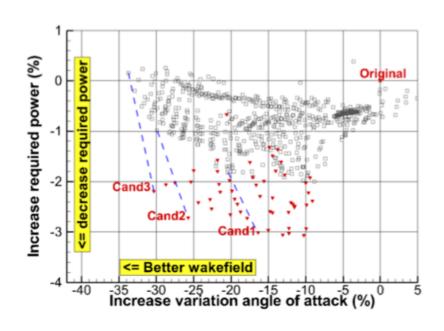


Literature Survey

March 17, 2017



- CFD
- Parnassos
- Automatic optimization
- Time-consuming
- 80% Ax=b

Improve performance of linear solver by using GPUs?

Outline

- Parnassos
- Iterative methods
- Graphics Processing Unit (GPU)
- Iterative methods on the GPU
- Conclusions literature survey

A RANS solver for structured grids

Accuracy

Robustness

Efficiency

Flexibility

A RANS solver for structured grids

Accuracy

High-order finite difference schemes

Robustness

Efficiency

Flexibility

A RANS solver for structured grids

Accuracy

High-order finite difference schemes

Robustness

Solves <u>coupled</u> equations (+ uncoupled turbulence model)

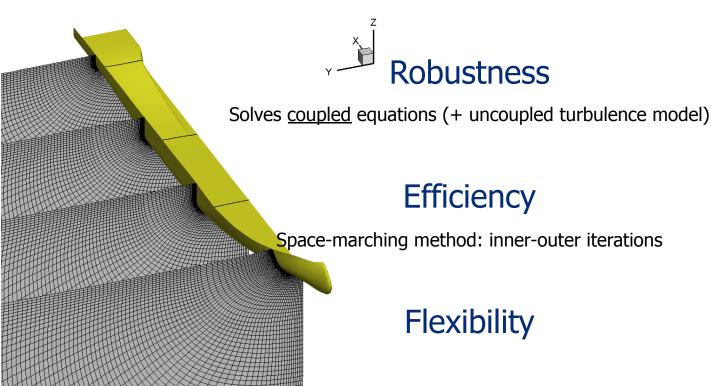
Efficiency

Flexibility

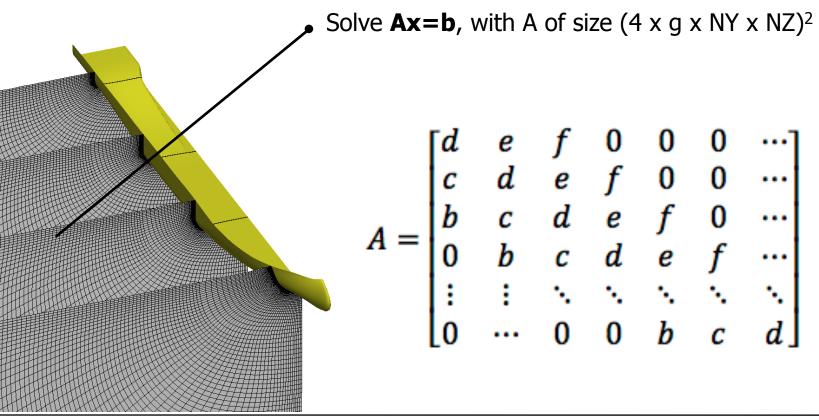
A RANS solver for structured grids

Accuracy

High-order finite difference schemes

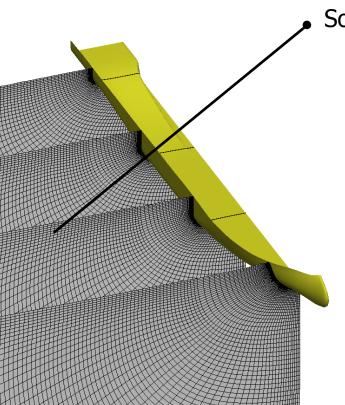


A RANS solver for structured grids



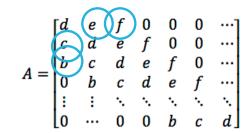
A RANS solver for structured grids

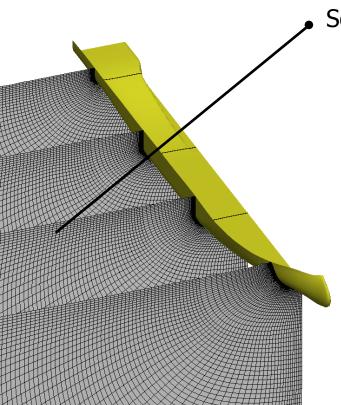
$$A = \begin{bmatrix} d & e & f & 0 & 0 & 0 & \cdots \\ c & d & e & f & 0 & 0 & \cdots \\ b & c & d & e & f & 0 & \cdots \\ 0 & b & c & d & e & f & \cdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & \cdots & 0 & 0 & b & c & d \end{bmatrix}$$



Solve $\mathbf{Ax} = \mathbf{b}$, with A of size $(4 \times g \times NY \times NZ)^2$

A RANS solver for structured grids





Solve $\mathbf{Ax} = \mathbf{b}$, with A of size $(4 \times g \times NY \times NZ)^2$

$$b = \begin{bmatrix} 0 & \text{UPSTRb} & \cdots \\ \vdots & \ddots & \ddots \\ 0 & \cdots & \text{UPSTRb} \end{bmatrix}$$

$$c = \begin{bmatrix} \text{UPSTRa} & 0 & \cdots \\ 0 & \text{UPSTRa} & \cdots \\ \vdots & \ddots & \ddots \\ 0 & \text{UPSTRa} & \cdots \end{bmatrix}$$

UPSTRb

$$e = \begin{bmatrix} \text{DOWNSTRa} & 0 & \cdots \\ 0 & \text{DOWNSTRa} & \cdots \\ \vdots & \ddots & \ddots \\ 0 & \cdots & \text{DOWNSTRa} \end{bmatrix}$$

$$f = \begin{bmatrix} \text{DOWNSTRb} & 0 & \cdots \\ 0 & \text{DOWNSTRb} & \cdots \\ \vdots & \ddots & \ddots \\ 0 & \cdots & \text{DOWNSTRb} \end{bmatrix}$$

Iterative Methods

Parnassos: Solve Ax=b, with A of size $(4 \times g \times NY \times NZ)^2$

$$A = \begin{bmatrix} d & e & f & 0 & 0 & 0 & \cdots \\ c & d & e & f & 0 & 0 & \cdots \\ b & c & d & e & f & 0 & \cdots \\ 0 & b & c & d & e & f & \cdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & \cdots & 0 & 0 & b & c & d \end{bmatrix}$$
• Large
• Sparse
• Non-symmetric
• Diagonally structured

Preconditioned Krylov solvers

Iterative Methods

Preconditioned Krylov solvers for sparse linear systems

Non-symmetric systems Ax=b:

Optimal methods: GMRES

Short recurrences: BiCGStab

Hybrid: IDR(s)

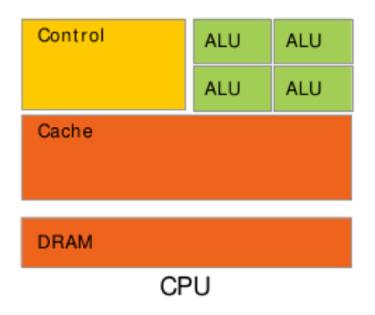
Preconditioning: ILU

Parnassos: ILU preconditioned GMRES

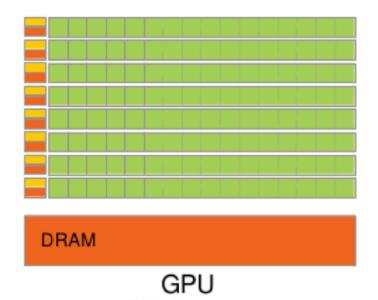
80% of CPU time

Graphics Processing Unit (GPU)

Scientific computing with GPUs



- High floating-point performance
- Cheap & available
- Scalable



Graphics Processing Unit (GPU)

Scientific computing with GPUs

$SIMD \approx SIMT$ (threads)

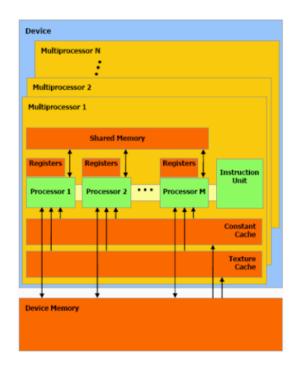
```
_global_ void VecAdd(float* A, float* B, float*C)
{
int i = threadIdx.x;
C[i] = A[i] + B[i];
}
int main()
{
...
VecAdd <<< 1, N >>> (A, B, C);
...
}
```

```
DRAM
```

Fine-grained parallelism

Graphics Processing Unit (GPU)

Scientific computing with GPUs



Complex memory hierarchy

$$t_{comm} = \alpha + \beta n$$

High arithmetic intensity (flop/byte)

Parallel implementation of preconditioned Krylov solvers

Fine-grained parallelism

&

High arithmetic intensity

Krylov solvers:

- Vector updates (e.g. x=x+ay)
- Dot products (e.g. x^Ty)
- Matrix-vector products

Parallel implementation of preconditioned Krylov solvers

Fine-grained parallelism

&

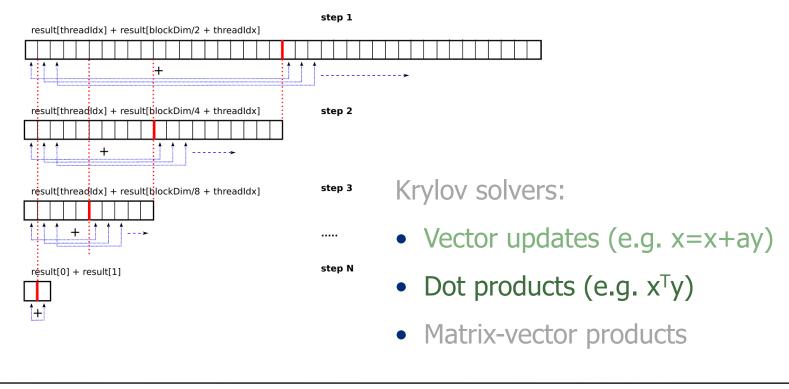
High arithmetic intensity

Krylov solvers:

- Vector updates (e.g. x=x+ay)
- Dot products (e.g. x^Ty)
- Matrix-vector products

Parallel implementation of preconditioned Krylov solvers

Sum reduction algorithm



Parallel implementation of preconditioned Krylov solvers

Sparse matrix-vector product (SpMV)

Dependent on storage format: DIA

$$\begin{pmatrix} 1 & 0 & 0 & 2 & 0 & 0 & 0 \\ 3 & 4 & 0 & 0 & 5 & 0 & 0 \\ 0 & 6 & 7 & 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 9 & 0 & 0 & 10 \\ 11 & 0 & 0 & 0 & 12 & 0 & 0 \\ 0 & 13 & 0 & 0 & 14 & 15 & 0 \\ 0 & 0 & 16 & 0 & 0 & 17 & 18 \end{pmatrix}$$

Highly optimized

IOFF =
$$\begin{bmatrix} -4 & -1 & 0 & 3 \end{bmatrix}$$

Krylov solvers:

- Vector updates (e.g. x=x+ay)
- Dot products (e.g. x^Ty)
- Matrix-vector products

Parallel implementation of preconditioned Krylov solvers

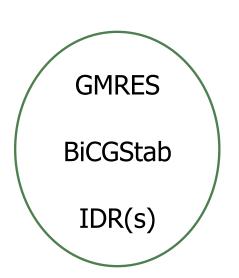
Fine-grained parallelism

&

High arithmetic intensity

Krylov solvers:

- Vector updates (e.g. x=x+ay)
- Dot products (e.g. x^Ty)
- Matrix-vector products



Parallel implementation of preconditioned Krylov solvers

Fine-grained parallelism

8

High arithmetic intensity

Preconditioning ≈ sequential operation

Parallel implementation of preconditioned Krylov solvers

Fine-grained parallelism

8

High arithmetic intensity

Preconditioning ≈ sequential operation

convergence

parallelism

Parallel implementation of preconditioned Krylov solvers

Fine-grained parallelism

8

High arithmetic intensity

Preconditioning ≈ sequential operation

convergence

GLOBAL

parallelism

LOCAL

Parallel implementation of preconditioned Krylov solvers

Fine-grained parallelism

8

High arithmetic intensity

Preconditioning ≈ sequential operation

convergence

GLOBAL

parallelism

LOCAL

e.g. ILU (block-Jacobi)

e.g. diagonal (block-Jacobi)

Challenge!

Parallel implementation of preconditioned Krylov solvers

- What to implement?
- Efficient GPU implementation ≈ cumbersome!

Why not make use of <u>libraries!</u>?

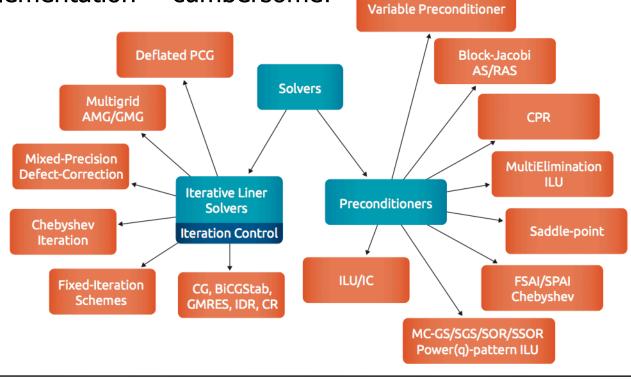
Parallel implementation of preconditioned Krylov solvers

What to implement?

Efficient GPU implementation ≈ cumbersome!

Use of <u>libraries!</u>

PARALUTION



Parallel implementation of preconditioned Krylov solvers

Further improvements?

- Mixed-precision techniques
- Deflation
- Multigrid
- Multi-GPU

Research question, experimental setup & planning

How to / Is it possible to achieve reasonable speedup of Parnassos' linear solver by making use of GPU computing?

Research question, experimental setup & planning

How to / Is it possible to achieve reasonable speedup of Parnassos' linear solver by making use of GPU computing?

Which <u>preconditioned</u> Krylov solver to use?

Strategies for fast GPU implementation?

Can the CUDA program be further optimized? How?

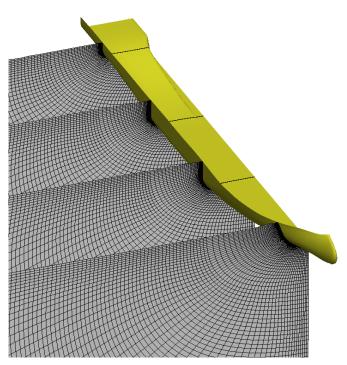
Overall speedup for Parnassos?

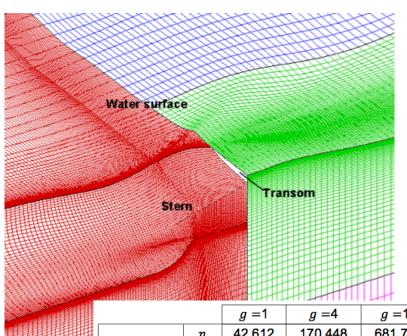
• • •

Research question, experimental setup & planning

MARIN cluster - Marclus3

• Test problems – Parnassos





		g=1	g = 4	g = 16	g = NX
domain 111	n	42,612	170,448	681,792	13,678,452
	nnz	371,585	1,788,434	7,668,890	157,130,480
domain 211	n	14,484	57,936	231,744	3,027,156
	nnz	126,125	607,718	2,606,510	34,753,748
domain 212	n	16,524	66,096	264,384	3,453,516
	nnz	143,925	693,348	3,335,460	39,648,678
domain 221	n	8,100	32,400	129,600	1,692,900
	nnz	70,345	339,670	1,457,470	19,435,420

Research question, experimental setup & planning

Speedup = execution time best performing sequential algorithm

execution time best performing parallel algorithm

- Execution time
- Iteration count

Research question, experimental setup & planning

Benchmark results

Research question, experimental setup & planning

Speedup = execution time best performing sequential algorithm
execution time best performing parallel algorithm

- Benchmark results
- Comparative study
 - PARALUTION
 - Several iterations (performance tuning cycle)

Research question, experimental setup & planning

Speedup = execution time best performing sequential algorithm

execution time best performing parallel algorithm

- Benchmark results
- Comparative study
 - PARALUTION
 - Several iterations (performance tuning cycle)
- CUDA implementation of best candidate...

