
Efficiency improvement of
optimization of ships
Literature Survey

March 17, 2017

2

• CFD

•  Parnassos

• Automatic optimization

• Time-consuming

•  80% Ax=b

Improve performance of linear solver by using GPUs?

3

Outline

•  Parnassos

•  Iterative methods

•  Graphics Processing Unit (GPU)

•  Iterative methods on the GPU

•  Conclusions literature survey

4

PARNASSOS
A RANS solver for structured grids

Accuracy
High-order finite difference schemes

Robustness
High-order finite difference schemes

Efficiency
High-order finite difference schemes

Flexibility

5

PARNASSOS
A RANS solver for structured grids

Accuracy
High-order finite difference schemes

Robustness
Solves coupled equations

Efficiency
High-order finite difference schemes

Flexibility

6

PARNASSOS
A RANS solver for structured grids

Accuracy
High-order finite difference schemes

Robustness
Solves coupled equations (+ uncoupled turbulence model)

Efficiency
High-order finite difference schemes

Flexibility

7

PARNASSOS
A RANS solver for structured grids

Accuracy
High-order finite difference schemes

Robustness
Solves coupled equations (+ uncoupled turbulence model)

Efficiency
Space-marching method: inner-outer iterations

Flexibility

8

PARNASSOS
A RANS solver for structured grids

Solve Ax=b, with A of size (4 x g x NY x NZ)2

High-order finite difference schemes

9

PARNASSOS
A RANS solver for structured grids

Solve Ax=b, with A of size (4 x g x NY x NZ)2

High-order finite difference schemes

10

PARNASSOS
A RANS solver for structured grids

Solve Ax=b, with A of size (4 x g x NY x NZ)2

High-order finite difference schemes

11

Iterative Methods

•  Large

•  Sparse

•  Non-symmetric

•  Diagonally structured

Parnassos: Solve Ax=b, with A of size (4 x g x NY x NZ)2

Preconditioned Krylov solvers

12

Iterative Methods
Preconditioned Krylov solvers for sparse linear systems

Non-symmetric systems Ax=b:

•  Optimal methods: GMRES

•  Short recurrences: BiCGStab

•  Hybrid: IDR(s)

•  Preconditioning: ILU

Parnassos: ILU preconditioned GMRES

80% of CPU time

13

Graphics Processing Unit (GPU)
Scientific computing with GPUs

•  High floating-point performance

•  Cheap & available

•  Scalable

14

Graphics Processing Unit (GPU)
Scientific computing with GPUs

SIMD ≈ SIMT (threads)

Fine-grained parallelism

15

Graphics Processing Unit (GPU)
Scientific computing with GPUs

High arithmetic intensity (flop/byte)

Complex memory hierarchy

16

Iterative methods on the GPU
Parallel implementation of preconditioned Krylov solvers

High arithmetic intensity Fine-grained parallelism &

Krylov solvers:

•  Vector updates (e.g. x=x+ay)

•  Dot products (e.g. xTy)

•  Matrix-vector products

5.1. Considerations for algorithm implementation 41

as mentioned above, suffers from a low flop/byte ratio, therefore making it the more difficult kernel to
implement in an efficient manner. Sparse matrix-vector products are the central building block of all
Krylov solvers since they are needed to generate the Krylov subspace. The GPU implementation of this
sparse matrix-vector product, further referred to as SpMV, has therefore been heavenly researched.
More details on this are given below in section ??.

It can thus be concluded that plain Krylov solvers, without preconditioning, are well suited for GPU
implementation. The two kernels needing most attention when programming a Krylov solver in CUDA
are; (1) summing elements, and (2) the SpMV. The first is done using the sum reduction algorithm. The
latter is further discussed below.

5.1.1. Sparse matrix-vector product

The difficulty with sparse matrices is the arbitrariness with which the nonzero elements are spread over
the matrix. Hence the elements are taken from memory in an indirect and irregular manner. This is
detrimental to the desire of maximizing memory bandwidth on the GPU. Sparse matrices can be stored
in many different formats and choosing the right format is key to getting best locality of data and opti-
mizing the use of memory bandwidth. In 2009, NVIDIA released a study [15], focused on optimizing
SpMVs. Herein they discuss different storage formats and their resulting performance for the SpMV.
Storage formats discussed are; compressed sparse row (CSR), Co-ordinate (COO), diagonal (DIA),
Ellpack (ELL) and a hybrid format (HYB) combining the benefits of ELL and COO.Which storage format
to use depends on the structure of the matrix. Here, only the diagonal storage format will be discussed
as it is most suited for the matrix characterizing the linear system solve in Parnassos.

The DIA format is best used for the GPU implementation of diagonally structured matrices, where all
nonzero elements are confined to lie on a small number of diagonals. The elements of each diagonal
are stored in the columns of an array and a second array indicates the offset between the different
diagonals. For the matrix given below:

⎛
⎜⎜⎜⎜

⎝

1 0 0 2 0 0 0
3 4 0 0 5 0 0
0 6 7 0 0 8 0
0 0 0 9 0 0 10
11 0 0 0 12 0 0
0 13 0 0 14 15 0
0 0 16 0 0 17 18

⎞
⎟⎟⎟⎟

⎠
this would result in the DIAG array, containing all nonzero elements:

DIAG =

* * 1 2
* 3 4 5
* 6 7 8
* * 9 10
11 * 12 *
13 14 15 *
16 17 18 *

and one smaller array containing the offset values for all columns in DIAG:

IOFF = -4 -1 0 3

The offset diagonals have lesser nonzero elements, because they are shorter or because they may
also contain some zero elements. This is indicated by the * symbols in the DIAG array. In practice,
those are filled with zeros. In the DIA format, this padding of non-full diagonals is necessary, however,
it essentially just wastes storage. Nevertheless, the DIA format results in the more efficient SpMV.

17

Iterative methods on the GPU
Parallel implementation of preconditioned Krylov solvers

High arithmetic intensity Fine-grained parallelism &

Krylov solvers:

•  Vector updates (e.g. x=x+ay)

•  Dot products (e.g. xTy)

•  Matrix-vector products

5.1. Considerations for algorithm implementation 41

as mentioned above, suffers from a low flop/byte ratio, therefore making it the more difficult kernel to
implement in an efficient manner. Sparse matrix-vector products are the central building block of all
Krylov solvers since they are needed to generate the Krylov subspace. The GPU implementation of this
sparse matrix-vector product, further referred to as SpMV, has therefore been heavenly researched.
More details on this are given below in section ??.

It can thus be concluded that plain Krylov solvers, without preconditioning, are well suited for GPU
implementation. The two kernels needing most attention when programming a Krylov solver in CUDA
are; (1) summing elements, and (2) the SpMV. The first is done using the sum reduction algorithm. The
latter is further discussed below.

5.1.1. Sparse matrix-vector product

The difficulty with sparse matrices is the arbitrariness with which the nonzero elements are spread over
the matrix. Hence the elements are taken from memory in an indirect and irregular manner. This is
detrimental to the desire of maximizing memory bandwidth on the GPU. Sparse matrices can be stored
in many different formats and choosing the right format is key to getting best locality of data and opti-
mizing the use of memory bandwidth. In 2009, NVIDIA released a study [15], focused on optimizing
SpMVs. Herein they discuss different storage formats and their resulting performance for the SpMV.
Storage formats discussed are; compressed sparse row (CSR), Co-ordinate (COO), diagonal (DIA),
Ellpack (ELL) and a hybrid format (HYB) combining the benefits of ELL and COO.Which storage format
to use depends on the structure of the matrix. Here, only the diagonal storage format will be discussed
as it is most suited for the matrix characterizing the linear system solve in Parnassos.

The DIA format is best used for the GPU implementation of diagonally structured matrices, where all
nonzero elements are confined to lie on a small number of diagonals. The elements of each diagonal
are stored in the columns of an array and a second array indicates the offset between the different
diagonals. For the matrix given below:

⎛
⎜⎜⎜⎜

⎝

1 0 0 2 0 0 0
3 4 0 0 5 0 0
0 6 7 0 0 8 0
0 0 0 9 0 0 10
11 0 0 0 12 0 0
0 13 0 0 14 15 0
0 0 16 0 0 17 18

⎞
⎟⎟⎟⎟

⎠
this would result in the DIAG array, containing all nonzero elements:

DIAG =

* * 1 2
* 3 4 5
* 6 7 8
* * 9 10
11 * 12 *
13 14 15 *
16 17 18 *

and one smaller array containing the offset values for all columns in DIAG:

IOFF = -4 -1 0 3

The offset diagonals have lesser nonzero elements, because they are shorter or because they may
also contain some zero elements. This is indicated by the * symbols in the DIAG array. In practice,
those are filled with zeros. In the DIA format, this padding of non-full diagonals is necessary, however,
it essentially just wastes storage. Nevertheless, the DIA format results in the more efficient SpMV.

18

Iterative methods on the GPU
Parallel implementation of preconditioned Krylov solvers

Krylov solvers:

•  Vector updates (e.g. x=x+ay)

•  Dot products (e.g. xTy)

•  Matrix-vector products

Sum reduction algorithm

19

Iterative methods on the GPU
Parallel implementation of preconditioned Krylov solvers

Krylov solvers:

•  Vector updates (e.g. x=x+ay)

•  Dot products (e.g. xTy)

•  Matrix-vector products

Sparse matrix-vector product

(SpMV)

•  Dependent on storage format: DIA

•  Highly optimized

20

Iterative methods on the GPU
Parallel implementation of preconditioned Krylov solvers

High arithmetic intensity Fine-grained parallelism &

Krylov solvers:

•  Vector updates (e.g. x=x+ay)

•  Dot products (e.g. xTy)

•  Matrix-vector products

5.1. Considerations for algorithm implementation 41

as mentioned above, suffers from a low flop/byte ratio, therefore making it the more difficult kernel to
implement in an efficient manner. Sparse matrix-vector products are the central building block of all
Krylov solvers since they are needed to generate the Krylov subspace. The GPU implementation of this
sparse matrix-vector product, further referred to as SpMV, has therefore been heavenly researched.
More details on this are given below in section ??.

It can thus be concluded that plain Krylov solvers, without preconditioning, are well suited for GPU
implementation. The two kernels needing most attention when programming a Krylov solver in CUDA
are; (1) summing elements, and (2) the SpMV. The first is done using the sum reduction algorithm. The
latter is further discussed below.

5.1.1. Sparse matrix-vector product

The difficulty with sparse matrices is the arbitrariness with which the nonzero elements are spread over
the matrix. Hence the elements are taken from memory in an indirect and irregular manner. This is
detrimental to the desire of maximizing memory bandwidth on the GPU. Sparse matrices can be stored
in many different formats and choosing the right format is key to getting best locality of data and opti-
mizing the use of memory bandwidth. In 2009, NVIDIA released a study [15], focused on optimizing
SpMVs. Herein they discuss different storage formats and their resulting performance for the SpMV.
Storage formats discussed are; compressed sparse row (CSR), Co-ordinate (COO), diagonal (DIA),
Ellpack (ELL) and a hybrid format (HYB) combining the benefits of ELL and COO.Which storage format
to use depends on the structure of the matrix. Here, only the diagonal storage format will be discussed
as it is most suited for the matrix characterizing the linear system solve in Parnassos.

The DIA format is best used for the GPU implementation of diagonally structured matrices, where all
nonzero elements are confined to lie on a small number of diagonals. The elements of each diagonal
are stored in the columns of an array and a second array indicates the offset between the different
diagonals. For the matrix given below:

⎛
⎜⎜⎜⎜

⎝

1 0 0 2 0 0 0
3 4 0 0 5 0 0
0 6 7 0 0 8 0
0 0 0 9 0 0 10
11 0 0 0 12 0 0
0 13 0 0 14 15 0
0 0 16 0 0 17 18

⎞
⎟⎟⎟⎟

⎠
this would result in the DIAG array, containing all nonzero elements:

DIAG =

* * 1 2
* 3 4 5
* 6 7 8
* * 9 10
11 * 12 *
13 14 15 *
16 17 18 *

and one smaller array containing the offset values for all columns in DIAG:

IOFF = -4 -1 0 3

The offset diagonals have lesser nonzero elements, because they are shorter or because they may
also contain some zero elements. This is indicated by the * symbols in the DIAG array. In practice,
those are filled with zeros. In the DIA format, this padding of non-full diagonals is necessary, however,
it essentially just wastes storage. Nevertheless, the DIA format results in the more efficient SpMV.

GMRES

BiCGStab

IDR(s)

21

Iterative methods on the GPU
Parallel implementation of preconditioned Krylov solvers

High arithmetic intensity Fine-grained parallelism &

5.1. Considerations for algorithm implementation 41

as mentioned above, suffers from a low flop/byte ratio, therefore making it the more difficult kernel to
implement in an efficient manner. Sparse matrix-vector products are the central building block of all
Krylov solvers since they are needed to generate the Krylov subspace. The GPU implementation of this
sparse matrix-vector product, further referred to as SpMV, has therefore been heavenly researched.
More details on this are given below in section ??.

It can thus be concluded that plain Krylov solvers, without preconditioning, are well suited for GPU
implementation. The two kernels needing most attention when programming a Krylov solver in CUDA
are; (1) summing elements, and (2) the SpMV. The first is done using the sum reduction algorithm. The
latter is further discussed below.

5.1.1. Sparse matrix-vector product

The difficulty with sparse matrices is the arbitrariness with which the nonzero elements are spread over
the matrix. Hence the elements are taken from memory in an indirect and irregular manner. This is
detrimental to the desire of maximizing memory bandwidth on the GPU. Sparse matrices can be stored
in many different formats and choosing the right format is key to getting best locality of data and opti-
mizing the use of memory bandwidth. In 2009, NVIDIA released a study [15], focused on optimizing
SpMVs. Herein they discuss different storage formats and their resulting performance for the SpMV.
Storage formats discussed are; compressed sparse row (CSR), Co-ordinate (COO), diagonal (DIA),
Ellpack (ELL) and a hybrid format (HYB) combining the benefits of ELL and COO.Which storage format
to use depends on the structure of the matrix. Here, only the diagonal storage format will be discussed
as it is most suited for the matrix characterizing the linear system solve in Parnassos.

The DIA format is best used for the GPU implementation of diagonally structured matrices, where all
nonzero elements are confined to lie on a small number of diagonals. The elements of each diagonal
are stored in the columns of an array and a second array indicates the offset between the different
diagonals. For the matrix given below:

⎛
⎜⎜⎜⎜

⎝

1 0 0 2 0 0 0
3 4 0 0 5 0 0
0 6 7 0 0 8 0
0 0 0 9 0 0 10
11 0 0 0 12 0 0
0 13 0 0 14 15 0
0 0 16 0 0 17 18

⎞
⎟⎟⎟⎟

⎠
this would result in the DIAG array, containing all nonzero elements:

DIAG =

* * 1 2
* 3 4 5
* 6 7 8
* * 9 10
11 * 12 *
13 14 15 *
16 17 18 *

and one smaller array containing the offset values for all columns in DIAG:

IOFF = -4 -1 0 3

The offset diagonals have lesser nonzero elements, because they are shorter or because they may
also contain some zero elements. This is indicated by the * symbols in the DIAG array. In practice,
those are filled with zeros. In the DIA format, this padding of non-full diagonals is necessary, however,
it essentially just wastes storage. Nevertheless, the DIA format results in the more efficient SpMV.

Preconditioning ≈ sequential operation

22

Iterative methods on the GPU
Parallel implementation of preconditioned Krylov solvers

High arithmetic intensity Fine-grained parallelism &

5.1. Considerations for algorithm implementation 41

as mentioned above, suffers from a low flop/byte ratio, therefore making it the more difficult kernel to
implement in an efficient manner. Sparse matrix-vector products are the central building block of all
Krylov solvers since they are needed to generate the Krylov subspace. The GPU implementation of this
sparse matrix-vector product, further referred to as SpMV, has therefore been heavenly researched.
More details on this are given below in section ??.

It can thus be concluded that plain Krylov solvers, without preconditioning, are well suited for GPU
implementation. The two kernels needing most attention when programming a Krylov solver in CUDA
are; (1) summing elements, and (2) the SpMV. The first is done using the sum reduction algorithm. The
latter is further discussed below.

5.1.1. Sparse matrix-vector product

The difficulty with sparse matrices is the arbitrariness with which the nonzero elements are spread over
the matrix. Hence the elements are taken from memory in an indirect and irregular manner. This is
detrimental to the desire of maximizing memory bandwidth on the GPU. Sparse matrices can be stored
in many different formats and choosing the right format is key to getting best locality of data and opti-
mizing the use of memory bandwidth. In 2009, NVIDIA released a study [15], focused on optimizing
SpMVs. Herein they discuss different storage formats and their resulting performance for the SpMV.
Storage formats discussed are; compressed sparse row (CSR), Co-ordinate (COO), diagonal (DIA),
Ellpack (ELL) and a hybrid format (HYB) combining the benefits of ELL and COO.Which storage format
to use depends on the structure of the matrix. Here, only the diagonal storage format will be discussed
as it is most suited for the matrix characterizing the linear system solve in Parnassos.

The DIA format is best used for the GPU implementation of diagonally structured matrices, where all
nonzero elements are confined to lie on a small number of diagonals. The elements of each diagonal
are stored in the columns of an array and a second array indicates the offset between the different
diagonals. For the matrix given below:

⎛
⎜⎜⎜⎜

⎝

1 0 0 2 0 0 0
3 4 0 0 5 0 0
0 6 7 0 0 8 0
0 0 0 9 0 0 10
11 0 0 0 12 0 0
0 13 0 0 14 15 0
0 0 16 0 0 17 18

⎞
⎟⎟⎟⎟

⎠
this would result in the DIAG array, containing all nonzero elements:

DIAG =

* * 1 2
* 3 4 5
* 6 7 8
* * 9 10
11 * 12 *
13 14 15 *
16 17 18 *

and one smaller array containing the offset values for all columns in DIAG:

IOFF = -4 -1 0 3

The offset diagonals have lesser nonzero elements, because they are shorter or because they may
also contain some zero elements. This is indicated by the * symbols in the DIAG array. In practice,
those are filled with zeros. In the DIA format, this padding of non-full diagonals is necessary, however,
it essentially just wastes storage. Nevertheless, the DIA format results in the more efficient SpMV.

Preconditioning ≈ sequential operation

 convergence

parallelism

23

Iterative methods on the GPU
Parallel implementation of preconditioned Krylov solvers

High arithmetic intensity Fine-grained parallelism &

5.1. Considerations for algorithm implementation 41

as mentioned above, suffers from a low flop/byte ratio, therefore making it the more difficult kernel to
implement in an efficient manner. Sparse matrix-vector products are the central building block of all
Krylov solvers since they are needed to generate the Krylov subspace. The GPU implementation of this
sparse matrix-vector product, further referred to as SpMV, has therefore been heavenly researched.
More details on this are given below in section ??.

It can thus be concluded that plain Krylov solvers, without preconditioning, are well suited for GPU
implementation. The two kernels needing most attention when programming a Krylov solver in CUDA
are; (1) summing elements, and (2) the SpMV. The first is done using the sum reduction algorithm. The
latter is further discussed below.

5.1.1. Sparse matrix-vector product

The difficulty with sparse matrices is the arbitrariness with which the nonzero elements are spread over
the matrix. Hence the elements are taken from memory in an indirect and irregular manner. This is
detrimental to the desire of maximizing memory bandwidth on the GPU. Sparse matrices can be stored
in many different formats and choosing the right format is key to getting best locality of data and opti-
mizing the use of memory bandwidth. In 2009, NVIDIA released a study [15], focused on optimizing
SpMVs. Herein they discuss different storage formats and their resulting performance for the SpMV.
Storage formats discussed are; compressed sparse row (CSR), Co-ordinate (COO), diagonal (DIA),
Ellpack (ELL) and a hybrid format (HYB) combining the benefits of ELL and COO.Which storage format
to use depends on the structure of the matrix. Here, only the diagonal storage format will be discussed
as it is most suited for the matrix characterizing the linear system solve in Parnassos.

The DIA format is best used for the GPU implementation of diagonally structured matrices, where all
nonzero elements are confined to lie on a small number of diagonals. The elements of each diagonal
are stored in the columns of an array and a second array indicates the offset between the different
diagonals. For the matrix given below:

⎛
⎜⎜⎜⎜

⎝

1 0 0 2 0 0 0
3 4 0 0 5 0 0
0 6 7 0 0 8 0
0 0 0 9 0 0 10
11 0 0 0 12 0 0
0 13 0 0 14 15 0
0 0 16 0 0 17 18

⎞
⎟⎟⎟⎟

⎠
this would result in the DIAG array, containing all nonzero elements:

DIAG =

* * 1 2
* 3 4 5
* 6 7 8
* * 9 10
11 * 12 *
13 14 15 *
16 17 18 *

and one smaller array containing the offset values for all columns in DIAG:

IOFF = -4 -1 0 3

The offset diagonals have lesser nonzero elements, because they are shorter or because they may
also contain some zero elements. This is indicated by the * symbols in the DIAG array. In practice,
those are filled with zeros. In the DIA format, this padding of non-full diagonals is necessary, however,
it essentially just wastes storage. Nevertheless, the DIA format results in the more efficient SpMV.

Preconditioning ≈ sequential operation

 convergence

GLOBAL

parallelism

LOCAL

24

Iterative methods on the GPU
Parallel implementation of preconditioned Krylov solvers

High arithmetic intensity Fine-grained parallelism &

5.1. Considerations for algorithm implementation 41

as mentioned above, suffers from a low flop/byte ratio, therefore making it the more difficult kernel to
implement in an efficient manner. Sparse matrix-vector products are the central building block of all
Krylov solvers since they are needed to generate the Krylov subspace. The GPU implementation of this
sparse matrix-vector product, further referred to as SpMV, has therefore been heavenly researched.
More details on this are given below in section ??.

It can thus be concluded that plain Krylov solvers, without preconditioning, are well suited for GPU
implementation. The two kernels needing most attention when programming a Krylov solver in CUDA
are; (1) summing elements, and (2) the SpMV. The first is done using the sum reduction algorithm. The
latter is further discussed below.

5.1.1. Sparse matrix-vector product

The difficulty with sparse matrices is the arbitrariness with which the nonzero elements are spread over
the matrix. Hence the elements are taken from memory in an indirect and irregular manner. This is
detrimental to the desire of maximizing memory bandwidth on the GPU. Sparse matrices can be stored
in many different formats and choosing the right format is key to getting best locality of data and opti-
mizing the use of memory bandwidth. In 2009, NVIDIA released a study [15], focused on optimizing
SpMVs. Herein they discuss different storage formats and their resulting performance for the SpMV.
Storage formats discussed are; compressed sparse row (CSR), Co-ordinate (COO), diagonal (DIA),
Ellpack (ELL) and a hybrid format (HYB) combining the benefits of ELL and COO.Which storage format
to use depends on the structure of the matrix. Here, only the diagonal storage format will be discussed
as it is most suited for the matrix characterizing the linear system solve in Parnassos.

The DIA format is best used for the GPU implementation of diagonally structured matrices, where all
nonzero elements are confined to lie on a small number of diagonals. The elements of each diagonal
are stored in the columns of an array and a second array indicates the offset between the different
diagonals. For the matrix given below:

⎛
⎜⎜⎜⎜

⎝

1 0 0 2 0 0 0
3 4 0 0 5 0 0
0 6 7 0 0 8 0
0 0 0 9 0 0 10
11 0 0 0 12 0 0
0 13 0 0 14 15 0
0 0 16 0 0 17 18

⎞
⎟⎟⎟⎟

⎠
this would result in the DIAG array, containing all nonzero elements:

DIAG =

* * 1 2
* 3 4 5
* 6 7 8
* * 9 10
11 * 12 *
13 14 15 *
16 17 18 *

and one smaller array containing the offset values for all columns in DIAG:

IOFF = -4 -1 0 3

The offset diagonals have lesser nonzero elements, because they are shorter or because they may
also contain some zero elements. This is indicated by the * symbols in the DIAG array. In practice,
those are filled with zeros. In the DIA format, this padding of non-full diagonals is necessary, however,
it essentially just wastes storage. Nevertheless, the DIA format results in the more efficient SpMV.

Preconditioning ≈ sequential operation

 convergence

GLOBAL

e.g. ILU (block-Jacobi)

parallelism

LOCAL

e.g. diagonal (block-Jacobi)

Challenge!

25

Iterative methods on the GPU
Parallel implementation of preconditioned Krylov solvers

5.1. Considerations for algorithm implementation 41

as mentioned above, suffers from a low flop/byte ratio, therefore making it the more difficult kernel to
implement in an efficient manner. Sparse matrix-vector products are the central building block of all
Krylov solvers since they are needed to generate the Krylov subspace. The GPU implementation of this
sparse matrix-vector product, further referred to as SpMV, has therefore been heavenly researched.
More details on this are given below in section ??.

It can thus be concluded that plain Krylov solvers, without preconditioning, are well suited for GPU
implementation. The two kernels needing most attention when programming a Krylov solver in CUDA
are; (1) summing elements, and (2) the SpMV. The first is done using the sum reduction algorithm. The
latter is further discussed below.

5.1.1. Sparse matrix-vector product

The difficulty with sparse matrices is the arbitrariness with which the nonzero elements are spread over
the matrix. Hence the elements are taken from memory in an indirect and irregular manner. This is
detrimental to the desire of maximizing memory bandwidth on the GPU. Sparse matrices can be stored
in many different formats and choosing the right format is key to getting best locality of data and opti-
mizing the use of memory bandwidth. In 2009, NVIDIA released a study [15], focused on optimizing
SpMVs. Herein they discuss different storage formats and their resulting performance for the SpMV.
Storage formats discussed are; compressed sparse row (CSR), Co-ordinate (COO), diagonal (DIA),
Ellpack (ELL) and a hybrid format (HYB) combining the benefits of ELL and COO.Which storage format
to use depends on the structure of the matrix. Here, only the diagonal storage format will be discussed
as it is most suited for the matrix characterizing the linear system solve in Parnassos.

The DIA format is best used for the GPU implementation of diagonally structured matrices, where all
nonzero elements are confined to lie on a small number of diagonals. The elements of each diagonal
are stored in the columns of an array and a second array indicates the offset between the different
diagonals. For the matrix given below:

⎛
⎜⎜⎜⎜

⎝

1 0 0 2 0 0 0
3 4 0 0 5 0 0
0 6 7 0 0 8 0
0 0 0 9 0 0 10
11 0 0 0 12 0 0
0 13 0 0 14 15 0
0 0 16 0 0 17 18

⎞
⎟⎟⎟⎟

⎠
this would result in the DIAG array, containing all nonzero elements:

DIAG =

* * 1 2
* 3 4 5
* 6 7 8
* * 9 10
11 * 12 *
13 14 15 *
16 17 18 *

and one smaller array containing the offset values for all columns in DIAG:

IOFF = -4 -1 0 3

The offset diagonals have lesser nonzero elements, because they are shorter or because they may
also contain some zero elements. This is indicated by the * symbols in the DIAG array. In practice,
those are filled with zeros. In the DIA format, this padding of non-full diagonals is necessary, however,
it essentially just wastes storage. Nevertheless, the DIA format results in the more efficient SpMV.

•  What to implement?

•  Efficient GPU implementation ≈ cumbersome!

Why not make use of libraries!?

26

Iterative methods on the GPU
Parallel implementation of preconditioned Krylov solvers

5.1. Considerations for algorithm implementation 41

as mentioned above, suffers from a low flop/byte ratio, therefore making it the more difficult kernel to
implement in an efficient manner. Sparse matrix-vector products are the central building block of all
Krylov solvers since they are needed to generate the Krylov subspace. The GPU implementation of this
sparse matrix-vector product, further referred to as SpMV, has therefore been heavenly researched.
More details on this are given below in section ??.

It can thus be concluded that plain Krylov solvers, without preconditioning, are well suited for GPU
implementation. The two kernels needing most attention when programming a Krylov solver in CUDA
are; (1) summing elements, and (2) the SpMV. The first is done using the sum reduction algorithm. The
latter is further discussed below.

5.1.1. Sparse matrix-vector product

The difficulty with sparse matrices is the arbitrariness with which the nonzero elements are spread over
the matrix. Hence the elements are taken from memory in an indirect and irregular manner. This is
detrimental to the desire of maximizing memory bandwidth on the GPU. Sparse matrices can be stored
in many different formats and choosing the right format is key to getting best locality of data and opti-
mizing the use of memory bandwidth. In 2009, NVIDIA released a study [15], focused on optimizing
SpMVs. Herein they discuss different storage formats and their resulting performance for the SpMV.
Storage formats discussed are; compressed sparse row (CSR), Co-ordinate (COO), diagonal (DIA),
Ellpack (ELL) and a hybrid format (HYB) combining the benefits of ELL and COO.Which storage format
to use depends on the structure of the matrix. Here, only the diagonal storage format will be discussed
as it is most suited for the matrix characterizing the linear system solve in Parnassos.

The DIA format is best used for the GPU implementation of diagonally structured matrices, where all
nonzero elements are confined to lie on a small number of diagonals. The elements of each diagonal
are stored in the columns of an array and a second array indicates the offset between the different
diagonals. For the matrix given below:

⎛
⎜⎜⎜⎜

⎝

1 0 0 2 0 0 0
3 4 0 0 5 0 0
0 6 7 0 0 8 0
0 0 0 9 0 0 10
11 0 0 0 12 0 0
0 13 0 0 14 15 0
0 0 16 0 0 17 18

⎞
⎟⎟⎟⎟

⎠
this would result in the DIAG array, containing all nonzero elements:

DIAG =

* * 1 2
* 3 4 5
* 6 7 8
* * 9 10
11 * 12 *
13 14 15 *
16 17 18 *

and one smaller array containing the offset values for all columns in DIAG:

IOFF = -4 -1 0 3

The offset diagonals have lesser nonzero elements, because they are shorter or because they may
also contain some zero elements. This is indicated by the * symbols in the DIAG array. In practice,
those are filled with zeros. In the DIA format, this padding of non-full diagonals is necessary, however,
it essentially just wastes storage. Nevertheless, the DIA format results in the more efficient SpMV.

•  What to implement?

•  Efficient GPU implementation ≈ cumbersome!

Use of libraries!

PARALUTION

27

Iterative methods on the GPU
Parallel implementation of preconditioned Krylov solvers

5.1. Considerations for algorithm implementation 41

as mentioned above, suffers from a low flop/byte ratio, therefore making it the more difficult kernel to
implement in an efficient manner. Sparse matrix-vector products are the central building block of all
Krylov solvers since they are needed to generate the Krylov subspace. The GPU implementation of this
sparse matrix-vector product, further referred to as SpMV, has therefore been heavenly researched.
More details on this are given below in section ??.

It can thus be concluded that plain Krylov solvers, without preconditioning, are well suited for GPU
implementation. The two kernels needing most attention when programming a Krylov solver in CUDA
are; (1) summing elements, and (2) the SpMV. The first is done using the sum reduction algorithm. The
latter is further discussed below.

5.1.1. Sparse matrix-vector product

The difficulty with sparse matrices is the arbitrariness with which the nonzero elements are spread over
the matrix. Hence the elements are taken from memory in an indirect and irregular manner. This is
detrimental to the desire of maximizing memory bandwidth on the GPU. Sparse matrices can be stored
in many different formats and choosing the right format is key to getting best locality of data and opti-
mizing the use of memory bandwidth. In 2009, NVIDIA released a study [15], focused on optimizing
SpMVs. Herein they discuss different storage formats and their resulting performance for the SpMV.
Storage formats discussed are; compressed sparse row (CSR), Co-ordinate (COO), diagonal (DIA),
Ellpack (ELL) and a hybrid format (HYB) combining the benefits of ELL and COO.Which storage format
to use depends on the structure of the matrix. Here, only the diagonal storage format will be discussed
as it is most suited for the matrix characterizing the linear system solve in Parnassos.

The DIA format is best used for the GPU implementation of diagonally structured matrices, where all
nonzero elements are confined to lie on a small number of diagonals. The elements of each diagonal
are stored in the columns of an array and a second array indicates the offset between the different
diagonals. For the matrix given below:

⎛
⎜⎜⎜⎜

⎝

1 0 0 2 0 0 0
3 4 0 0 5 0 0
0 6 7 0 0 8 0
0 0 0 9 0 0 10
11 0 0 0 12 0 0
0 13 0 0 14 15 0
0 0 16 0 0 17 18

⎞
⎟⎟⎟⎟

⎠
this would result in the DIAG array, containing all nonzero elements:

DIAG =

* * 1 2
* 3 4 5
* 6 7 8
* * 9 10
11 * 12 *
13 14 15 *
16 17 18 *

and one smaller array containing the offset values for all columns in DIAG:

IOFF = -4 -1 0 3

The offset diagonals have lesser nonzero elements, because they are shorter or because they may
also contain some zero elements. This is indicated by the * symbols in the DIAG array. In practice,
those are filled with zeros. In the DIA format, this padding of non-full diagonals is necessary, however,
it essentially just wastes storage. Nevertheless, the DIA format results in the more efficient SpMV.

Further improvements?

•  Mixed-precision techniques

•  Deflation

•  Multigrid

•  Multi-GPU

28

Conclusions
Research question, experimental setup & planning

How to / Is it possible to achieve reasonable speedup of

Parnassos’ linear solver by making use of GPU computing?

29

Conclusions
Research question, experimental setup & planning

How to / Is it possible to achieve reasonable speedup of

Parnassos’ linear solver by making use of GPU computing?

Which preconditioned Krylov solver to use?

Strategies for fast GPU implementation?

Can the CUDA program be further optimized? How?

Overall speedup for Parnassos?

…

30

Conclusions
Research question, experimental setup & planning

•  MARIN cluster - Marclus3

•  Test problems – Parnassos

31

Conclusions
Research question, experimental setup & planning

Speedup =

execution time best performing sequential algorithm

execution time best performing parallel algorithm

•  Execution time

•  Iteration count

32

Conclusions
Research question, experimental setup & planning

Speedup =

execution time best performing sequential algorithm

execution time best performing parallel algorithm

•  Benchmark results

33

Conclusions
Research question, experimental setup & planning

Speedup =

execution time best performing sequential algorithm

execution time best performing parallel algorithm

•  Benchmark results

•  Comparative study

•  PARALUTION

•  Several iterations (performance tuning cycle)

34

Conclusions
Research question, experimental setup & planning

Speedup =

execution time best performing sequential algorithm

execution time best performing parallel algorithm

•  Benchmark results

•  Comparative study

•  PARALUTION

•  Several iterations (performance tuning cycle)

•  CUDA implementation of best candidate…

35

Thank you - Questions?

