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Summary
For a proper three-dimensional reconstruction of histology serial sections, adjustment of the slices is
necessary for combining serial sections. Deformations occur due to the sectioning and acquisition pro-
cess of the microscopic analysis of histology. By reconstructing the deformations with a transformation
of the sections, a mathematical correction on the images can be applied. By using image registration,
a transformation function is searched for to minimize differences between the histology slices. Due
to the non-linearity of the distortions, prior knowledge is required in order to have a solvable problem.
Additional information in the form of elasticity regularisation is considered. Implementing the elastic
regularisation with a finite element method, provides a continuous transformation function With the
continuous function, in a natural way, alignment can be monitored for folding transformations. In this
work, the (bi-)linear and (bi-)quadratic elements for the finite element method are implemented and
compared with the finite difference method. It is observed that for the different kinds of elements, the
(bi-)linear elements yield best results with the validity of the transformation. Moreover, the computa-
tional costs for the bi-linear elements are the cheapest. Compared with the finite difference method,
the differences in accuracy are not noteworthy but the computational time of the finite element method
is longer. Furthermore, to steer the matching in an accurate direction, improvements are proposed
by applying local stiffness of the elements or adding soft constraints on the volume of the elements.
This results in significant improvements in the transformation. For these two approaches it is observed
that local stiffness is more restrictive than volume-preserving. Solving the optimization problem, a
Gauss-Newton method to search for descent directions is applied. A matrix-based and a matrix-free
approach of elasticity regularisation is considered in the linear system of finding a descent direction.
While the matrix-free approach decreases the memory usage, the computational costs are significantly
increased.
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1
Introduction

The project1: Validating MRI-based in-vivo histology, of Dr. Siawoosh Mohammadi at UKE in Hamburg,
aims to develop an MRI-based method to measure microstructures of the brain. When highly sensitive
and specific markers of the microstructures are obtained, disease-related changes in the structures can
be tracked. Therefore, different high-resolution MRI techniques are combined. Previously, measuring
microstructures was only possible on dead tissue by ex-vivo histology. For development of these mod-
els, a quantitative comparison is with ex-vivo histology.

Ex-vivo histology is an accurate model of tissue microstructures. For histology, the tissue is sliced
into thin sections. After a preparation process with microscopic examination, two-dimensional infor-
mation is obtained. For comparison with the three-dimensional MRI-based method, reconstruction of
the sections is required. Unfortunately, due to the sectioning and the processing before the analysis,
non-linear deformations occur in the sections. Therefore, a three-dimensional analysis and view of
the obtained images is impossible without the reconstruction of the distortion. Therefore, solving the
problem of the distortions, the technique of image registration is applied. Image registration searches
for a transformation in which the differences between two images are minimal. However, for the non-
linear deformations, additional information is required in order to solve the optimization problem. A
commonly method is by adding elastic regularisation to the registration problem. One of the processes
in the histology technique is that the tissue is embedded in paraffin before sectioning, therefore elastic
deformations are reasonable to be expected. It has already been shown that elasticy equations could
be used for registration of histological sections [28][2][6].

However, having a solvable minimization problem it does not necessarily result in a reasonable transfor-
mation of the image. There is no unique solution for which the images are perfectly aligned. Validity of
the transformation is thus not necessarily guaranteed. Mapping with an obtained transformation func-
tion could lead to a folded transformed image. Such transformed images are physically impossible,
and can not be applied. To validate the obtained transformation, it is suggested to apply the finite ele-
ment method as numerical approach for the elasticity regularisation in the minimization problem. One
of the benefits of the finite element method, is the property of having continuous transformation func-
tions. Therefore, the obtained transformation function of the minimization problem can be accurately
validated. Furthermore, (soft) constraints can be applied to the elements to steer the minimization in
the right direction.

1.1. Research Goal
The main goal of this report is an implementation of the finite element method for elastic regularisation
in registration problems such that the transformation can be accurately validated. At which the following
three questions are proposed:
1https://gepris.dfg.de/gepris/projekt/313644856
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2 1. Introduction

• Does the finite element method improve the accuracy of the transformation function?

• How can the validity of the transformation function be improved using a finite element implemen-
tation of elasticity regularisation?

• How can a matrix-free approach of the finite element elasticity regularisation be achieved?

1.2. Methodology
The finite element method is implemented in the toolbox Flexible Algorithms in Image Registration
(FAIR)2. FAIR is an academic and research-orientated tool that collects state-of-the-art implementation
of the different building blocks to solve the registration problem [27]. The package is written for MAT-
LAB 3. The toolbox features a finite difference method for the elastic regularisation and will be used for
comparison.

The different approaches are first applied to test data. These data sets are test cases of the regis-
tration toolbox FAIR. After that, the methods are applied to the histological serial section data set, from
the project of Dr. Siawoosh Mohammadi. Dr. Stefan Geyer, Dr. Harald Moeller and Dr. Ricciardo
Metere provided a data set from a monkey brain which consists of 555 histology sections.

1.3. Outline
This report structured as follows: In Chapter 2 an introduction is given in image registration. Imple-
menting the elastic potential energy as a regularizer, the physical background of linear elasticity is
explained in Chapter 3. After that, the mathematical framework of image registration in FAIR is dis-
cussed in Chapter 4. The finite element method and the proposed approaches of elastic regularisation
are explained in Chapter 5. For the linear solution methods of the optimization problem, Chapter 6
treats different methods. In Chapter 7, the results of the finite element method and the finite difference
method are compared. Further, in Chapter 8, the results are shown for the proposed improvements
with the finite element method. Applying the methods to the histological serial sections, Chapter 9
discusses the approach and the results of this registration problem. At last, in Chapter 10 conclusions
are made and a discussion is given.

2https://github.com/C4IR/FAIR.m
3https://nl.mathworks.com



2
Image Registration

In this chapter, an introduction of Image Registration is given. At first, the general problem of Image
Registration is formulated. In the second section, different registration techniques are presented. Af-
terwards, measures are explained for measuring the similarities between images. Distance measures
are treated, and solutions are addressed for steering the solutions and solving registration problems
that are not solvable without extra prior information.

2.1. General Problem
In image processing, one is often interested in combining or comparing multiple images. Unfortunately,
due to the changes in image acquisition conditions, the task can be very hard. For example, with
two different x-rays of a human hand, see Figure 2.1, spatial alignment is needed before it can be
compared. Differences due to the acquisition conditions can appear in the geometric and/or intensity
part of the images. The procedure of alignment is called Image Registration. In the procedure, a
suitable transformation function is search for such that the image to transform (template image) can be
matched to the target (reference image) [5][25][26].
Let ℛ(x), 𝒯(x) ∶ ℝ → ℝ denote the intensity values of the reference and template image at the
corresponding coordinates. The mapping can be expressed as

ℛ(x) = 𝐼(𝒯(𝑦(x))) (2.1)

with 𝑦(x) ∶ ℝ → ℝ and 𝐼 ∶ ℝ → ℝ. Where y is the spatial transformation and 𝐼 the intensity transfor-
mation [5].

(a) Reference image (b) Template image

Figure 2.1: X-rays images of a human hand, taken from [1]

3



4 2. Image Registration

A perfect mapping does not only correct differences in acquisition conditions but also the variations
in the data. A perfect mapping isn’t the goal as we are interested in the variations of the data. To find
these variations between images, geometrical mapping is seen as key in image registration [5]. It is
reasonable not to consider the intensity transformation as the intensity differences are beside acquisi-
tion conditions also data related. These data related variations are caused by movements, growths, or
changes in relative depths in the object of the images.

Searching for the spatial transformation function, the problem is written as a minimization of a cost
function. By measuring the differences between the images, a transformation has to be found such
that the differences are minimal

min
y
𝒥[𝒯(y(x)), ℛ(x)] (2.2)

where 𝒥 ∶ ℝ → ℝ is the measure [27]. Recall the example of the human hands, Figure 2.2 shows a
suitable spatial transformation function in which both images are aligned.

(a) Reference image, ℛ(x) (b) Transformed template image,
𝒯(y(x))

Figure 2.2: Reference image and transformed template image obtained via toolbox FAIR

2.2. Registration Techniques
Image registration techniques are divided into two parts. An optimization where the parameters are
computed and an optimization procedure where the parameters are searched for [25].

The first approach is based on a linear combination of basis functions. This technique uses a finite
set of parameters to find a suitable transformation. With the transformation, the whole image can be
mapped such that the template and reference image are aligned. It is an optimization procedure where
the parameters are computed before the transformation. This approach is also seen in literature as
parametric image registration [26].

For the second approach, the transformation is not based on any pre-defined basis function. The pa-
rameters for every location are explicitly determined from the available data using the measure. For the
minimization of the measure 𝒥, the parameters are directly searched for, and is seen as non-parametric
registration [26].

Parametric Transformation
Parametric Image Registration uses a transformation function with a finite set of parameters. The
function is a linear combination of the parameters with corresponding basis functions [27]. It can be
written as

y(x) = 𝑄(x)w (2.3)
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(a) Original

(b) Left: Global; Right: Local; Top to bottom: Rigid,
Affine, Projective, curvature

Figure 2.3: Examples of Parametric transformation, taken from [25]

where 𝑄 ∈ ℝ( ⋅ )× is the matrix of 𝑙 basis functions multiplied by the parameter vector w ∈ ℝ ⋅ [27].
Basis functions are artificial and chosen prior. Linear affine and rigid transformations are common to
use and based on linear basis functions [5],[27],[31].

As stated in the Survey of The Image registration Techniques of Brown [5], the parametric transfor-
mation in literature is seen globally and locally. With the global approach, the full images are taken into
account for finding the right parameters. Applying the transformations on subsections of the image is
called local transformations. Local transformations are seen in two different ways. Local parameters
are applied as global parameters, which saves computational time when the displacement of the im-
age is the same on the whole domain. The other approach is by using different local transformations
for every subsection, but it is rarely applied because of continuity and invertibility issues [5],[25]. In
Figure 2.3, a few examples of the parametric image transformations globally and locally are shown.
The downside of this kind of transformation is that the domain is transformed based on a finite set of
parameters. Therefore, accuracy depends on the number of parameters and basis functions. Besides
that, the basis functions are artificial and have to be justified [26].

Many registration techniques need a good initial position before taking local differences into account,
a global mapping. Therefore, applying a transformation like affine or rigid as pre-registration before
considering the local differences are seen [25] [27].

2.3. Measure
The parametric as the non-parametric registration needs a measure, a cost-function, to find the trans-
formation function. In the parametric case searching for optimal parameters and in the non-parametric
case for obtaining the transformation. The measure quantifies the differences in the data. The problem
is written as [26].

min
y
𝒥 = min

y
𝒟[𝒯(y), ℛ]. (2.4)
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where 𝒟 ∶ ℝ → ℝ is a distance measure and y = y(x) with template and reference image, 𝒯(y) =
𝒯(y(x)) and ℛ = ℛ(x) respectively.

Solving the minimization can be very hard. Using only a distance measure often leads to an ill-posed
problem, Definition 2.1, for which no solution exists and can heavily depend on noisy data. The prob-
lem has to be modified with additional information to make it solvable. Regularization terms with prior
knowledge are added to themeasure [10] [25]. Applying these terms also filters optimal transformations
which are more likely. To further improve the measure, a penalty term can be added to the measure to
penalize unwanted solutions.

𝒥[y] = 𝒟[𝒯(y), ℛ] + 𝛼𝒮[y] + 𝛽𝒫[y] (2.5)

Where 𝛼, 𝛽 ∈ ℝ and 𝒮,𝒫 ∶ ℝ → ℝ.

Definition 2.1: Hadamard

A problem is well-posed if

• It has a solution,

• The solution is unique,

• The solution depends continuously on data and parameters.

Problems which are not well-posed are called ill-posed.

Distance Measure
Different distance measures are seen in literature. Choosing the distance measure depends on differ-
ent properties as computational time, accuracy, and what kind of information is used. Categorized by
Maintz et al. [25], the measures are divided into extrinsic and intrinsic based measures.
For the extrinsic based measures, it relies on artificial objects (e.g., markers, frames) that are visible
and accurately detectable. These methods are easy, fast, and often, the parameters can be computed
explicitly and thus, no complicated optimization techniques are needed. Drawbacks are that in the pre-
imaging phase, provisions must be made. Also, the registration doesn’t take patient information into
account, and in most cases, it is restricted to only rigid transformations.
The intrinsic based methods rely on patient-generated information. The intrinsic methods can be di-
vided into landmarks which are based on salient points, segmentation-based using structures, and
voxel-property-based methods. The methods based on landmarks take only part of the image into ac-
count, while the intensity-based(voxel-property-based)methods can use all information. The intensity-
based methods nowadays form the basis for the majority of the registration approaches [33].

Landmark and intensity-based distance measures are briefly explained, based on [27] [26]. These
two distance measures show the differences between less information and fast computation compared
to a distance measure which uses all information but will be more complicated to solve.

Landmark-based distance measure
With the usage of salient points, landmarks, which are specified in template and reference image,
a landmark-based measure can be applied. Landmarks are seen both extrinsic as intrinsic. Say, we
have𝑚 landmarks corresponding to the locations r , t for 𝑖 = 1,…𝑚, a commonly used feature distance
measure is

𝒟 [𝑦] =∑||y(r ) − t ||ℝ (2.6)

The benefit of the landmark-based measure is the computational cost. The downside is that landmarks
need to be added or must be seen clearly. Furthermore, only a part of the information of the images is
used for a suitable transformation.
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Intensity-Based distance measure
By using the intensity values of the voxels, the full images are taken into account for accurate, suitable
mapping and are thus expensive. In general, the intensity-based distance measures can be written as

𝒟[𝒯(y), ℛ] = ∫ 𝜑(𝒯(y), ℛ)𝑑Ω (2.7)

Where Ω ⊂ ℝ and 𝜑 ∶ ℝ → ℝ is the function calculating the difference between reference and template
image. For the difference function, a comparison of the intensity values or intensity changes is applied.

One of the intensity-based methods is the Sum-of-Squared-Distance (SSD) measure. The measure
uses the assumption that a perfect transformation results in ℛ = 𝒯(y). The SSD distance measure is
given by

𝒟[𝒯(y), ℛ] = 1
2 ∫ (𝒯(y) − ℛ) 𝑑Ω (2.8)

and has been proven to be robust and effective for mono-modal images [10].

For multi-modality images, the intensity values for a perfect alignment doesn’t correspond, and the
SSD distance measure isn’t suitable. Commonly used alternatives are [27],[17]: The Normalised-
Cross-Correlation (NCC) distance measure, in which only linear scaling in intensity is possible. Fur-
thermore, the Mutual-Information (MI) distance measure based on the joint density of the images is
often seen. Also, the Normalised-Gradient-Field (NGF) distance measure in which it is assumed that
intensity changes for both images should occur at corresponding locations is standard.

Regularisation and Penalty
For some data measures, a unique solution is impossible while having only intensity values. For exam-
ple, the intensity-based distance measure for non-parametric registration is ill-posed. Only an intensity
value is known for every location x ∈ ℝ while a vector y(x) ∈ ℝ is needed. Additional information in
the measure resolves this issue and makes the ill-posed problem solvable.

Physical driven information can be added, but also mathematical based information like diffusive and
curvature regularisation is common to apply [10] [27]. For the physically driven regularisation, the elas-
ticity of tissue or fluid mechanics such as balances of mass and momentum are seen [26]. Using the
elasticity of tissue, it measures the elastic potential energy caused by the deformation of the material
[4]. For fluid mechanics, besides elasticity also viscosity characteristics caused by the deformation are
measured [26]. The diffusive regularisation smoothens the solution and uses the first order derivatives
of the displacement [8]. The curvature regularisation is based on the second order derivatives and
aims that the registration is less dependent on the initial position of the reference and template image
[9].

Having solvable problems due to the regularisation, it doesn’t necessarily give suitable solutions. So-
lutions could be physically unlikely or don’t correspond with user information about the data. Adding
a penalty function to the measure discourages some optimal solutions. The function penalizes the
unwanted solutions and steers to the user direction. For example, knowing that specific points should
correspond, a landmark data measure for these points can be added as penalty term [21]. Further-
more, volume-preserving and local rigidity penalties are seen [10]. These are soft constraints on the
volume and are for example applicable when (parts of the) tissue may not expand or shrink.





3
Linear Elasticity

Implementing an elasticity regularizer in Image Registration was first introduced by Broit [4] and is
often seen in Image Registration. This chapter explains the physical background of linear elasticity. By
using the stress and strain relations of the body, a minimization problem of elastic potential energy is
obtained. This chapter is based on [15], [24], [26].

3.1. Stress and Strain
Image registration aims to compute the displacements of the template image to align with the reference
image. By considering images as elastic bodies, we can add physically inspired prior knowledge.
Without looking at the physical properties of the body, the transformation could result in folding or
cracks inside the body. Adding a regularisation term that describes the change in length or shape
due to the elasticity of the body, adds prior information to have a solvable problem. Furthermore, the
folding and cracks of the body become less likely. The changes in the length and shape are described
by stress and strain acting on the body.

Figure 3.1: Stress tensors on a body, taken from [15]

The changes in length or shape are called strains (𝜖). These deformations lead to internal forces,
stress (𝜎), due to stretching and compressing of the atomic bonds. From Newton’s first law, the forces
result in acceleration and therefore influences the deformation.

Strain and stress tensors in the three-dimensional case consist of nine components and can be divided

9



10 3. Linear Elasticity

into normal and shear components. The normal components of strain and stress act perpendicular to
the acting surface. The shear components are parallel to the surface. Figure 3.1 shows the stress
components acting on a three-dimensional body. 𝜎 are the normal components, and 𝜎 for 𝑖 ≠ 𝑗 are
the shear components parallel to the surface. T = 𝜎⋅n is the traction vector with positive normal vector
𝑛.

3.2. Equations of Equilibrium
The equilibrium equations governing the stress in the elastic body are the linear and angular momentum
equations. These set of equations describes the relations between the external force on the body and
the stress it causes at the surface of the body. Considering only static problems, the linear momentum
is defined by

∫ f𝑑𝑉 + ∫ T𝑑𝐴 = 0 (3.1)

with traction vector T and external force f on body 𝑉 and body surface area 𝐴.
Using Gauss Theorem, which relates the volume integral of the divergence with the net flow across
volume’s boundary, it read

∫ f + ∇ ⋅ 𝜎𝑑𝑉 = 0

Defining the gradient by ∇ = [ ,⋯ , ] .
Furthermore, it has to satisfy for every sub-body and thus results in the following condition

f = −[
∇ ⋅ 𝜎 ∶
∇ ⋅ 𝜎 ∶
∇ ⋅ 𝜎 ∶

] (3.2)

The second equilibrium equation is the angular momentum. It is the rotational equivalent of the linear
momentum and read

∫ x × f𝑑𝑉 + ∫ x ×T𝑑𝐴 = 0 (3.3)

where x is the position vector, and × is the vector cross-product. Writing out Equation 3.3, we get

∫ 𝑥 𝑓 − 𝑥 𝑓𝑑𝑉 + ∫(𝑥 𝜎 ∶ − 𝑥 𝜎 ∶) ⋅ n𝑑𝐴 = 0 for (𝑖, 𝑗) = (2, 3), (3, 1), (1, 2);

Using Gauss Theorem and Integration By Parts, it results in

∫ 𝑥 𝑓 − 𝑥 𝑓 + ∇ ⋅ (𝑥 𝜎 ∶ − 𝑥 𝜎 ∶)𝑑𝑉 = 0

∫ 𝑥 (𝑓 + ∇ ⋅ 𝜎 ∶) − 𝑥 (𝑓 + ∇ ⋅ 𝜎 ∶) + 𝜎 − 𝜎 𝑑𝑉 = 0

Inserting the condition of linear momentum, Equation 3.2, into the equation, we have

∫ 𝜎 − 𝜎 𝑑𝑉 = 0

It has to satisfy for every sub-body, which results in the integrand to be zero. This gives us the symmetry
condition for the stress components.

𝜎 = 𝜎 for 𝑖, 𝑗 = 1, 2, 3 (3.4)
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3.3. Three-Dimensional Elasticity
Assuming only small strains occur in the body, the relation between stress and strain can be described
by Hooke’s law and gives a linear stress-strain relation

𝜎 = ∑∑𝐶 𝜖 (3.5)

with tensor 𝐶. By the symmetry condition, Equation 3.4, the linear model is reduced into six independent
strain and stress components.

⎡
⎢
⎢
⎢
⎢
⎣

𝜎
𝜎
𝜎
𝜎
𝜎
𝜎

⎤
⎥
⎥
⎥
⎥
⎦

= [
𝑎 ⋯ 𝑎
⋮ ⋱ ⋮
𝑎 ⋯ 𝑎

]

⎡
⎢
⎢
⎢
⎢
⎣

𝜖
𝜖
𝜖
𝜖
𝜖
𝜖

⎤
⎥
⎥
⎥
⎥
⎦

(3.6)

Introducing Young’s modulus, when a small force is applied in one direction, the strain in that direction
is related by

𝜖 = 1
𝐸𝜎 (3.7)

where 𝐸 is Young’s modulus for elasticity.
Besides the strain in the direction of the stress, in general, the body also shows displacements in
the other normal directions. For simplification isotropic material is assumed. With an isotropic body,
the displacement is the same for every other direction. The displacement is related via Poisson’s
contraction ratio 𝜈

𝜖 = 𝜖 = −𝜈𝜖 (3.8)

Resulting in the following equations for the normal strain

𝜖 = 1 + 𝜈
𝐸 𝜎 − 𝜈

𝐸 ∑𝜎 (3.9)

Shear strain and shear stress are related by shears modulus for isotropic body and is given by

𝜎 = 2𝜇𝜖 , for 𝑖 ≠ 𝑗. (3.10)

The parameter 𝜇 is called the lamé second parameter and can be determined in terms of Young’s
modulus and Poisson’s contraction ratio

𝜇 = 𝐸
2(1 + 𝜈) (3.11)

The system of stress-strain equations is

⎡
⎢
⎢
⎢
⎢
⎣

𝜖
𝜖
𝜖
𝜖
𝜖
𝜖

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

1/𝐸 −𝜈/𝐸 −𝜈/𝐸 0 0 0
−𝜈/𝐸 1/𝐸 −𝜈/𝐸 0 0 0
−𝜈/𝐸 −𝜈/𝐸 1/𝐸 0 0 0
0 0 0 1/2𝜇 0 0
0 0 0 0 1/2𝜇 0
0 0 0 0 0 1/2𝜇

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝜎
𝜎
𝜎
𝜎
𝜎
𝜎

⎤
⎥
⎥
⎥
⎥
⎦

(3.12)

Introducing lamé’s first parameter. The parameter 𝜆 isn’t a direct physical parameter but is useful to
simplify the notation.

𝜆 ∶= 𝐸𝜈
(1 + 𝜈)(1 − 2𝜈) (3.13)
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Calculating the inverse of the stress-strain relation, the system is given by

⎡
⎢
⎢
⎢
⎢
⎣

𝜎
𝜎
𝜎
𝜎
𝜎
𝜎

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝜆 + 2𝜇 𝜆 𝜆 0 0 0
𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 2𝜇 0 0
0 0 0 0 2𝜇 0
0 0 0 0 0 2𝜇

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝜖
𝜖
𝜖
𝜖
𝜖
𝜖

⎤
⎥
⎥
⎥
⎥
⎦

(3.14)

Strains are a measure of the deformation of the body and can also be written in terms of displacements.
With the assumption of small deformations, the infinitesimal strain theory is applied

𝜖 = 1
2(∇u+ (∇u) ) (3.15)

and results in the following strain matrix

𝜖 =
⎡
⎢
⎢
⎢
⎣

( + ) ( + )
( + ) ( + )
( + ) ( + )

⎤
⎥
⎥
⎥
⎦

(3.16)

Rewriting the stress-strain relations of Equation 3.14 in terms of stress and the displacement function,
the equations become

𝜎 = 𝜇(
𝜕𝑢
𝜕𝑥 + 𝜕𝑢𝜕𝑥 ) + 𝜆(∇ ⋅ u)𝛿 (3.17)

with

𝛿 = {
1 for 𝑖 = 𝑗
0 for 𝑖 ≠ 𝑗

Applying the stress-displacement equations to the equilibrium condition of linear momentum, Equation
3.2, it results in

∇ ⋅ 𝜎 ∶ + 𝑓 = 0 (3.18)

𝜇( 𝜕 𝑢(𝜕𝑥 ) + 𝜕 𝑢
(𝜕𝑥 ) + 𝜕 𝑢

(𝜕𝑥 ) ) + (𝜆 + 𝜇)
𝜕
𝜕𝑥 (

𝜕𝑢
𝜕𝑥 + 𝜕𝑢𝜕𝑥 + 𝜕𝑢𝜕𝑥 ) + 𝑓 = 0 for 𝑖 = 1, 2, 3 (3.19)

Which we can compactly write as

𝜇Δu+ (𝜆 + 𝜇)∇(∇ ⋅ u) + f = 0 (3.20)

with vector Laplacian Δ = ∇ . The equations are an equilibrium between external force and displace-
ment and have to satisfy for every linear elastic body with small deformations. The equations are called
the Navier-Lamé equations with corresponding Lamé parameters:

𝜇 = 1
2

𝐸
1 + 𝜈 , 𝜆 = 𝐸𝜈

(1 + 𝜈)(1 − 2𝜈) (3.21)

Plane strain
For a two-dimensional image, the body is considered to be a thin plate. Only strain in two dimensions
occur, and the strain components of the third dimension are set to zero. Because of shears modulus,
the shear stress components in the third dimension are zero.
Implementing in the Navier-lamé equations, result in the disappearance of the third equation. The
Navier-Lamé equations with u = [𝑢 , 𝑢 ] and lamé parameters are thus

𝜇Δu+ (𝜆 + 𝜇)∇(∇ ⋅ u) + f = 0 (3.22)

𝜇 = 1
2

𝐸
1 + 𝜈 , 𝜆 = 𝐸𝜈

(1 + 𝜈)(1 − 𝜈) (3.23)
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3.4. Minimization Problem
The Navier-Lamé equations are partial differential equations based on conservation laws, and knowing
the boundary conditions of the domain, it can also be written in terms of a minimization problem. The
corresponding minimization of the Navier-Lamé equations is the elastic potential energy caused by the
deformation of the body.

For the minimization problem, we consider that no external forces are exerted on the body, and no
external stress occurs on the boundary. Which follows that f disappears, and no external stress gives
traction free boundary conditions. With the stress-displacement relation of Equation 3.17, the traction
free boundary conditions can be expressed as

𝜎 ∶ ⋅ n = 𝜇(∇𝑢 + 𝜕u
𝜕𝑥 ) ⋅ n+ 𝜆(∇ ⋅ u)𝑛 = 0 x ∈ 𝜕Ω for i=1,2 (3.24)

The partial differential equation results in the following boundary value problem with domain Ω and
boundary 𝜕Ω

{
−𝜇Δu− (𝜆 + 𝜇)∇(∇ ⋅ u) = 0, x ∈ Ω

𝜇(∇𝑢 + 𝜕u
𝜕𝑥 ) ⋅ n+ 𝜆(∇ ⋅ u)𝑛 = 0 x ∈ 𝜕Ω

(3.25)

With corresponding minimization problem

min
u∈

1
2 ∫ 𝜆(∇ ⋅ u) + 𝜇(2(𝜕𝑢𝜕𝑥 ) + 2(𝜕𝑢𝜕𝑥 ) + (𝜕𝑢𝜕𝑥 + 𝜕𝑢𝜕𝑥 ) )𝑑Ω

Σ(u) ∶= {u is sufficiently smooth}
(3.26)

Proof is shown in appendix A.





4
Mathematical Framework of FAIR

This chapter discusses the framework of the toolbox Flexible Algorithms for Image Registration1 (FAIR).
It features a multi-level strategy in obtaining a transformation function. With a discretize-then-optimize
approach, the registration problem is solved. For the discretization, a finite difference scheme is ap-
plied as numerical approach. In the first section, themulti-level approach with pre-registration is treated.
Secondly, the discretization of the problem is explained. After that, the iterative optimization procedure
for the non-linear problem is discussed. Lastly, issues are addressed using the finite difference scheme
to motivate the usage of a finite element method in FAIR. The chapter is based on [27].

Recall from chapter 2, Equation 2.5, the measure is

𝒥[y] = 𝒟[𝒯(y), ℛ] + 𝛼𝒮[y] + 𝛽𝒫[y]. (4.1)

Considering two-dimensional reference and template images of the same rectangular regions. The
regions are defined by Ω = [𝜔 ,𝜔 ] × [𝜔 ,𝜔 ] ⊂ ℝ , as shown in Figure 4.1.

Figure 4.1: Region of a two-dimensional image

4.1. Multi-level Image Registration
The Multi-Level Image Registration (MLIR) strategy uses different discretization levels to identify a suit-
able transformation function y(x). From a coarse grid to higher level grids, the transformation function
is obtained and improved. On a coarse grid, a global correction is applied (pre-registration). In this way,
priority is given to obtain first a global correction without local differences. After that, improvements of
the transformation function are possible by taking the local difference into account on finer grids. A
1https://github.com/C4IR/FAIR.m

15
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global correction should be in the neighborhood of the correction on the most detailed level. Therefore,
fewer iterations are to be expected on the finer levels. Multiple levels can be applied before registration
is executed on the finest grid. The scheme of MLIR is shown in Figure 4.2, where 𝐿 is the current level,
and 𝐿 is the highest level of the discretization.

Figure 4.2: Scheme of Multi-level Image Registration

Pre-Registration
By identifying the first approximation of transformation function, only global differences are of impor-
tance. As seen in Chapter 2, Parametric Image Registration (PIR) is a cheap method for global trans-
formations and is preferred as pre-registration. For PIR, the basis functions have to be chosen prior
to the registration. Since it is not necessary to directly obtain a very accurate transformation function,
only linear basis functions are considered. The transformation function is defined by

𝑦(x) ∶= 𝑄(x)f(w) (4.2)

with parameter vector 𝑤 = [𝑤 ,… ,𝑤 ] and basis function matrix 𝑄 = [𝑞 𝑞 𝑞 0 0 0
0 0 0 𝑞 𝑞 𝑞 ].

The linear basis functions are

𝑞 (x) = 𝑥 ,
𝑞 (x) = 𝑥 ,
𝑞 (x) = 1.

Vector f(w) ∈ ℝ depends on the kind of transformation.

• Translation, f(w) = [1; 0; 𝑤 ; 0; 1; 𝑤 ];
• Linear affine (rotation, scaling and shearing), f(w) = [𝑤 ;𝑤 ;𝑤 ;𝑤 ;𝑤 ;𝑤 ];
• Rigid (translation, rotation), f(w) = [cos(𝑤 );− sin(𝑤 );𝑤 ; sin(𝑤 ); cos(𝑤 );𝑤 ].

With a small set of unknowns as for the parametric case, the distance measure results in a solvable
measure. The registration problem is

min
y
𝒥[y] = min

y
𝒟[𝒯(y), ℛ] (4.3)

Registration
For registration at higher levels, local differences are increasingly significant. With Non-parametric
Image Registration (NPIR) no constricting prior basis functions, are applied and the local differences
can be fully taken into account. The measure is ill-posed and regularisation, to guarantee a solvable
problem, is added.

min
y
𝒥[y] = min

y
𝒟[𝒯(y), ℛ] + 𝛼𝒮[u] (4.4)
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Calling the transformation function of the pre-registration y , the non-parametric transformation func-
tion is defined by

y(x) = u(x) + y (x) (4.5)

with displacement function u(x). The resulting transformation function after each level can be used as
the first guess in obtaining an improved function on a higher discretization level. To apply y from the
previous grid on a finer grid, a prolongation of y needs to be executed.

4.2. Discretization Grids
The information from the template and reference image are data vectors 𝑅 and 𝑇, which denotes the
intensity values of the pixels. Outside the domain, the intensity values are considered to be zero. Using
a discretization of the domain, the cells of the discretization correspond to the pixels of the image.
Therefore, it is assumed that the data points are cell-centered values. Given the region Ω, and the
number of pixels in the two dimensions m = [𝑚 ,𝑚 ]. The width of the cells is defined by

ℎ = (𝜔 − 𝜔 )/𝑚 (4.6)

Figure 4.3a shows an example of a two-dimensional cell-centered image grid.

(a) Cell-Centered image grid (b) Discretizations of the transformation function. Stag-
gered grid for direction (►), Staggered grid for di-
rection (▲) and Nodal grid (■)

Figure 4.3: Discretization grids of a two-dimensional domain m [ , ]. Left: Image grid; Right: Transformation grid

The cell-centered grid read

𝑥 = 𝜔 + 𝑗 ℎ ,
x
j = [𝑥 . , 𝑥 . ], for 𝑗 = 1,… ,𝑚 ; 𝑖 = 1, 2

cellj = {x ∈ ℝ | − h/2 < x− xj < h/2}
(4.7)

where j = [𝑗 , 𝑗 ].

For the transformation function, a different grid is used. As will be discussed for the finite difference
approach, a staggered grid is needed. For the finite element method, discussed in the next chapter,
a nodal grid is applied. Both grids are shown in figure 4.3b. Discretizing the transformation function
y = [𝑦 , 𝑦 ] with the staggered grid, 𝑥 and 𝑥 are discretized by x

j
, and x

j
, , respectively. The grids
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are defined by

x
j
, = [𝑥 , 𝑥 . ] for 𝑗 = 0,… ,𝑚 ; 𝑗 = 1,… ,𝑚

x
j
, = [𝑥

. , 𝑥 ] for 𝑗 = 1,… ,𝑚 ; 𝑗 = 0,… ,𝑚
(4.8)

For the nodal grid, the grids for 𝑦 and 𝑦 are the same and are defined by

x
j = [𝑥 , 𝑥 ] for 𝑗 = 0,… ,𝑚 ; 𝑖 = 1, 2; (4.9)

The discrete transformation function is denoted by 𝑦j = 𝑦 (xj).

4.3. Image Interpolation
Searching for a minimum of the measure, derivatives of the data play an important role. Therefore, the
image is considered to be a continuous function in which the derivatives of the image can be easily
calculated. Although the data of the images are discrete, by interpolation techniques, a continuous
model can be obtained. A fast and everywhere differentiable continuous model is spline interpolation.
Figure 7.5 visualizes a spline interpolation for some data points.

Figure 4.4: Spline interpolation of two-dimensional data points (circles)

Spline interpolation is based on the interpolation of the data by a minimization of the bending energy.
Using the minimization of the bending energy, the curves of the function are limited. For the one-
dimensional case, the bending energy is approximated by

min
𝒯
𝒮[𝒯] = min

𝒯
∫ (𝑑 𝒯(𝑥)(𝑑𝑥) ) 𝑑Ω subject to 𝒯(𝑥 ) = 𝑇(𝑗),𝑗 = 1,…𝑚 (4.10)

The solution of the minimization problem are cubic splines in terms of coefficients 𝑐 and following basis
function

𝑏(𝑥) =

⎧
⎪

⎨
⎪
⎩

(𝑥 + 2) , −2 ≤ 𝑥 < −1,
−𝑥 − 2(𝑥 + 1) + 6(𝑥 + 1), −1 ≤ 𝑥 < 0,
𝑥 + 2(𝑥 − 1) − 6(𝑥 − 1), 0 ≤ 𝑥 < 1,
(2 − 𝑥) , 1 ≤ 𝑥 < 2,
0, else.

(4.11)

With the data-vector 𝑇 with 𝑚 data points, the spline interpolation function is written in terms of

𝒯 (𝑥) =∑𝑐 𝑏 (𝑥) (4.12)



4.4. Discretization of the Measure 19

Where 𝑏 (𝑥) = 𝑏(𝑥 − 𝑗).

For the two-dimensional case, the coefficients in the one-dimensional case are considered splines
as well. The spline interpolation function becomes

𝒯 (x) = ∑ ∑ 𝑐 𝑏 (𝑥 )𝑏 (𝑥 ) (4.13)

With the intensity values at the cell-centers, the coefficients can be calculated. The coefficients can be
obtained by the following condition

𝑇(𝑗 , 𝑗 ) = 𝒯(𝑥 , ) = ∑ ∑ 𝑐 , 𝑏 (𝑥 )𝑏 (𝑥 ) (4.14)

4.4. Discretization of the Measure
In this section, the discretization of themeasure in FAIR is discussed. The continuousmeasure contains
an integration over the domain, and the derivatives of the displacement function u in the regularisation
plays a role. For the discrete measure, numerical approaches for the integration and derivatives need
to be applied.

With an image grid at the center of the cells, the midpoint quadrature rule is a simple integration rule
which evaluates the integral at the center. For the one-dimensional case, the mid-point quadrature rule
is given by:

∫ 𝑓(x)𝑑𝑥 = ℎ∑𝑓(𝑥 ) + 𝒪(ℎ ) (4.15)

For the regularizers, it requires derivatives of the displacement function u. For the integration approach,
we want to have derivatives at the center of the cells. A central finite difference method is applied in
FAIR. For the one-dimensional case it results in derivatives at the center of the cells, the method read

𝑑𝑓(𝑥 . )
𝑑𝑥 = (𝑓(𝑥 ) − 𝑓(𝑥 ))/ℎ + 𝒪(ℎ ) (4.16)

4.4.1. Intensity-Based Distance Measure
The FAIR toolbox features the intensity-based distance measures. Recall from Chapter 2, the measure
can be written as

𝒟[𝒯(y), ℛ] = ∫ 𝜙(𝒯(y), ℛ)𝑑Ω (4.17)

where 𝜙 defines the difference between template and reference image. With the midpoint quadrature
rule, the distance measure is expressed by

𝐷(𝑇(y), 𝑅) = ℎ ℎ 𝜙(r(y)) + 𝒪(||h|| ) (4.18)

It is for ease written in outer function 𝜙 and inner function r(y).

4.4.2. Regularisation
In Image Registration, most regularisations are variants of the 𝐿 -norms of the derivatives of the dis-
placement. In general, it can be written as

𝒮[u] = 1
2 ∫ |ℬ[u]| 𝑑Ω (4.19)
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where ℬ is the derivative operator. For a simplified elastic regularisation, Equation 3.26, the operator
is

ℬ = [
√𝜇∇ 0
0 √𝜇∇

√𝜆 + 𝜇 √𝜆 + 𝜇
] (4.20)

In the ideal case, the derivatives are at the center of the cells for numerical integration as for the one-
dimensional case. It is impossible for two dimensions, and the central finite difference applied on a
staggered grid is chosen. It results in derivatives that are partly at the centers. The other part of the
derivatives is at the nodes of the cells as can be seen in the following equations.

𝜕𝑢 (x . , . )
𝜕𝑥 ≈ (𝑢 , . − 𝑢 , . )/ℎ , 𝜕𝑢 (x , )

𝜕𝑥 ≈ (𝑢 , . − 𝑢 , . )/ℎ ,

𝜕𝑢 (x . , . )
𝜕𝑥 ≈ (𝑢 . , − 𝑢 . , )/ℎ , 𝜕𝑢 (x , )

𝜕𝑥 ≈ (𝑢 . , − 𝑢 . , )/ℎ .
(4.21)

With the discretization grid of the derivatives, the midpoint quadrature rule is applied on the finite dif-
ference scheme of the integrand. The discretization of the regularisation results in

𝑆(u) ≈ 1
2ℎ ℎ ||𝐵u|| + 𝒪(||h|| ) (4.22)

Where matrix 𝐵 is the central finite difference approximation of ℬ. Details about the discretization of
matrix 𝐵 are discussed in [27].

4.5. Optimization Problem
The numerical optimization procedure of FAIR is a general but flexible (e.g., spatial dimensions, dis-
tance measure) automatic scheme to identify the optimal transformation. The procedure uses a Gauss-
Newton approach with line-search to determine the parameters.

The discrete measure is given by

𝐽(y) = 𝐷(𝑇(y), 𝑅) + 𝛼𝑆(y − y ) (4.23)

with u = y−y , Equation 4.5. It is a non-linear problem, and the solution can not be obtained directly.
With a procedure of finding descent directions, a minimum is found in an iterative way. Therefore, the
measure function is approximated by a convex function. The function 𝐽 is replaced by a quadratic
function ̂𝐽 from the Taylor expansion.

𝐽(y + p) ≈ ̂𝐽(y + p) = 𝐽 + (∇𝐽(y))p + 12p 𝐻(y)p (4.24)

where 𝐻(y) = ∇ 𝐽(y) is called the Hessian matrix. When having a positive semi-definite Hessian
matrix, Definition 4.1, the function ̂𝐽 is convex and, a unique minimum exists. Withs the minimum p
as search direction, a decrease of 𝐽(y + p) can be found. Iterate the approach, a minimum of J(y) is
obtained.

Definition 4.1: Positive (semi-)definite matrix

The matrix 𝐴 is called positive definite (positive semi-definite) iff

∀u ∈ ℝ \{0} ∶ u 𝐴u > 0(u 𝐴u ≥ 0). (4.25)

Gaus-Newton method
With the standard Newton-method, the search direction is obtained by solving the following linear sys-
tem

𝐻(y)p = −∇𝐽(y) (4.26)
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Instead of using the Newton method, a modified version, the Gauss-Newton method, is considered for
the data part. Having the distance measure written as 𝐷(y) = 𝜙(r(y)), the Gauss-Newton method
approximates the Hessian matrix. Higher order derivatives of the argument r(y) of 𝜑(r) are dropped.
It saves computational time, and besides that, we know that the convergence rate will be the same
when the remaining part is the dominant part of the Hessian matrix [29].

Applying the Gauss-Newton method to the measure, we get

∇𝐽(y) = ∇𝜙(r)∇r(y)𝑃 + 𝛼∇𝑆(y − y )

𝐻(y) ≈ (∇r(y)𝑃) ∇ 𝜙(r)∇𝑟(y)𝑃 + 𝛼∇ 𝑆(y − y )
(4.27)

As can be seen, the data part also contains a matrix 𝑃. 𝑃 is a grid interpolation matrix from a cell-
centered grid to a staggered grid. The data part is discretized with a cell-centered grid, while the
regularizer part is discretized with a staggered grid. Thus, grid interpolation is needed to have corre-
sponding dimensions in the linear system. The interpolation matrix is discussed in [27].

The linear system can be solved by direct or iterative solution methods. For the methods, a symmetric
positive definite (SPD) matrix is preferred because of the nice properties attached. The direct method,
like Cholesky Decomposition, or iterative methods, Conjugate Gradient methods, are potent methods.
Knowing the matrix is symmetric positive semi-definite, it will be SPD in most cases. If not, adding a
small factor times the identity matrix to 𝐻 will change it into a symmetric positive definite matrix.

𝐻 → 𝐻 + 𝛽𝐼

Line-Search Method
Solving the linear problem, a search direction is obtained such that with linear searchmethods, sufficient
decreases can be ensured. The line search methods decide how far to move the function in the search
direction. A popular condition is the following

𝐽(y + 𝛼p ) ≤ 𝐽(y ) + 𝑐 𝛼∇𝐽(y ) p (4.28)

The condition is called the Armijo condition [29]. It states that the reduction should be proportional to
the step-length and the directional derivative. A standard choice of 𝑐 is 10 , and if a reduction is not
sufficient, the condition is iterated with 𝛼 = 𝛼. Figure 4.5 visualizes the Armijo condition where the
right-hand-side of the function is called 𝑙(𝛼), .

Figure 4.5: Armijo condition, taken from [29]
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Stopping Criteria
As stopping criteria for the optimization problem, the following, which are common stopping criteria
[13], are applied

|𝐽(y ) − 𝐽(y )| ≤ tol (1 + |𝐽(y )|), (4.29)
||y − y || ≤ tol (1 + ||y || ), (4.30)
||∇𝐽(y )|| ≤ tol (1 + |𝐽(y )|), (4.31)

The first two conditions measure the relative variation after every iteration. The third condition is based
on the fact that for an optimal transformation, y∗, the transformation has to satisfy ||∇𝐽(y∗)|| = 0. If
these three conditions are fulfilled, the iterative procedure is terminated.

As safeguard, the following conditions are added as stopping criteria

||∇𝐽(y )|| ≤ 𝜖, (4.32)
𝑘 ≤ 𝑘 . (4.33)

When an initial estimate y is close to the solution or an iterate lands very close to the solution, Equation
4.32 is satisfied and stops the iteration. To guarantee a maximum number of iterations, Equation 4.33
is implemented. As parameters, the following values are taken

Parameter Value
tol 10
tol 10
tol 10
𝜖 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑘 10

Table 4.1: Stopping criteria parameters



5
Finite Element Approach of Elasticity

Regularisation
The finite difference method, on which FAIR is based, solves partial differential equations (PDE) us-
ing local Taylor expansions. With finite differences, the derivatives of the equations are approximated.
Choosing the discretization of the domain defines the finite differences. The FDM is a fast method, but
we can only apply it on structured grids. Besides that, we only know the solution at the discretization
points.

The finite element method (FEM) is a numerical method for solving partial differential equations and
minimization problems. FEM divides the domain in a finite set of elements. Solving the problem, the
solution of every element is purely based on the information corresponding to their own element. The
solution is constructed using basis functions on the elements with a certain weight. The solution is
therefore defined everywhere on the domain. Because the solution is solved elements wise, it is rela-
tively easy to implement locally different parameters and local refinement of the elements to improve
the solution.

There are two different approaches to use FEM. The first approach is Ritz’s method and solves a
minimization problem. It expresses the solution as a linear combination of previously chosen basis
functions. Using the minimization condition of the problem, it results in solving a linear system of equa-
tions. But not all PDEs can be written in terms of minimization problems. Instead, with the weak
formulation, a larger class of PDEs can be solved with the Galerkin’s method. This method considers
the same approximation of the solution with basis functions. Replacing the test function in the weak
formulation for each of the basis functions, a similar kind of system is obtained as in Ritz’s method. In
case there exist a minimization problem of the PDE, both methods are identical.

The chapter explains the finite element implementation of elasticity regularisation. First, Ritz’s method
to apply FEM is discussed. After that, the topology of the elements is treated. In this section, it elabo-
rates the validity and distortion of the elements. The last section proposes three different methods of
elastic regularisation implemented with FEM in FAIR.

5.1. Finite Element Method
This section is based on [22] and [34].

5.1.1. Ritz’s Method
Consider the following two-dimensional minimization problem without any explicit boundary conditions
of u

min
u∈

𝒮[u]; 𝒮(u) = ∫ ℱ[𝑥 , 𝑥 ,u, 𝜕𝑢𝜕𝑥 , 𝜕𝑢𝜕𝑥 , 𝜕𝑢𝜕𝑥 , 𝜕𝑢𝜕𝑥 ]𝑑Ω (5.1)

23
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The solution has to be found over a class of functions in the target space Σ.

Σ = {u sufficiently smooth}

Ritz’s method approximates the solution of the problem by a linear combination of a finite set of known
basis functions. The set of basis functions,{𝜑 (x)}, is chosen in the target space. Due to the same
boundary conditions for 𝑢 (x), 𝑢 (x), the same set of basis functions can be chosen for the approxi-
mation.

𝑢 (x) ≃∑𝑎 𝜑 (x) (5.2)

𝑢 (x) ≃∑𝑎 𝜑 (x) (5.3)

with weights 𝑎 ∈ ℝ. It results in a solution which can be found in the following solution search space

𝑢 (x) ∈ span{𝜑 (x), 𝑖 = 1,… ,𝑚} (𝑖 = 1, 2) (5.4)

The unknown functions 𝑢 (x), 𝑢 (x) of the minimization problem changes into a finite set of unknowns
𝑎 , 𝑎 , … , 𝑎 , 𝑎 , 𝑎 , … , 𝑎 . Substituting 𝑢 (x), 𝑢 (x) by Equations 5.2 and 5.3 in the minimization prob-
lem, it becomes

min
∈ℝ

𝑆(𝑎 , 𝑎 , … , 𝑎 , 𝑎 , 𝑎 , … , 𝑎 ) (5.5)

Searching for a minimum, the necessary condition for the existence of a minimum read

𝜕𝑆(𝑎 , 𝑎 , … , 𝑎 , 𝑎 , 𝑎 , … , 𝑎 )
𝜕𝑎 = 0, (𝑖 = 1, 2, … ,𝑚; 𝑗 = 1, 2) (5.6)

This leads to 2𝑚 equations with 2𝑚 unknowns, and under certain conditions, the problem can be solved
uniquely.

With the discretization of the domain, the weight is set as the solution value of the discretization points.

a ∶= u =

⎡
⎢
⎢
⎢
⎢
⎣

𝑢
⋮
𝑢
𝑢
⋮
𝑢

⎤
⎥
⎥
⎥
⎥
⎦

(5.7)

Which follows, the basis functions have to hold the following condition at the discretization points, and
it ensures that the solution at the discretization points equals the combination of basis functions.

𝜑 (xj) = 𝛿 ∶= {1 𝑖 = 𝑗
0 𝑖 ≠ 𝑗 (5.8)

Assuming Equation 5.6 are linear relations, it can be expressed as

𝑅u = 0. (5.9)

The matrix 𝑅 = ∇ 𝑆 is

𝑅 = [𝑅
, 𝑅 ,

𝑅 , 𝑅 , ] with 𝑅 , = [
𝑟 , ⋯ 𝑟 ,

⋮ ⋱ ⋮
𝑟 , ⋯ 𝑟 ,

]

where 𝑟 , = ∫ 𝜕 𝐹(u)
𝜕𝑢 𝜕𝑢

𝑑Ω

(5.10)
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5.1.2. Finite Elements
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Figure 5.1: Domain of [ , ] × [ , ] divided into triangular elements

Applying a finite set of non-overlapping elements, the domain is defined as Ω = ⋃ 𝑒 with 𝑛 =
#𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, Figure 5.1. The integral inside the matrix can be written as

𝑟 , = ∫ 𝜕 𝐹(u)
𝜕𝑢 𝜕𝑢

𝑑Ω = ∑∫ 𝜕 𝐹(u)
𝜕𝑢 𝜕𝑢

𝑑Ω. (5.11)

The matrix is a sum of all matrices applied for the different element domains. The solution inside an
element is considered to be only dependent on the information of that element. Thus, only the basis
functions of the corresponding nodes differ from zero. The matrix for every element reduces to

𝑅 = [𝑅
, , 𝑅 , ,

𝑅 , , 𝑅 , , ] with 𝑅 , , = [
𝑟 , , ⋯ 𝑟 ,
⋮ ⋱ ⋮

𝑟 , , ⋯ 𝑟 , ,
] (5.12)

𝑅 is called the element matrix and 𝑙 is the number of discretization points of the element.

The full matrix is obtained by assembling the element matrices

𝑅 = ∑𝑄 𝑅 (𝑄 ) (5.13)

with a global mapping operator 𝑄 ∈ ℝ × . The global mapping operator maps the local nodes to the
global nodes on the whole domain.

5.1.3. Shape of Elements
Dividing the domain in a finite set of non-overlapping elements, for the two-dimensional case, the
triangular and quadrilateral elements are common to use. The following section elaborates on how
these elements can be implemented in the numerical method.
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Figure 5.2: Left: linear solution of a triangular element; Right: bi-linear solution of a quadrilateral element

Choosing the number of discretization points per element, the unknown function u is approximated
by a corresponding order of basis functions. Using the linear triangle, we have three nodal points, and
the unknown function can be approximated by linear basis functions. For the bi-linear quadrilateral
case, we have four discretization points and bi-linear basis functions. Examples of the solutions to
these elements are visualized in Figure 5.2. The values at the nodal points are explicitly calculated, and
with the basis functions the solution is known everywhere. Applying higher order elements improves
the accuracy since higher order basis functions can be chosen to approximate the unknown function.
Figure 5.3 shows the discretization of the triangular and quadrilateral elements for linear, quadratic,
and cubic order.

Figure 5.3: Triangular and quadrilateral element (linear, quadratic, cubic order)

Isoparametric Transformation

Every element on the domain has its pre-defined basis functions. For simplicity, a reference element
can be constructed, and with Isoparemetric transformation, there is a mapping between the reference
element and the element on the domain. With one reference element for all elements on the domain,
only one element with basis functions has to be defined, Figure 5.4.
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Figure 5.4: Isoparametric transformation of a bi-linear quadrilateral element

Applying an isoparametric transformation on the elements, it has to satisfy the following properties

1. The nodes x ,x , … ,x are transformerd to fixed points 𝜉 , 𝜉 , … 𝜉 .

2. Straight sides in the original element remain straight in the reference element.

3. When basis functions in the transformed element are given by 𝜑 (x), 𝜑 (x), … , 𝜑 (x) then the
inverse transformation (𝜉, 𝜂) → (𝑥 , 𝑥 ) and interpolation is given by

𝑥 =∑𝑥 𝜑 (𝜉, 𝜂) 𝑢 (x) =∑𝑢 𝜑 (𝜉, 𝜂) (5.14)

Calculating the values of the element matrices 𝑅 , with the transformation a change of coordinates
takes place for the integration

𝑟 = ∫ Int(𝑥 , 𝑥 )𝑑Ω = ∫ Int(𝜉, 𝜂)|Jac , |𝑑𝜉𝑑𝜂 (5.15)

Where Jac , (𝜉, 𝜂) is the Jacobian matrix and |Jac , (𝜉, 𝜂)| is the Jacobian determinant

Jac , (𝜉, 𝜂) = [ ] (5.16)

|Jac , (𝜉, 𝜂)| =
𝜕𝑥
𝜕𝜉

𝜕𝑥
𝜕𝜂 −

𝜕𝑥
𝜕𝜉

𝜕𝑥
𝜕𝜂 (5.17)

Basis functions
Using elements on a reference (𝜉, 𝜂)-plane, the basis functions for this plane are defined. First, the
linear and quadratic basis functions of the triangular elements are explained. After that, the basis
functions for the quadrilateral case are discussed.

Triangular basis functions
For the triangular elements, the basis functions of the reference element, in general, can be written in
terms of a polynomial. For the linear and quadratic element we have

𝜆 (𝜉𝜉𝜉) = 𝑐 + 𝑐 𝜉 + 𝑐 𝜂 linear case (5.18)
Ψ (𝜉𝜉𝜉) = 𝑐 + 𝑐 𝜉 + 𝑐 𝜂 + 𝑐 𝜉 + 𝑐 𝜉𝜂 + 𝑐 𝜂 quadratic case (5.19)

Using the condition 𝜑 (𝜉𝜉𝜉 ) = 𝛿 (Ψ (𝜉𝜉𝜉 ) = 𝛿 ), Equation 5.8, we get a system of equations in which
the parameters 𝑐 are obtained.
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Figure 5.5: Reference Triangular element with nodes , , for linear and , … , for quadratic case

Applying the equations to a reference triangle with angles at (0,0),(0,1),(1,0), Figure 5.5, the basis
functions for the linear and quadratic case are

𝜆 (𝜉𝜉𝜉) = 1 − 𝜉 − 𝜂, 𝜆 (𝜉𝜉𝜉) = 𝜉, 𝜆 (𝜉𝜉𝜉) = 𝜂 Linear basis functions (5.20)

{
Ψ (𝜉𝜉𝜉) = 𝜆 (2𝜆 − 1) for 𝑖 = 1, 2, 3
Ψ (𝜉𝜉𝜉) = 4𝜆 𝜆 Ψ (𝜉𝜉𝜉) = 4𝜆 𝜆 Ψ (𝜉𝜉𝜉) = 4𝜆 𝜆 Quadratic basis functions (5.21)

Quadrilateral basis functions
For the quadrilateral case, a rectangle is used as a reference element. Therefore, a product of two
one-dimensional basis functions can be applied for the two-dimensional basis functions. The four basis
functions of the bi-linear quadrilateral are thus defined as follows

𝜎 (𝜉𝜉𝜉) = 𝜆 (𝜉)𝜆 (𝜂), 𝜎 (𝜉𝜉𝜉) = 𝜆 (𝜉)𝜆 (𝜂),
𝜎 (𝜉𝜉𝜉) = 𝜆 (𝜉)𝜆 (𝜂), 𝜎 (𝜉𝜉𝜉) = 𝜆 (𝜉)𝜆 (𝜂) (5.22)

For the quadratic case, the one-dimensional linear basis functions are replaced by the quadratic ones,
and we get

Ψ (𝜉𝜉𝜉) = 𝜃 (𝜉)𝜃 (𝜂), Ψ (𝜉𝜉𝜉) = 𝜃 (𝜉)𝜃 (𝜂), Ψ (𝜉𝜉𝜉) = 𝜃 (𝜉)𝜃 (𝜂)
Ψ (𝜉𝜉𝜉) = 𝜃 (𝜉)𝜃 (𝜂), Ψ (𝜉𝜉𝜉) = 𝜃 (𝜉)𝜃 (𝜂),
Ψ (𝜉𝜉𝜉) = 𝜃 (𝜉)𝜃 (𝜂), Ψ (𝜉𝜉𝜉) = 𝜃 (𝜉)𝜃 (𝜂),
Ψ (𝜉𝜉𝜉) = 𝜃 (𝜉)𝜃 (𝜂), Ψ (𝜉𝜉𝜉) = 𝜃 (𝜉)𝜃 (𝜂),

(5.23)

Figure 5.6: Reference quadrilateral with nodes , , , for linear and , … , for quadratic case

Having a unit square [0, 1]× [0, 1] as reference quadrilateral, Figure 5.6, the one-dimensional basis
functions on the domain [0, 1] are defined by

𝜆 (𝜉) = 1 − 𝜉, 𝜆 (𝜉) = 𝜉 Linear basis functions (5.24)
𝜃 (𝜉) = 1 − 3𝜉 + 2𝜉 𝜃 (𝜉) = −𝜉 + 2𝜉 𝜃 (𝜉) = 4𝜉 − 4𝜉 Quadratic basis functions (5.25)
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5.1.4. Newton-Cotes Integration
In general, the integrals inside the matrix 𝑅 are difficult to compute analytically. Using numerical in-
tegration, the elements of the matrix are approximated by 𝑙 integration points with a certain weight
𝑤

∫ Int(𝜉, 𝜂)𝑑𝜉𝑑𝜂 ≈ ∑𝑤 Int(𝜉 , 𝜂 ) (5.26)

For an accurate solution, choosing the integration rule is of importance. Therefore, the Newton-Cotes
Quadrature rule is proposed. The rule approximates the integrand with equally spaced points of the
integrand and an easy to integrate interpolation function. Using the basis functions of the elements as
interpolation function, the integral becomes

∫ Int(𝜉, 𝜂)𝑑𝜉𝑑𝜂 ≈ ∫ ∑ Int(𝜉 , 𝜂 )𝜑 𝑑𝜉𝑑𝜂 = ∑ Int(𝜉 , 𝜂 )∫ 𝜑 𝑑𝜉𝑑𝜂 (5.27)

Assuming we have only second order differential equations, the Newton-Cotes integration is of accu-
racy for the linear and quadratic elements.

5.2. Topology of Elements
This section discusses the topology of the elements. Solving the minimization problem, in case of
linear elasticity, the solution is a displacement function for the elements. The displacement function
could lead to physically impossible transformed elements. Therefore, the validity of the transformation
for every solution is not guaranteed. Solving the minimization problem with the finite element approach.
A continuous mapping exists between the initial location and the transformed location of the elements.
This section explains by using the Jacobian determinant how the validity of the elements can be verified.
First, the validity of elements is discussed by using the Isoparametric transformation to a reference
element. After that, a measure is introduced for the distortion of the elements. Having higher order
functions of the Jacobian determinant, Bezier functions are introduced. Bezier functions span the same
function space as the Lagrange basis functions and have nice properties in terms of boundedness and
positivity. The last part of this section discusses the Bezier functions.

5.2.1. Validity of Elements
In the registration problem, we want to find a smooth and continuous transformation function for the
template image such that differences with the reference image are minimal. Searching for a solution,
the topology of the image has to be preserved. Topology preserving images, are for example, stretched
and/or bended images, Figure 5.7. Folded and/or cracked images doesn’t preserve the topology and
thus physically impossible in image registration. Having obtained a transformation, validity checking of
the transformation is an essential part.

Figure 5.7: Mappings of Template image, left: original image; second left to right: stretched/bended, cracked and folded image
after transformation

Using the finite element approach, valid transformations of the elements are of a specific class. The
transformations of the triangular or quadrilateral elements are diffeomorphic to a simplex or square with
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straight sides as a reference element, respectively [3]. Diffeomorphism functions are bijective and con-
tinuous with derivatives that are invertible (i.e., the Jacobian determinant is non-zero). Having these
properties, the mapping doesn’t fold or crack, and topology is preserved. Therefore, by verifying the
transformed elements, local topology-preserving of the mapping can be guaranteed. Note that it says
nothing about folding globally. It is still possible that the transformation causes folding between ele-
ments.

Recall from Section 5.1 the displacement function is a sum of the discretization values times the cor-
responding basis functions. The transformation function is

y(x) = x+ u(x) = x+∑u 𝜑 (x) (5.28)

With Isoparametric transformation, using themapping of Equation 5.14, the function y(x) for an element
in terms a reference element is

y(𝜉, 𝜂) =∑x 𝜑 (𝜉, 𝜂) +∑u 𝜑 (𝜉, 𝜂) =∑(x + u )𝜑 (𝜉, 𝜂) =∑y 𝜑 (𝜉, 𝜂) (5.29)

Verifying the topology of the element, the Jacobian determinant of this function needs to be non-zero.
Furthermore, if the sign of the Jacobian determinant is strictly positive, also the orientation of the ele-
ment hasn’t changed.

The Jacobian determinant is defined as

|Jac , (𝜉, 𝜂)| =
𝜕𝑦
𝜕𝜉

𝜕𝑦
𝜕𝜂 −

𝜕𝑦
𝜕𝜉

𝜕𝑦
𝜕𝜂 (5.30)

=∑𝑦 𝜕𝜑𝜕𝜉 ∑𝑦 𝜕𝜑𝜕𝜂 −∑𝑦 𝜕𝜑𝜕𝜉 ∑𝑦 𝜕𝜑𝜕𝜂 (5.31)

which gives following determinants for the different kind of elements in terms of basis functions

|Jac , (𝜉, 𝜂)| =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

(𝑦 − 𝑦 )(𝑦 − 𝑦 ) − (𝑦 − 𝑦 )(𝑦 − 𝑦 ) Linear triangular element

∑|Jac , (𝜉 , 𝜂 )|𝜎 (𝜉, 𝜂) Bi-linear quadrilateral element

∑|Jac , (𝜉 , 𝜂 )|Ψ (𝜉, 𝜂) Quadratic triangular element

∑|Jac , (𝜉 , 𝜂 )|Τ (𝜉, 𝜂) Bi-quadratic quadrilateral element

where 𝜎 are the bi-linear basis functions,Ψ the quadratic basis functions, and Τ bi-cubic basis func-
tions, see appendix D.

Evaluating the Jacobian determinant at the discretization points, for first order elements it gives the
lowest and the highest value of the determinant and is therefore sufficient to verify the element. For
higher order elements, the Jacobian determinant function is also of higher order and the values of the
determinant on the nodes doesn’t provide us with bounds on the determinant. The values only indicate
the changes at these nodes. Wanting to check the validity of the mapping, the equivalent quadratic and
bi-cubic Bezier functions of the basis functions can be applied [20]. These functions span the same
function space as the (Lagrange) basis functions and have nice properties in terms of bounding the
minimum and maximum of the Jacobian determinant. The Bezier functions are explained in section
5.2.2.
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Distortion
The value of the determinant can not only provide us with information about the validity of the elements
but is also a measure for the distortion of the element. Comparing the Jacobian determinant of the
transformation with the original element, the distortion between initial position and solution is obtained
as is visualized in Figure 5.8. The measure read

|Jac , (𝜉, 𝜂)| =
|Jac , (𝜉, 𝜂)|
|Jac , (𝜉, 𝜂)|

. (5.32)

For |Jac , (𝜉, 𝜂)| = 1 the area is equal and when |Jac , (𝜉, 𝜂)| < 1 or > 1 the area is contracted or
expanded, respectively.

Figure 5.8: Mappings between original, solution and reference element

5.2.2. Bezier Functions
In this section, the Bezier functions are discussed. For obtaining a bound on the higher order basis
functions in the Jacobian determinant, the Bezier functions are convenient. The properties of the one-
dimensonial case can be extended to higher dimensions. For ease, the discussion of the properties
treats only the one-dimensional functions. It is based on [7] and [20].

For the one-dimensional case, Bezier curves are expressed as Bernstein polynomials:

ℬ( )(𝑡) = (𝑛𝑖 )𝑡 (1 − 𝑡) (𝑖 ≤ 𝑛) (5.33)

with binomial coefficient

(𝑛𝑖 ) = {
𝑛!

𝑛!(𝑛 − 𝑖)! if 0 ≤ 𝑖 ≤ 𝑛

0 else

Two of the properties among others are:

(a) Positivity: ℬ( )(𝑡) ≥ 0 for 𝑡 ∈ [0, 1];

(b) Partition of Unity: ∑ ℬ( )(𝑡) = 1 for 𝑡 ∈ [0, 1].

Consider a function that is based on one-dimensional (Lagrange) basis functions. The Bezier functions
span the same function space and therefore

𝐹(𝑡) =∑𝑓𝜑 (𝑡) = ∑𝑏 ℬ( )(𝑡) (5.34)
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Due to the properties of the Bezier function, the function 𝐹(𝑡) for 𝑡 ∈ [0, 1] can be bound with the Bezier
coefficients,𝑏 ,

𝑏 = ∑𝑏 ℬ( )(𝑡) ≤ ∑𝑏 ℬ( )(𝑡) ≤ ∑𝑏 ℬ( ) = 𝑏 (5.35)

where min 𝑏 ∶= 𝑏 , and max 𝑏 ∶= 𝑏 .

The Bezier function relates the Lagrange coefficients, the output of the function, and the bezier co-
efficients. Evaluating the relations at the nodal points, a transformation matrix is obtained, and the
transformation is given by

f = 𝑇( )→ℬb

where 𝑇( )→ℬ =
⎡
⎢
⎢
⎢
⎣

ℬ( )(𝜉 ) ℬ( )(𝜉 ) ⋯ ℬ( )(𝜉 )
ℬ( )(𝜉 ) ℬ( )(𝜉 ) ⋯ ℬ( )(𝜉 )

⋮ ⋱ ⋱ ⋮
ℬ( )(𝜉 ) ⋯ ℬ( ) (𝜉 ) ℬ( )(𝜉 )

⎤
⎥
⎥
⎥
⎦

(5.36)

The inverse of the transformationmatrix is the transformation from basis to Bezier coefficients, (𝑇( )→ℬ) =
𝑇( )ℬ→ .

Adaptive subdivision
Furthermore, the function 𝐹(𝑡) on a sub-domain [𝑎, 𝑏] where 0 ≤ 𝑎 < 𝑏 ≤ 1, can also be written in
terms of bezier curves. It gives local bezier coefficients, b[ , ], on the sub-domain with 𝑡[ , ] ∈ [0, 1],
and the function equals

𝐹[ , ](𝑡[ , ]) = ∑𝑏 ℬ( )(𝑡(𝑡[ , ])) = ∑𝑏[ , ]ℬ( )(𝑡[ , ]) (5.37)

where 𝑡(𝑡[ , ]) = 𝑎 + (𝑏 − 𝑎)𝑡[ , ]. With this equality, the relation between bezier coefficients on the
subdomain and bezier coefficients on the whole domain is

𝑇( )ℬ→ b[ , ] = 𝑇( ),[ , ]ℬ→ b⟹ b[ , ] = 𝑇( )→ℬ𝑇
( ),[ , ]
ℬ→ b

with transformation matrix

𝑇( ),[ , ]→ℬ =
⎡
⎢
⎢
⎢
⎣

ℬ( )(𝑎 + (𝑏 − 𝑎)𝜉 ) ℬ( )(𝑎 + (𝑏 − 𝑎)𝜉 ) ⋯ ℬ( )(𝑎 + (𝑏 − 𝑎)𝜉 )
ℬ( )(𝑎 + (𝑏 − 𝑎)𝜉 ) ℬ( )(𝑎 + (𝑏 − 𝑎)𝜉 ) ⋯ ℬ( )(𝑎 + (𝑏 − 𝑎)𝜉 )

⋮ ⋱ ⋱ ⋮
ℬ( )(𝑎 + (𝑏 − 𝑎)𝜉 ) ⋯ ℬ( ) (𝑎 + (𝑏 − 𝑎)𝜉 ) ℬ( )(𝑎 + (𝑏 − 𝑎)𝜉 )

⎤
⎥
⎥
⎥
⎦

Applying the division of the domain to the bound of the function 𝐹(𝑡), we get

min
,
𝑏[ , ] ≤ min𝐹(𝑡) ≤ 𝐹(𝑡) ≤ max𝐹(𝑡) ≤ max

,
𝑏[ , ]

where [0, 1] = ⋃ [𝑎 , 𝑏 ] with 𝑘 the total number of sub-domains.

Subdivision can be used for improvement on the bound. If the bound of the bezier coefficients on
the whole domain is not sharp enough, the domain can be divided into subdomains. For example,
sharper bounds are visualized in Figure 5.9 where the domain is divided into two and four subdomains
with coefficients (•). As can be clearly seen, the Lagrange coefficients can’t provide us with a bound
while the Bezier coefficients give bounds and subdivision leads to even sharper bounds.
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Figure 5.9: Function ( ) visualized in terms of Lagrange basis functions (left), Bezier curves (second left) and
Bezier curves with domain divided into two and four parts (second right and right) with corresponding coefficients (o).

Bezier curves applied to the Jacobian Determinant
Rewriting our Jacobian Determinants in Bezier curves, the triangular basis functions can be written
in terms of the Bezier triangular polynomials, Equation 5.38, and Bezier polynomials for quadrilateral
elements are products Bernstein polynomials, Equation 5.39.

𝒫( )(𝜉, 𝜂) = (𝑛𝑖 )(
𝑛 − 1
𝑗 )𝜉 𝜂 (1 − 𝜉 − 𝜂) (𝑖 + 𝑗 ≤ 𝑛) (5.38)

𝒬( )(𝜉, 𝜂) = ℬ( )(𝜉)ℬ( )(𝜂) = (𝑛𝑖 )(
𝑛
𝑗 )𝜉 (1 − 𝜉) 𝜂 (1 − 𝜂) (𝑖 ≤ 𝑛, 𝑗 ≤ 𝑛) (5.39)

Applying the polynomials to the Jacobian Determinant of the (bi-)quadratic elements, it results in

|Jac , (𝜉, 𝜂)| =

⎧
⎪⎪

⎨
⎪⎪
⎩

∑|Jac , (𝜉 , 𝜂 )|Ψ (𝜉, 𝜂) = ∑ 𝑏 𝒫( )(𝜉, 𝜂) Quadratic element

∑|Jac , (𝜉 , 𝜂 )|Τ (𝜉, 𝜂) =∑∑𝑏 𝒬( )(𝜉, 𝜂) Bi-quadratic element

(5.40)

5.3. Elastic Regularisation and Penalty Approaches with FEM
Implementing the finite element approach of the elastic regularisation term, three approaches are pro-
posed. An approach is a global approach in which the same regularization parameter is applied for all
elements. It is the same approach as the finite difference regularisation in FAIR. The second approach
is local elastic regularization. Having our domain divided into a finite set of elements, the regularisation
term is an assembly of regularisation per element. It provides us with an easy way to implement local
changes and is thus proposed. The last approach is by adding a penalty term using global regularisa-
tion. The distortion of the elements can be measured using the Jacobian determinant of the elements.
In that way, specific distortion values can be penalized as a soft constraint.

Global Elastic Regularisation
The simplified minimal elastic potential energy used by FAIR is

𝒮[u] = 1
2 ∫ (𝜇 + 𝜆)(∇ ⋅ u) + 𝜇(∇u ⋅ ∇u)𝑑Ω (5.41)
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Using Ritz’s method for the finite element approach and the matrix-norm, Definition 5.1, the regularisa-
tion term read

𝑆(u) = 1
2||u|| = 1

2 ∑ ||u|| ( ) (5.42)

With element matrix 𝑅 depending on the shape and order of the chosen element

𝑅 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑟 ⋯ 𝑟 , 𝑟 , ⋯ 𝑟 ,

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑟 , ⋯ 𝑟 , 𝑟 , ⋯ 𝑟 ,

𝑟 , ⋯ 𝑟 , 𝑟 , ⋯ 𝑟 ,

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑟 , ⋯ 𝑟 , 𝑟 , ⋯ 𝑟 ,

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑟 , = ∫ (2𝜇 + 𝜆)𝜕𝜑𝜕𝑥
𝜕𝜑
𝜕𝑥 + 𝜇𝜕𝜑𝜕𝑥

𝜕𝜑
𝜕𝑥 𝑑Ω

𝑟 , = ∫ (𝜇 + 𝜆)𝜕𝜑𝜕𝑥
𝜕𝜑
𝜕𝑥 𝑑Ω

𝑟 , = ∫ (𝜇 + 𝜆)
𝜕𝜑
𝜕𝑥

𝜕𝜑
𝜕𝑥 𝑑Ω

𝑟 , = ∫ 𝜇𝜕𝜑𝜕𝑥
𝜕𝜑
𝜕𝑥 + (2𝜇 + 𝜆)𝜕𝜑𝜕𝑥

𝜕𝜑
𝜕𝑥 𝑑Ω

The integral is calculated by the Newton-Cotes integration rule of section 5.1.4 and is exact. For the
details using different kinds of elements and the computation of the element matrix see appendix B.

Definition 5.1: Matrix-inner-product and matrix-norm

The A-inner product is defined by (y, z) = y 𝐴z and the A-norm by

||y|| = √(y,y) = √y 𝐴y (5.43)

Here 𝐴 is a positive symmetric definite matrix

Local Elastic Regularisation
Having a finite element implementation, as can be seen in Equation 5.42, is regularisation per element.
This gives possibilities to use different local regularization parameters to improve the solution.

𝑆 (u) = ∑𝑆 (u) = ∑ 𝛼
2 ||u|| ( ) (5.44)

The different local regularization parameters can be physically interpreted in terms of local stiffness.
Assuming Poisson’s contraction ratio, 𝜈, is the same everywhere, a higher regularization parameter 𝛼
results in higher Young’s modulus. As discussed in chapter 3, Young’s modulus is the relation between
stress and strain, and a higher value means stiffer material. Having higher regularization parameters
gives locally stiffer material.

Global Elastic Regularisation with Penalty Term
Having a global regularisation approach, an additonal term can be added as soft constraint for heavily
topology changes. Recall from chapter 2, volume-preserving penalty is a soft constraint to prevent
solutions like folding and unlikely shrinking/expanding. With the finite element approach, the solution
of the minimization is in terms of pre-defined basis functions. The behavior of the topology is therefore
known everywhere. Having the distortion measure, Equation 5.32, a local volume-preserving method
on the elements is proposed.

Applying a squared logarithmic function on the distortion measure, shrinking and expanding of the
elements are equally penalized. Furthermore, it is a convex function that is useful for the optimization
procedure. Unfortunately, the function is only defined for 𝑥 ∈ ℝ and therefore for 𝑥 ≤ 𝜖 > 0 a different
quadratic function is proposed where continuity and first order derivative continuity are preserved. It



5.3. Elastic Regularisation and Penalty Approaches with FEM 35

results in function 𝜎, illustrated in Figure 5.10 and defined as

𝜎(𝑓(𝑥)) = 1
2𝑓(𝑥) . (5.45)

with inner function

𝑓(𝑥) ={
log(𝑥) 𝑥 > 𝜖

log(𝜖) + 𝑥 − 𝜖𝜖 𝑥 ≤ 𝜖
(5.46)
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Figure 5.10: Penalty function ( ( ))

Integrating the penalty of the distortion over the volume, the penalty term results in

𝒫[y] = ∫ 𝜎(𝑓(|Jac , (x)|))𝑑Ω = ∑∫ 𝜎(𝑓(|Jac , (x)|))𝑑Ω (5.47)

For ease, as for the other regularization terms, the Newton-Cotes integration rule is proposed as nu-
merical integration. Due to the highly non-linear terms for the bi-linear and (bi-)quadratic elements, the
Newton-Cotes integration isn’t exact [34]. The discrete penalty function for the different elements with
remainders are

𝒫[y] =

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

∑ Δ
2𝜎(𝑓(|Jac , (x)|)) Linear element

∑∑𝑤 𝜎(𝑓(|Jac , (x)|)) + 𝒪(||h|| ) Bi-linear element

∑∑𝑤 𝜎(𝑓(|Jac , (x)|)) + 𝒪(||h|| ) Quadratic element

∑∑𝑤 𝜎(𝑓(|Jac , (x)|)) + 𝒪(||h|| ) Bi-quadratic element

(5.48)

Details about the penalty term and the corresponding derivatives for the optimization procedure are
worked out in Appendix C.





6
Solution Methods for Linear Problems

This chapter discusses methods to solve the linear problems with a positive definite matrix. In the first
section, a weighted Least-Squares problem is explained, which corresponds with the Gauss-Newton
scheme of the registration problem. After that, a fast direct method for solving the linear system is
discussed. The system can be quite large when having detailed images, and it becomes practically
impossible to solve the system with direct methods. The iterative Conjugate Gradient methods are
treated. Iterative methods use a first guess and improves it by computing the deviation. This recursion
is executed until a solution is found with sufficient precision. In the last section, a matrix-free approach
of the regularisation in the solution methods is considered to reduce storage and assemble time.

6.1. Optimization Problem
From chapter 4, we’ve seen that the optimality criterion is a non-linear problem. By applying a Gauss-
Newton type scheme, an iterative procedure is introduced in which a linear system has to be solved
for obtaining a search direction. The linear system is given by, Equation 4.26 and 4.27,

𝐻(y)p = −∇𝐽(y) (6.1)

with

∇𝐽(y) = (∇r(y)𝑃) ∇𝜙(r) + 𝛼∇𝑆(y − y )

𝐻(y) ≈ (∇r(y)𝑃) ∇ 𝜙(r)∇𝑟(y)𝑃 + 𝛼∇ 𝑆(y − y )

where 𝐻 is a symmetric positive definite matrix.

Knowing the gradient of the regularisation is linear, the second derivative of 𝑆(y − y ) does not
depend on y−y and is denoted by 𝑅. Furthermore, u = y−y , and the terms of the linear system
result in

∇𝐽(y) = (∇r(y)𝑃) ∇𝜙(r) + 𝛼𝑅u

𝐻(y) ≈ (∇r(y)𝑃) ∇ 𝜙(r)∇𝑟(y)𝑃 + 𝛼𝑅

For the finite element approaches, the regularisation term is a sum of regularisation per element. For
the penalty term, a Gauss-Newton approach is added to the system, and we get

∇𝐽(y) = (∇r(y)𝑃) ∇𝜙(r) + 𝛼 (∑𝛼 𝑄 𝑅 (𝑄 ) )u+ 𝛽(∇q(y)) ∇𝑓(q)

𝐻(y) ≈ (∇r(y)𝑃) ∇ 𝜙(r)∇𝑟(y)𝑃 + 𝛼 ∑𝛼 𝑄 𝑅 (𝑄 ) + 𝛽(∇q(y)) ∇ 𝑓(q)∇q(y)

(6.2)

37
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Recall 𝜙(r), 𝑓(q) are convex, the data and penalty terms of 𝐻(y are thus symmetric positive semi-
definite. The elastic regularisation part is symmetric positive definite and 𝐻(y) results in a symmetric
positive definite matrix.

The linear system can be seen as a special case of a (constrained) weighted least-squares problem
with regularisation. Consider the following weighted least-squares problem

min
x

1
2||b− 𝐴x|| + 12𝜆 ||x+ u|| + 12𝜆 ||c− 𝐸x|| (6.3)

Taking the first derivative to x and set to zero, leads to the following normal equations

(𝐴 𝑊𝐴 + 𝜆 𝑅 + 𝜆 𝐸 𝑉𝐸)x = (𝐴 𝑊)b− 𝜆 𝑅u+ 𝜆 (𝐸 𝑉)c (6.4)

Alternatively, by formulating as a constrained weighted least-squares problem

min
d,x

1
2||d|| + 12𝜆 ||x+ u|| + 𝜆 ||c− 𝐸x|| with d = 𝑊(b− 𝐴x) (6.5)

Applying the method of Lagrange multipliers, the equations results in

d = 𝑊(b− 𝐴x), 𝜆 𝑅(x+ u) + 𝜆 (𝐸 𝑉)(𝐸x− c) = 𝐴 d (6.6)

Rewriting Equation 6.1 in terms of Equation 6.3 or 6.5, we get

p → x, −∇r(y) → 𝐴, ∇ 𝜑(r) → 𝑊, ∇𝜑(r) → b, 𝜆 → 𝛼 ,

∑𝛼 𝑄 𝑅 (𝑄 ) → 𝑅,u → u, 𝜆 → 𝛽,−∇q(y) → 𝐸, ∇ 𝑓(q) → 𝑉, ∇𝑓(q) → c;

For simplicity, the system is rewritten such that in the next sections the following linear system has to
be solved

𝐾w = f where{
𝐾 = 𝐴 𝑊𝐴 + 𝜆 𝑅 + 𝜆 𝐸 𝑉𝐸,
w = x,
f = 𝐴 𝑊b− 𝜆 𝑅u+ 𝜆 𝐸 𝑉c;

(6.7)

6.2. Cholesky Decomposition
This section is based on [14].

Direct methods use a form of Gaussian elimination, where the matrix is divided into two parts, an
upper and lower triangular matrix. After the decomposition, with forward and backward substitution,
the unknown vector is calculated. The Cholesky Decomposition is a fast direct method that uses the
property of a SPD matrix to calculate the upper and lower triangular matrix. Consider the following
system

𝐾w = f (6.8)

where 𝐾 is a symmetric positive definite matrix. The matrix can be written as

𝐾 = 𝐶𝐶 (6.9)

where 𝐶 is a lower triangular matrix.
The decomposition of the matrix is obtained by comparing the product of the triangular matrices to the
values of 𝐾. 𝐶 is stored in the lower triangular part of 𝐾.



6.3. Krylov Subspace Methods 39

Algorithm 1 Cholesky factorization step
1: for 𝑘 = 1 → 𝑛 do
2: 𝐾(𝑘, 𝑘) ← 𝐶(𝑘, 𝑘) = √𝐾(𝑘, 𝑘) − ∑ 𝐶(𝑘, 𝑗)
3: for 𝑖 = 𝑘 + 1 → 𝑛 do
4: 𝐾(𝑖, 𝑘) ← 𝐶(𝑖, 𝑘) = ( , )(𝐾(𝑖, 𝑘) − ∑ 𝐶(𝑖, 𝑗)𝐶(𝑘, 𝑗))
5: end for
6: end for

After the decomposition, with forward and back substitution, 𝑤 is calculated.

𝐶y = f (6.10)
𝐶 w = y (6.11)

Algorithm 2 Forward substitution
1: for 𝑖 = 1 → 𝑛 do
2: 𝑦(𝑖) ← (𝑓(𝑖) − 𝐾(𝑖, 1 ∶ 𝑖 − 1) ⋅ 𝑓(1 ∶ 𝑖 − 1))/𝐾(𝑖, 𝑖)
3: end for

Algorithm 3 Backward substitution
1: for 𝑖 = 1 → 𝑛 do
2: 𝑤(𝑖) ← (𝑦(𝑖) − 𝐾(𝑖, 1 ∶ 𝑖 − 1) ⋅ 𝑦(1 ∶ 𝑖 − 1))/𝐾 (𝑖, 𝑖)
3: end for

6.3. Krylov Subspace Methods
Iterative approach to improve computational costs are the Krylov Subspace methods. Basic iterative
methods use the following recursion to approximate vector w

w = (𝐼 − 𝑀 𝐾)w +𝑀 f = w +𝑀 s (6.12)

Writing out the first steps, we see that

w = w +𝑀 s

w = w +𝑀 s = w + 2𝑀 s +𝑀 𝐾𝑀 s

⋮

which implies that the vector w will be

w ∈ w + span{𝑀 s , 𝑀 𝐾(𝑀 s ), … , (𝑀 𝐾) (𝑀 s )} (6.13)

Calling

𝒦 (𝑀 𝐾,𝑀 s ) ∶= span{𝑀 s , 𝑀 𝐾𝑀 s , … , (𝑀 𝐾) 𝑀 s }

It spans the product of matrix (𝑀 𝐾) for 𝑗 = 1… , 𝑖 with the residual of the first guess multiplied by
a preconditioning matrix 𝑀 . It is called the Krylov-space of dimension 𝑘 with matrix 𝑀 𝐾 and initial
vector 𝑀 s .

The Conjugate Gradient method is a powerful method, with 𝑀 = 𝐼, which minimizes the K-norm
of the error in the Krylov subspace. This section is based on [11] and[30].
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Conjugate Gradient Method
The Conjugate Gradient method (CG) is an iterative method that uses the properties of the SPD matrix
on the Krylov-subspace. The method is introduced by Hesteness and Steifel [18]. The method approx-
imates, like the basic iterative methods, w by improving a first guess w with new estimates w . With
the usage of a search direction pk and the residual s a new estimate is obtained. The K-norm, is set
as a minimality condition and leads to the Conjugate Gradient Method.

||w −w || = min
y∈𝒦 ( ;s )

||w − y|| (6.14)

The solution of the minimality condition results in a recursion

w = w + 𝛼 p (6.15)
s = s − 𝛼 𝐾p (6.16)
p = s + 𝛽 p (6.17)

where the search and residual vector are perpendicular s ⊥s and p ⊥𝐾p . This gives us following
relation for 𝛼 and 𝛽

𝛼 =
s s

p 𝐾p
, 𝛽 =

s s

s s

The complete algorithm read

Algorithm 4 Standard CG
Require: 𝐾 ∈ ℝ × ,w , f ∈ ℝ ;
Ensure: Approximate solution w such that ‖f − 𝐾w ‖ ⩽ 𝑇𝑂𝐿.
1: s = f − 𝐾w ; p = s ; 𝛾 = s s ;
2: while √𝛾 > 𝑇𝑂𝐿 and 𝑘 < 𝑘 do
3: 𝜉 = p 𝐾p
4: 𝛼 =
5: w = w + 𝛼 p
6: s = s − 𝛼 𝐾p
7: 𝛾 = s s

8: 𝛽 =
9: p = s + 𝛽 p
10: 𝑘 = 𝑘 + 1
11: end while

The rate of convergence of the CG method can be written in terms of an upper-bound.

||w −w || ≤ 2(√𝜅 (𝐾) − 1
√𝜅 (𝐾) + 1

) ||w −w || , (6.18)

where 𝜅 (𝐾) is the condition-number and in case of a SPD matrix can be expressed as

𝜅 (𝐾) ∶= ||𝐾|| ||𝐾 || = 𝜆 (𝐾)
𝜆 (𝐾) .

𝜆 (𝐾) is the largest and 𝜆 (𝐾) the smallest eigenvalue of matrix 𝐾. Having eigenvalues clustered
around one will result in fast convergence of the method.

Conjugate Gradient Least Squares Method
The Conjugate Gradient for Least Squares (CGLS) method is obtained by applying the CG method on
the normal equations 𝐴 𝐴x = 𝐴 b. The minimality condition, Equation 6.14, leads to the following

||x− x || = √(x− x ) 𝐴 𝐴(x− x ) = √(𝐴(x− xi)) (𝐴(x− xi)) = √(r − r) (ri − r), r = b− 𝐴x
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It can be proven that in general, the CGLS not only minimizes ||r − r|| , but it minimizes the norm of
the residual r .
Applying this to the normal equation with regularisation, Equation 6.4, the linear system of the CG-
method is replaced by 𝐾 → 𝐴 𝑊𝐴 + 𝜆 𝑅 + 𝜆 𝐸 𝑉𝐸, w → xk, f → 𝐴 b − 𝜆𝑅u + 𝜆 𝐸 𝑉c. Modifying it
slightly by defining the constraint

r = 𝑊(b− 𝐴x ) (6.19)

This gives us the following recursion of the residual

s = 𝐴 r − 𝜆 𝑅(u+ x ) − 𝜆 (𝐸 𝑉)(𝐸x − c) (6.20)

Introducing m ∶= 𝜆 𝑅u− 𝜆 𝐸 𝑉c and 𝑄 ∶= 𝐸 𝑉𝐸, the recursion becomes

s = 𝐴 r − 𝜆 𝑅x − 𝜆 𝑄x −m (6.21)

Calling q ∶= 𝐴p , the complete CGLS algorithm reads

Algorithm 5 CGLS
Require: 𝐴, 𝐸 ∈ ℝ × ;𝑊, 𝑉 ∈ ℝ × ; 𝑅 ∈ ℝ × ;x ∈ ℝ ;b ∈ ℝ ;u, c ∈ ℝ ; 𝜆 , 𝜆 ∈ ℝ ≥ 0;
Ensure: Approximate solution x such that ‖𝐴 r − 𝜆 𝑅x − 𝜆 𝑄x −m‖ ⩽ 𝑇𝑂𝐿.
1: r = 𝑊(b − 𝐴x );m = 𝜆 𝑅u − 𝜆 𝐸 𝑉c; 𝑄 = 𝐸 𝑉𝐸; s = 𝐴 r − 𝜆 𝑅x − 𝜆 𝑄x −m; p = s ;

q0 = 𝐴p0; 𝛾 = s s ;𝑘 = 0;
2: while √𝛾 > 𝑇𝑂𝐿 and 𝑘 < 𝑘 do
3: 𝜉 = q 𝑊q + 𝜆 p 𝑅p + 𝜆 p 𝑄p
4: 𝛼 =
5: x = x + 𝛼 p ; 𝑅x = 𝑅x + 𝛼 𝑅p ; 𝑄x = 𝑄x + 𝛼 𝑄p
6: r = r − 𝛼 𝑊q
7: s = 𝐴 r − 𝜆 𝑅x − 𝜆 𝑄x −m
8: 𝛾 = s s

9: 𝛽 =
10: p = s + 𝛽 p
11: q = 𝐴p
12: 𝑘 = 𝑘 + 1
13: end while

Preconditioning
The rate of convergence of the Krylov subspace methods depends on the eigenvalues of the matrix.
In the case of the weighted least squares problem with regularisation, the matrix is 𝐾 = 𝐴 𝑊𝐴+𝜆 𝑅+
𝜆 𝐸 𝑉𝐸. Having extreme eigenvalues, the condition number is high and results in slow convergence.
Applying a left preconditioner 𝑃 on the normal equations, Equation 6.22, the rate of convergence can
be improved. Having the eigenvalues of 𝑃 (𝐴 𝑊𝐴 + 𝜆 𝑅 + 𝜆 𝐸 𝑉𝐸) clustered around 1, the rate of
convergence will be strong. Because an extra step is required in the method, the operator has to be
’cheap’.

𝑃 (𝐴 𝑊𝐴 + 𝜆 𝑅 + 𝜆 𝐸 𝑉𝐸)x = 𝑃 (𝐴 r− 𝜆 𝑅u+ 𝜆 𝐸 𝑉c) (6.22)

The preconditioner has to be chosen somewhere between the identity matrix and the matrix of the sys-
tem 𝐾 . 𝑃 = 𝐼 will give the same method as the original and is therefore not an improvement. Choosing
𝑃 = 𝐴 𝑊𝐴 + 𝜆 𝑅 + 𝜆 𝐸 𝑉𝐸, the solution is obtained in one iteration, but then the problem is shifted to
calculating the operator 𝑃 .

Applying the preconditioner to the CGLS method, it results in Algorithm 6.

Diagonal Scaling
The preconditioned system can be written as

�̃�𝐰 = ̃𝐟 (6.23)
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Algorithm 6 Preconditioned CGLS
Require: 𝐴, 𝐸 ∈ ℝ × ;𝑊, 𝑉, 𝑃 ∈ ℝ × ; 𝑅 ∈ ℝ × ;x ∈ ℝ ;b ∈ ℝ ;u, c ∈ ℝ ; 𝜆 , 𝜆 ∈ ℝ ≥ 0;
Ensure: Approximate solution x such that ‖𝐴 r − 𝜆 𝑅x − 𝜆 𝑄xk −m‖ ⩽ 𝑇𝑂𝐿.
1: r = 𝑊(b−𝐴x );m = 𝜆 𝑅u−𝜆 𝐸 𝑉c; 𝑄 = 𝐸 𝑉𝐸; s = 𝐴 r −𝜆𝑅x −𝜆 𝑄x −m; z = 𝑃 s ;p =

z ; q0 = 𝐴p0;𝛾 = s z ;𝑘 = 0;
2: while √𝛾 > 𝑇𝑂𝐿 and 𝑘 < 𝑘 do
3: 𝜉 = q 𝑊q + 𝜆 p 𝑅p + 𝜆 p 𝑄p
4: 𝛼 =
5: x = x + 𝛼 p ; 𝑅x = 𝑅x + 𝛼 𝑅p ; 𝑄x = 𝑄x + 𝛼 𝑄p
6: r = r − 𝛼 𝑊q
7: s = 𝐴 r − 𝜆 𝑅x − 𝜆 𝑄x −m
8: z = 𝑃 s
9: 𝛾 = s z

10: 𝛽 =
11: p = z + 𝛽 p
12: q = 𝐴p
13: 𝑘 = 𝑘 + 1
14: end while

with �̃� = 𝑃 (𝐴 𝑊𝐴 + 𝜆 𝑅 + 𝜆 𝐸 𝑉𝐸), 𝐟 = 𝑃 𝐟.
Using the diagonal matrix as a preconditioner and defining it by 𝑝 = 𝑎 𝑤 𝑎 + 𝜆 𝑟 + 𝜆 𝑒 𝑣 𝑒 . The
matrix �̃� is easily calculated, and the diagonal of �̃� is one, which saves 𝑛 multiplications in a matrix-
vector product. Van der Sluis [32] showed that with the diagonal matrix as a preconditioner, it almost
minimizes the condition number of matrix �̃�. Applying the diagonal preconditioner is also called the
Jacobi preconditioning.

6.4. Matrix-free approach of Regularisation
When using a Finite Element Method on the regularisation, the matrix 𝑅 is assembled by the ele-
ment matrices. With only matrix-vector multiplications of the matrix in the solution methods, a different
approach can be applied. Instead of assembling the whole matrix 𝑅, the following approach for the
matrix-vector product in the iterative methods is attractive

𝑅v = (∑𝑄 𝑅 (𝑄 ) )v = ∑𝑄 𝑅 (𝑄 ) v (6.24)

where 𝑛 are the number of elements and 𝑣 is the vector for the local nodes of the element.

The advantages of the elementwise approach are the assembly time and storage of the matrix. A
drawback of the approach is that it takes more computations per (global) product [12].



7
Comparison of FEM and FDM

In this chapter, different experiments of the proposed finite element approach are discussed. A com-
parison is made with the existing finite difference method of elasticity regularisation in FAIR.

Three different sets of data are introduced, as shown in Figure 7.1. The first set of images contains two
X-ray images of a human hand. The registration of these images is a simple medical example where the
differences in data are clearly visible. The second data set is an artificial disc- and a c-shaped image,
the transformation from disc- to the c-shaped image could lead to large deformations. Finding a valid
transformation is challenging and therefore, interesting for the validity of the finite element approaches.
The last set of images is a sample from the data of the histology images. Solving this problem gives
besides the performance for this sample, insight into the parameters which can be used for the whole
dataset.

The images of the first two data sets are 128 by 128 pixels. The original size of the histology images
differ. However, the images are edited and downscaled to 320 by 256 pixels, which will be discussed
in Chapter 9.

Figure 7.1: Left to right: X-ray images of human hand; disc and c-shaped image; Sample of histological data set; Top: reference
images; Bottom: Template images;

This chapter is structured as follows: First, the methods and the parameters for the registration pro-
cedure are set. After that, the results are shown for the different kinds of elements compared to the finite
difference method. Next, the validity of the obtained transformation functions is investigated. In the last

43
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section, the transformations and reductions of the measure for different regularisation parameters are
discussed.

7.1. Registration Approach and Parameters
For the multi-level approach, first, a global matching will be applied. A linear affine pre-registration is
chosen, which allows for rotation, scaling, and translation. Improving the transformation function by
going to finer grids, the following levels are defined

Data level pixels
Hand 2,… , 7 2 × 2
Disc 2,… , 7 2 × 2

Histology 3,… , 8 5 ⋅ 2 × 2

The maximum number of iterations for the line-search and the non-linear iterations are both set to
ten iterations.

The distance measure proposed is the Sum-of-Squared (SSD) distance measure, Equation 2.8. With
similar acquisition conditions for template and reference images, intensity values should correspond
when an accurate transformation is obtained, and the SSD distance measure is thus a robust distance
measure.

For the non-parametric registration, the elastic regularisation is added to the measure, and recall, the
optimization problem is

min
y(x)

𝐽(y(x)); 𝐽(y(x)) = 𝐷 (𝑇(y(x)), 𝑅(x)) + 𝛼𝑆(y(x) − y (x)). (7.1)

To compare the accuracy of the method, the reduction of the measure is defined by

𝐽
𝐽 ∶= 𝐽(y(x))

𝐽(x) (7.2)

The same holds for the the data 𝐷/𝐷 and regularisation 𝑆/𝑆 part.

7.1.1. Regularisation and Elasticity Parameters
For the elasticity part of the function, different parameters are unknown. In the first place, we don’t
know the characteristics of the deformation and the Lamé parameters for the elasticity equations are
thus not known. Secondly, it is unknown how much regularisation has to be added to the problem.

For the first Lamé parameter, the value of 𝜆 = 0 is chosen. The value is a common choice for elastic
regularisation [4][26]. The second Lamé parameter has a default value of one (𝜇 = 1), because the
regularisation parameter can be seen as part of the second lamé parameter. A good value of 𝜇 is com-
bined with finding the optimal regularisation parameter. Moreover, these values are chosen because
finding the correct parameter is not of importance as we are more interested in a meaningful transfor-
mation than a correct physical model.

The regularisation parameter is of choice by hand. Using a high value for the regularisation parameter,
registration will result in mainly optimizing the regularization part without optimizing the data. Applying
a small regularisation part, only the data part will be optimized. The solution will then be less smooth
and become irregular. The irregular solutions can result in physically unlikely or impossible transforma-
tions. By registrating with different parameters, an optimal value is determined. The curves of reduction
with different regularisation parameters for the bi-linear quadrilateral element are shown. For all data
sets, it results in an L-shaped curve, Figure 7.2. With the L-curve approach, a suitable value can be
chosen near the corner of the curve [16]. This gives a trade-off between a high reduction in data and
a high reduction in regularisation. However, the regularisation ensures smooth transformations, so a
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significant regularisation reduction is required. The chosen values of parameters are shown in the table
of Figure 7.2.
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Figure 7.2: Elasticity-Data reduction curve for bi-linear quadrilateral elements

7.2. Minimization
The four different elements, linear triangular (FEM-TRI-1), bi-linear quadrilateral (FEM-QUAD-1), quadratic
triangular (FEM-TRI-2), and bi-quadratic quadrilateral (FEM-QUAD-2) are compared with the finite dif-
ference method (FDM). The reduction results of the different approaches are visualized in Table 7.1.
One can see that the variations in the reduction for the hand and the histology images do not differ
significantly. The transformation functions of the finite difference method yield the highest reduction,
but differences are not noteworthy. For the c-shaped data set, the finite element approach results in a
slight improvement of the minimization, and with the linear element, it performs best.

Data Approach 𝐽/𝐽 𝐷/𝐷

Hand

FDM 0,0455 0,0316
FEM-TRI-1 0,0462 0,0327

FEM-QUAD-1 0,0463 0,0328
FEM-TRI-2 0,0458 0,0325

FEM-QUAD-2 0,0458 0,0325

Disc

FDM 0,1881 0,1618
FEM-TRI-1 0,1743 0,1447

FEM-QUAD-1 0,1842 0,1568
FEM-TRI-2 0,1739 0,1448

FEM-QUAD-2 0,1843 0,1571

Histology

FDM 0,4447 0,3279
FEM-TRI-1 0,4483 0,3332

FEM-QUAD-1 0,4482 0,3331
FEM-TRI-2 0,4427 0,3306

FEM-QUAD-2 0,4432 0,3307

Table 7.1: Minimization reduction of the data using different FEM approaches
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As we are interested in the transformed images, the images for the linear elements are visualized
in Figure 7.3. For the hand and the histology problems, a nice transformation is obtained. Only for the
transformed disc-shaped image, differences are clearly visible.

Figure 7.3: Left to right: X-ray images of human hand; disc- and c-shaped image; Sample of histological data set

7.3. Distortion

In this section, the distortion and the validity of the obtained transformation functions from the previous
section are discussed. As illustrated in Figure 7.4, for all data sets, significant deformations are present
with the linear triangular elements. By using the distortion measure of Chapter 5.2, Equation 5.32, the
distortion at the discretization points of the elements are calculated.
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(a) Hand (b) Disc (c) Histology

Figure 7.4: Zoomed in parts of the transformed grid with linear triangular element with large deformation

For the finite difference method, the solution is only known in the staggered grid points, and a distor-
tion measure can’t be constructed. Therefore, without any interpolation, measuring the distortion of the
transformation is impossible. So, it is assumed that the solution in the grid points can be interpolated
to linear cells. An averaging operator is applied, which results in values in the nodes and the centers
of the linear cells, Figure 7.5. The averaging operator is discussed in [27]. The cells are divided into
four triangles, and by using the same approach as for the linear triangular element, the distortion for
the finite difference method is possible.

Figure 7.5: Staggered grid (►,▲) interpolated to a linear cell with a cell-centered (•) and nodal (■) grid and divided into four
linear triangles

Data Approach Distortion at discretization points

Hand

FDM [0,0702 , 2,36]
FEM-TRI-1 [0,120 , 2,44]

FEM-QUAD-1 [0,152 , 2,41]
FEM-TRI-2 [0,0363 , 2,70]

FEM-QUAD-2 [0,0376 , 2,76]

Disc

FDM [-3,44 , 8,80]
FEM-TRI-1 [-3,15 , 11,7]

FEM-QUAD-1 [-3,56 , 9,29]
FEM-TRI-2 [-5,65 , 16,3]

FEM-QUAD-2 [-4,47 , 10,1]

Histology

FDM [-0,000366 , 4,94]
FEM-TRI-1 [-0,225 , 5,21]

FEM-QUAD-1 [-0,247 , 5,17]
FEM-TRI-2 [ -0,636 , 5,98]

FEM-QUAD-2 [-0,689 , 5,91]

Table 7.2: Distortion of the transformation
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The results of the distortion measure are given in Table 7.2. As observed, the transformation of the
finite difference method yields the best minimum and maximum distortions. The distortions are closest
to one, whereas the (bi-)linear elements show a slightly worse result. The (bi-)quadratic elements have
significant poorer distortion. This could be explained by the usage of the number of data points of the
corresponding elements. The higher order elements depend on more data points, compared to the
(bi-)linear elements and thus has less freedom in the optimization procedure.

For the data sets, it is of importance that the transformation is physically possible. With the set of
the human hand, elements at the discretization points are contracted by a factor six. As visualized in
figure 7.6, the contraction of the elements are inside the hand. When only parts of the hand shrink with
that factor, it is unlikely that the transformation is physically possible. The distortion of the histology
data set is even more significant. The transformation shows large distortions at the defects of the im-
ages. Besides that, also contraction inside the slice is present. Furthermore, negative values of the
distortion are observed, which means folding of the image and is physically impossible. As expected,
the transformation to the c-shaped image causes heavy distortions and folding is unsurprising.

Figure 7.6: Distortion of transformation using linear triangular elements
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7.4. Validity
As discussed in Section 5.2, validity can by using the Jacobian determinant of the transformation for.
When the determinant is strictly positive, the transformation of an element is valid. Otherwise, the
topology of the transformation isn’t preserved and transformation results in folding elements. As the
distortion measure is based on the Jacobian determinant, the distortion measure at discretizaton points
already indicates if folding is present. For the bi-linear or linear element, the Jacobian determinant is a
bi-linear function or constant, respectively, and therefore, the distortion values at discretizations points
are sufficient.
For the quadratic elements, the Jacobian determinant are of higher order and checking the distortion
measure at discretization points is insufficient. To apply a fast and robust method for validation, the
distortion measure is written into bezier functions. Using the properties of the bezier functions, the
validity can be easily determined.
If all bezier coefficients of the bezier functions are positive or negative, the element is valid or invalid,
respectively, otherwise the element is undetermined. The undetermined elements are divided into
subelements and the new bezier coefficients of the subelements are computed for validation. This
recursion is applied till the validity of the whole element is determined, which means one of the subele-
ments is invalid or all subelements are valid. An example of a recursion is shown in Figure 7.7.
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Figure 7.7: Example of validity check of elements using Bezier Coefficients

The results of the validation are shown in Table 7.3. The disc and histology data set has for all the
different approaches invalid elements. Furthermore, differences are observed in the kinds of elements.
The ratio of invalid to the total elements is for the linear and bi-linear elements the same, while for the
quadratic elements, the ratio is higher. As discussed in the previous section, the distortion is larger for
the quadratic elements due to the number of grid points per element. Thus, this also results in more
invalid elements for the quadratic elements.

Data Approach Invalid elements Total elements

Hand

FDM 0 65536
FEM-TRI-1 0 32768

FEM-QUAD-1 0 16384
FEM-TRI-2 0 8192

FEM-QUAD-2 0 4096

c-shaped

FDM 3991 65536
FEM-TRI-1 2273 32768

FEM-QUAD-1 1283 16384
FEM-TRI-2 875 8192

FEM-QUAD-2 414 4096

Histology

FDM 1 327680
FEM-TRI-1 2 163840

FEM-QUAD-1 2 81920
FEM-TRI-2 4 40960

FEM-QUAD-2 6 20480

Table 7.3: Distortion and Validity of the transformation
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For the quadratic elements, the results of subdivision are shown in Table 7.4. Recall, the Jacobian
determinant is written in terms of Lagrange basis functions. First, level 0 (L), the coefficients of the
Lagrange basis functions are checked. If one of these coefficients is negative and the element is invalid,
the coefficients of the element do not need to be written to the bezier coefficients. If all coefficients are
positive, the element is undetermined, and coefficients are transformed to bezier coefficients. As one
can see with the three test data, only for one case, the quadratic triangular element for the c-shaped
data set, subdivision is required.

Data Approach Level Undetermined Invalid Valid

Hand
FEM-TRI-2 0 (L) 8192 0 0

0 (B) 0 0 8192

FEM-QUAD-2 0 (L) 4096 0 0
0 (B) 0 0 4096

c-shaped
FEM-TRI-2

0 (L) 7317 875 0
0 (B) 1 875 7316
1 (B) 1 875 7316
2 (B) 0 875 7317

FEM-QUAD-2 0 (L) 3682 414 0
0 (B) 0 414 3682

Histology
FEM-TRI-2 0 (L) 40956 4 0

0 (B) 0 4 40956

FEM-QUAD-2 0 (L) 20474 6 0
0 (B) 0 6 20474

Table 7.4: Validity check of the quadratic elements using bezier functions

7.5. Time and Memory
Besides the reduction and the validity, also time and memory are of importance for the performance of
the methods. Depending on the linear solution methods, improvements can be made.

For all data sets the measure is built similarly, an SSD distance measure with elastic regularisation.
Thus, for all data sets the same kind of linear system needs to be solved. For that reason, a comparison
is only applied for the histological data set, and the behavior of the computational time and memory
is expected to be similar for the other data sets. The time is measured with the cputime function of
Matlab, which calculates the elapsed CPU time of the registration problem. It is executed on a 2.9 Ghz
Intel Core i7 computer using 8Gb of RAM with Matlab version R2018A.

As discussed in Chapter 6, the Cholesky decomposition, and the iterative Krylov subspace methods,
CG and the (preconditioned) CGLS method, are proposed for the finite element method. For the finite
difference method, FAIR features the (preconditioned) CG method and is applied, both matrix-based
(mb) as matrix-free (mf). For the iterative methods, a tolerance level for the residual is set to 𝜖 = 1𝑒−3.
This results in similar steps for the non-linear iterations. In that way, we can apply a proper evaluation
of the multi-level approach of image registration with the different solution methods and assembly of
the elastic regularisation matrix.

Two different approaches of assembling the elastic matrix are considered, resulting in different impacts
on the usage of memory. A matrix-based approach (mb), where the elastic matrix is fully assembled
on each level. The second approach is the matrix-free method, where only the products of the matrix-
vectors are stored in memory. The matrix-vector product changes for every iteration, and therefore,
when many iterations are needed, the computational time will be significant.
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Histology Method 𝐽/𝐽 𝐷/𝐷 CPU time (s)

FDM

CD

0,4447 0,3279

8,8
mbCG 9,5
J-mbCG 10,2
mfCG 36,6
J-mfCG 33,0

FEM-TRI-1

CD

0,4483 0,3332

14,4
mbCG 15,2

mbCGLS 16,3
J-mbCGLS 17,2
mfCGLS 52,4
J-mfCGLS 54,3

FEM-QUAD-1

CD

0,4482 0,3331

14,2
mbCG 14,1

mbCGLS 14,5
J-mbCGLS 15,6
mfCGLS 33,3
J-mfCGLS 34,3

FEM-TRI-2

CD

0,4427 0,3305

15,9
mbCG 19,5

mbCGLS 20,7
J-mbCGLS 22,3
mfCGLS 40,0
J-mfCGLS 43

FEM-QUAD-2

CD

0,4432 0,3307

15,3
mbCG 19,4

mbCGLS 21,2
J-mbCGLS 19,3
mfCGLS 31,6
J-mfCGLS 34,4

Table 7.5: Results of the computational time using different linear solution methods

As shown in Table 7.5, the finite difference method implementation yields best for all different im-
plementations. One of the benefits with the finite difference method is the assembling time, and it is,
therefore, to be expected that computational costs are the lowest.
Using the CG or (preconditioned) CGLS method, no optimal method can be observed. Differences are
small for all elements. The matrix of the linear system appears not to be diagonal dominant, as the
diagonal preconditioning doesn’t improve results.
The matrix-free methods increase the computational time and are related to the number of elements.
Recall from chapter 6, the matrix-free approaches are a sum of element vectors. Table 7.5 shows re-
sults as expected, for linear elements, the most significant increase of computational time by a factor
3,2. For the bi-quadratic elements, the increase is a factor 1,5, and thus, it results that the bi-quadratic
elements perform best for all elements.
For the matrix-free approach, the vector size is the number of discretization points in 𝑥 and 𝑥 di-
rection. For the matrix-based approach, the matrix is sparse, and only non-zero elements are stored.
The non-zero elements are based on the discrete points of the element, and thus, memory usages
depend on the kind of element. However, for all elements, it holds that the matrix-free approach gives
a significant reduction of memory, Table 7.6.
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Approach Matrix-based Matrix-free
FDM 1475132 164416

FEM-TRI-1 1970688

164994FEM-QUAD-1 1482634
FEM-TRI-2 2381440

FEM-QUAD-2 2632970

Table 7.6: Number of values stored for matrix-based and matrix-free linear solution methods

7.6. Results using Different Regularisation Parameters

In the previous sections, the minimization of the measure is analyzed, using different kinds of elements,
compared with the finite difference method, and is applied for one regularisation parameter. In this sec-
tion, for multiple regularisation parameters and the different kinds of elements, registration is executed
and compared.

For the different data sets, the reduction, data reduction, and ratio of invalid elements are plotted
against the regularisation parameter, visualized in Figure 7.8,7.9 and 7.10. As one can see, as pre-
viously observed, only for the c-shaped data set, the differences in the reduction and data reduction
between methods are present. However, due to the high ratio of invalid elements, no meaningful con-
clusion can be drawn for the transformation. Looking at the other data sets, using different kinds of
elements doesn’t result in significant differences in terms of reduction.
For the ratio of invalid elements, the interpolated finite difference transformation performs best. For the
finite element methods, the (bi-)linear element results in better ratios compared to the (bi-)quadratic
elements.
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Figure 7.8: Total, Data reduction and ratio invalid elements plotted against regularisation parameter for hand data set
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Figure 7.9: Total, Data reduction and ratio invalid elements plotted against regularisation parameter for c-shaped data set
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Figure 7.10: Total, Data reduction and ratio invalid elements plotted against regularisation parameter for histology data set





8
Results of Different Regularisation

Approaches using FEM

In the previous chapter, a comparison is made with FEM and FDM. In order to have a high reduction
in data and regularisation, it leads to significant distortions and/or invalid transformations. Increasing
the regularisation parameter resolves the issue of invalid elements, but it worsens the reduction signifi-
cantly. In this chapter, the two other approaches of Section 5.3 are investigated to obtain a meaningful
transformation with high reduction. The first approach is local regularisation by local stiffness, and sec-
ondly, a penalty approach on the volume of the elements. In this chapter, these two approaches are
investigated and compared.

All three data sets from Chapter 7 are used in this chapter.

8.1. Results of Local regularisation
With a local regularisation parameter, regularisation is based on the local stiffness of the elements.
The elements which tend to cause large deformations are made stiffer. Not knowing beforehand how
the elements behave during the minimization process, it is not clear what to choose. Therefore, an
implementation is chosen in which the elements are evaluated per iteration. First, a global regularization
parameter is determined for which elasticity reduction and data reduction are combined significant,
figure 7.2. After that, the local regularization parameters are increased based on the distortion. It is
defined by the following measure

𝐽(y(x)) = 𝐷 (y(x)) + 𝛼 ∑(𝛼 + 1)𝑆 , (y(x) − y (x))

with 𝛼 = max
x
(𝛼 (|Jacy,x(x)|))

(8.1)

where 𝛼 is a penalty function.

The function 𝛼 (𝑥) = 𝑤𝑓(𝑥) is chosen. With function 𝑓(𝑥), defined in Equation 5.45, and a weight
𝑤. The penalty function (𝛼 (𝑥)), penalizes contraction and expansion equally and is visualized in
Figure 8.1.
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Figure 8.1: Penalty function

To determine the balance between local and global regularisation, different weights are considered
to penalize the distorted elements. In the following paragraphs, the results applied to the different data
sets are treated.

Hand
In Table 8.1, the results for the triangular elements are shown. For comparison, the results with the
global regularisation parameter are included. Adding a local regularisation, it results in all cases in
decreased deformations of the elements. The data is thereby less reduced, but compared to global
regularization with the same maximum distortion, the reduction is improved.

Figure 8.2 visualizes the results applied to the hand data set for the (bi-)linear and (bi-)quadratic ele-
ments. The linear triangular yields the best reduction. For the distortion, the minimum and maximum
of the distortion values at the discretization points are visualized. For all kind of elements, the distor-
tion is significantly reduced. As one can see, for a weight of one, the distortion is already close to the
neighborhood of contraction or expansion of factor two.
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Figure 8.2: Results of local regularisation for the human hand. Top: Total reduction (left) and data reduction (Right); Bottom:
Minimum and maximum distortion at the discretization points;
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𝛼 𝑤 𝐽/𝐽 𝐷/𝐷 Distortion Invalid elements

1000

1 0,0462 0,0327 [0,120 , 2,44] 0
1 0,0483 0,0343 [0,385 , 1,95] 0
2 0,0497 0,0355 [0,428 , 1,73] 0
4 0,0518 0,0370 [0,473 , 1,64] 0
8 0,0549 0,0391 [0,530 , 1,65] 0

2000 1 0,0544 0,0421 [0,394 , 1,69] 0
3000 1 0,0582 0,0491 [0,492 , 1,53] 0

Table 8.1: Local regularisation applied to the hand data set using linear triangular elements

C-shaped data set
For the c-shaped data set, large deformations are to be expected in order to have similar images
between reference and template image. Therefore, making the element stiffer results in worse data
reduction as can be seen in Figure 8.3 and Table 8.2. The distortion graph doesn’t show a lower
bound everywhere, which means elements are still folding. Local regularisation leads to fewer invalid
elements compared to the global approach, but due to the reduction, making the elements stiffer isn’t
a well-suited approach for this data set.
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Figure 8.3: Results of local regularisation for disc- and c-shaped image. Top: Total reduction (left) and data reduction (Right);
Bottom: Minimum and maximum distortion at the discretization points;

𝛼 𝛼 (𝑥) 𝐽/𝐽 𝐷/𝐷 Distortion Invalid elements

500

1 0,1743 0,1447 [-3,15 , 11,7] 2273
𝑓(𝑥) 0,4363 0,4156 [-0,436 , 4,68] 261
2𝑓(𝑥) 0,4492 0,4203 [-0,291 , 4,03] 199
4𝑓(𝑥) 0,4628 0,4263 [-0,184, 3,72] 114
8𝑓(𝑥) 0,4780 0,4395 [-0,0513, 2,76] 23

1000 1 0,2364 0,1960 [-4,10 , 8,23] 1697
1500 1 0,3168 0,2937 [-3,49 , 5,64] 1159

Table 8.2: Local regularization applied on the c-shaped data set using linear triangular elements
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Histology
Figure 8.4 and Table 8.3 shows the results for the histology data set. One can see that the differences
between local regularization and global regularization with the same maximum amount of distortion dif-
fer substantially. The distortion is reduced with local regularization from folding elements and expansion
of factor five to contraction and expansion in the neighborhood of factor two. For a maximum distortion
around factor two, the reduction for the linear triangular element between global and local approach
is for total and data measure, 57, 88% to 47, 67% and 46, 84% to 36, 22%, respectively. Furthermore,
using the same global regularisation without and with local regularization, the reduction between the
transformed template and reference image has only worsened from 33, 32% to 36, 22%. Also, for this
data set, the linear elements yield the best result.

𝛼 𝛼 (𝑥) 𝐽/𝐽 𝐷/𝐷 Distortion Invalid elements

5000

1 0,4483 0,3332 [-0,225 , 5,21] 2
𝑓(𝑥) 0,4618 0,3476 [0,298 , 3,32] 0
2𝑓(𝑥) 0,4666 0,3520 [0,314 , 2,52] 0
4𝑓(𝑥) 0,4767 0,3622 [0,444 , 2,26] 0
8𝑓(𝑥) 0,4876 0,3739 [0,458, 1,89] 0

10000 1 0,5302 0,4121 [0,206 , 2,97] 0
15000 1 0,5788 0,4684 [0,489 , 2,36] 0

Table 8.3: Local regularization applied on histology data set using linear triangular elements
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Figure 8.4: Results of local regularisation for histology data set. Top: Total reduction (left) and data reduction (Right); Bottom:
Minimum and maximum distortion at discretization points;

8.2. Results of Penalty Approach
The second approach is to improve the solution of the transformation using a dedicated penalty term
for volume-preserving. Adding the soft constrained, it gives the following measure

𝐽(y) = 𝐷(y) + 𝛼𝑆(y − y ) + 𝛽𝑃(y) (8.2)

Recall, the penalty term penalizes the contraction and expansion equally, Equation 5.47.
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Searching for an optimal penalty parameter (𝛽), different values around the optimal value of the regu-
larization parameters (𝛼) are considered. This section investigates the penalty parameter for the three
data sets with the four different kinds of elements. As for the local regularisation, the results for the
linear triangle are shown with the results of global regularisation. Furthermore, the differences between
the different types of elements are visualized.

Hand
For the human hand, the penalty term decreases the distortion as can be seen in Table 8.4 and Figure
8.7. Increasing the penalty parameter results in a more important soft constraint and thus leads to less
volume change. Compared to increasing the regularisation parameter, it follows that the data reduction
has improved. Looking at the different kind of elements, the behavior of the quadratic quadrilateral differ
from the rest. The worsening of reduction by increasing the penalty term is more significant compared
to the other three elements. Also, the minimum distortion doesn’t increase like the others, whereas the
other three elements behave more or less the same.

𝛼 𝛽 𝐽/𝐽 𝐷/𝐷 Distortion Invalid elements

1000

0 0,0462 0,0327 [0,120 , 2,44] 0
500 0,0526 0,0349 [0,400 , 1,98] 0
1000 0,0570 0,0367 [0,458 , 1,86] 0
2000 0,0635 0,0395 [0,527 , 1,68] 0
5000 0,0758 0,0468 [0,626 , 1,43] 0

2000 0 0,0544 0,0421 [0,394, 1,69] 0
3000 0 5,82% 4,92% [0,492 , 1,53] 0

Table 8.4: Measure with the penalty term on the hand data set using linear triangular elements
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Figure 8.5: Results of the penalty approach for the hand data set. Top: Total reduction (left) and data reduction (Right); Bottom:
Minimum and maximum distortion at the discretization points;

C-shaped
For the c-shaped data set, the behavior in reduction differs a lot per parameter as visualized in Figure
8.6. The minimization problem is highly sensitive for changes in the penalty parameter, and it also
depends on the kind of element of how it tends to behave during the process. However, the power of
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the penalty function is visible in the number of invalid elements and the reduction of the data term, Table
8.5. For the linear elements, the soft constraint results in valid transformations with a still significant
reduction. With the (bi-)linear quadrilateral elements, valid transformation can be obtained, but it has
poor reduction. The (bi-)quadratic elements lead to folding transformations.
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Figure 8.6: Results of the penalty approach for the c-shaped data set. Top: Total reduction (left) and data reduction (Right);
Bottom: Minimum and maximum distortion at the discretization points;

𝛼 𝛽 𝐽/𝐽 𝐷/𝐷 Distortion Invalid elements

500

0 0,1743 0,1447 [-3,15 , 11,7] 2273
250 0,1447 0,0830 [-0,183 , 14,4] 79
500 0,2081 0,1593 [-0,0754 , 6,68] 9
1000 0,2164 0,1610 [0,0952, 6,11] 0
2500 0,2372 0,1692 [0,208 , 8,04] 0

1000 0 0,2364 0,1960 [-4,10 , 8,23 ] 1697
1500 0 0,3168 0,2937 [-3,49 , 5,64 ] 1159

Table 8.5: Measure with the penalty term on the c-shaped data set using linear triangular elements

Histology

For the histology data set, the impact of the penalty term results in elements close to a maximum
contraction of factor two, but the expansion is still significant. Compared to increasing the global regu-
larisation parameter, the results in reduction are better for the samemaximum contraction or expansion.
For the bi-quadratic element, it has poor behavior in reduction. For the other elements, the differences
are small.
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𝛼 𝛽 𝐽/𝐽 𝐷/𝐷 Distortion Invalid elements

5000

0 0,4483 0,3332 [-0,225 , 5,21] 2
2500 0,4633 0,3441 [0,314 , 5,36] 0
5000 0,4765 0,3545 [0,402 , 5,44] 0
10000 0,4978 0,3730 [0,501 , 4,96] 0
25000 0,5391 0,4148 [0,656 , 3,99] 0

10000 0 0,5302 0,4121 [0,206 , 2,97] 0
15000 0 0,5788 0,4684 [0,489 , 2,36] 0

Table 8.6: Measure with penalty term on histology data set using linear triangular elements
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Figure 8.7: Results of penalty approach for histology data set. Top: Total reduction (left) and data reduction (Right); Bottom:
Minimum and maximum distortion at discretization points;

8.3. Comparison between Global, Local and Penalty approach
This section compares the best results for the different approaches. Knowing the values of the reduction
and distortion, we still don’t know which approach is more suitable. The locations of the large distortions
are, for example, more important than the maximum or minimum distortion value of all transformed
elements. Furthermore, how similar are the transformed template and the reference image? Besides
that, what is the performance in terms of time and memory with the local and penalty approach? In the
first part of this section, the transformed images and distortions of the images, are discussed. In the
second part of this section the results of time and memory costs are discussed.

Transformed mages and distortion
In Figure 8.8, 8.9 and 8.10 the results of the transformed images and distortion of the three approaches
are shown for the linear triangular element. Table 8.7, gives the results with the optimal parameters for
different approaches, which is a trade-off between distortion and reduction.
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Data Approach 𝐽/𝐽 𝐷/𝐷 Distortion Invalid Elements

Hand
Global (𝛼 = 1000) 0,0462 0,0327 [0,120 , 2,44] 0
Local (𝛼 = 1000, 𝛼 = 4𝑓(𝑥)) 0,0518 0,0370 [0,473 , 1,64] 0
Penalty (𝛼 = 1000, 𝛽 = 1000) 0,0570 0,0367 [0,458 , 1,86] 0

C-shaped
Global (𝛼 = 500) 0,1743 0,1447 [-3,15 , 11,7] 2273
Local (𝛼 = 500, 𝛼 = 8𝑓(𝑥)) 0,4780 0,4395 [-0,0513 , 2,76] 23
Penalty (𝛼 = 500, 𝛽 = 1000) 0,2164 0,1610 [0,0952 , 6,11] 0

Histology
Global (𝛼 = 5000) 0,4483 0,3332 [-0,225 , 5,21] 2
Local (𝛼 = 5000, 𝛼 = 4𝑓(𝑥)) 0,4767 0,3622 [0,444 , 2,26] 0
Penalty (𝛼 = 5000, 𝛽 = 10000) 0,4978 0,3730 [0,501 , 4,96] 0

Table 8.7: Optimal parameters for the triangular element

For the hand data set, Figure 8.8, the differences in transformation are not visible. For the dis-
tortions of the elements, large deformations are clearly visible inside the hand and around the fingers
for the global approach. Whereas for the local and penalty approach, these deformations are much
smaller. The differences between the local and penalty approach are minor.

The different approaches of the c-shaped data contain many differences in the transformed images,
Figure 8.9. First of all, it is hard to obtain a similar transformed image as can be seen. For this data
set, it has significant differences beforehand in the data and questions the use of elastic regularisation
as it only holds for small deformations. The global regularisation approach leads to folding elements,
and the local approach restricts the deformation too much. For the penalty term, the volume is a soft
constrained, and the element can deform in every direction without volume change. For the disc image,
this approach performs best.

The histology data set contains errors in the data. These defects are clearly visible in the template
image. As can be seen in 8.10, the distortion in all approaches at the defects, has large deformations,
and is not of importance. Besides the deformations at the defects, there is also large contraction and
expansion inside the slice. The global approach leads to invalid elements, whereas for the local and
penalty approach, valid transformations are obtained. The differences between local and penalty aren’t
significant.

Figure 8.8: Results for hand data set; Top: Reference and transformed template images Bottom: Template image and distortion
images;
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Figure 8.9: Results for disc data set; Top: Reference and transformed template images Bottom: Template image and distortion
images;

Figure 8.10: Results for histology data set; Top: Reference and transformed template images Bottom: Template image and
distortion images;

Time and Memory
Time and memory are compared between the different regularisation approaches. The same solution
methods are considered as in the previous chapter, which uses the benefits of a symmetric positive
definite matrix.
Unfortunately, for the penalty term, it is not reasonable to apply a matrix-free approach. The penalty
function is non-linear, and therefore, for every element, it results in a different element matrix. A matrix-
free approach for the penalty function is thus very time-consuming. For every element, a different ele-
ment matrix has to be calculated in each iteration.
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The results are shown in Table 8.8. As one can see, for the global approach, the matrix-based ap-
proaches have the lowest computational cost. Due to the costs of computing the local parameters and
building the penalty term, the other approaches have a significant increase in computational time. For
the matrix-free methods of local regularisation, with diagonal preconditioning, a reduction of computa-
tional time is observed. For the quadrilateral elements, the reduction results in computational time in
the neighborhood of the matrix-based approach. Furthermore, the differences between a global and
local approach for these elements do not differ significantly.

Looking at the memory for the different regularisation approaches, Table 8.9, for the local approach, it
has the same usage of memory as for the global approach. For the penalty approach, usage of memory
is increased due to the density of the element matrices caused by the non-linear terms.

Histology Global Local Penalty
Method Reduction time (s) Reduction time (s) Reduction time (s)

FEM-TRI-1

CD
𝐽/𝐽 =0,4483

14,4
𝐽/𝐽 =0,4767

31,0
𝐽/𝐽 =0,4978

35,3
mbCG 15,2 34,7 31,3

mbCGLS 16,3 36,0 34,0
J-mbCGLS

𝐷/𝐷 =0,3332
17,2

𝐷/𝐷 =0,3622
33,0

𝐷/𝐷 =0,3730
33,7

mfCGLS 52,4 84,4 x
J-mfCGLS 54,3 58,8 x

FEM-QUAD-1

CD
𝐽/𝐽 =0,4482

14,2
𝐽/𝐽 =0,4790

44,7
𝐽/𝐽 =0,4977

42,6
mbCG 14,1 36,4 39,3

mbCGLS 14,5 38,1 43,5
J-mbCGLS

𝐷/𝐷 =0,3331
15,6

𝐷/𝐷 =0,3662
34,4

𝐷/𝐷 =0,3729
42,2

mfCGLS 33,3 56,2 x
J-mfCGLS 34,3 40,4 x

FEM-TRI-2

CD
𝐽/𝐽 =0,4427

15,9
𝐽/𝐽 =0,4800

42,3
𝐽/𝐽 =0,4932

38,3
mbCG 19,5 52,5 41,2

mbCGLS 20,7 54,6 46,7
J-mbCGLS

𝐷/𝐷 =0,3305
22,3

𝐷/𝐷 =0,3689
48,5

𝐷/𝐷 =0,3713
45,8

mfCGLS 40,0 76,4 x
J-mfCGLS 43,0 56,4 x

FEM-QUAD-2

CD
𝐽/𝐽 =0,4432

15,3
𝐽/𝐽 =0,4826

49,5
𝐽/𝐽 =0,5010

64,1
mbCG 19,4 47,0 57,8

mbCGLS 21,2 49,5 61,8
J-mbCGLS

𝐷/𝐷 =0,3307
19,3

𝐷/𝐷 =0,3722
41,1

𝐷/𝐷 =0,3732
58,7

mfCGLS 31,6 54,5 x
J-mfCGLS 34,4 35,6 x

Table 8.8: Elapsed CPU time of different solution methods for the local and penalty approach

Histology Global/Local Penalty
Matrix-based Matrix-free Matrix-based Matrix-free

FEM-TRI-1 1970688

164994

2300676

xFEM-QUAD-1 1482634 2956036 x
FEM-TRI-2 2381440 3777540 x

FEM-QUAD-2 2632970 5252100 x

Table 8.9: Number of non-zeros stored for the matrix-based approach and length of vector stored for matrix-free approach
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3D Reconstruction of Histological Serial

Sections
In the previous chapters, two-dimensional problems are considered. As discussed in the introduction,
the data is from a three-dimensional object which is sectioned into slices. With microscopic analysis of
these sections, it provides us with two-dimensional images of microstructures. Due to the process of
obtaining these images, the slices are deformed. Unfortunately, without Image Registration, the images
can’t be combined for the three-dimensional reconstruction, see Figure 9.1. Applying registration, an
iteration over the slices is introduced. This method is discussed in the first section. After that, the results
of the registration with the finite element approaches and finite difference method are discussed.

Figure 9.1: Axial and Sagittal view of the histological serial sections before registration

9.1. Reference-free Gauss-Seidel Iteration Model
The registration of histological serial sections is based on [28].

For the 𝑛 serial sections, the sequence of images is denoted by 𝑉 ,…𝑉 . The joint measure is de-
fined as the sum of all individual measures for the two-dimensional case and the sum of regularization
and penalty over all transformation functions. It is given by

𝐽(y , … ,y ) ∶=∑𝐷(𝑉 (y ), 𝑉 (y )) +∑(𝛼𝑆(u ) + 𝛽𝑃(y )) (9.1)

Using an iterative approach over the sections, a reference-free Gauss-Seidel method is applied. The
Gauss-Seidel approach uses the transformation functions y , … ,y which are already computed

65
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for the next iteration of y . For the other transformation functions, the transformations of the previous
iteration y , … ,y are applied. The measure reads

̂𝐽(y ) ∶= 𝐽(y , … ,y ,y ,y , … ,y ) (9.2)

where 𝑘 is the iteration number for 𝑗 = 1,… , 𝑛.

From the distance measures, we know that only neighboring sections of the sequence take part in
optimizing y . Therefore, for the Sum-of-Squared distance measure with notation 𝑉 = 𝑉 (y ), we
have

�̂�(y ) =𝐷(𝑉 , 𝑉 (y )) + 𝐷(𝑉 (y ), 𝑉 ) +∑𝐷(𝑉 , 𝑉 )) + ∑ 𝐷(𝑉 , 𝑉 ))

=𝐷(𝑉 , 𝑉 (y )) + 𝐷(𝑉 (y ), 𝑉 ) + 𝑟

=2𝐷(𝑉 (y ), 12(𝑉 + 𝑉 )) + 𝑟

(9.3)

for 1 < 𝑗 < 𝑛.
For the measure of the first section and last section it results in

�̂�(y ) = 𝐷(𝑉 , 𝑉 (y )) + 𝑟 (9.4)
�̂�(y ) = 𝐷(𝑉 (y ), 𝑉 ) + 𝑟 (9.5)

Searching for a minimizer, the remainder part can be removed from the distance measure. A new
measure is introduced to find a minimizer of the function ̂𝐽(y ) and is defined as follows

𝐽 (y ) ∶= 𝐷(𝑇 (y ), 𝑅 ) + 𝛼𝑆(u ) + 𝛽𝑃(y ) (9.6)

where

𝑇 (y ) ∶= 𝑉 (y ), 𝑅 ∶=
⎧⎪
⎨⎪⎩

1
2(𝑉 + 𝑉 ) for 1 < 𝑗 < 𝑛
𝑉 for 𝑗 = 1
𝑉 for 𝑗 = 𝑛

9.2. Results of 3D reconstruction
Depending on the size of the sections, the images are between 9 million and 75 million pixels. The
intensities are defined in an RGB colorspace. Image registration compares single-valued intensities,
and therefore, the colors are converted to the gray colorspace. Also, the amount of unknowns is too
large for the methods, and the images are downscaled to 320 by 256 pixels. In the downscaling, the
size of the sections in the images is preserved. Furthermore, the data consists of 555 sections, and as
for the resolution of the images, it is downscaled. 69 Sections are taken into account and are equally
divided from the whole data set.

Registrating the 69 sections, differences due to the deformations aren’t the only discrepancies in the
sections. With the downscaling of the sections and defects, the neighboring images can vary largely.
The downscaling can result in large differences between the data of the adjacent sections, visualized in
Figure 9.2 with sections 19 and 20. Also, defects in imaging and data occur. Errors in the background
of the images, white blocks, are present. Furthermore, it contains defects such as gaps and cracks
from the histology technique. The defects could lead to bad registration at those locations. An example
is shown in Figure 9.2 with sections 27 and 28, where gaps and imaging errors are clearly visible.

The optimal parameters for the sample of the data in the previous chapter are applied. The parameters
are shown in Table 8.7. Solving the linear system, the matrix-free diagonal preconditioned conjugate
gradient method is used. A maximum of five iterations for the number of descent directions per level
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is considered. For the pre-registration, a rigid transformation is chosen instead of affine in previous
chapters. The size of the sections can differ significantly, as shown with the example of sections num-
ber 19 and 20. Affine transformation considers scaling of the images and therefore could lead to a bad
starting point after pre-registration. Also, we know that the sections are subjected to the same imaging
conditions, and the sizes of the slices are preserved in the images. Therefore, for pre-registration only
rigid transformations are proposed.

This paragraph discusses the results of the three-dimensional reconstruction of the histological se-
rial sections. First, as for the test data, a comparison is made between the different kinds of elements
and the finite difference method. After that, the different proposed approaches of regularisation with
FEM are treated.

(a) Section 19 (b) Section 20

(c) Section 27 (d) Section 28

Figure 9.2: Top: Example of large differences between sections; Bottom: Example of ‘gaps’ in sections;

9.2.1. Comparison of FEM and FDM
The results are visualized in Figure 9.3 and Table 9.1. The results of the minimization in the table are
computed by Equation 9.1, whereas in the figure, the measure of Equation 9.6 is visualized. The large
peaks before registration occur mostly due to large differences in the size, as shown with the example
of sections number 19 and 20. Registrating the sections, the variations using different kinds of ele-
ments for the measure aren’t significant. For all elements, the measure is reduced to around 47% of
its original value and the data term to 41% respectively for all methods.

Looking at the validity of the transformation in Figure 9.3, the finite difference method gives the least
number of invalid cells. For the distortion, the maximum distortion of the elements at the discretization
points does not vary significantly for the different methods. Maximum distortion is between a factor six
and eight. For the lower bounds, larger differences are observed between the elements. When having
large shrinkage with the finite difference approach, for the finite element approach, the (bi-)linear ele-
ments results in larger contraction of elements. For the (bi-)quadratic elements, it often leads to folding
elements. As shown in the previous chapter with the sample, the large deformations of the elements



68 9. 3D Reconstruction of Histological Serial Sections

not only occur at the defects but also in the slices. Therefore, improvements in the transformation
functions are needed using a higher regularisation parameter or a different approach.

Method 𝐽/𝐽 𝐷/𝐷
FDM 0,4674 0,4040

FEM-TRI-1 0,4705 0,4079
FEM-QUAD-1 0,4705 0,4080
FEM-TRI-2 0,4677 0,4060

FEM-QUAD-2 0,4683 0,4063

Table 9.1: Minimization results of measure and data term of histological serial sections
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Figure 9.3: Left: Results of (zoomed in) data measure; Right: Top: Minimum and maximum distortion; Bottom: validity of
elements

9.2.2. Regularisaton approaches with FEM
The different finite element proposed approaches are applied to the data. Table 9.2 gives the results
of the minimization of the measure and data term. Adding a penalty or applying local approach results
as expected in a worsened reduction. Looking at the validity of the elements, which is visualized in
Figures 9.5, 9.6, 9.7 and 9.8, the transformations are improved. Only the penalty approach for the
bi-quadratic elements contains invalid elements. For all elements, using a local or penalty approach
results in better reduction and validity, then increasing the global parameter. The local approach still
has some large shrinkage for some elements, but in all cases it is valid. The maximum expansion for
the local approach is reduced to a factor between two and three. For the penalty approach, it is the
other way around. The shrinkage is reduced to a maximum around factor two, whereas the expansion
is still large. When visualizing the transformed sections in an axial and sagittal view, the reduction in
differences is clearly visible, see Figure 9.4.
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FEM-TRI-1 FEM-QUAD-1 FEM-TRI-2 FEM-QUAD-2
Approach 𝐽/𝐽 𝐷/𝐷 𝐽/𝐽 𝐷/𝐷 𝐽/𝐽 𝐷/𝐷 𝐽/𝐽 𝐷/𝐷
Global 0,4705 0,4079 0,4705 0,4080 0,4677 0,4060 0,4683 0,4063
Local 0,5000 0,4394 0,5019 0,4416 0,5043 0,4455 0,5076 0,4490
Penalty 0,5174 0,4595 0,5174 0,4595 0,5154 0,4579 0,5321 0,4743
2⋅Global 0,5267 0,4948 0,5267 0,4948 0,5252 0,4935 0,5255 0,4937

Table 9.2: Minimization results of the different regularisation approaches

Figure 9.4: 3D reconstruction of histological serial sections; Top: before registration, Bottom: Registration with local regularisation
using linear triangular elements;
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Figure 9.5: Results with linear triangular elements. Top: reduction of data measure; Bottom: Left: minimum and maximum
distortion Right: validity of the elements
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Figure 9.6: Results with bi-linear quadrilateral elements. Top: reduction of data measure; Bottom: Left: minimum and maximum
distortion Right: validity of the elements
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Figure 9.7: Results with quadratic triangular elements. Top: reduction of data measure; Bottom: Left: minimum and maximum
distortion Right: validity of the elements
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Figure 9.8: Results with bi-quadratic quadrilateral elements. Top: reduction of data measure; Bottom: Left: minimum and
maximum distortion Right: validity of the elements





10
Conclusion & Discussion

In this thesis, the finite element approach for elastic regularisation is investigated. Four different ele-
ment types are evaluated, improvements are made on the regularisation, and a matrix-free approach is
constructed. The methods are applied to different test cases and the histological serial sections. This
chapter summarizes and discusses the outcomes of the research.

The four different kinds of elements are implemented and evaluated to determine which element yields
the best result. Therefore, the reduction of the differences in the images, the validity of the transfor-
mation function is compared for three different data sets. For the non-artificial data sets, no significant
differences are observed in the reduction among the different kinds of elements, and the results are
similar to the finite difference method. For the artificial data set, the finite element method shows im-
provements, but it results in a substantially high ratio of folding elements. So, with this data set, elastic
regularisation does not seem to be well-suited. The validity of the transformation function is determined
by checking the elements for folding. Overall, for the finite element method, the linear elements out-
performs the bi-quadratic elements for validity of the elements. When comparing it to the interpolated
transformation of the finite difference method, the finite difference method yields the lowest ratio. For
the computational costs of the different methods, the finite difference method is the fastest. This is
mainly due to the assembly of the elastic regularisation matrix. The finite difference method is a very
efficient method for structured grids. For the different kinds of elements, registration with the (bi-)linear
elements has the best performance, because they yield the sparsest matrix.

Using the benefits of a finite element implementation, two different approaches with elastic regularisa-
tion are considered. In both approaches, the goal is to penalize folding elements, which are physically
unlikely, in the transformations. The first approach is by increasing the stiffness of the elements during
the iteration process when elements tend to be heavily deformed. The second approach is adding a
soft constraint on the contraction and expansion of the elements. This method is not restricted to only
elastic bodies, as can be seen in the results of the data sets. Both methods show improvements in
the distortion of the elements and reducing the number of folded elements significantly to validly trans-
formed elements. Moreover, it results in reasonable transformation functions for which the images are
accurately aligned. The computational costs for both approaches are large, as it results in longer com-
putational time between a factor two and four depending on the element.

After that, a matrix-free approach of the elastic regularisation is implemented. Using iterative meth-
ods to solve linear systems, assembling of the elastic regularisation matrix is not required. A memory-
saving method is not to store the matrix, but the matrix-vector product per iteration. Due to limitations
of storage, for large systems, it is very attractive. For global regularisation and local regularisation, the
matrix-free method is implemented in the (preconditioned-)CGLS method. A significant reduction in
memory is obtained, but the computational time is increased as per iteration an elements-wise matrix-
vector needs to be calculated. The increase depends on the elements, as for the high order elements,
fewer elements-wise , matrix-vector products are computed. With diagonal preconditioning for the lo-
cal regularisation, improvements are made in computational time. For the matrix-free approach of the
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quadrilateral elements, the computing time is reduced to similar computational costs as for the matrix-
based approach. Besides that, the computational costs for the quadrilateral elements are similar to the
global regularisation approach.

The four kinds of elements and the two approaches to penalize are applied to the histological data.
As for the test data, the linear elements yield the best results, but the differences are small compared
to the other kinds of elements. Without the penalization of the distortion, a high regularisation param-
eter need to be chosen for valid transformations. With the suggested approaches, significant higher
reduction of the differences between the images can be obtained while the distortion of the elements
is limited.

In conclusion, one the one hand, the finite element method does not improve the optimization prob-
lem, as it takes longer to assemble and to solve the system compared to the finite difference method.
However, by implementing the finite element method, there is a robust way of checking the validity of
the transformation function and no assumptions need to be made for the finite difference method. On
the other hand, having a finite element implementation, parts of the domain can be easily penalized
or restricted. Two powerful approaches are implemented to steer the elements in a non-folding, less
distorted transformation. The reduction of the differences between the images for these approaches
is significantly better compared to increasing the regularization parameter. Furthermore, a memory-
efficient way of solving the linear system is implemented. Comparing the different kinds of elements,
the (bi-)linear elements yields the best results in reduction and validity. Moreover, in terms of compu-
tational costs, the bi-linear element is preferred.

10.1. Discussion
From the discretized measure of the differences between the images, it follows that the discretization of
the distance measure is based on a cell-centered image grid. So, interpolation is required to the nodal
grid of the finite element approach. Therefore, using the finite element discretization in the distance
measure could improve the accuracy of the matrices in the optimization procedure.

For the iterative linear solution methods, Krylov subspace methods are considered. The matrix-free
approach causes a significant increase in computational time. Improvements in the reduction of com-
putational costs by using preconditioning are, therefore, of importance. By having a finite element ap-
proach of the regularisation matrix, the approximation of the regularisation by Hughes is recommended
as preconditioning. Hughes proposed an Element-by-Element approach to approximate thematrix [19].

A multi-level approach is applied to obtain and improve the transformation function by going from a
coarse to a fine grid. Therefore, multigrid is an attractive approach to solve the linear system. For the
bi-linear elements, a multigrid solution method is previously investigated [23], which yields a fast linear
solution method. Therefore, using multigrid or multigrid preconditioned Krylov-subspace methods is
recommended to implement for the finite elements. Moreover, the proposed Element-by-Element ap-
proach of Hughes could be used as smoother for the multigrid method.

With the multi-level approach, the refinement of the grid is applied to the whole domain. The slices
are a (small) part of the whole image. Refinement on the whole grid is not therefore necessary to
measure the deformations. One of the benefits of the finite element approach is freedom in the dis-
cretization grid. To reduce memory usage and computational time, it is worthwhile to apply refinement
on only specific subdomains.



A
BVP to Minimization

Theorem A.1 Let L be a linear, symmetric, positive differential operator defined over a space Σ and let

𝐿(𝑢) = g. (A.1)

Then the solution u minimizes the functional

𝐼(𝑢) = ∫ {12𝑢𝐿(𝑢) − 𝑢𝑓}𝑑Ω, over the space Σ. (A.2)

On the other hand if u minimizes (A.2) then u satisfies (A.1).

Considering a two dimensional domain Ω ⊂ ℝ with boundary 𝜕Ω. The boundary value problem of
linear elasticity is

{
−𝜇Δu− (𝜆 + 𝜇)∇(∇ ⋅ u) = 0, x ∈ Ω

𝜎 ∶ ⋅ n = 𝜇(∇𝑢 + 𝜕u
𝜕𝑥 ) ⋅ n+ 𝜆(∇ ⋅ u)𝑛 = 0 x ∈ 𝜕Ω

(A.3)

The solution must be found in the space Σ(u) = {u is sufficiently smooth}. Say g = 0 and 𝐿(u) =
−𝜇Δu−(𝜆+𝜇)∇(∇ ⋅u). Using theorem A.1, L has to be linear, symmetric and positive. The is appendix
verifies the conditions for the Navier-Lamé equations.

Linear
The linear condition is

𝐿(𝛼u+ 𝛽v) = 𝛼𝐿(u) + 𝛽𝐿(v) (A.4)

where 𝛼, 𝛽 are constants and u,v ∈ Σ.

𝐿(𝛼u+ 𝛽v) = −𝜇Δ(𝛼u+ 𝛽v) + (𝜆 + 𝜇)∇(∇ ⋅ (𝛼u+ 𝛽v)
= −𝛼𝜇Δu− 𝛽𝜇Δv + 𝛼(𝜆 + 𝜇)∇(∇ ⋅ u) + 𝛽(𝜆 + 𝜇)∇(∇ ⋅ v)
= 𝛼( − 𝜇Δu+ (𝜆 + 𝜇)∇(∇ ⋅ u)) + 𝛽( − 𝜇Δv + (𝜆 + 𝜇)∇(∇ ⋅ v))
= 𝛼𝐿(u) + 𝛽𝐿(v)

Symmetric
For the symmetric property, it has to satisfy

∫ u𝐿(v)𝑑Ω = ∫ v𝐿(u)𝑑Ω ∀u,v ∈ Σ (A.5)
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Assume u,v ∈ Σ, then

∫ u𝐿(v)𝑑Ω = ∫ −u ⋅ (𝜇Δv − (𝜇 + 𝜆)(∇(∇ ⋅ v)))𝑑Ω

= ∫ −𝜇u ⋅ (Δv + ∇(∇ ⋅ v) − 𝜆u ⋅ (∇(∇ ⋅ v))𝑑Ω

Usage of Integration By Parts and Theorem of Gauss

∫ 𝑢 𝜕
𝜕𝑥 (∇ ⋅ v𝑑Ω = ∫ 𝜕

𝜕𝑥 (𝑢 ∇ ⋅ v)𝑑Ω − ∫ 𝜕𝑢
𝜕𝑥 (∇ ⋅ v)𝑑Ω

= ∫ (𝑢 ∇ ⋅ v)𝑛 𝑑Γ − ∫ 𝜕𝑢
𝜕𝑥 (∇ ⋅ v)𝑑Ω

∫ 𝑢 (Δ𝑣 + 𝜕
𝜕𝑥 (∇ ⋅ v))𝑑Ω = ∫ ∇ ⋅ (𝑢 (∇𝑣 + 𝜕v

𝜕𝑥 ))𝑑Ω − ∫ ∇𝑢 ⋅ (∇𝑣 + 𝜕v
𝜕𝑥 )𝑑Ω

= ∫ (𝑢 (∇𝑣 + 𝜕v
𝜕𝑥 )) ⋅ n𝑑Γ − ∫ ∇𝑢 ⋅ (∇𝑣 + 𝜕v

𝜕𝑥 )𝑑Ω

∫ u𝐿(v)𝑑Ω =∫ 𝜇∑(𝑢 (∇𝑣 + 𝜕v
𝜕𝑥 )) ⋅ n+ 𝜆(∇ ⋅ v)(u ⋅ n)𝑑Γ+

∫ 𝜇(∇𝑢 ⋅ ∇𝑣 + ∇𝑢 ⋅ ∇𝑣 + ∇𝑢 𝜕v
𝜕𝑥 + ∇𝑢 𝜕v

𝜕𝑥 ) + 𝜆(∇ ⋅ u)(∇ ⋅ v)𝑑Ω

The boundary integral can be rewritten as

∫ 𝜇∑(𝑢 (∇𝑣 + 𝜕v
𝜕𝑥 )) ⋅ n+ 𝜆(∇ ⋅ v)(u ⋅ n)𝑑Γ = ∫ 𝑢 (𝜇(∇𝑣 + 𝜕v

𝜕𝑥 ) ⋅ n+ 𝜆(∇ ⋅ v)𝑛 )+

𝑢 (𝜇(∇𝑣 + 𝜕v
𝜕𝑥 ) ⋅ n+ 𝜆(∇ ⋅ v)𝑛 )𝑑Γ

= ∫ 𝑢 (𝜎 ∶ ⋅ n) + 𝑢 (𝜎 ∶ ⋅ n)𝑑Γ = 0

This results in

∫ u𝐿(v)𝑑Ω =∫ 𝜇(∇𝑢 ⋅ ∇𝑣 + ∇𝑢 ⋅ ∇𝑣 + ∇𝑢 𝜕v
𝜕𝑥 + ∇𝑢 𝜕v

𝜕𝑥 ) + 𝜆(∇ ⋅ u)(∇ ⋅ v)𝑑Ω

=∫ −v ⋅ (𝜇Δu− (𝜇 + 𝜆)(∇(∇ ⋅ u)))𝑑Ω+

∫ 𝑣 (𝜎 ∶ ⋅ n) + 𝑣 (𝜎 ∶ ⋅ n)𝑑Γ

=∫ v𝐿(u)𝑑Ω

and thus satisfies the symmetric property.

Positiveness
For positiveness, the operator 𝐿 has to satisfy the following equation

∫ u𝐿(u)𝑑Ω ≥ 0 (A.6)
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Assume u ∈ Σ

∫ u𝐿(v)𝑑Ω = ∫ −u ⋅ (𝜇Δu− (𝜇 + 𝜆)(∇(∇ ⋅ u)))𝑑Ω

Applying Integration by Parts, Theorem of Gauss and the boundary conditions as showed for the sym-
metric property, it results in

∫ u𝐿(u)𝑑Ω = ∫ 𝜇(∇𝑢 ⋅ ∇𝑢 + ∇𝑢 ⋅ ∇𝑢 + ∇𝑢 𝜕u
𝜕𝑥 + ∇𝑢 𝜕u

𝜕𝑥 ) + 𝜆(∇ ⋅ u)(∇ ⋅ u)𝑑Ω

= ∫ 𝜇(2(𝜕𝑢𝜕𝑥 ) + 2(𝜕𝑢𝜕𝑥 ) + (𝜕𝑢𝜕𝑥 + 𝜕𝑢𝜕𝑥 ) ) + 𝜆(∇ ⋅ u) 𝑑Ω ≥ 0

Knowing the Navier-Lamé parameters 𝜇, 𝜆 ≥ 0, the integrand consist only of positive quadratic parts
and therefore, the integral is greater or equal then zero.

Minimization
All conditions are satisfied and according to theorem A.1, the corresponding minimization problem of
the boundary value problem is

∫ 1
2u𝐿(u)𝑑Ω =

1
2 ∫ 𝜇(2(𝜕𝑢𝜕𝑥 ) + 2(𝜕𝑢𝜕𝑥 ) + (𝜕𝑢𝜕𝑥 + 𝜕𝑢𝜕𝑥 ) ) + 𝜆(∇ ⋅ u) 𝑑Ω over the space Σ

(A.7)





B
Element Matrices of Elastic Potential

Energy

Minimal Elastic Potential Energy
Applying the Finite Element Approach to the linear elasticity equations. Recall from chapter 3, the
minimal elastic potential energy is given by

min
u∈

1
2 ∫ 𝜆(∇ ⋅ u) + 𝜇(2(𝜕𝑢𝜕𝑥 ) + 2(𝜕𝑢𝜕𝑥 ) + (𝜕𝑢𝜕𝑥 + 𝜕𝑢𝜕𝑥 ) )𝑑Ω

Σ(u) ∶= {u is sufficiently smooth}
(B.1)

As for the elastic regularisation in FAIR, the elastic potential energy is approximated by

min
u∈

1
2 ∫ (𝜇 + 𝜆)(∇ ⋅ u) + 𝜇(∇u ⋅ ∇u)𝑑Ω

Σ(u) ∶= {u is sufficiently smooth}
(B.2)

Approximating the solution by a finite set of known basis functions in the function space Σ, the solution
is written as

𝑢 (x) ≃∑𝑎 𝜑 (x) (B.3)

𝑢 (x) ≃∑𝑎 𝜑 (x) (B.4)

Applying Ritz’s method to the minimal elastic potential energy, the term read

𝒮[𝑎 ,… , 𝑎 , 𝑎 , , … , 𝑎 ] = 1
2 ∫ (2𝜇 + 𝜆)[(

𝜕(∑𝑎 𝜑 )
𝜕𝑥 ) + (

𝜕(∑𝑎 𝜑 )
𝜕𝑥 ) ] + 2𝜆

𝜕(∑𝑎 𝜑 )
𝜕𝑥

𝜕(∑𝑎 𝜑 )
𝜕𝑥

+ 𝜇[(
𝜕(∑𝑎 𝜑 )
𝜕𝑥 ) + 2

𝜕(∑𝑎 𝜑 )
𝜕𝑥

𝜕(∑𝑎 𝜑 )
𝜕𝑥 + (

𝜕(∑𝑎 𝜑 )
𝜕𝑥 ) ]𝑑Ω

(B.5)
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Taking the first derivatives to 𝑎 ,… , 𝑎 , 𝑎 , … , 𝑎

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

∑𝑎 ∫ (2𝜇 + 𝜆)𝜕𝜑𝜕𝑥
𝜕𝜑
𝜕𝑥 + 𝜇𝜕𝜑𝜕𝑥

𝜕𝜑
𝜕𝑥 𝑑Ω +∑𝑎 ∫ (𝜇 + 𝜆)𝜕𝜑𝜕𝑥

𝜕𝜑
𝜕𝑥 𝑑Ω = 0

for 𝑖 = 1, 2, … ,𝑚

∑𝑎 ∫ (𝜇 + 𝜆)
𝜕𝜑
𝜕𝑥

𝜕𝜑
𝜕𝑥 𝑑Ω +∑𝑎 ∫ 𝜇𝜕𝜑𝜕𝑥

𝜕𝜑
𝜕𝑥 + (2𝜇 + 𝜆)𝜕𝜑𝜕𝑥

𝜕𝜑
𝜕𝑥 𝑑Ω = 0

for 𝑖 = 1, 2, … ,𝑚

(B.6)

Which are linear equations and can be written as

∇𝑆 = 𝑅u, u =

⎡
⎢
⎢
⎢
⎢
⎣

𝑢
⋮
𝑢
𝑢
⋮
𝑢

⎤
⎥
⎥
⎥
⎥
⎦

(B.7)

Dividing the domain in a finite set of non-overlapping elements, such that Ω = ⋃ 𝑒 , 𝑛 = #𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠.

𝑟 = ∑𝑟 (B.8)

The element matrix is given by

𝑅 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑟 , ⋯ 𝑟 , 𝑟 , ⋯ 𝑟 ,

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑟 , ⋯ 𝑟 , 𝑟 , ⋯ 𝑟 ,

𝑟 , ⋯ 𝑟 , 𝑟 , ⋯ 𝑟 ,

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑟 , ⋯ 𝑟 , 𝑟 , ⋯ 𝑟 ,

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(B.9)

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑟 , = ∫ (2𝜇 + 𝜆)𝜕𝜑𝜕𝑥
𝜕𝜑
𝜕𝑥 + 𝜇𝜕𝜑𝜕𝑥

𝜕𝜑
𝜕𝑥 𝑑Ω

𝑟 , = ∫ (𝜇 + 𝜆)𝜕𝜑𝜕𝑥
𝜕𝜑
𝜕𝑥 𝑑Ω

𝑟 , = ∫ (𝜇 + 𝜆)
𝜕𝜑
𝜕𝑥

𝜕𝜑
𝜕𝑥 𝑑Ω

𝑟 , = ∫ 𝜇𝜕𝜑𝜕𝑥
𝜕𝜑
𝜕𝑥 + (2𝜇 + 𝜆)𝜕𝜑𝜕𝑥

𝜕𝜑
𝜕𝑥 𝑑Ω

(B.10)

where 𝑙 is the number of discretization points of the element.
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Example of the bi-linear quadrilateral element matrix
Using the example of the bi-linear quadrilateral element, the element matrix 𝑅 is a 8 by 8 matrix. First
Isoparametric transformation is applied in which the elements of the matrix becomes

𝑟 , = ∫ ∫ ((2𝜇 + 𝜆)𝜕𝜑𝜕𝑥
𝜕𝜑
𝜕𝑥 + 𝜇𝜕𝜑𝜕𝑥

𝜕𝜑
𝜕𝑥 )|Jac(𝜉, 𝜂) , |𝑑𝜉𝑑𝜂 (B.11)

𝑟 , = ∫ ∫ (𝜇 + 𝜆)𝜕𝜑𝜕𝑥
𝜕𝜑
𝜕𝑥 |Jac(𝜉, 𝜂) , |𝑑𝜉𝑑𝜂 (B.12)

𝑟 , = ∫ ∫ (𝜇 + 𝜆)
𝜕𝜑
𝜕𝑥

𝜕𝜑
𝜕𝑥 |Jac(𝜉, 𝜂) , |𝑑𝜉𝑑𝜂 (B.13)

𝑟 , = ∫ ∫ (𝜇𝜕𝜑𝜕𝑥
𝜕𝜑
𝜕𝑥 + (2𝜇 + 𝜆)𝜕𝜑𝜕𝑥

𝜕𝜑
𝜕𝑥 )|Jac(𝜉, 𝜂)𝑥, 𝜉|𝑑𝜉𝑑𝜂 (B.14)

Where |𝐽𝑎𝑐 , (𝜉, 𝜂)| is the determinant of the Jacobian

|Jac , (𝜉, 𝜂)| = (𝑥 − 𝑥 + 𝐴 𝜂)(𝑥 − 𝑦 + 𝐴 𝜉) − (𝑥 − 𝑥 + 𝐴 𝜉)(𝑥 − 𝑥 + 𝐴 𝜂) (B.15)

with 𝐴 = 𝑥 − 𝑥 + 𝑥 − 𝑥 and 𝐴 = 𝑥 − 𝑥 + 𝑥 − 𝑥 .

Using Newton-Cotes integration over the unit square

∫ ∫ Int(𝜉, 𝜂)𝑑𝜉𝑑𝜂 ≈ ∫ ∫ ∑ Int(𝜉 , 𝜂 )𝜑 𝑑𝜉𝑑𝜂 = ∑ Int(𝜉 , 𝜂 )∫ ∫ 𝜑 𝑑𝜉𝑑𝜂 = 1
4 ∑ Int(𝜉 , 𝜂 )

(B.16)

Therefore, at first, the derivatives of the basis functions are calculated

𝐵(𝜉 , 𝜂 ) =

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

[ ] =
⎡
⎢
⎢
⎣

𝜂 − 1 𝜉 − 1
1 − 𝜂 −𝜉
𝜂 𝜉
−𝜂 1 − 𝜉

⎤
⎥
⎥
⎦
𝐽(𝜂 , 𝜉 ) (B.17)

Then, the submatrices of the element matrix for every discretization point are written as

𝑅 (𝜉 , 𝜂 ) = (2𝜇 + 𝜆)𝑏∶, (𝜉 , 𝜂 )𝑏∶, (𝜉 , 𝜂 ) + 𝜇𝑏∶, (𝜉 , 𝜂 )𝑏∶, (𝜉 , 𝜂 ) (B.18)
𝑅 (𝜉 , 𝜂 ) = 𝜇𝑏∶, (𝜉 , 𝜂 )𝑏∶, (𝜉 , 𝜂 ) + 𝜆𝑏∶, (𝜉 , 𝜂 )𝑏∶, (𝜉 , 𝜂 ) (B.19)
𝑅 (𝜉 , 𝜂 ) = 𝜇𝑏∶, (𝜉 , 𝜂 )𝑏∶, (𝜉 , 𝜂 ) + 𝜆𝑏∶, (𝜉 , 𝜂 )𝑏∶, (𝜉 , 𝜂 ) (B.20)
𝑅 (𝜉 , 𝜂 ) = 𝜇𝑏∶, (𝜉 , 𝜂 )𝑏∶, (𝜉 , 𝜂 ) + (2𝜇 + 𝜆)𝑏∶, (𝜉 , 𝜂 )𝑏∶, (𝜉 , 𝜂 ) (B.21)

With Newton-Cotes, the element matrix is

𝑅 = 1
4 ∑ |𝐽(𝜉 , 𝜂 )|𝑅 (𝜉 , 𝜂 ), 𝑅 (𝜉, 𝜂) = [𝑅 (𝜉 , 𝜂 ) 𝑅 (𝜉 , 𝜂 )

𝑅 (𝜉 , 𝜂 ) 𝑅 (𝜉 , 𝜂 )] (B.22)





C
FEM approach of the Penalty Term

The penalty term is

𝒫[y] = ∫ 𝜎(𝑓(|Jac , (x)|))𝑑Ω = ∑∫ 𝜎(𝑓(|Jac , (x )|))𝑑Ω (C.1)

Calling the element penalty term 𝑃 (y ) ∶= ∫ 𝜎(𝑓(|Jac , (x )|))𝑑Ω and using isoparametric trans-
formation, it reads

𝑃 (y ) = ∫ 𝜎(𝑓(|Jac , (x)|))𝑑Ω (C.2)

= ∫ 𝜎(𝑓(
|Jac , (𝜉, 𝜂)|
|Jac , (𝜉, 𝜂)|

))|Jac , (𝜉, 𝜂)|𝑑𝜉𝑑𝜂 (C.3)

Writing the Jacobian Determinant of the transformed grid y out, we get

𝑃 (y ) = ∫ 𝜎((𝑓(𝑔(𝜉, 𝜂)))|Jac , (𝜉, 𝜂)|𝑑𝜉𝑑𝜂 (C.4)

with 𝑔(𝜉, 𝜂) = ( 1
|Jac , (𝜉, 𝜂)|

∑ 𝑦 , 𝜕𝜑
𝜕𝜉 ∑𝑦 𝜕𝜑

𝜕𝜂 −∑𝑦 𝜕𝜑
𝜕𝜂 ∑𝑦 𝜕𝜑

𝜕𝜉 )) (C.5)

With first derivatives

⎧
⎪⎪

⎨
⎪⎪
⎩

𝜕𝑃 (y )
𝜕𝑦 , = ∫ ( 1

|Jac , (𝜉, 𝜂)|
∑ 𝑦 , (𝜕𝜑𝜕𝜉

𝜕𝜑
𝜕𝜂 − 𝜕𝜑𝜕𝜂

𝜕𝜑
𝜕𝜉 ))

𝜕𝑓(𝑔)
𝜕𝑔 𝑓(𝑔)|Jac , (𝜉, 𝜂)|𝑑𝜉𝑑𝜂

𝜕𝑃 (y )
𝜕𝑦 , = ∫ ( 1

|Jac , (𝜉, 𝜂)|
∑ 𝑦 , (𝜕𝜑𝜕𝜂

𝜕𝜑
𝜕𝜉 − 𝜕𝜑𝜕𝜉

𝜕𝜑
𝜕𝜂 ))

𝜕𝑓(𝑔)
𝜕𝑔 𝑓(𝑔)|Jac , (𝜉, 𝜂)|𝑑𝜉𝑑𝜂

(C.6)
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Due to the computational time in the optimization problem, the higher order derivatives of the inner
function of 𝑓 are neglected. The second order derivatives are

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝜕 𝒫 (y )
𝜕𝑦 , 𝜕𝑦 , ≈ ∫ (( 1

|Jac , (𝜉, 𝜂)|
∑ 𝑦 , (𝜕𝜑𝜕𝜉

𝜕𝜑
𝜕𝜂 − 𝜕𝜑𝜕𝜂

𝜕𝜑
𝜕𝜉 ))

𝜕𝑓(𝑔)
𝜕𝑔 )⋅

(( 1
|Jac , (𝜉, 𝜂)|

∑ 𝑦 , (
𝜕𝜑
𝜕𝜉

𝜕𝜑
𝜕𝜂 −

𝜕𝜑
𝜕𝜂

𝜕𝜑
𝜕𝜉 ))

𝜕𝑓(𝑔)
𝜕𝑔 |Jac , (𝜉, 𝜂)|)𝑑𝜉𝑑𝜂

𝜕 𝑃 (y )
𝜕𝑦 , 𝜕𝑦 , ≈ ∫ (( 1

|Jac , (𝜉, 𝜂)|
∑ 𝑦 , (𝜕𝜑𝜕𝜉

𝜕𝜑
𝜕𝜂 − 𝜕𝜑𝜕𝜂

𝜕𝜑
𝜕𝜉 ))

𝜕𝑓(𝑔)
𝜕𝑔 )⋅

(( 1
|Jac , (𝜉, 𝜂)|

∑ 𝑦 , (
𝜕𝜑
𝜕𝜂

𝜕𝜑
𝜕𝜉 −

𝜕𝜑
𝜕𝜉

𝜕𝜑
𝜕𝜂 ))

𝜕𝑓(𝑔)
𝜕𝑔 |Jac , (𝜉, 𝜂)|)𝑑𝜉𝑑𝜂

𝜕 𝑃 (y )
𝜕𝑦 , 𝜕𝑦 , ≈ ∫ (( 1

|Jac , (𝜉, 𝜂)|
∑ 𝑦 , (𝜕𝜑𝜕𝜂

𝜕𝜑
𝜕𝜉 − 𝜕𝜑𝜕𝜉

𝜕𝜑
𝜕𝜂 ))

𝜕𝑓(𝑔)
𝜕𝑔 )⋅

(( 1
|Jac , (𝜉, 𝜂)|

∑ 𝑦 , (
𝜕𝜑
𝜕𝜉

𝜕𝜑
𝜕𝜂 −

𝜕𝜑
𝜕𝜂

𝜕𝜑
𝜕𝜉 ))

𝜕𝑓(𝑔)
𝜕𝑔 |Jac , (𝜉, 𝜂)|)𝑑𝜉𝑑𝜂

𝜕 𝑃 (y )
𝜕𝑦 , 𝜕𝑦 , ≈ ∫ (( 1

|Jac , (𝜉, 𝜂)|
∑ 𝑦 , (𝜕𝜑𝜕𝜂

𝜕𝜑
𝜕𝜉 − 𝜕𝜑𝜕𝜉

𝜕𝜑
𝜕𝜂 ))

𝜕𝑓(𝑔)
𝜕𝑔 )⋅

(( 1
|Jac , (𝜉, 𝜂)|

∑ 𝑦 , (𝜕𝜑𝜕𝜂
𝜕𝜑
𝜕𝜉 − 𝜕𝜑𝜕𝜉

𝜕𝜑
𝜕𝜂 ))

𝜕𝑓(𝑔)
𝜕𝑔 |Jac , (𝜉, 𝜂)|)𝑑𝜉𝑑𝜂

Assembling the derivatives, the global first derivative of the penalty term is

∇𝒫(y) = ∑𝑄

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(y
,

⋮
(y )
,

(y )
,

⋮
(y )
,

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(C.7)

And the assembled second order derivative matrix is

∇ 𝑃 = ∑𝑄 ∇ 𝑃 (y )(𝑄 ) (C.8)

with

∇ 𝑃 (y ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(y )
, , … (y )

, ,
(y )

, , … (y )
, ,

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
(y )

, , … (y )
, ,

(y )
, , … (y )

, ,

(y )
, , … (y )

, ,
(y )

, , … (y )
, ,

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
(y )

, , … (y )
, ,

(y )
, , … (y )

, ,

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(C.9)



D
Jacobian Determinant at Reference

Elements
This chapter explains how the Jacobian determinant for the quadrilateral and the quadratic triangular
case can be simplified by writing it in terms of the basis functions times the Jacobian determinant values
at the discretization points. Recall, the jacobian determinant at a reference element is

|𝐽 , (𝜉, 𝜂)| =
𝜕𝑢
𝜕𝜉

𝜕𝑢
𝜕𝜂 − 𝜕𝑢𝜕𝜂

𝜕𝑢
𝜕𝜉 (D.1)

where u is a function in terms of 𝑙 basis functions

𝑢 =∑𝑢 𝜑 (𝜉, 𝜂) (D.2)

𝑢 =∑𝑢 𝜑 (𝜉, 𝜂) (D.3)

Bi-Linear Quadrilateral Element
The basis functions for the bi-linear quadrilateral element are

𝜎 (𝜉𝜉𝜉) = 𝜆 (𝜉)𝜆 (𝜂), 𝜎 (𝜉𝜉𝜉) = 𝜆 (𝜉)𝜆 (𝜂),
𝜎 (𝜉𝜉𝜉) = 𝜆 (𝜉)𝜆 (𝜂), 𝜎 (𝜉𝜉𝜉) = 𝜆 (𝜉)𝜆 (𝜂)
with 𝜆 (𝜉) = 1 − 𝜉,𝜆 (𝜉) = 𝜉

inserting the basis functions into equation D.1, we get

|𝐽 , (𝜉, 𝜂)| =( − 𝑢 𝜆 (𝜂) + 𝑢 𝜆 (𝜂) + 𝑢 𝜆 (𝜂) − 𝑢 𝜆 (𝜂))( − 𝑢 𝜆 (𝜉) − 𝑢 𝜆 (𝜉) + 𝑢 𝜆 (𝜉) + 𝑢 𝜆 (𝜉))

− ( − 𝑢 𝜆 (𝜂) + 𝑢 𝜆 (𝜂) + 𝑢 𝜆 (𝜂) − 𝑢 𝜆 (𝜂))( − 𝑢 𝜆 (𝜉) − 𝑢 𝜆 (𝜉) + 𝑢 𝜆 (𝜉) + 𝑢 𝜆 (𝜉))

=((𝑢 − 𝑢 )𝜆 (𝜂) + (𝑢 − 𝑢 )𝜆 (𝜂))((𝑢 − 𝑢 )𝜆 (𝜉) + (𝑢 − 𝑢 )𝜆 (𝜉))

− ((𝑢 − 𝑢 )𝜆 (𝜂) + (𝑢 − 𝑢 )𝜆 (𝜂))((𝑢 − 𝑢 )𝜆 (𝜉) + (𝑢 − 𝑢 )𝜆 (𝜉))

Which can be written as
|𝐽 , (𝜉, 𝜂)| =|𝐽 , (0, 0)|𝜆 (𝜉)𝜆 (𝜂) + |𝐽 , (1, 0)|𝜆 (𝜉)𝜆 (𝜂)

+ |𝐽 , (1, 1)|𝜆 (𝜉)𝜆 (𝜂) + |𝐽 , (0, 1)|𝜆 (𝜉)𝜆 (𝜂)

=∑|𝐽 , (𝜉 , 𝜂 )|𝜎 (𝜉, 𝜂)
(D.4)
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Quadratic Triangular Element
The basis functions for the reference quadratic triangle are

{
Ψ (𝜉𝜉𝜉) = 𝜆 (2𝜆 − 1) for 𝑖 = 1, 2, 3
Ψ (𝜉𝜉𝜉) = 4𝜆 𝜆 Ψ (𝜉𝜉𝜉) = 4𝜆 𝜆 Ψ (𝜉𝜉𝜉) = 4𝜆 𝜆
𝜆 (𝜉𝜉𝜉) = 1 − 𝜉 − 𝜂, 𝜆 (𝜉𝜉𝜉) = 𝜉,𝜆 (𝜉𝜉𝜉) = 𝜂

This gives the following Jacobian determinant

|𝐽 , (𝜉, 𝜂)| =((𝑢 (1 − 4𝜆 ) + 𝑢 (4𝜆 − 1) + 𝑢 (4𝜆 − 𝜆 ) + 𝑢 (4𝜆 ) + 𝑢 (−4𝜆 ))⋅

(𝑢 (1 − 4𝜆 ) + 𝑢 (4𝜆 − 1) + 𝑢 (−4𝜆 ) + 𝑢 (4𝜆 ) + 𝑢 (4𝜆 − 𝜆 ))

− ((𝑢 (1 − 4𝜆 ) + 𝑢 (4𝜆 − 1) + 𝑢 (4𝜆 − 𝜆 ) + 𝑢 (4𝜆 ) + 𝑢 (−4𝜆 ))⋅

(𝑢 (1 − 4𝜆 ) + 𝑢 (4𝜆 − 1) + 𝑢 (−4𝜆 ) + 𝑢 (4𝜆 ) + 𝑢 (4𝜆 − 𝜆 ))

|𝐽 , (𝜉, 𝜂)| =(((𝑢 − 𝑢 ) + (−4𝑢 + 4𝑢 )𝜆 + (4𝑢 − 𝑢 )𝜆 + (4𝑢 − 4𝑢 )𝜆 )⋅

((𝑢 − 𝑢 ) + (−4𝑢 + 4𝑢 )𝜆 + (−4𝑢 + 4𝑢 )𝜆 + (4𝑢 − 𝑢 )𝜆 ))

− (((𝑢 − 𝑢 ) + (−4𝑢 + 4𝑢 )𝜆 + (4𝑢 − 𝑢 )𝜆 + (4𝑢 − 4𝑢 )𝜆 )⋅

((𝑢 − 𝑢 ) + (−4𝑢 + 4𝑢 )𝜆 + (−4𝑢 + 4𝑢 )𝜆 + (4𝑢 − 𝑢 )𝜆 ))

Using the condition 𝜆 + 𝜆 + 𝜆 = 1, the Jacobian is rewritten and results in

|𝐽 , (𝜉, 𝜂)| =(𝐴 𝜆 + 𝐴 𝜆 + 𝐴 𝜆 )(𝐵 𝜆 + 𝐵 𝜆 + 𝐵 𝜆 )

− (𝐴 𝜆 + 𝐴 𝜆 + 𝐴 𝜆 )(𝐵 𝜆 + 𝐵 𝜆 + 𝐵 𝜆 )

with

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝐴 = −3𝑢 − 𝑢 + 4𝑢
𝐴 = 𝑢 + 3𝑢 − 𝑢
𝐴 = 𝑢 − 𝑢 + 4𝑢 − 4𝑢
𝐵 = −3𝑢 − 𝑢 + 4𝑢
𝐵 = 𝑢 − 𝑢 − 4𝑢 + 4𝑢
𝐵 = 𝑢 + 3𝑢 − 𝑢

Which gives

|𝐽 , (𝜉, 𝜂)| =(𝐴 𝐵 (𝜆 ) + 𝐴 𝐵 (𝜆 ) + 𝐴 𝐵 (𝜆 ) + (𝐴 𝐵 + 𝐴 𝐵 )𝜆 𝜆

+ (𝐴 𝐵 + 𝐴 𝐵 )𝜆 𝜆 + (𝐴 𝐵 + 𝐴 𝐵 )𝜆 𝜆 )

− (𝐴 𝐵 (𝜆 ) + 𝐴 𝐵 (𝜆 ) + 𝐴 𝐵 (𝜆 ) + (𝐴 𝐵 + 𝐴 𝐵 )𝜆 𝜆

+ (𝐴 𝐵 + 𝐴 𝐵 )𝜆 𝜆 + (𝐴 𝐵 + 𝐴 𝐵 )𝜆 𝜆 )
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Using again the condition 𝜆 +𝜆 +𝜆 = 1, then the Jacobian determinant in terms of quadratic triangular
basis functions is

|𝐽 , (𝜉, 𝜂)| =(𝐴 𝐵 − 𝐴 𝐵 )𝜆 (2𝜆 − 1) − (𝐴 𝐵 − 𝐴 𝐵 )𝜆 (2𝜆 − 1) − (𝐴 𝐵 − 𝐴 𝐵 )𝜆 (2𝜆 − 1)

+ 14((𝐴 + 𝐴 )(𝐵 + 𝐵 ) − (𝐴 + 𝐴 )(𝐵 + 𝐵 ))4𝜆 𝜆

+ 14((𝐴 + 𝐴 )(𝐵 + 𝐵 ) − (𝐴 + 𝐴 )(𝐵 + 𝐵 ))4𝜆 𝜆

+ 14((𝐴 + 𝐴 )(𝐵 + 𝐵 ) − (𝐴 + 𝐴 )(𝐵 + 𝐵 ))4𝜆 𝜆

Which is exactly the Jacobian determinant at the discretization points times the basis function of the
corresponding point

|𝐽 , (𝜉, 𝜂)| =∑|𝐽 , (𝜉 , 𝜂 )|Ψ (𝜉, 𝜂)

Bi-Quadratic Quadrilateral Element

⎧⎪
⎨⎪⎩

Ψ (𝜉𝜉𝜉) = 𝜃 (𝜉)𝜃 (𝜂), Ψ (𝜉𝜉𝜉) = 𝜃 (𝜉)𝜃 (𝜂), Ψ (𝜉𝜉𝜉) = 𝜃 (𝜉)𝜃 (𝜂)
Ψ (𝜉𝜉𝜉) = 𝜃 (𝜉)𝜃 (𝜂), Ψ (𝜉𝜉𝜉) = 𝜃 (𝜉)𝜃 (𝜂),
Ψ (𝜉𝜉𝜉) = 𝜃 (𝜉)𝜃 (𝜂), Ψ (𝜉𝜉𝜉) = 𝜃 (𝜉)𝜃 (𝜂),
Ψ (𝜉𝜉𝜉) = 𝜃 (𝜉)𝜃 (𝜂), Ψ (𝜉𝜉𝜉) = 𝜃 (𝜉)𝜃 (𝜂),

(D.5)

with 𝜃 (𝜉) = 1 − 3𝜉 + 2𝜉 𝜃 (𝜉) = −𝜉 + 2𝜉 𝜃 (𝜉) = 4𝜉 − 4𝜉 (D.6)

Applying the basis functions for the bi-quadratic quadrilateral element to the Jacobian determinant, we
get

|𝐽 , (𝜉, 𝜂)| =((𝑢 (−3 + 4𝜉)𝜃 (𝜂) + 𝑢 (−1 + 4𝜉)𝜃 (𝜂) + 𝑢 (−1 + 4𝜉)𝜃 (𝜂) + 𝑢 (−3 + 4𝜉)𝜃 (𝜂) + 𝑢 (4 − 8𝜉)𝜃 (𝜂)

+ 𝑢 (−1 + 4𝜉)𝜃 (𝜂) + 𝑢 (4 − 8𝜉)𝜃 (𝜂) + 𝑢 (−3 + 4𝜉)𝜃 (𝜂) + 𝑢 (4 − 8𝜉)𝜃 (𝜂))⋅

(𝑢 (−3 + 4𝜂)𝜃 (𝜉) + 𝑢 (−3 + 4𝜂)𝜃 (𝜉) + 𝑢 (−1 + 4𝜂)𝜃 (𝜉) + 𝑢 (−1 + 4𝜂)𝜃 (𝜉) + 𝑢 (−3 + 4𝜂)𝜃 (𝜉)

+ 𝑢 (4 − 8𝜂)𝜃 (𝜉) + 𝑢 (−1 + 4𝜂)𝜃 (𝜉) + 𝑢 (4 − 8𝜂)𝜃 (𝜉) + 𝑢 (4 − 8𝜂)𝜃 (𝜉)))

− ((𝑢 (−3 + 4𝜉)𝜃 (𝜂) + 𝑢 (−1 + 4𝜉)𝜃 (𝜂) + 𝑢 (−1 + 4𝜉)𝜃 (𝜂) + 𝑢 (−3 + 4𝜉)𝜃 (𝜂) + 𝑢 (4 − 8𝜉)𝜃 (𝜂)

+ 𝑢 (−1 + 4𝜉)𝜃 (𝜂) + 𝑢 (4 − 8𝜉)𝜃 (𝜂) + 𝑢 (−3 + 4𝜉)𝜃 (𝜂) + 𝑢 (4 − 8𝜉)𝜃 (𝜂))⋅

(𝑢 (−3 + 4𝜂)𝜃 (𝜉) + 𝑢 (−3 + 4𝜂)𝜃 (𝜉) + 𝑢 (−1 + 4𝜂)𝜃 (𝜉) + 𝑢 (−1 + 4𝜂)𝜃 (𝜉) + 𝑢 (−3 + 4𝜂)𝜃 (𝜉)

+ 𝑢 (4 − 8𝜂)𝜃 (𝜉) + 𝑢 (−1 + 4𝜂)𝜃 (𝜉) + 𝑢 (4 − 8𝜂)𝜃 (𝜉) + 𝑢 (4 − 8𝜂)𝜃 (𝜉)))

Using the linear basis functions 𝜆 (𝜉) = 1 − 𝜉, 𝜆 (𝜉) = 𝜉, it reads

|𝐽 , (𝜉, 𝜂)| =(((𝐴 , 𝜆 (𝜉) + 𝐴 , 𝜆 (𝜉))𝜃 (𝜂)) + (𝐴 , 𝜆 (𝜉) + 𝐴 , 𝜆 (𝜉))𝜃 (𝜂)) + (𝐴 , 𝜆 (𝜉) + 𝐴 , 𝜆 (𝜉))𝜃 (𝜂))

((𝐵 , 𝜆 (𝜂) + 𝐵 , 𝜆 (𝜂))𝜃 (𝜉)) + (𝐵 , 𝜆 (𝜂) + 𝐵 , 𝜆 (𝜂))𝜃 (𝜉)) + (𝐵 , 𝜆 (𝜂) + 𝐵 , 𝜆 (𝜂))𝜃 (𝜉))

−(((𝐴 , 𝜆 (𝜉) + 𝐴 , 𝜆 (𝜉))𝜃 (𝜂)) + (𝐴 , 𝜆 (𝜉) + 𝐴 , 𝜆 (𝜉))𝜃 (𝜂)) + (𝐴 , 𝜆 (𝜉) + 𝐴 , 𝜆 (𝜉))𝜃 (𝜂))

((𝐵 , 𝜆 (𝜂) + 𝐵 , 𝜆 (𝜂))𝜃 (𝜉)) + (𝐵 , 𝜆 (𝜂) + 𝐵 , 𝜆 (𝜂))𝜃 (𝜉)) + (𝐵 , 𝜆 (𝜂) + 𝐵 , 𝜆 (𝜂))𝜃 (𝜉))
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The coefficients are

𝐴 , = −3𝑢 − 𝑢 + 4𝑢 , 𝐵 , = −3𝑢 − 𝑢 + 4𝑢 ,
𝐴 , = 𝑢 + 3𝑢 − 4𝑢 , 𝐵 , = 𝑢 + 3𝑢 − 4𝑢 ,
𝐴 , = −𝑢 − 3𝑢 + 𝑢 , 𝐵 , = −3𝑢 − 𝑢 + 4𝑢 ,
𝐴 , = 3𝑢 + 𝑢 − 4𝑢 , 𝐵 , = 𝑢 + 3𝑢 − 4𝑢 ,
𝐴 , = −𝑢 − 3𝑢 + 4𝑢 , 𝐵 , = −3𝑢 − 𝑢 + 4𝑢 ,
𝐴 , = 3𝑢 + 𝑢 − 4𝑢 , 𝐵 , = 𝑢 + 3𝑢 − 4𝑢 .

Results in

|𝐽 , (𝜉, 𝜂)| =∑∑∑∑𝐶 𝜆 (𝜉)𝜃 (𝜉)𝜆 (𝜂)𝜃 (𝜂)

with 𝐶 = (𝐴 , 𝐵 , − 𝐴 , 𝐵 , )

The linear times quadratic basis functions can be written in terms of cubic basis functions

𝜆 (𝜉)𝜃 (𝜉) = 𝜏 (𝜉) + 1
27(4𝜏 (𝜉) − 𝜏 (𝜉)), 𝜆 (𝜉)𝜃 (𝜉) = 𝜏 (𝜉) + 1

27( − 𝜏 (𝜉) + 4𝜏 (𝜉)),

𝜆 (𝜉)𝜃 (𝜉) = 1
27(2𝜏 (𝜉) − 2𝜏 (𝜉)), 𝜆 (𝜉)𝜃 (𝜉) = 1

27(16𝜏 (𝜉) + 8𝜏 (𝜉)),

𝜆 (𝜉)𝜃 (𝜉) = 1
27( − 2𝜏 (𝜉) + 2𝜏 (𝜉)), 𝜆 (𝜉)𝜃 (𝜉) = 1

27(8𝜏 (𝜉) + 16𝜏 (𝜉))

Where the cubic basis functions are

𝜏 (𝜉) =

⎧
⎪

⎨
⎪
⎩

1
2(3𝜆 (𝜉) − 1)(3𝜆 (𝜉) − 2)𝜆 (𝜉) for 𝑖 = 1, 2
9
2𝜆 (𝜉)𝜆 (𝜉)(3𝜆 (𝜉) − 1) for 𝑖 = 3
9
2𝜆 (𝜉)𝜆 (𝜉)(3𝜆 (𝜉) − 1) for 𝑖 = 4

Which results in the following Jacobian determinant in terms of cubic basis functions

|𝐽 , (𝜉, 𝜂)| =∑∑|𝐽 , (𝜉 , 𝜂 )|𝜏 (𝜉)𝜏 (𝜂) (D.7)

=∑|𝐽 , (𝜉 , 𝜂 )|Τ (𝜉, 𝜂) (D.8)

with

Τ (𝜉, 𝜂) = 𝜏 (𝜉)𝜏 (𝜂), Τ (𝜉, 𝜂) = 𝜏 (𝜉)𝜏 (𝜂), Τ (𝜉, 𝜂) = 𝜏 (𝜉)𝜏 (𝜂), Τ (𝜉, 𝜂) = 𝜏 (𝜉)𝜏 (𝜂),
Τ (𝜉, 𝜂) = 𝜏 (𝜉)𝜏 (𝜂), Τ (𝜉, 𝜂) = 𝜏 (𝜉)𝜏 (𝜂), Τ (𝜉, 𝜂) = 𝜏 (𝜉)𝜏 (𝜂), Τ (𝜉, 𝜂) = 𝜏 (𝜉)𝜏 (𝜂),
Τ (𝜉, 𝜂) = 𝜏 (𝜉)𝜏 (𝜂), Τ (𝜉, 𝜂) = 𝜏 (𝜉)𝜏 (𝜂), Τ (𝜉, 𝜂) = 𝜏 (𝜉)𝜏 (𝜂), Τ (𝜉, 𝜂) = 𝜏 (𝜉)𝜏 (𝜂),
Τ (𝜉, 𝜂) = 𝜏 (𝜉)𝜏 (𝜂), Τ (𝜉, 𝜂) = 𝜏 (𝜉)𝜏 (𝜂), Τ (𝜉, 𝜂) = 𝜏 (𝜉)𝜏 (𝜂), Τ (𝜉, 𝜂) = 𝜏 (𝜉)𝜏 (𝜂).
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