Efficiency improvement of
optimization of ships

March 17, 2017

-
1

g 0 _j:’ [_’-:,, 4. 0. | | M | Original | o CFD
2 18 | fl:"; % ,,;,z;fssé:?f;:;srcf?}'ﬁ e Parnassos
v 13 WL Bl F Tk i ST '
4 4| A "8 2l g oy i . _ .
s |5 N L o[o Automatic optimization
g -2 —5' Cand3y "' 7 "s\ e T | l '
© = D P AN . . .
g8 |8 e A e Time-consuming
g 3w | L Candty+ 32 | | .
£ v
. <= B;etter v;vakef'ield] 1 1 e 80% Ax=Db
.4 | 1 1 J

35 -30 -2 20 -1 -10. -5 0
Increase var?ation anglse of attack (%)

Improve performance of linear solver by using GPUs?

5
TUDelft MARIN)

Outline

e Parnassos

e Iterative methods

e Graphics Processing Unit (GPU)
e [terative methods on the GPU

e Conclusions literature survey

5
TUDelft MARIN ;

PARNASSOS

A RANS solver for structured grids

Accuracy

Robusthess

Efficiency

Flexibility

5
TUDelft MARIN ;

PARNASSOS

A RANS solver for structured grids

Accuracy

High-order finite difference schemes

Robusthess

Efficiency

Flexibility

5
TUDelft MARIN :

PARNASSOS

A RANS solver for structured grids

Accuracy

High-order finite difference schemes

Robusthess

Solves coupled equations (+ uncoupled turbulence model)

Efficiency

Flexibility

5
TUDelft MARIN 6

PARNASSOS

A RANS solver for structured grids

Accuracy

High-order finite difference schemes

4

/é Robusthess

Solves coupled equations (+ uncoupled turbulence model)

Efficiency

Space-marching method: inner-outer iterations

Flexibility

TUDelft |

PARNASSOS

A RANS solver for structured grids

Solve Ax=Db, with A of size (4 x g x NY x NZ)2

d e f 0 0 0 -

c d e f 0 0 -

4= b ¢ d e f 0 -
|10 b ¢ d e f -
0O - 0 0 b ¢ d

TUDelft MARIN 5

d|

o (@)}
o
OO O N." 0
OO N o o oo OO O e e oo oo
N o . 29
O VW O = o O g
T LSO A I R o oko
VW OV e W o RWO
Advcbo.:o. X e o K oQ . o =}
I (@) oHo© ¥ Oo ow
< s
= o ok owmo
< A
N’ .o
) o o c e =)
E o o . o o o
wn
Yy— O MO, oW .
(®)
A 0Tm...00.w.........0S0
o = o .-Qo R =
=
W WOR...WM o i e oo
~~ o W .l O o o s s e e e e s
) ©
Il KO - towme o i1 1w il
M QWO...OSO o0 o000
() [
> ~
(@)
0p)]

A RANS solver for structured grids

PARNASSOS

TUDelft

PARNASSOS

A RANS solver for structured grids

'UPSTRDb 0
0 UPSTRb
0 UPSTRb|
[UPSTRa 0
0 UPSTRa
0 UPSTRa,
'DOWNSTRa
0
e = .
0
[DOWNSTRb
0
f= :
0

0
DOWNSTRa

0
DOWNSTRDb

OO O
SO OO

S
a
U

Solve Ax=Db, with A of size (4 x g x NY x NZ)2

DOWNSTRal

DOWNSTRD]

TUDelft
S

MARIN

10

[terative Methods

Parnassos: Solve Ax=b, with A of size (4 x g X NY x NZ)?

d e f 0 0 0 -
o |
c d e f 0 0] e
b c d e f 0 ® Sparse
A=10 b ¢ d e f o e Non-symmetric
I e Diagonally structured
o - 00 b ¢ dl 7

Preconditioned Krylov solvers

5
TUDelft MARIN "

[terative Methods

Preconditioned Krylov solvers for sparse linear systems

Non-symmetric systems Ax=b:

e Optimal methods: GMRES
e Short recurrences: BiCGStab
Hybrid: IDR(s)

e Preconditioning: ILU

Parnassos: ILU preconditioned GMRES
80% of CPU time

p
TUDelft MARIN 2
-

Graphics Processing Unit (GPU)

Scientific computing with GPUs

Control -

e High floating-point performance NVIDIA.
e Cheap & available C U DA
e Scalable .
7
TUDelft

Graphics Processing Unit (GPU)

Scientific computing with GPUs

SIMD = SIMT (threads)

global void VecAdd(float* A, float* B, float*C)
{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

int main()

{

VecAdd <<< 1, N >>> (A, B, C);

}

Fine-grained parallelism

5
TUDelft MARIN 14

Graphics Processing Unit (GPU)

Scientific computing with GPUs

i Complex memory hierarchy

Processor 1 mzv"'vmu o tcomm — a + Bn

High arithmetic intensity (flop/byte)

5
TUDelft MARIN s

[terative methods on the GPU

Parallel implementation of preconditioned Krylov solvers

Fine-grained parallelism | & High arithmetic intensity

Krylov solvers:
e Vector updates (e.g. x=x+ay)
e Dot products (e.g. x'y)

e Matrix-vector products

5
TUDelft MARIN 16

[terative methods on the GPU

Parallel implementation of preconditioned Krylov solvers

Fine-grained parallelism | & High arithmetic intensity

Krylov solvers:
e \lector updates (e.g. x=x+ay)
e Dot products (e.g. x'y)

e Matrix-vector products

5
TUDelft MARIN 7

[terative methods on the GPU

Parallel implementation of preconditioned Krylov solvers

Sum reduction algorithm

step 1
result[threadldx] + result[blockDim/2 + threadldx]
IEREEEEEERERENEEREEENENENEEEREENENEEEENEE
n I A
résult[threacéldx] + result[tilockDim/4 + threadldx] step 2
HENEREERERRERERREEER
AA A : SA A A
HEE - R -
résult[thread%ldx]+result[bélockDim/B+thread|dx] step 3 Krylov SOlverS:
[T
T - _
e \lector updates (e.g. x=x+ay)
résult[O] + result[1] step N

|:|:| e Dot products (e.g. xTy)

o Matrix-vector products

p
TUDelft MARIN 8
-

[terative methods on the GPU

Parallel implementation of preconditioned Krylov solvers

Sparse matrix-vector product

(SpMV)

e Dependent on storage format: DIA

1 0 020 0 0 :
3 4 00 5 0 0 . l 2 loFF = |4[-1[0][3]
0 6 7 00 8 0
678 Krylov solvers:

10 001 o of owesflslo !

1) * 12| *
0 13 0 0 14 15 0 3lialis e \ector updates (e.g. x=x+ay)
0 0 16 0 0 17 18 reh7l18l +

e Dot products (e.g. xTy)

e Highly optimized _
o Matrix-vector products

p
TUDelft MARIN 9
-

[terative methods on the GPU

Parallel implementation of preconditioned Krylov solvers

Fine-grained parallelism | & High arithmetic intensity

Krylov solvers: GMRES

e \lector updates (e.g. x=x+ay)

e Dot products (e.g. xTy) BICGStab

IDR(s)

o Matrix-vector products

5
TUDelft MARIN 2

[terative methods on the GPU

Parallel implementation of preconditioned Krylov solvers

C s o ed parallel S I

Preconditioning = sequential operation

5
TUDelft MARIN)

[terative methods on the GPU

Parallel implementation of preconditioned Krylov solvers

C s o ed parallel S I

Preconditioning = sequential operation

convergence parallelism

5
TUDelft MARIN 2

[terative methods on the GPU

Parallel implementation of preconditioned Krylov solvers

C s o ed parallel S I

Preconditioning = sequential operation

convergence parallelism
GLOBAL LOCAL

5
TUDelft MARIN »

[terative methods on the GPU

Parallel implementation of preconditioned Krylov solvers

C s o ed parallel S I

Preconditioning = sequential operation

convergence parallelism
GLOBAL | t LOCAL
e.g. ILU (block-Jacobi) e.g. diagonal (block-Jacobi)
Challenge!

5
TUDelft MARIN 2

[terative methods on the GPU

Parallel implementation of preconditioned Krylov solvers

e What to implement?
e Efficient GPU implementation = cumbersome!

Why not make use of libraries!?

5
TUDelft MARIN -

[terative methods on the GPU

Parallel implementation of preconditioned Krylov solvers

e What to implement?

e Efficient GPU implementation = cumbersome!
Variable Preconditioner

Block-Jacobi
AS/RAS
Mixed-Precision S
PARALUTION O
Iterative Liner
Solvers
Chebyshev . RO
Iteration Control Saddle-point
Fixed-lteration CG, BICGStab, ILU/IC F:AtI)/SII:AI
Schemes GMRES, IDR, CR Chebyshev
MC-GS/SGS/SOR/SSOR
Power(q)-pattern ILU

- - I
Use of libraries!
AMG/GMG

Preconditioners

5
TUDelft MARIN ’%

[terative methods on the GPU

Parallel implementation of preconditioned Krylov solvers

Further improvements?

Mixed-precision techniques

Deflation
Multigrid
Multi-GPU

5
TUDelft MARIN -

Conclusions

Research question, experimental setup & planning

How to / Is it possible to achieve reasonable speedup of

Parnassos’ linear solver by making use of GPU computing?

5
TUDelft MARIN ’

Conclusions

Research question, experimental setup & planning

How to / Is it possible to achieve reasonable speedup of

Parnassos’ linear solver by making use of GPU computing?

Which preconditioned Krylov solver to use?

Strategies for fast GPU implementation?
Can the CUDA program be further optimized? How?

Overall speedup for Parnassos?

5
TUDelft MARIN 2

Conclusions

e MARIN cluster - Marclus3

e Test problems — Parnassos

Research question, experimental setup & planning

g =1

g =4 g =16 g=NX
domain 111 n 42,612 170,448 681,792 13,678,452
— | nnz | 371,585 | 1,788,434 | 7,668,890 | 157,130,480
domain 211 n 14,484 57,936 231,744 3,027,156
—— | nnz | 126,125 | 607,718 2,606,510 | 34,753,748
domain 212 n 16,524 66,096 264,384 3,453,516
—— | nnz | 143,925 | 693,348 3,335,460 | 39,648,678
domain 221 n 8,100 32,400 129,600 1,692,900
— | nnz | 70,345 339,670 1,457,470 | 19,435,420
>
TU Delft MARIN -

Conclusions

Research question, experimental setup & planning

execution time best performing sequential algorithm

Speedup =
execution time best performing parallel algorithm

e Execution time

e [Jteration count

5
TUDelft MARIN a1

Conclusions

Research question, experimental setup & planning

Speedup =

execution time best performing sequential algorithm

execution time best performing parallel algorithm

e Benchmark results

]
TUDelft

Conclusions

Research question, experimental setup & planning

execution time best performing sequential algorithm

Speedup =
execution time best performing parallel algorithm

e Benchmark results
e Comparative study
e PARALUTION

e Several iterations (performance tuning cycle)

5
TUDelft MARIN -

Conclusions

Research question, experimental setup & planning

execution time best performing sequential algorithm

Speedup =
execution time best performing parallel algorithm

e Benchmark results
e Comparative study
e PARALUTION
e Several iterations (performance tuning cycle)

e CUDA implementation of best candidate...

5
TUDelft MARIN 3

Thank you - Questions?

]
TUDelft

