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Improve performance of linear solver by using GPUs?
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PARNASSOS

A RANS solver for structured grids
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PARNASSOS

A RANS solver for structured grids

Accuracy

High-order finite difference schemes

4

/é Robusthess

Solves coupled equations (+ uncoupled turbulence model)

Efficiency

Space-marching method: inner-outer iterations

Flexibility
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PARNASSOS

A RANS solver for structured grids

Solve Ax=Db, with A of size (4 x g x NY x NZ)2
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A RANS solver for structured grids
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PARNASSOS

A RANS solver for structured grids
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[terative Methods

Parnassos: Solve Ax=b, with A of size (4 x g X NY x NZ)?
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Preconditioned Krylov solvers
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[terative Methods

Preconditioned Krylov solvers for sparse linear systems

Non-symmetric systems Ax=b:

e Optimal methods: GMRES
e Short recurrences: BiCGStab
Hybrid: IDR(s)

e Preconditioning: ILU

Parnassos: ILU preconditioned GMRES
80% of CPU time
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Graphics Processing Unit (GPU)

Scientific computing with GPUs

Control -

e High floating-point performance NVIDIA.
e Cheap & available C U DA
e Scalable .
7
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Graphics Processing Unit (GPU)

Scientific computing with GPUs

SIMD = SIMT (threads)

_global_ void VecAdd(float* A, float* B, float*C)
{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

int main()

{

VecAdd <<< 1, N >>> (A, B, C);

}

Fine-grained parallelism
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Graphics Processing Unit (GPU)

Scientific computing with GPUs

i Complex memory hierarchy

Processor 1 mzv"'vmu o tcomm — a + Bn

High arithmetic intensity (flop/byte)
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[terative methods on the GPU

Parallel implementation of preconditioned Krylov solvers

Fine-grained parallelism | & High arithmetic intensity

Krylov solvers:
e Vector updates (e.g. x=x+ay)
e Dot products (e.g. x'y)

e Matrix-vector products
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[terative methods on the GPU

Parallel implementation of preconditioned Krylov solvers

Sum reduction algorithm

step 1
result[threadldx] + result[blockDim/2 + threadldx]
IEREEEEEERERENEEREEENENENEEEREENENEEEENEE
n I A
résult[threacéldx] + result[tilockDim/4 + threadldx] step 2
HENEREERERRERERREEER
AA A : SA A A
HEE - R -
résult[thread%ldx]+result[bélockDim/B+thread|dx] step 3 Krylov SOlverS:
[T
T - _
e \lector updates (e.g. x=x+ay)
résult[O] + result[1] step N

|:|:| e Dot products (e.g. xTy)

o Matrix-vector products
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[terative methods on the GPU

Parallel implementation of preconditioned Krylov solvers

Sparse matrix-vector product

(SpMV)

e Dependent on storage format: DIA
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e Dot products (e.g. xTy)

e Highly optimized _
o Matrix-vector products
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[terative methods on the GPU

Parallel implementation of preconditioned Krylov solvers

Fine-grained parallelism | & High arithmetic intensity

Krylov solvers: GMRES

e \lector updates (e.g. x=x+ay)

e Dot products (e.g. xTy) BICGStab

IDR(s)

o Matrix-vector products
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[terative methods on the GPU

Parallel implementation of preconditioned Krylov solvers

C s o ed parallel S I

Preconditioning = sequential operation
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[terative methods on the GPU

Parallel implementation of preconditioned Krylov solvers

C s o ed parallel S I

Preconditioning = sequential operation

convergence parallelism
GLOBAL | t LOCAL
e.g. ILU (block-Jacobi) e.g. diagonal (block-Jacobi)
Challenge!
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[terative methods on the GPU

Parallel implementation of preconditioned Krylov solvers

e What to implement?
e Efficient GPU implementation = cumbersome!

Why not make use of libraries!?
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[terative methods on the GPU

Parallel implementation of preconditioned Krylov solvers

e What to implement?

e Efficient GPU implementation = cumbersome!
Variable Preconditioner

Block-Jacobi
AS/RAS
Mixed-Precision S
PARALUTION O
Iterative Liner
Solvers
Chebyshev . RO
Iteration Control Saddle-point
Fixed-lteration CG, BICGStab, ILU/IC F:AtI)/SII:AI
Schemes GMRES, IDR, CR Chebyshev
MC-GS/SGS/SOR/SSOR
Power(q)-pattern ILU

- - I
Use of libraries!
AMG/GMG

Preconditioners
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[terative methods on the GPU

Parallel implementation of preconditioned Krylov solvers

Further improvements?

Mixed-precision techniques

Deflation
Multigrid
Multi-GPU
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Conclusions

Research question, experimental setup & planning

How to / Is it possible to achieve reasonable speedup of

Parnassos’ linear solver by making use of GPU computing?
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Conclusions

Research question, experimental setup & planning

How to / Is it possible to achieve reasonable speedup of

Parnassos’ linear solver by making use of GPU computing?

Which preconditioned Krylov solver to use?

Strategies for fast GPU implementation?
Can the CUDA program be further optimized? How?

Overall speedup for Parnassos?
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Conclusions

e MARIN cluster - Marclus3

e Test problems — Parnassos

Research question, experimental setup & planning

g =1

g =4 g =16 g=NX
domain 111 n 42,612 170,448 681,792 13,678,452
— | nnz | 371,585 | 1,788,434 | 7,668,890 | 157,130,480
domain 211 n 14,484 57,936 231,744 3,027,156
—— | nnz | 126,125 | 607,718 2,606,510 | 34,753,748
domain 212 n 16,524 66,096 264,384 3,453,516
—— | nnz | 143,925 | 693,348 3,335,460 | 39,648,678
domain 221 n 8,100 32,400 129,600 1,692,900
— | nnz | 70,345 339,670 1,457,470 | 19,435,420
>
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Conclusions

Research question, experimental setup & planning

execution time best performing sequential algorithm

Speedup =
execution time best performing parallel algorithm

e Execution time

e [Jteration count
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Conclusions

Research question, experimental setup & planning

execution time best performing sequential algorithm

Speedup =
execution time best performing parallel algorithm

e Benchmark results
e Comparative study
e PARALUTION
e Several iterations (performance tuning cycle)

e CUDA implementation of best candidate...
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Thank you - Questions?

]
TUDelft




