

G′′ =
Aω

l2ω0

(
ω0

v0
+ v0

ω0

) . (69)

The only unknowns are v0 and ω0, however these can be determined by [21]

1

4
v0 ≈

1

M

M∑
j=1

1

N

N∑
i=1

(vx,i sin (lyi)) · sin (ωtj) (70)

1

4
w0 ≈

1

M

M∑
j=1

1

N

N∑
i=1

(vx,i sin (lyi)) · cos (ωtj) , (71)

where M is the number of time steps and N is the number of particles. In short, expressions (70) and
(71) are derived by applying a Fourier transform to the measured velocity field, in order to filter out
the sine and cosine responses [21]. Linde [21] found that to avoid inaccuracies from occurring, due to
startup effects, the first few oscillations are to be truncated. Another important observation is that for
Newtonian fluids, the loss modulus should be equal to the viscosity multiplied with the frequency, i.e.
[21]

G′′ = µω. (72)

Expression (72) will be used to determine if PIF has the ability to simulate Newtonian fluids. Lastly,
SAOS can only by used for small values of A, since the above expressions only hold in the linear viscoelastic
regime.

26The body force results in a delayed velocity profile, given by

vx = sin(ly) [v0sin(ωt) + ω0cos(ωt)] . (67)
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6 Research question

In this final chapter, we conclude the literature study with stating the main research question and the
corresponding sub questions.
Main research question

• How can pairwise interaction forces be used to tune the fluid rheology and surface tension indepen-
dently?

Sub-question

• What are advantage and disadvantage of SPH and what is SPH?

• What is the influence of using different discrete expressions for the pressure force?

• Which methods can be used to tune the surface tension?

• What is the effect of particle interaction forces on the surface tension?

• How can the surface tension be measured?

• Which (analytical) methods can be used to verify the numerical implementations?

– For the Newtonian case.

– For the viscoelastic case.

• What numerical and/or experimental results can be used to test/compare the implementations?

21



References

[1] S. Adami, X. Y. Hu, and N. A. Adams. “A new surface-tension formulation for multi-phase SPH us-
ing a reproducing divergence approximation”. In: Journal of Computational Physics 229.13 (2010),
pp. 5011–5021. issn: 10902716. doi: 10.1016/j.jcp.2010.03.022. url: http://dx.doi.org/10.
1016/j.jcp.2010.03.022.

[2] S Adami and J Account. “Comparison of interface models to account for surface tension in SPH
method”. In: (2020), pp. 714–725.

[3] Nadir Akinci, Gizem Akinci, and Matthias Teschner. “Versatile surface tension and adhesion for
SPH fluids”. In: ACM Transactions on Graphics 32.6 (2013). issn: 07300301. doi: 10 . 1145 /

2508363.2508395.

[4] Arne Bøckmann, Olga Shipilova, and Geir Skeie. “Incompressible SPH for free surface flows”. In:
Computers and Fluids 67 (2012), pp. 138–151. issn: 00457930. doi: 10.1016/j.compfluid.2012.
07.007.

[5] J. U. BRACKBILL, D. B. KOTHE, and C. ZEMACH. “A Continuum for Modeling Surface Tension
*”. In: Journal of Computational Physics 335354 (1992).

[6] Shuai Chen and Wei Niu. “On different calculation formulas of the pressure term in bi-phase SPH
simulations”. In: AIP Advances 8.10 (2018). issn: 21583226. doi: 10 . 1063 / 1 . 5052504. url:
http://dx.doi.org/10.1063/1.5052504.

[7] Alex D Chow et al. “Incompressible SPH ( ISPH ) with fast Poisson solver on a GPU”. In: Computer
Physics Communications 226 (2018), pp. 81–103. issn: 0010-4655. doi: 10.1016/j.cpc.2018.01.
005. url: https://doi.org/10.1016/j.cpc.2018.01.005.

[8] Paul W. Cleary and Joseph J. Monaghan. “Conduction Modelling Using Smoothed Particle Hydro-
dynamics”. In: Journal of Computational Physics 148.1 (1999), pp. 227–264. issn: 00219991. doi:
10.1006/jcph.1998.6118.

[9] Walter Dehnen and Hossam Aly. “Improving convergence in smoothed particle hydrodynamics
simulations without pairing instability”. In: Monthly Notices of the Royal Astronomical Society
425.2 (2012), pp. 1068–1082. issn: 00358711. doi: 10.1111/j.1365-2966.2012.21439.x. arXiv:
1204.2471.

[10] Leonardo Di G. Sigalotti et al. “On the kernel and particle consistency in smoothed particle hy-
drodynamics”. In: Applied Numerical Mathematics 108 (2016), pp. 242–255. issn: 01689274. doi:
10.1016/j.apnum.2016.05.007. arXiv: 1605.05245.

[11] Leonardo Di et al. “A new insight into the consistency of the SPH interpolation formula”. In:
Applied Mathematics and Computation 356 (2019), pp. 50–73. issn: 0096-3003. doi: 10.1016/j.
amc.2019.03.018. url: https://doi.org/10.1016/j.amc.2019.03.018.

[12] Riqiang Duan, Chen Sun, and Shengyao Jiang. “A new surface tension formulation for particle
methods”. In: International Journal of Multiphase Flow 124 (2020), p. 103187. issn: 03019322.
doi: 10 . 1016 / j . ijmultiphaseflow . 2019 . 103187. url: https : / / doi . org / 10 . 1016 / j .

ijmultiphaseflow.2019.103187.

[13] Xiaowei He et al. “Robust Simulation of Small-Scale Thin Features in SPH-based Free Surface
Flows”. In: Life.Kunzhou.Net 1.212 (2014), pp. 1–8. issn: 07300301. doi: 10.1145/XXXXXXX.

YYYYYYY. arXiv: 1006.4903. url: http://life.kunzhou.net/2013/SPHsurfacetension.pdf.

[14] Manuel Hirschler et al. “Modeling of droplet collisions using Smoothed Particle Hydrodynamics”.
In: International Journal of Multiphase Flow 95 (2017), pp. 175–187. issn: 03019322. doi: 10.1016/
j.ijmultiphaseflow.2017.06.002. url: http://dx.doi.org/10.1016/j.ijmultiphaseflow.
2017.06.002.

22

https://doi.org/10.1016/j.jcp.2010.03.022
http://dx.doi.org/10.1016/j.jcp.2010.03.022
http://dx.doi.org/10.1016/j.jcp.2010.03.022
https://doi.org/10.1145/2508363.2508395
https://doi.org/10.1145/2508363.2508395
https://doi.org/10.1016/j.compfluid.2012.07.007
https://doi.org/10.1016/j.compfluid.2012.07.007
https://doi.org/10.1063/1.5052504
http://dx.doi.org/10.1063/1.5052504
https://doi.org/10.1016/j.cpc.2018.01.005
https://doi.org/10.1016/j.cpc.2018.01.005
https://doi.org/10.1016/j.cpc.2018.01.005
https://doi.org/10.1006/jcph.1998.6118
https://doi.org/10.1111/j.1365-2966.2012.21439.x
https://arxiv.org/abs/1204.2471
https://doi.org/10.1016/j.apnum.2016.05.007
https://arxiv.org/abs/1605.05245
https://doi.org/10.1016/j.amc.2019.03.018
https://doi.org/10.1016/j.amc.2019.03.018
https://doi.org/10.1016/j.amc.2019.03.018
https://doi.org/10.1016/j.ijmultiphaseflow.2019.103187
https://doi.org/10.1016/j.ijmultiphaseflow.2019.103187
https://doi.org/10.1016/j.ijmultiphaseflow.2019.103187
https://doi.org/10.1145/XXXXXXX.YYYYYYY
https://doi.org/10.1145/XXXXXXX.YYYYYYY
https://arxiv.org/abs/1006.4903
http://life.kunzhou.net/2013/SPHsurfacetension.pdf
https://doi.org/10.1016/j.ijmultiphaseflow.2017.06.002
https://doi.org/10.1016/j.ijmultiphaseflow.2017.06.002
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2017.06.002
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2017.06.002


[15] Markus Huber et al. “Evaluation of Surface Tension Models for SPH-Based Fluid Animations Using
a Benchmark Test”. In: VRIPHYS (2015).

[16] Malvern Instruments. “A basic introduction to rheology”. In: Malvern Instruments Limited (2016).

[17] Yongsong Jiang et al. “A second-order numerical method for elliptic equations with singular sources
using local filter”. In: Chinese Journal of Aeronautics 26.6 (2013), pp. 1398–1408. issn: 10009361.
doi: 10.1016/j.cja.2013.07.004. url: http://dx.doi.org/10.1016/j.cja.2013.07.004.

[18] P Kunz et al. “Study of Multi-phase Flow in Porous Media : Comparison of SPH Simulations
with Micro-model Experiments”. In: Transport in Porous Media 114.2 (2016), pp. 581–600. issn:
1573-1634. doi: 10.1007/s11242-015-0599-1.

[19] Labrotovap. How does spray dryer work. 2020. url: https://www.labrotovap.com/how-does-
spray-dryer-work/ (visited on 10/09/2020).

[20] Yixin Lin, G R Liu, and Guangyu Wang. “A particle-based free surface detection method and its
application to the surface tension effects simulation in smoothed particle hydrodynamics ( SPH )”.
In: Journal of Computational Physics 383 (2019), pp. 196–206. issn: 0021-9991. doi: 10.1016/j.
jcp.2018.12.036. url: https://doi.org/10.1016/j.jcp.2018.12.036.

[21] Mark van der Linde. “Viscoelasticity in SPH through particle interactions”. PhD thesis. TU Delft,
2020.

[22] M B Liu G R Liu. Smoothed Particle Hydrodynamics ( SPH ): an Overview and Recent Develop-
ments. 2010, pp. 25–76. isbn: 1183101090. doi: 10.1007/s11831-010-9040-7.

[23] J. J. Monaghan. “Smoothed particle hydrodynamics”. In: Reports on Progress in Physics 68.8
(2005), pp. 1703–1759. issn: 00344885. doi: 10.1088/0034- 4885/68/8/R01. arXiv: 0507472

[astro-ph].

[24] Joseph P Morris. “Simulating surface tension with smoothed particle hydrodynamics”. In: INTER-
NATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids
2000; 33: 333–353 Simulating 6 (2000), pp. 333–353.

[25] Faith A. Morrison. Understanding Rheology. Oxford University Press, 2001. isbn: 978-0-19-514166-
5. url: https://app.knovel.com/hotlink/toc/id:kpUR00000I/understanding-rheology/
understanding-rheology.

[26] J.T. Padding. “Particle-Based Simulations Lecture Notes”. In: (2017), pp. 109–132, 141–148.
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Appendix A: Introduction Tensor Calculus

In this section we will explain two different ways for constructing a basis in an Euclidean space, where
it is no longer desired for the bases to be orthonormal (orthogonal and unit vectors). Furthermore, the
transformation rules between the coordinate systems are given. Since the bases are no longer orthonormal,
a standard partial derivative is no longer sufficient27. The covariant derivative is therefore introduced,
after which a covariant time derivative is presented.

We will consider a three-dimensional Euclidean space, with a standard Cartesian coordinate system
(x,y,z) associated with a set of unit vectors {i, j,k}. The purpose is to construct a basis that describes a
vector at a point P. This will be done in two ways:

• Normals to coordinate surface (dual basis)

• Tangents to coordinate curves (natural basis).

Consider a non-Cartesian coordinates system (u,v,w), where we can express the Cartesian coordinates
in terms of u,v,w and vice versa. The position vector r(u,v,w) expressed in non-Cartesian coordinates is
given by

r(u, v, w) = x(u, v, w)i + y(u, v, w)j + z(u, v, w)k. (73)

The natural basis is defined as the three tangent vectors to the three coordinate curves. These are the
partial derivatives of r with respect to u, v, w evaluated at point P [BRON]:

eu :=
∂r

∂u
, ev :=

∂r

∂v
, ew :=

∂r

∂w
. (74)

In contrast to the Cartesian basis, the natural basis does not need to be orthonormal. For the dual
basis, the non-Cartesian coordinates needs to be expressed in terms of x,y,z. Each coordinate can now
be viewed as a scalar field and such, the dual basis is given by taking the gradients of the coordinates:

eu := ∇u, ev := ∇v, ew := ∇w, (75)

where ∇u = ∂u
∂x i+ ∂u

∂y j+ ∂u
∂zk. Observe that the dual basis and the natural basis are equivalent when the

coordinate system (u,v,w) is orthonormal. Using the natural and dual basis we can express at point P
the vector λ in two ways:

λ = λueu + λvev + λwew

λ = λue
u + λve

v + λwe
w (76)

To shorten such notation we introduce Einstein notation. In Einstein notation, we use ui(i = 1, 2, 3)
as coordinates instead of (u, v, w), {ei} and {ei} in place of {eu, ev, ew} and {eu, ev, ew} and the same
way for the vector components. Furthermore, when an index variable is repeated, it implies a summation
over the values of the index. Hence, we can rewrite expression 76 as

λ =

3∑
i=1

λiei = λiei

λ =

3∑
i=1

λie
i = λie

i.

(77)

27In curvature coordinates the basis will change, resulting in that the partial derivative of a tensor is no longer a tensor,
the partial derivative is depending on its coordinate system. For a detailed example see [BRON will follow]
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Coordinate transformation

The contravariant and covariant vector is defined by the transformation of the vector components between
two coordinate systems. Given two arbitrary coordinates system X and X

′
, with coordinates xm and

xm
′

, the transformation between two contravariant vector components V m and V m
′

is given by28

V m
′

=
∂xm

′

∂xm
V m, (79)

and the transformation between covariant vector components is given by

Vm′ =
∂xm

∂xm
′ Vm. (80)

We can easily extend it for higher order tensors. A second order tensor component is defined as Tmn =
V mUn 29. The transformation of Tmn can be deduced from the transformation (see equation (79)) of
the individual components:

Tm
′
n
′

= V m
′

Un
′

=
∂xm

′

∂xm
V m

∂xn
′

∂xn
Un =

∂xm
′

∂xm
∂xn

′

∂xn
Tmn. (81)

Using the transformation of the individual components the transformation for even higher order con-
travariant tensors, covariant tensors or mixed tensors can be deduced.

Metric tensor

An intuitive way to see what a metric tensor is and does, is by considering the length of a vector:

λ · λ = λjej · λiei = λjλi (ej · ei) , (82)

where the term in the brackets is the metric tensor gij . The metric tensor specifies how to calculate the
length between vectors. We can now also define the length of a differential displacement vector as

ds2 = gijdx
idxj , (83)

where dxi are the differential displacements components. Furthermore, we have [BRON]

gijg
jk = δki , (84)

resulting in the identity matrix. This is a useful property to lower or raise indices on tensor components.

Covariant derivative

A fundamental property of a tensor is that it will not change under a coordinate transformation, i.e
it is independant of the manner in which it is expressed in a coordinate system. However, the partial
derivative of a tensor will not result in a tensor and hence losses its independence. To solve this, we
introduce a new derivative operator, namely a covariant derivative [BRON].

28This can be deduced by considering

ej :=
∂r

∂uj
=

∂r

∂ui
′
∂ui

′

∂uj
=
∂ui

′

∂uj
e
i
′ , (78)

in combination with equation (77).
29Note, that the correct notation is Tmn = Vm ⊗ V n
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We can derive the covariant derivative operator by considering the following expression [BRON]:

∂λ

∂uj
′ =

∂(λiei)

∂uj′
=

∂λi

∂uj′
ei + λi

∂ei
∂uj′

, (85)

where the second term in the derivative is the Christoffel symbol, hence we can rewrite it to

∂λ

∂uj′
=

∂λi

∂uj′
ei + λiΓk

ij′
ek. (86)

In order to factor out ei, we will rename the dummy variables in the Christoffel symbol, yielding

∂λ

∂uj′
=

(
∂λi

∂uj′
+ λkΓi

kj′

)
ei. (87)

The term in the brackets are the components of a tensor with respect to a covariant basis, hence the
term in the brackets is a tensor [BRON]. Here, we used that a derivative of an invariant tensor (λ) is a
tensor. The covariant derivative of V i is given by

∇j′V
i =

∂V i

∂j′
+ Γi

kj′
V k, (88)

with the desired property, that a derivative of a tensor results in a tensor. Furthermore, the covariant
derivative of a covariant vector is almost identical, except the sign in front of the Christoffel symbol is
negative30 [BRON]:

∇j′Vi =
∂Vi
∂j′
− Γk

j′ i
Vk (89)

From the covariant derivative we can see the influence of non-Cartesian coordinates (curvature coordi-
nates). The second term relates to how the bases will change due to the curvature of space. When
expressed in Cartesian coordinates the second term vanishes, resulting in that the covariant derivative
equals the partial derivative. Furthermore, the covariant derivative follows the same rules as a partial
derivative, such as the product rule and chain rule.

Covariant time derivative

The time derivative for a vector field X (with arbitrary coordinates zb) is defined as

dXa(t, z(t))

dt
:=

Xa

∂t
+
Xa

∂zb
∂zb

∂t
=
Xa

∂t
+
Xa

∂zb
vb, (90)

where zb(t) represent the general time dependent coordinates, which is not covariant31. The covariant
time derivative D is defined by [31]

DXa :=
dXa

dt
+ αabX

b (92)

30This is derived by expanding ∇k(AiBi) with the product rule and using the above derived covariant derivative. Then
noting that AiBi is a scalar and the value of a scalar does not depend on its basis vectors. Hence, the covariant derivative
is equal to an ordinary partial derivative. Finally, the minus sign follows from comparing the two derived expressions.

31The transformation law for equation (90) is given by

va =
∂za

∂xk
vk +

∂za

∂t
, (91)

from where we can observe that the last term prevents v from transforming as a tensor [31].
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, where the αab are time-dependent correction quantities to make D obey the tensorial transformation
laws. For a first-order contravariant tensor component the tensor transformation is

DXa =
∂za

∂za
′ DXa

′

. (93)

To deduce the rule for covariant vectors components we desire two additional properties:

• Covariant time derivative reduces to the ordinary derivative (equation (90)) when acting on scalars.

• Must obey Leibniz (product) rule.

Consider a scalar product of a co- and a contravariant vector: S = XaYa. Using the Leibniz rule, we can
therefore write

D(XaYa) = D(Xa)Ya +XaD(Ya)

=

(
dXa

dt
+ αabX

b

)
Ya +Xa

(
dYa
dt

+ α̃baYb

)
.

(94)

Now using that XaYa is a scalar and hence reduces to an ordinary derivative, we have

D(XaYa) =
d (XaYa)

dt

=
d (Xa)

dt
Ya +Xa d (Ya)

dt
.

(95)

For both expressions 94 and 95 to be true32, the following needs to hold

α̃ba = −αba. (96)

The covariant time derivative acting on a covariant component is hence defined by

DYa =
dYa
dt
− αbaYb. (97)

The αba is used to enforce tensor transformation of D between general coordinates. We can derive an
general expression for αab by considering how αab transform between coordinates [31]:

DXa = D
(
∂za

∂za
′ DXa

′
)

=
d

dt

(
∂za

∂za
′

)
Xa

′

+
∂za

∂za
′
dXa

′

dt
+

∂zb

∂za
′ X

a
′

αab.

(33) (98)

Hence, by combining expressions (93) and (98) and thus enforcing tensorial transformation, α is required
to transform as

αa
′

b′
=
∂za

′

∂za
∂zb

∂zb
′ α

a
b +

∂za
′

∂zc
d

dt

(
∂zc

∂zb
′

)
, (99)

32For the scalar expression to hold, we need to have αabX
bYa + Xaα̃baYb = 0. Now rearranging dummy indices and

terms, we have αbaX
aYb + α̃baX

aYb = 0.

33The last term follows from forcing the desired term Xa
′
αab to appear. However, this should in the end only depend

on the variable ”a”, so the dummy variables b and a
′

needs to be summed out (contraction). This is done by following the

contracting rules: an upper index will be summed out by a lower index and vice versa. Hence, the term ∂zb

∂za
′ , resulting

that all dummy variables are summed out.
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where the first term is the usual tensorial transformation law and the second term prevents α from
being a tensor. In [31] an expression for time evolution of the Jacobian matrix between two arbitrary
time-dependent transformation is derived:

d

dt

(
∂za

∂za
′

)
=
∂va

∂zb
∂zb

∂za
′ −

∂za

∂zb
′
∂vb

′

∂za
′ . (100)

Now substituting the time-dependent transformation expression into equation 99 yields

αa
′

b′
+
∂va

′

∂zb
′ =

∂za
′

∂za
∂zb

∂zb
′

(
αab +

∂va

∂zb

)
. (101)

Observe that the term in brackets transforms like a tensor. Hence, we can define the following expression
for α up to an arbitrary tensor (Hab), that is

αab = −∂v
a

∂zb
+Hab. (102)

If we now take H to be zero, we end up with the upper convected time derivative

DXa =
∂Xa

∂t
+
∂Xa

∂zb
vb − ∂vb

∂zb
Xb. (103)
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