
Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Accelerating the Material Point Method on
Emerging Computing Architectures

Sagar Dolas

Technical University of Delft
Deltares

sagardolas.cosse@gmail.com

March 6, 2017



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Today’s Agenda

1 Motivation

2 Problem Formulation

3 High Performance Computing

4 Glimpse of Results

5 Future Work



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Motivation



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Installation of Monopile - Dutch National Waters


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Installation of Monopile - Dutch National Waters


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Why this simulation so important ?

Joint Industry Project
for Simulation of
Installation of Monopile

1 Prolong useful life of
pile foundation.

2 Decisive for
optimization of pile
design.

3 Improved installation
techniques.

Figure: Simulation of monopile
penetration with the Material Point
Method

Software Tool

Anura3D is software developed at Deltares for such simulations



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Why this simulation so important ?

Joint Industry Project
for Simulation of
Installation of Monopile

1 Prolong useful life of
pile foundation.

2 Decisive for
optimization of pile
design.

3 Improved installation
techniques.

Figure: Simulation of monopile
penetration with the Material Point
Method

Software Tool

Anura3D is software developed at Deltares for such simulations



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Why this simulation so important ?

Joint Industry Project
for Simulation of
Installation of Monopile

1 Prolong useful life of
pile foundation.

2 Decisive for
optimization of pile
design.

3 Improved installation
techniques.

Figure: Simulation of monopile
penetration with the Material Point
Method

Software Tool

Anura3D is software developed at Deltares for such simulations



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Why this simulation so important ?

Joint Industry Project
for Simulation of
Installation of Monopile

1 Prolong useful life of
pile foundation.

2 Decisive for
optimization of pile
design.

3 Improved installation
techniques.

Figure: Simulation of monopile
penetration with the Material Point
Method

Software Tool

Anura3D is software developed at Deltares for such simulations



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Why this simulation so important ?

Joint Industry Project
for Simulation of
Installation of Monopile

1 Prolong useful life of
pile foundation.

2 Decisive for
optimization of pile
design.

3 Improved installation
techniques.

Figure: Simulation of monopile
penetration with the Material Point
Method

Software Tool

Anura3D is software developed at Deltares for such simulations



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Why this simulation so important ?

Joint Industry Project
for Simulation of
Installation of Monopile

1 Prolong useful life of
pile foundation.

2 Decisive for
optimization of pile
design.

3 Improved installation
techniques.

Figure: Simulation of monopile
penetration with the Material Point
Method

Software Tool

Anura3D is software developed at Deltares for such simulations



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Why this simulation so important ?

Joint Industry Project
for Simulation of
Installation of Monopile

1 Prolong useful life of
pile foundation.

2 Decisive for
optimization of pile
design.

3 Improved installation
techniques.

Figure: Simulation of monopile
penetration with the Material Point
Method

Software Tool

Anura3D is software developed at Deltares for such simulations



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Why this simulation so important ?

Joint Industry Project
for Simulation of
Installation of Monopile

1 Prolong useful life of
pile foundation.

2 Decisive for
optimization of pile
design.

3 Improved installation
techniques.

Figure: Simulation of monopile
penetration with the Material Point
Method

Software Tool

Anura3D is software developed at Deltares for such simulations



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Problem Formulation



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

The Material Point Method

1 Numerical technique to simulate behavior of solids, liquids,
gases or any other continuum material.

2 Multiphase interaction handled properly.

3 Key feature of MPM is use of material points, which are
allowed to move freely through the background mesh.

4 Avoids extreme mesh distortion as in FEM.

MPM Algorithm

1 Physical quantities are mapped from material points to
underlying grid.

2 Equation of motion is solved over the background mesh to
find the current acceleration.

3 Variables of the material points are update via
remapping from background grid.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

The Material Point Method

1 Numerical technique to simulate behavior of solids, liquids,
gases or any other continuum material.

2 Multiphase interaction handled properly.

3 Key feature of MPM is use of material points, which are
allowed to move freely through the background mesh.

4 Avoids extreme mesh distortion as in FEM.

MPM Algorithm

1 Physical quantities are mapped from material points to
underlying grid.

2 Equation of motion is solved over the background mesh to
find the current acceleration.

3 Variables of the material points are update via
remapping from background grid.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

The Material Point Method

1 Numerical technique to simulate behavior of solids, liquids,
gases or any other continuum material.

2 Multiphase interaction handled properly.

3 Key feature of MPM is use of material points, which are
allowed to move freely through the background mesh.

4 Avoids extreme mesh distortion as in FEM.

MPM Algorithm

1 Physical quantities are mapped from material points to
underlying grid.

2 Equation of motion is solved over the background mesh to
find the current acceleration.

3 Variables of the material points are update via
remapping from background grid.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

The Material Point Method

1 Numerical technique to simulate behavior of solids, liquids,
gases or any other continuum material.

2 Multiphase interaction handled properly.

3 Key feature of MPM is use of material points, which are
allowed to move freely through the background mesh.

4 Avoids extreme mesh distortion as in FEM.

MPM Algorithm

1 Physical quantities are mapped from material points to
underlying grid.

2 Equation of motion is solved over the background mesh to
find the current acceleration.

3 Variables of the material points are update via
remapping from background grid.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

The Material Point Method

1 Numerical technique to simulate behavior of solids, liquids,
gases or any other continuum material.

2 Multiphase interaction handled properly.

3 Key feature of MPM is use of material points, which are
allowed to move freely through the background mesh.

4 Avoids extreme mesh distortion as in FEM.

MPM Algorithm

1 Physical quantities are mapped from material points to
underlying grid.

2 Equation of motion is solved over the background mesh to
find the current acceleration.

3 Variables of the material points are update via
remapping from background grid.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

The Material Point Method

1 Numerical technique to simulate behavior of solids, liquids,
gases or any other continuum material.

2 Multiphase interaction handled properly.

3 Key feature of MPM is use of material points, which are
allowed to move freely through the background mesh.

4 Avoids extreme mesh distortion as in FEM.

MPM Algorithm

1 Physical quantities are mapped from material points to
underlying grid.

2 Equation of motion is solved over the background mesh to
find the current acceleration.

3 Variables of the material points are update via
remapping from background grid.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

The Material Point Method

1 Numerical technique to simulate behavior of solids, liquids,
gases or any other continuum material.

2 Multiphase interaction handled properly.

3 Key feature of MPM is use of material points, which are
allowed to move freely through the background mesh.

4 Avoids extreme mesh distortion as in FEM.

MPM Algorithm

1 Physical quantities are mapped from material points to
underlying grid.

2 Equation of motion is solved over the background mesh to
find the current acceleration.

3 Variables of the material points are update via
remapping from background grid.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

The Material Point Method

1 Numerical technique to simulate behavior of solids, liquids,
gases or any other continuum material.

2 Multiphase interaction handled properly.

3 Key feature of MPM is use of material points, which are
allowed to move freely through the background mesh.

4 Avoids extreme mesh distortion as in FEM.

MPM Algorithm

1 Physical quantities are mapped from material points to
underlying grid.

2 Equation of motion is solved over the background mesh to
find the current acceleration.

3 Variables of the material points are update via
remapping from background grid.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

The Material Point Method

1 Numerical technique to simulate behavior of solids, liquids,
gases or any other continuum material.

2 Multiphase interaction handled properly.

3 Key feature of MPM is use of material points, which are
allowed to move freely through the background mesh.

4 Avoids extreme mesh distortion as in FEM.

MPM Algorithm

1 Physical quantities are mapped from material points to
underlying grid.

2 Equation of motion is solved over the background mesh to
find the current acceleration.

3 Variables of the material points are update via
remapping from background grid.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Particle to Grid Interaction

Figure: Particles in Grid



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Particle to Grid Interaction

Figure: Particles in Grid



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Particle to Grid Interaction

Figure: Blue Particle Starts to Interpolate



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Interpolation using Shape functions



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Interpolation using Shape functions



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Particle to Grid Interaction in Memory

Figure: Particles updating the nodes



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Particle to Grid Interaction in Memory

Figure: Particles updating the nodes



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Particle Parallel



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Particle Parallel



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Element wise updating

Figure: Element wise updating



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Element wise updating

Figure: Element wise updating



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Challenges in parallelization over elements

Figure: Challenge in Element wise parallelization



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Challenges in parallelization over elements

Figure: Challenge in Element wise parallelization



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

How can we Solve this ??



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

One Solution



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

One Solution



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

The Space Filling Curves



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Moving Towards
High Performance Computing



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Thought Process


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}




Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Thought Process


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Keeping spatial close entities close in memory


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}




Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Keeping spatial close entities close in memory


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton5'){ocgs[i].state=false;}}



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

What is space filling curve

1 SFC is mapping from n-dimensional space to 1 dimensional
space.

2 Mesh renumbering strategy to preserve spatial locality.

3 de facto standard for renumbering unstructured finite element
mesh.

Space Filling Curve Toolbox in C++

We have developed standalone preprocessor application in C++
which takes arbitrary mesh file and produces another mesh file with
space filling indexing of elements and vertexes.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

What is space filling curve

1 SFC is mapping from n-dimensional space to 1 dimensional
space.

2 Mesh renumbering strategy to preserve spatial locality.

3 de facto standard for renumbering unstructured finite element
mesh.

Space Filling Curve Toolbox in C++

We have developed standalone preprocessor application in C++
which takes arbitrary mesh file and produces another mesh file with
space filling indexing of elements and vertexes.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

What is space filling curve

1 SFC is mapping from n-dimensional space to 1 dimensional
space.

2 Mesh renumbering strategy to preserve spatial locality.

3 de facto standard for renumbering unstructured finite element
mesh.

Space Filling Curve Toolbox in C++

We have developed standalone preprocessor application in C++
which takes arbitrary mesh file and produces another mesh file with
space filling indexing of elements and vertexes.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

What is space filling curve

1 SFC is mapping from n-dimensional space to 1 dimensional
space.

2 Mesh renumbering strategy to preserve spatial locality.

3 de facto standard for renumbering unstructured finite element
mesh.

Space Filling Curve Toolbox in C++

We have developed standalone preprocessor application in C++
which takes arbitrary mesh file and produces another mesh file with
space filling indexing of elements and vertexes.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

What is space filling curve

1 SFC is mapping from n-dimensional space to 1 dimensional
space.

2 Mesh renumbering strategy to preserve spatial locality.

3 de facto standard for renumbering unstructured finite element
mesh.

Space Filling Curve Toolbox in C++

We have developed standalone preprocessor application in C++
which takes arbitrary mesh file and produces another mesh file with
space filling indexing of elements and vertexes.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Space filling curve algorithm for arbitrary unstructured 3D
finite element mesh

1 Input the mesh data.

2 Store the element and vertex data into appropriate data
structure

3 Find out the centroids of each element.

4 Compute the bounding box of the computational domain.

5 Compute SFC index of each element based on its
centroid

6 Sort the element according to their SFC index.

7 Place vertexes according to the element order.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Space filling curve algorithm for arbitrary unstructured 3D
finite element mesh

1 Input the mesh data.

2 Store the element and vertex data into appropriate data
structure

3 Find out the centroids of each element.

4 Compute the bounding box of the computational domain.

5 Compute SFC index of each element based on its
centroid

6 Sort the element according to their SFC index.

7 Place vertexes according to the element order.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Space filling curve algorithm for arbitrary unstructured 3D
finite element mesh

1 Input the mesh data.

2 Store the element and vertex data into appropriate data
structure

3 Find out the centroids of each element.

4 Compute the bounding box of the computational domain.

5 Compute SFC index of each element based on its
centroid

6 Sort the element according to their SFC index.

7 Place vertexes according to the element order.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Space filling curve algorithm for arbitrary unstructured 3D
finite element mesh

1 Input the mesh data.

2 Store the element and vertex data into appropriate data
structure

3 Find out the centroids of each element.

4 Compute the bounding box of the computational domain.

5 Compute SFC index of each element based on its
centroid

6 Sort the element according to their SFC index.

7 Place vertexes according to the element order.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Space filling curve algorithm for arbitrary unstructured 3D
finite element mesh

1 Input the mesh data.

2 Store the element and vertex data into appropriate data
structure

3 Find out the centroids of each element.

4 Compute the bounding box of the computational domain.

5 Compute SFC index of each element based on its
centroid

6 Sort the element according to their SFC index.

7 Place vertexes according to the element order.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Space filling curve algorithm for arbitrary unstructured 3D
finite element mesh

1 Input the mesh data.

2 Store the element and vertex data into appropriate data
structure

3 Find out the centroids of each element.

4 Compute the bounding box of the computational domain.

5 Compute SFC index of each element based on its
centroid

6 Sort the element according to their SFC index.

7 Place vertexes according to the element order.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Space filling curve algorithm for arbitrary unstructured 3D
finite element mesh

1 Input the mesh data.

2 Store the element and vertex data into appropriate data
structure

3 Find out the centroids of each element.

4 Compute the bounding box of the computational domain.

5 Compute SFC index of each element based on its
centroid

6 Sort the element according to their SFC index.

7 Place vertexes according to the element order.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Space filling curve algorithm for arbitrary unstructured 3D
finite element mesh

1 Input the mesh data.

2 Store the element and vertex data into appropriate data
structure

3 Find out the centroids of each element.

4 Compute the bounding box of the computational domain.

5 Compute SFC index of each element based on its
centroid

6 Sort the element according to their SFC index.

7 Place vertexes according to the element order.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Is space filling curve enough for achieving high performance ?



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Hybrid supercomputer architecture



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Hybrid supercomputer architecture



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Close Look at ccNUMA system



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Close Look at ccNUMA system



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Key Issues in ccNUMA system

1 ccNUMA systems utilize complex memory hierarchies to
maintain scalability.

2 Modern HPC clusters are not symmetric multiprocessors
(SMPs), they have asymmetry.

3 Ignoring the architectural aspects can significantly harm
performance.

4 Processor/ thread affinity play major in performance of
compute intensive kernels.

5 Implicit memory allocation policies helps to keep data as local
as possible.

6 Congestion of memory controllers.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Key Issues in ccNUMA system

1 ccNUMA systems utilize complex memory hierarchies to
maintain scalability.

2 Modern HPC clusters are not symmetric multiprocessors
(SMPs), they have asymmetry.

3 Ignoring the architectural aspects can significantly harm
performance.

4 Processor/ thread affinity play major in performance of
compute intensive kernels.

5 Implicit memory allocation policies helps to keep data as local
as possible.

6 Congestion of memory controllers.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Key Issues in ccNUMA system

1 ccNUMA systems utilize complex memory hierarchies to
maintain scalability.

2 Modern HPC clusters are not symmetric multiprocessors
(SMPs), they have asymmetry.

3 Ignoring the architectural aspects can significantly harm
performance.

4 Processor/ thread affinity play major in performance of
compute intensive kernels.

5 Implicit memory allocation policies helps to keep data as local
as possible.

6 Congestion of memory controllers.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Key Issues in ccNUMA system

1 ccNUMA systems utilize complex memory hierarchies to
maintain scalability.

2 Modern HPC clusters are not symmetric multiprocessors
(SMPs), they have asymmetry.

3 Ignoring the architectural aspects can significantly harm
performance.

4 Processor/ thread affinity play major in performance of
compute intensive kernels.

5 Implicit memory allocation policies helps to keep data as local
as possible.

6 Congestion of memory controllers.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Key Issues in ccNUMA system

1 ccNUMA systems utilize complex memory hierarchies to
maintain scalability.

2 Modern HPC clusters are not symmetric multiprocessors
(SMPs), they have asymmetry.

3 Ignoring the architectural aspects can significantly harm
performance.

4 Processor/ thread affinity play major in performance of
compute intensive kernels.

5 Implicit memory allocation policies helps to keep data as local
as possible.

6 Congestion of memory controllers.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Key Issues in ccNUMA system

1 ccNUMA systems utilize complex memory hierarchies to
maintain scalability.

2 Modern HPC clusters are not symmetric multiprocessors
(SMPs), they have asymmetry.

3 Ignoring the architectural aspects can significantly harm
performance.

4 Processor/ thread affinity play major in performance of
compute intensive kernels.

5 Implicit memory allocation policies helps to keep data as local
as possible.

6 Congestion of memory controllers.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Key Issues in ccNUMA system

1 ccNUMA systems utilize complex memory hierarchies to
maintain scalability.

2 Modern HPC clusters are not symmetric multiprocessors
(SMPs), they have asymmetry.

3 Ignoring the architectural aspects can significantly harm
performance.

4 Processor/ thread affinity play major in performance of
compute intensive kernels.

5 Implicit memory allocation policies helps to keep data as local
as possible.

6 Congestion of memory controllers.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Key Issues in ccNUMA system

1 ccNUMA systems utilize complex memory hierarchies to
maintain scalability.

2 Modern HPC clusters are not symmetric multiprocessors
(SMPs), they have asymmetry.

3 Ignoring the architectural aspects can significantly harm
performance.

4 Processor/ thread affinity play major in performance of
compute intensive kernels.

5 Implicit memory allocation policies helps to keep data as local
as possible.

6 Congestion of memory controllers.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Our focus for present study

1 Thread / Processor affinity.

2 Data placement using first touch principle.

3 Intel’s Hyper-threading.

4 Floating point balance.

Computational Kernel

We will study the effect of above issues on simple computational
kernels and extend this concepts to current 3D MPM code.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Our focus for present study

1 Thread / Processor affinity.

2 Data placement using first touch principle.

3 Intel’s Hyper-threading.

4 Floating point balance.

Computational Kernel

We will study the effect of above issues on simple computational
kernels and extend this concepts to current 3D MPM code.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Our focus for present study

1 Thread / Processor affinity.

2 Data placement using first touch principle.

3 Intel’s Hyper-threading.

4 Floating point balance.

Computational Kernel

We will study the effect of above issues on simple computational
kernels and extend this concepts to current 3D MPM code.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Our focus for present study

1 Thread / Processor affinity.

2 Data placement using first touch principle.

3 Intel’s Hyper-threading.

4 Floating point balance.

Computational Kernel

We will study the effect of above issues on simple computational
kernels and extend this concepts to current 3D MPM code.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Our focus for present study

1 Thread / Processor affinity.

2 Data placement using first touch principle.

3 Intel’s Hyper-threading.

4 Floating point balance.

Computational Kernel

We will study the effect of above issues on simple computational
kernels and extend this concepts to current 3D MPM code.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

First look at results



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

The Space filling curve generation for arbitrary mesh



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

The Space filling curve generation for arbitrary mesh



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

The elements in memory



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

The elements in memory



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

The elements in memory after space filling curve
numbering



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

The elements in memory after space filling curve
numbering



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

The efficient partition over multi-core architectures



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

The efficient partition over multi-core architectures



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Optimization of SAXPY and DAXPY kernels

Machine specifications

1 Architecture : x86 64

2 CPUs : 0-15

3 Number of Sockets : 2

4 Cores per sockets: 8

5 CPU Max GHz : 3.10 GHz

6 L1 Cache : 32 KB

7 L2 Cache : 256 KB

8 L3 Cache : 40 MB

9 NUMA Node(0) CPUs : 0-7

10 NUMA Node(1) CPUs : 7-15

11 Operating System : Linux



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Optimization of SAXPY and DAXPY kernels

Machine specifications

1 Architecture : x86 64

2 CPUs : 0-15

3 Number of Sockets : 2

4 Cores per sockets: 8

5 CPU Max GHz : 3.10 GHz

6 L1 Cache : 32 KB

7 L2 Cache : 256 KB

8 L3 Cache : 40 MB

9 NUMA Node(0) CPUs : 0-7

10 NUMA Node(1) CPUs : 7-15

11 Operating System : Linux



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Time measurement without any optimizations



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Time measurement without any optimizations



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Zoom in for out of core memory



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Zoom in for out of core memory



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Parallel scalability with thread affinity and data placement



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Parallel scalability with thread affinity and data placement



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Effect of hyper-threading



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Effect of hyper-threading



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Floating point balance



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Floating point balance



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Conclusion and Future Work



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Key inference



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Key inference



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Moving forward



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Moving forward



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Thank you for your patience


	Motivation
	Problem Formulation
	 High Performance Computing 
	Glimpse of Results
	Future Work

	fd@rm@0: 
	fd@rm@1: 
	fd@rm@2: 
	fd@rm@3: 
	fd@rm@4: 
	fd@rm@5: 


