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Why this simulation so important ?

Joint Industry Project
for Simulation of
Installation of Monopile

1 Prolong useful life of
pile foundation.

2 Decisive for
optimization of pile
design.

3 Improved installation
techniques.

Figure: Simulation of monopile
penetration with the Material Point
Method

Software Tool

Anura3D is software developed at Deltares for such simulations
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Problem Formulation
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The Material Point Method

1 Numerical technique to simulate behavior of solids, liquids,
gases or any other continuum material.

2 Multiphase interaction handled properly.

3 Key feature of MPM is use of material points, which are
allowed to move freely through the background mesh.

4 Avoids extreme mesh distortion as in FEM.

MPM Algorithm

1 Physical quantities are mapped from material points to
underlying grid.

2 Equation of motion is solved over the background mesh to
find the current acceleration.

3 Variables of the material points are update via
remapping from background grid.
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Particle to Grid Interaction

Figure: Particles in Grid
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Particle to Grid Interaction

Figure: Blue Particle Starts to Interpolate
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Interpolation using Shape functions
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Particle to Grid Interaction in Memory

Figure: Particles updating the nodes
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Particle Parallel
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Element wise updating

Figure: Element wise updating



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Element wise updating

Figure: Element wise updating



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Challenges in parallelization over elements

Figure: Challenge in Element wise parallelization
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How can we Solve this ??
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The Space Filling Curves
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Moving Towards
High Performance Computing
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Thought Process
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Keeping spatial close entities close in memory
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What is space filling curve

1 SFC is mapping from n-dimensional space to 1 dimensional
space.

2 Mesh renumbering strategy to preserve spatial locality.

3 de facto standard for renumbering unstructured finite element
mesh.

Space Filling Curve Toolbox in C++

We have developed standalone preprocessor application in C++
which takes arbitrary mesh file and produces another mesh file with
space filling indexing of elements and vertexes.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

What is space filling curve

1 SFC is mapping from n-dimensional space to 1 dimensional
space.

2 Mesh renumbering strategy to preserve spatial locality.

3 de facto standard for renumbering unstructured finite element
mesh.

Space Filling Curve Toolbox in C++

We have developed standalone preprocessor application in C++
which takes arbitrary mesh file and produces another mesh file with
space filling indexing of elements and vertexes.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

What is space filling curve

1 SFC is mapping from n-dimensional space to 1 dimensional
space.

2 Mesh renumbering strategy to preserve spatial locality.

3 de facto standard for renumbering unstructured finite element
mesh.

Space Filling Curve Toolbox in C++

We have developed standalone preprocessor application in C++
which takes arbitrary mesh file and produces another mesh file with
space filling indexing of elements and vertexes.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

What is space filling curve

1 SFC is mapping from n-dimensional space to 1 dimensional
space.

2 Mesh renumbering strategy to preserve spatial locality.

3 de facto standard for renumbering unstructured finite element
mesh.

Space Filling Curve Toolbox in C++

We have developed standalone preprocessor application in C++
which takes arbitrary mesh file and produces another mesh file with
space filling indexing of elements and vertexes.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

What is space filling curve

1 SFC is mapping from n-dimensional space to 1 dimensional
space.

2 Mesh renumbering strategy to preserve spatial locality.

3 de facto standard for renumbering unstructured finite element
mesh.

Space Filling Curve Toolbox in C++

We have developed standalone preprocessor application in C++
which takes arbitrary mesh file and produces another mesh file with
space filling indexing of elements and vertexes.



Motivation Problem Formulation High Performance Computing Glimpse of Results Future Work

Space filling curve algorithm for arbitrary unstructured 3D
finite element mesh

1 Input the mesh data.

2 Store the element and vertex data into appropriate data
structure

3 Find out the centroids of each element.

4 Compute the bounding box of the computational domain.

5 Compute SFC index of each element based on its
centroid

6 Sort the element according to their SFC index.

7 Place vertexes according to the element order.
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Is space filling curve enough for achieving high performance ?
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Hybrid supercomputer architecture
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Key Issues in ccNUMA system

1 ccNUMA systems utilize complex memory hierarchies to
maintain scalability.

2 Modern HPC clusters are not symmetric multiprocessors
(SMPs), they have asymmetry.

3 Ignoring the architectural aspects can significantly harm
performance.

4 Processor/ thread affinity play major in performance of
compute intensive kernels.

5 Implicit memory allocation policies helps to keep data as local
as possible.

6 Congestion of memory controllers.
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Our focus for present study

1 Thread / Processor affinity.

2 Data placement using first touch principle.

3 Intel’s Hyper-threading.

4 Floating point balance.

Computational Kernel

We will study the effect of above issues on simple computational
kernels and extend this concepts to current 3D MPM code.
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First look at results
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The Space filling curve generation for arbitrary mesh
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The elements in memory
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The elements in memory after space filling curve
numbering
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The efficient partition over multi-core architectures
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Optimization of SAXPY and DAXPY kernels

Machine specifications

1 Architecture : x86 64

2 CPUs : 0-15

3 Number of Sockets : 2

4 Cores per sockets: 8

5 CPU Max GHz : 3.10 GHz

6 L1 Cache : 32 KB

7 L2 Cache : 256 KB

8 L3 Cache : 40 MB

9 NUMA Node(0) CPUs : 0-7

10 NUMA Node(1) CPUs : 7-15

11 Operating System : Linux
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Time measurement without any optimizations
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Zoom in for out of core memory
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Parallel scalability with thread affinity and data placement
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Effect of hyper-threading
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Floating point balance
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Floating point balance
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Conclusion and Future Work
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Key inference
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Moving forward
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Thank you for your patience
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