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Preface

Over the past year, I have investigated whether machine learning can be used to improve the finite
element method. Specifically, I have tried to find out whether Deep Operator Networks can be used
to approximate optimal test functions that help stabilise the finite element method for advection
dominated problems. Throughout my research I found that the finite element method solution can
be very sensitive to the small approximation errors introduced by the networks. Although this
has made implementing the networks difficult, I feel the results look promising as I have found at
least one case where the DeepONets improved the finite element solution and were able to generate
optimal test functions while using problem specific parameters like the diffusion coefficient as input
variables.

Coming from a BSc in Econometrics, I have learned a great deal while working on this project. It
has improved my understanding of numerical analysis, but it also taught me how to better navigate
through a field with which I am relatively unfamiliar. I would like to thank all the members of
my thesis committee for being involved in this project. Both prof. Heemink and Prof. Vuik have
been very understanding when deadlines had to be postponed. Furthermore, Prof. Vuik has helped
me by providing me with insightful remarks and questions during both my literature presentation
and my green light meeting. Lastly, I would like to express special gratitude to my supervisor, Dr.
Deepesh Toshniwal. Dr. Toshniwal has been extremely supportive and positive during the entire
length of this thesis. He has spent a lot of time helping me understand and solve the problems that
I faced and was always willing to explain even the most basic concepts. I have thoroughly enjoyed
working with him and would not have been able to produce this report without him.



Abstract

The finite element method (FEM) is a numerical method that is used to approximate the solutions
to partial differential equations when solutions in the classical sense do not exist or are very hard
to find. The method is used to solve problems that are relevant for industries like the automotive
industry, the petroleum industry, and the aviation industry. The finite element method uses a
discretisation of the problem domain into sub domains and uses a variational form involving trial
and test functions to arrive at a system of equations. For problems that are advection dominated (for
problems with a large Péclet number), the FEM solutions start to oscillate and produce inaccurate
results near boundary layers. In the past finite element schemes have been developed that use so
called optimal test functions to reduce the oscillations of the solution and increase the accuracy of
the method.

In this thesis an attempt was made to use Deep Operator Networks (DeepONets) to generate
optimal test functions for the steady state advection-diffusion equation in 1D and 2D to improve
the stability /accuracy of the finite element method. An advantage of using neural networks is that
once trained they can take in problem specific parameters like the diffusion coefficient and produce
optimal test functions for a wide range of problems almost instantaneously. It was found that
the applicability of the DeepONets in this context varies and depends on the weak formulation for
which the DeepONet generated optimal test functions are implemented, as the finite element method
solution can be very sensitive to small perturbations in the optimal test functions. The approach
does look promising as a DeepONet was able to improve the finite element method significantly
in a 2D setting by generating optimal test functions, while using the problem specific diffusion
coefficient as a variable.
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1 Introduction

Partial differential equations (PDEs) are equations that describe the relationship between a mul-
tivariable function and its partial derivatives. These equations are used extensively in scientific
fields and help describe a lot of the natural processes in our world. One of these PDEs is called
the advection-diffusion equation, which describes the transport of physical quantities through a
system, due to two different types of transport called advection (or convection) and diffusion. The
advection diffusion equation looks like this

Ou =V (DVu) =V - (vu) (1)
ot
Here, u is some variable of interest, D is the diffusion coefficient, and v is the velocity field of u.
The first part of this equation, V - (DVu), captures the transport that occurs due to diffusion.
This is the effect of particles moving from high concentration to low concentration. The effect of
convection is captured by the second term, —V - (vu). Convection describes what happens when
larger packages of the quantity of interest move due to flow.



Natural phenomena are often described by equations like the advection-diffusion equation in (1)
together with boundary conditions, resulting in what is called a boundary value problem

ou

EZV%DVu)—V-(vu)

u(t,0) =g (2)
u(t,1) =h

Typically, one is interested in using numerical methods to approximate the solution of (2), espe-
cially when the problem does not have a solution in the classical sense. Industries to which solving
these types of problems is very relevant include the automotive industry, the petroleum industry,
and the aviation industry.

One of the most common numerical methods used to approximate u in problems like (2) is called
the finite element method. This method discretises the domain of the original problem and uses a
variational formulation that consists of so-called trial and test functions, to arrive at a system of
matrix equations. By solving this system an approximate solution to the original problem can be
found. Numerical methods like the finite element method do not only say something about how
to find an approximate solution to the linear advection-diffusion equation in (2), but can also help
tackle solutions to non-linear advection-diffusion equations like the Navier-Stokes equations, which
are much more widely applicable.

The structure of this thesis is as follows. First, one of the challenges of using finite element meth-
ods for advection dominated equations will be examined, namely the instability of the numerical
solution. Then, a brief overview of how others have used optimal test functions to deal with this
problem will be included. Once the concept of optimal test functions has been introduced, a sum-
mary of data-driven methods used to solve PDEs will be presented. After examining these different
methods and naming their advantages and disadvantages, research questions will be formulated.
Then, the research questions will be tested by using data-driven methods to generate and imple-
ment the optimal test functions into the finite element method for the steady state version of the
advection-diffusion equation in 1D and 2D. The last section of this thesis includes the conclusions
and a discussion of potential next steps.

1.1 The Instability of Numerical Solutions

As was mentioned earlier, the finite element method approximates the solution by using the vari-
ational (weak) form, essentially a discretisation of the original problem. One of the most common
ways of doing this is called the Galerkin method, which is typified by the fact that the trial func-
tions and test functions used in the weak form come from the same class of functions. The Galerkin
method has been very successful as in many applications it can be shown that it leads to the opti-
mal approximation error with respect to a particular norm. One of the problems with the Galerkin
finite element method is that the approximate solution becomes unstable for advection dominated
PDEs, see [38]. To understand why, an example from [39] will be used. Consider the following 1D
steady-state version of the advection-diffusion equation from (2)

2
—ed—u—f—vd—u =0 for z € (0,1)
dx? dx 3
u(0) =0 (3)
u(l)=1



The exact solution to this problem is given by

1— emv/e

u(z) = 1 _evle (4)

To approximate this solution, consider the finite central difference method, which discretises the
domain into N equidistant points and approximates the first and second order derivatives at the
point z; in the following way

I\ — —u(xi—1) + u(xitr)
wim) = 2h i
i) — u('ri_l) — 2“(@'1) + u($i+1) ( )
u”(x;) = 2

where h is the distance between grid points. These approximations are substituted into the NV
equations resulting from the discretisation of (3), to get to

Uj—1 — 2U; + Ujqq —Ui—1 + Ujy1
—_ =0 6
€ W2 +v 57, (6)
If the solution is of the form u; = r* = r*~1p such that u;_; = *~! and w4, = r* 172, then it
follows from (6) that
1+ 4
r= 1 3h (7)
T 2

The ratio between the transport through advection and through diffusion is called the Péclet number
and is denoted by Pe, i.e., Pe = v/e. Looking at (7) it becomes clear that if the grid Péclet number,
vh/2e, is larger than one, r < 0 and the solution will oscillate. In [38] the point is made that Galerkin
finite element methods used to discretise (3) result in the central-difference approximations in (5),
and therefore suffer from the same problem.

To see this problem in an example, consider (3) with ¢ = 0.01 and v = 1. After running a
Galerkin finite element scheme using 10 elements and first order B-spline finite element functions,
the approximate solution is plotted and is compared to the exact solution in Figure 1.
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Figure 1: Galerkin FEM approximate solution vs. exact solution of (3), given ¢ = 0.01 and v = 1.



This plot shows that the approximate solution is unstable and exhibits wild oscillations that do not
occur in the exact solution. These oscillations get progressively worse as the Péclet number gets
larger, and render the approximate solution useless.

2 Building Stable Numerical Schemes

To deal with the instability arising from the central-differences in the Galerkin method, several
approaches have been used, of which a brief summary can be found in the introduction of [38].
First, increasing the number of grid points used in the discretisation can help reduce the element to
element wiggles. To see why, note that in (7) a problem arises only when the grid Péclet number is
larger than 1, i.e., when vh/2¢ > 1. This grid Péclet number gets smaller whenever h, the distance
between grid points, get smaller. If the grid is refined enough, convection no longer dominates on
an element level.

Secondly, "upwind” techniques have been used to stabilize the solution. In the case of finite differ-
ence techniques this means that the advective term will be approximated using solutions at upwind
and central points only. While upwind techniques do stabilize the solution, they suffer from a loss in
accuracy (upwind difference techniques are first-order accurate while central difference techniques
are second-order accurate). The loss in accuracy leads the approximate solutions to become overly
diffusive. This added artificial diffusion is one of the biggest flaws of the upwind method. As it
turns out, using a combination of upwind and central difference techniques is better than using just
upwind or central differences. In the finite element method the idea of using upwind convective
terms was first achieved with the Petrov-Galerkin framework in which different trial and test func-
tions are used. Here, the test functions were chosen to put more weight on the upstream element
of a node than to the downwind element. These early methods performed better than the regular
Galerkin method when applied to simple convection dominated problems, but unfortunately per-
formed much worse for more complicated cases.

Finally, the streamline upwind/Petrov-Galerkin method was introduced in [38]. This method did
not suffer from the artificial diffusion criticism, and is based on the idea of adding diffusion or
viscosity in the direction of the flow only. This method was able to deal with advection dominated
equations, and achieved good results on complicated problems.

The approaches in the papers that will be covered in the remainder of this section are based on
the Petrov-Galerkin method. The novelty of these approaches comes from the fact that they use
discontinuous test spaces, which make it easy to compute so called optimal test functions on a local
basis.

2.1 A Class of Discontinuous Petrov-Galerkin Methods. Part II: Opti-
mal Test Functions

2.1.1 Introduction

In [2] a method is laid out for building discontinuous Petrov-Galerkin (DPG) methods that can
guarantee stability for a particular boundary value problem. Specifically, given the weak form of
a boundary value problem and a space consisting of numerical solutions (trial functions), a space
of test functions that can be used to guarantee the stability of a numerical scheme is constructed.
This new approach differs from the way Galerkin methods have traditionally been constructed,
where finite element methods are built by setting test and trial spaces for each mesh element



simultaneously.

As the name would suggest, an important piece of the DPG method proposed in [2] is that is uses
discontinuous approximation spaces. This allows for the test function spaces to be calculated locally
(on each element separately). In contrast to standard discontinuous Galerkin methods however,
the DPG method proposed in [2] uses the Petrov-Galerkin version, meaning that different functions
for the trial functions spaces and the test function spaces are chosen. In [30], the advantage of this
design choice is explained: although the trial spaces need to have good approximation properties,
the test spaces can be chosen to obtain a stable scheme. In this literature review, the two most
important parts of [2] are covered: the introduction of optimal test functions and the derivation of
practical schemes.

2.1.2 Optimal Test Functions

In [2], L. Demkowicz and J. Gopalakrishnan define the concept of optimal test functions using a
variational boundary value problem

Find u € U : b(u,v) =1l(v) Yv eV (8)

where U and V are real Hilbert spaces, with norms ||-||y and ||-|]y. Furthermore the right hand
side [ of (8) is a continuous linear form defined on the test space V', and b denotes a bilinear form
that is defined on U x V that is continuous

|b(u, v)| < Ml|ullu[lv]lv (9)
and that satisfies the inf-sup condition

inf  sup b(u,v) >y (10)

lullo=1 o)y, =1
with v > 0. Additionally, L. Demkowicz and J. Gopalakrishnan assume that
{veV:blu,v)=0 VYueU}={0} (11)

The authors mention that given these conditions, [31] showed that problem (8) has a unique solution
for all I € V', where the prime refers the dual space. Furthermore, if (8) is approximated by the
following Galerkin method

Find u,, € U, satisfying 12
b(tn,vn) = l(vy) Yo €V,
with U,, CU, V,, CV, dimU, = dimV,, and equation (10) holds for the subspaces U,, and V,, as

well, then the following theorem from [31] holds

Theorem 1 Under the above assumptions, the exact and the discrete problems (8) and (12) are
uniquely solvable. Furthermore,

M .
o=l < 2= inf fu— way (13)

To explain the idea ”optimal test functions”, a new norm called the energy norm is defined next

lullz & sup b(u,v) (14)

llvllv=1



Using (14) the following proposition can be derived

Proposition 1.1. The energy norm ||-||g is an equivalent norm on U, specifically,
YNully < lulle < Mllully,  Vuel, (15)

if and only if (9) and (10) hold.

Next, the authors define the map from trial space to test space T. For every u € U, define
Twu in V' as the unique solution of

(Tu,v)y = blu,v), YveV, (16)

Here, the notation (-,)y refers to the inner product on V. Furthermore, the authors note that
by the Riesz representation theorem, T' is a well defined map. Then, what follows is evident from
Hilbert space theory

Proposition 1.2. For any u in U, the supremum in (14) is attained by v = Tu € V. The
norm ||ul|g is generated by the inner product

(u,w) g < (Tu, Tu)y (17)

L. Demkowicz and J. Gopalakrishnan then consider a Petrov-Galerkin method of the form (12),
with the following finite dimensional trial subspace

U, =spanfe; : j=1,...,n} (18)

for a set of linearly independent set of functions e; in U. The following definition can now be
formulated

Definition 2.1. Every trial subspace U,, as in (18), has its corresponding optimal test space,
defined by
Vo =span{Te; : j=1,...,n} (19)

L. Demkowicz and J. Gopalakrishnan explain that test spaces defined as above are ”optimal” in
that they result in the optimal ratio of continuity constant to stability constant when U is endowed
with the energy norm. More specifically, the following theorem is presented and proven

Theorem 1.2. Let V,, be the optimal test space corresponding to a finite dimensional trial space
U,. Then the error in the Petrov-Galerkin scheme (12) using U, X V;, equals the best approzimation
error in the energy norm, i.e.

o= unlls = inf Jlu=wns (20)
Since the energy norm is an equivalent norm on U, this means that using optimal test functions leads
to the best approximation error in the norm that is endowed on U. Using optimal test functions
in a Petrov-Galerkin scheme therefore means that a method can be built in which the oscillations
that arise due to a high peclet number are minimized.



2.1.3 Derivation of Practical Schemes

To construct a scheme using the optimal test functions, the operator T in (17) needs to be approx-
imated. L. Demkowicz and J. Gopalakrishnan proceed to lay out the following method.

1. Given a boundary value problem, develop mesh dependent variational formulations b(-, -) with

an underlying space V' that allows inter-element discontinuities (this choice is the reason that
theses schemes are called ”discontinuous” Petrov-Galerkin methods).

. Choose a trial subspace U, that has good approximation properties. Theorem 1.2 shows
that the error in the energy norm will be equal to the smallest possible error based on the
trial functions available, therefore choosing a trial space that can approximate the solution
well is key. This means that they are most often standard piecewise polynomial spaces, where
the degree of the polymomials depends on the local order of accuracy that is needed.

. Next, the optimal test functions need to be approximated. Because of the inter-element
discontinuities in V' in step 1, 7' can be approximated on an element-wise basis, i.e., T, :
U,, — V,, such that

(Tnu’ru ﬁn)V = b(una @n)7 Vﬁn S ‘N/n (21&)
and
T, is injective on U, (21b)

where V,, C V is a space of discontinuous functions, that can be used to represent the ap-
proximate optimal test space. If e; forms a basis for U,, as in (18), then the trial space is set
to V,, = span{t;} where t; = T,,e;. It follows that ¢; forms a basis for V,, due to (21b).

. The last step involves solving a symmetric positive definite matrix system. Regardless of the
assymetry of the bilinear form, the result is always a symmetric linear system, because the
(i,4)th entry of the matrix of (12) is

b(ej7ti) = (Tnejvti)v by (213“)
= (Tnej,Tnei)V as t,‘ = Tnei
= (Tnej,Tnei)v
= b(ei,tj)

thus coinciding with the (j,7)th entry. The positive definiteness follows from (21b).

After describing this method to construct an approximation scheme L. Demkowicz and J. Gopalakr-
ishnan mention that they do not have a universal prescription for selecting the space V,,, but that its
dimension must be at least of dim(U,,) to satisfy (21b). Their motivation is that as V,, gets richer,
the discrete energy norm ||T,,u, ||y may be expected to converge to ||[Tu,|v, so that the discrete
approximation should (more and more) inherit the stability properties of the original problem.

10



2.1.4 Example: Pure Convection

In [2] the use of the DPG method is presented for the transport equation, to illustrate how one
can go through steps 1.-4. from the previous subsection. Consider the following pure convection
problem

. - in O
{ﬂ Vu f in (22)
U =wug on ',
where Q2 C R™,n = 1,2, and I'y, is the inflow boundary that looks like this
Iin={z€dQ: B -n(x) <0} (23)

Here 3 is either a scalar or a vector, depending on the dimension of €2, and n is the outward normal
unit vector to the boundary. Suppose that ) is partitioned into a set of finite elements. To get
to the corresponding weak formulation of (22) the convection equation is multiplied with a test
function that is supported on element K, and then the results is integrated by parts on element K

to get to
—/ uﬁﬁv—k/ Bmwz/ fv (24)
K oK K

where Jgv = 3 - Vv denotes the directional derivative in the direction of 3, and 8, = 3 - n. Next,
the authors introduce the flux as an auxiliary variable

Using this new variable together with (24) gives the following variational formulation

(26)

Find u € L*(Q), ¢ € L?(T',): such that
b((u,q),v) =1l(v), Yve Hg(K),VK

with

(COXIEDS /K v+ /8 sen(Ba)av, (27a)

K\T'in

l(v) = ;/K fo+ /{ﬂmrm Bruov, (27b)

Hg(K) = {v e L*(K) : 9pv € L*(K)} (27c)

With the formulation of (26) the first step of the DPG scheme is completed. In this example, the
trial and test spaces are defined as follows

U = L*(Q) x L*(T}), (28a)

V={v:veHgK), Velements K} (28b)

so that both are inter-element discontinuous.

11



2.1.4.1 1D Spectral Discretisation To showcase the next three steps of the scheme that was
previously outlined, the authors use a 1D, single element discretisation. Set § = 1. Now, consider
the discretisation of the domain Q = (x1,x2) using a single element Qo = (z1,22). The space
Hg, which coincides with H*(£), is endowed with a Hilbert structure through the following inner
product

<m@v=/m“w+w@ﬁ (29)

1
With this inner product defined on V' and the L?(€2) defined on U the bilinear form

z2

b(w.a) o) = [ '+ (o) (30)

x1

satisfies (9). The next steps involves setting the trial subspace Uy,. In this example it is defined as
Up = Ppl) x R (31)

which means that a function (u,,q) in U, is a combination of some u € P,(€) and a one point
value ¢ that represents the flux. In this example the optimal test functions can be calculated ex-
actly. Two optimal test functions are found: one corresponding to the solution on the interior trial
function u € P,(£2y) and one corresponding to the flux g.

The optimal test function v, to the interior trial function u € P,(0) is the function in H' ()
such that the following equation holds

/ vl 00+ vy (12)0(22) = —/ udl, V6, € H' (Q) (32)

1 1

The solution to the above equation is given by

vy () = /Iz u(s)ds (33)

Similarly, the optimal test function corresponding to the flux ¢ is the function v, that satisfies

/ Up 0y, 4 vg(2)0y(22) = 8y(x2), V6, € H' () (34)

1

which means that
vg=1 (35)

Using the span of these two types of functions, the optimal test space can be defined
Vp = span{vy, vg : u € Pp(Q0),q € R} (36)

The authors conclude this example by pointing out that a different inner product would have let
to a different optimal test space. For example, choosing

(v,00)v = / w8+ vs,) (37)

1

instead of (29) would have led to non-polynomial optimal test functions.

12



2.1.4.2 A multi-element 1D discretisation The authors in [2] also provide a derivation of
the multi-element version of section 2.1.4.1. Instead of using a single element, consider the multi-
element discretisation of Q = (xg,x,) into elements (z;, x;1+1). The same inner product from the
single element case is used

mwwz§j/ o’ + a0 ()P () (38)
i=1v¥i-1

Here, ; are scaling factors and v"P(x;) is used to denote the limit of v(z) as « approaches z; from
the left. Similarly v9"(x;) is used to denote the limit of v(x) as x approaches x; from the right.
The authors use the following trial space

Un = {(wha qi,--- 7qn) P Wh|(zi,zi41) € Pp(xivxiJrl)} (39)

Here, like was done in section 2.1.4.1, wy is used to approximate u and gqi,...,q, are used to
approximate the rightward fluxes of each element. The bilinear form looks like this

bwmmzz/ !+ g™ () — 0™ (i) (40)
i=17%i—1

Here, gy = 0 because this part is moved to the right hand side and is included in the linear form as
in (27b). Again, the optimal test function can be calculated exactly. For a trial function w defined
on element (z;,2;4+1) the optimal test function v, (x) is given by

vy (x) = /Iﬂrl w(s)ds (41)

For the fluxes ¢;, the optimal test functions v, are different compared to the section 2.1.4.1 case,
in that they are non-zero on two elements instead of one element. The optimal test functions vy,
can be found by solving the following two equations

T
/ VIOl + oy ()00 () = OUP (), Vo, € H (w1, ;)
Ti—1

and i
/ 00, + @10 (@18 (wig1) = =057 (2:), V8, € H' (23, i41)

i

The function v,, that satisfies both these equations is given by

1
— ifxe (JUi_1, .Z‘i)
o 1+ aip12;
Vg, (2) = q g — — T HTIHL e o (T4, Tit1) (42)
(7R ]
0 elsewhere
Therefore, the optimal test space V}, corresponding to the trial space is given by
Vi, = span{v,, : Vw € Pp(K), and vy, :Vi=1,...,n} (43)
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2.2 Automatic Variationally Stable Analysis for FE Computations: An
Introduction

In [35] an automatic variationally stable analysis for finite element computations of convection
diffusion equations for non-constant and highly oscillatory coefficients is introduced, called the
AVS-FE method. The idea of least squares finite element methods is used, introduced in [36],
where second order PDEs are transformed into 1D systems by introducing the fluxes as auxiliary
variables. In the derivation of the weak formulation a Petrov-Galerkin method is used, where
the trial functions are global C functions and the test functions come from discontinuous Hilbert
spaces. By choosing element discontinuous test spaces, the element-wise computation of optimal
test functions becomes possible. This is essentially the DPG method from [2] that was summarised
previously. Setting up the test functions in this way guarantees the unconditional stability of the
equations governing the FE approximation.

The authors motivate their choice for C° trial functions by stating this enables them to enforce the
continuity of all variables strongly and in a simple manner.

2.2.1 Derivation of Integral Statement and FE Discretisation

To describe their method, the authors introduce a convection-diffusion equation with homogeneous
Dirichlet boundary conditions and non-homogeneous Neumann boundary conditions

Find u such that
-V-DVu)+b-u=f inQ (44)
u=0, onlp
DVu-n=g, only

Here, Q C R? is an open bounded domain. The corresponding Lipschitz boundary 95, consists of
two parts: I'p and I'y, with TpNT'y = 0 and 9Q = T'p UT' . Furthermore, D denotes the second
order diffusion tensor that has symmetric, bounded and positive definite coefficients D; ; € L>(Q).
The convection coefficient is denoted by b € [L?()]?, the source function by f € L?(Q) and the
Neumann boundary conditions by ¢ € H~Y/ 2(Ty). Lastly, n denotes the outward unit normal
vector to the boundary.

As was done in [36], a new auxiliary variable is introduced for the flux: q = {gs,q,}* = DVu.
Using the new variable, the problem (44) can be rewritten as a first-order system of PDEs

Find (u,q) € H'(Q)x H(div, Q) such that:
q—DVu=0, inQ
—-V:-q+b-Vu=f inQ, (45)
u=0, onlIp,
gn=g, only

Next, the DPG version of (45) is constructed. First, a partition of subdomains of 2 is created,
denoted by Pj. This partition consists of elements K,, with diameter h,, such that

innt( U Km> (46)

K, ePy,
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Then, the authors enforce the PDE weakly on each element in the partition and combine the first
two equations of (45) multiplied with test functions w,, and v,, to get to

/ { [dm — DVt Wi + [-V - qm + b - V) vm}dx = / fomdx
K, K,

YV (Vp, W) € L2 (K, x [L*(Kp)]?

(47)

Here, u,, and q,, are restrictions of v and q respectively. Adding the equations of the form (47)
for the all the elements in the partition results in

/K { [Am — DVupy] - Wp + [=V - qm +b - Vug,] vm}dx
Kmnm€Py m

: (48)
> /K fomdz, Y(v,w) € L*(Q) x [L*(9)]”

KTTL e P}L m

To simplify (48) Green’s theorem is applied to the (V - q,,)v,, part. Using Green’s theorem does
require that each v,, € H' for the corresponding element K,,. The result looks like this

Find (u,q) € HY(Q) x H(div,Q):
Z { [(qm —DVuy) Wi + Q- Vo, + (b Vum)vm} dx

Ky €EPy
- v?(qm)vm(vm)dS} = / fumdz,
ngm 0 Z K

K’V?’L EP}L m

Y(v,w) € H'(P,) x [L*(Q)]?

(49)

here 7o : H'(K,,) :— HY?(0K,,) and v : H(div, K,,) — H '/?(8K,,) denote the trace and
normal trace operators on K,,. Furthermore, H! is defined on the partition P, as follows

HY(P,) ¥ {v € L*(Q) : vy, € HY(K,),VK,, € Ph} (50)

Equation (49) can be rewritten by splitting up 0K, into 0K,,,\I'p UT n, 0K,,NT'p, and 0K,,NT'x

as follows
Find (u,q) € H'(Q)x H(div, Q):

Z { / |:(qm —DVuy,) Wi+ Qm - Vo, + (b - Vum)vm] dzx
K, ePy, Ko

_ / (o A (0 )5 — / A (o (0 ) (51)
6Km\FDUFN OK,,NI'p

[ m@aeadsy = 5[ o
OK,,NI'n K, €Py K,

Y(v,w) € H(P,) x [L*(Q)]?
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To arrive at the final variational form, the authors enforce the Neumann boundary condition on
the trace q and restrict the traces of the test function v,, on the Dirichlet boundary condition

Find (u,q) €U(Q):

> { / [(Qm —~ DVuy) Wi + Q- Vo, + (b Vum)vm} dz

K €Py m

-/ wx<qm>vy<vm>ds}= T { fomde + [ m@”(vmds}
aKm\FDUFN Km€EP), K, OK,,NI'n
V(v,w) € V(Py)

(52)

Here, the trial and test spaces, U(Q2) and V(P,) look like this

U(Q) dzef{ (u,q) € H'(Q) x H(div, Q) : v (um) oK, arp = 0,VKp, € Ph},

def

V(P,) = {(uw) € H'(Py) x [L*(Q))” : v§" (vm)jok,nrp = 0, VK, € Ph}

The norms |[-||y(q) : U(Q) = [0,00) and ||-||v(p,)V(Pn) — [0,00) are defined as follows:

[[(w, @)l () dzef\// |:VU'VU+U2+(V-q)2+q.q:|dx
Q

lowlvimny [ S0 [T Tt i
K, €Py Km

The weak formulation in (52) can be written more compactly in the following way

Find (u,q) € U() such that:

B((u,q), (v,w)) = F(v,w), V(v,w)e V(P) (55)
where B((u,q), (v,w)) and F (v, w) denote the left and right hand side of (52) respectively.
The problem statement in (55) is a DPG formulation. The big difference with the approach from [2]
however, is that the trial spaces are globally continuous, meaning that each trial function has
support on multiple elements. The fact that in [2] each trial function is supported on a single
element only introduces the requirement of using numerical traces and fluxes as auxiliary variables.
The authors in [35] state that by introducing globally continuous trial functions they attempt to
keep the formulation as close as possible to a standard FE discretisation.

2.2.2 AVS-FE Discretisation

The next step is to find the numerical approximations (u”, q") of the solutions (u,q) of the weak
formulation in (55). To do so, a finite element discretisation has to be derived. The authors proceed
by introducing a family of invertible maps, {F,, : K cR? - Q}, such that every K,,, € Py is the
image of element K and one of the mappings Fy,, as shown in Figure 2.
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Figure 2: Discretisation of 2, [35]

As was mentioned in the previous section, the authors of [35] use globally continuous trial functions
in the approximations (u”,q"). The resulting space of trial functions, U"(Q2) C U(2), looks like
this
def 2 A
Ut(Q) = {W,eh) € CQ) x [CYN* + (91xus Ok,) = (9 01xc,.) © Fom,
(56)
¢ € PP (K)AO € [PP(K)]?, VK, € Ph}

Here p,, is the degree of the polynomials used in the approximation on element K,,. The approxi-

mate solutions (u", ") are approximated using linear combinations of trial functions (e’ (x), (Ei(x), Ef (x))) €
U™(Q) with constants {u} € R,i = 1,2,...,N},{¢l7 € R,j = 1,2,...,N} and {¢/'"* € R,k =
1,2,...,N}, such that

N ' N o N
uP(x) =) el (%), qh(x)=> IEx), ¢x) =) aFEL(x) (57)
i=1 j=1 k=1

The test functions that will be used are allowed to be piecewise continuous and can be found using
the DPG method [2] that was described earlier. In [35] however, each trial function will be paired
with a vector valued test function (versus a scalar valued one in the original DPG method). More
specifically, ¢(x) is paired with (&', El) € V(P,), EJ(x) with (&},E}) € V(P,) and ES(X) with
(é’;7 ]:]1;) € V(Py). Pairing the trial and test functions in this way results in the following variational
problems

(o) <%E‘>)V(P =B 0.2, Y(rz) € V(B).i=1,....N,
((r,zx(ézgﬁb)wp)=B<<o,<Eg,o>>,<r,z>>, V) V(B j=1...N.  (59)

<(r,z), (é’;,E‘;)> = B((0,(0,E})), (r,2)),  V(r,z) € V(Py),k=1,...,N
V(Pp)
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Here, (-, -)v(p,) : V(Pr) x V(Py) — R is the inner product that is defined as follows

((r,2), (v, W))V(ph) def Z / [hf,LVTm VU + TV + Zpy, - W | d (59)
K, ePy Km

The optimal test functions can now be found by solving the variational problems in (58).

Lastly, the authors note that by restricting the functions (r,z) € V(Fy) so that they vanish outside
a given element K, the local restriction of the test functions on K,, can be computed by solving
the following, restricted version of (58)

((r, z), (7,]:]1)) v = B‘Km((ei,O), (r,2)), V(r,z) e V(Kp),i=1,..., N,

((m%(ég,ﬁb)vmBKm((o,(Ef;,o»,(r,z)), V(rz) € V()i =1, . N, (60)

((r, z), (é’;E‘;)) = Bk, ((0,(0,E})), (r,2)), Y(r,z) e V(Kp),k=1,...,N
V(Km)
Here, the authors use Bk, (-,-) as the restriction of B(-,-) to the element K, and define

V(Ko) & {@,w) € H'(Kop) % (LK) £ A (0m) o = o},

(W o VI(Em) X V(En) = R, (61)

def

((Taz)»(%w))\/(xm) = / [hanr~Vv+rv+z~w] dx

Consider the restriction of B(:,-) for K, on the functions (¢, 0) with the same regularity as the
globally continuous trial functions and test functions (r,z) € V(P,) that are non-zero only on K,,.
From the left hand side of (52) it follows that

Bisc,, ((6,6), (r,2)) = /

{(Bm — DVépn):  zm+ 0 - Vi, + (b- V¢m)7°m] dx
Ko

-/ O ()i
BKm\FDUFN

The authors point out a very convenient result that stems from (62). Because the restricted bilinear
form in (60) only has effect on the element K,,, a test function is non-zero only if the corresponding
trial function is non-zero. This means that the support of each test function is identical to the
support of the equivalent trial function.

Finally, the authors give the FE discretisation of (52), that governs the AVS-FE approximation
(u,q") € U(Q) of (u.q)

(62)

Find (u", ¢")e U"(Q) such that:

h _h * * * * * * (63)
B((u",q"), (v, w)) = F((v", w")), V(" w*) € V*(Fp)
Here V*(Pp,) C V(Py) is spanned by the approximations of the test functions
PO - 2 — ~7J - ~k
{(@h EY1 (@, Be, )}y, and {(&, , By, )}y (64)
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that can be computed using (60). As was mentioned a few times, the fact that the philosophy of the
DPG method is used means that the finite element discretisation in (63) is unconditionally stable,
which removes the need for additional mesh dependent stabilization.

3 Data-Driven Approaches

The goal of this section is to provide a comprehensive overview of data-driven approaches for solving
PDEs. More specifically, how deep learning has been used to solve PDEs. Deep learning has been
one of the most revolutionary disciplines in machine learning of the past decade. Due to advances
in computational resources, deep learning has been extremely successful in fields like computer
vision, natural language processing, and speech recognition. To work well however, deep learning
approaches generally need a lot data. This restriction has lead to a slower adoption rate in fields in
which a lot of data is not readily available, like in the case of solving complex engineering systems.
In the past couple of years, the use of deep learning to solve partial differential equations and
boundary value problems has become a more common practice. Some approaches get around the
lack of data by using custom loss functions that employ prior information about a PDE to train
deep neural networks [4], while other methods use the weak formulation to rewrite the original
equation into a min-max problem ( [22], [1]).

Neural networks have several advantages over numerical approaches like the finite element method.
When neural networks convergence correctly, there is no issue of instability in the solution. Numeri-
cal methods that discretise a domain into a grid are limited in their application to higher-dimensional
problems, due to the curse of dimensionality; neural networks do not have this problem. Further-
more, neural networks can produce solutions almost instantaneously once trained. This property
becomes especially powerful when combined with new architectures like the Deep Operator Net-
work [3] that can learn to approximate the operators (functions that map from a space of functions
into a space of functions) that govern a PDE.

3.1 Deep Ritz Method: a Deep Learning-Based Numerical Algorithm
for Solving Variational Problems
In [32] a deep learning method is proposed called the Deep Ritz Method, for numerically solving

variational problems. The name of the method comes from the way neural networks represent
functions in the Ritz method.

The authors focus on solving the following variational problem

géilril I(u) (65)

with

1w = [ (51Vu@)l - fla)uts) )da (66)

and where H is a set of so-called trial functions, denoted by w. Furthermore, f is a function that is
given, that represents external forcing to the system. Essentially, the Deep Ritz method consists of
three main ideas. The fact the trial functions are being approximated using a deep neural network,
that numerical quadrature rules are used to approximate the functional, and that an algorithm is
employed to solve the optimization problem.
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3.1.1 Approximating the Trial Functions

As was mentioned briefly, approximating the trial functions is done using a deep neural network.
This approximation is essentially a nonlinear transformation

x — zp(x) €ER™ (67)

where zy denotes a neural network with parameters represented by 6. The layers of the network
used in [32] consist of so-called blocks. Each block is made up out of two linear transformations,
two linear activation functions, and a residual connection (residual meaning that the input of layers
is added back to outputs of layers further down the network). The authors show that block i can
be written as a function of its input

fi(s) = d(Wig - d(Wi1s +bi1) +bi2) +s (68)

Here, W; 1, W; 2 are m x m matrices of block ¢, and ¢ is an activation function. By adding the
term s in (68), i.e., the residual connection, the vanishing gradient is avoided making the network
easier to train. Figure 3 shows what the neural network architecture, composed of two blocks and

an output layers, looks like.

\7 \2
FC layer (size m)
+ activation residual
connection
FC layer (size m)
+ activation |
N
FC layer (size m)
+ activation residual
connection
FC layer (size m)

+ activation

:

FC layer (size 1)

output u

Figure 3: Neural network composed of two blocks and a linear output layer, [32]

Combining these separate blocks, the full network can be represented as follows

zg(x) = fno...0 fi(z) (69)
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where, again, # represents the parameters corresponding to the network. Now that the neural
network architecture has been laid out, the approximation of the trial function can be specified

u(z;0) =a-zg(x) +b (70)

By substituting this expression into the functional in (66), the latter can be rewritten to

1
9(z;0) = 5 [Vau(z; 0)* — f(x)ul; ) (71)
and the minimization problem from (65) can be rewritten to
min L(0), L(6) = / o(z:0)dz (72)
Q

3.1.2 Mini-Batch Gradient Descent and Discretisation

Now that approximation of the trial function has been explained, there are two more parts left.
The optimization algorithm that will be used to train the neural network and the discretisation of
the integral in (72). This discretisation of (72) is needed because integrals with functions as the
one defined in (71) cannot be calculated explicitly.

To optimize the neural network the mini-batch gradient descent algorithm is used, which is an
algorithm that is very similar to the stochastic gradient descent algorithm. In stochastic gradient
descent the parameters in the network are updated by calculating the loss function corresponding
to a randomly chosen point in the training dataset. One iteration of the algorithm looks like this

0+ 0 —nVoLl(x;0) (73)

Here, 0 represents the network parameters, 1 is parameter that is user-chosen and L(x;6) is the
loss function evaluated at the point z with network parameters 8. The mini-batch gradient descent
algorithm differs from the stochastic gradient descent algorithm in that it calculates the loss function
corresponding to a randomly chosen batch of points in the training dataset (instead of just a single
random point). One iteration of the mini-batch gradient descent algorithm looks like this

N
1
0 <—9—nV9N2£(wi;9) (74)

Note that in the context of the Deep Ritz method, the loss function is essentially g(x;6), and the
datapoints that are used to evaluate g(z;60) are simply points on the domain. The authors in [32]
proceed in the following way: for each iteration k of the training algorithm, they uniformly sample
a mini-batch {x]k}jvzl from the domain €2, and use the mean of g(z;6) evaluated at those N points
to represent the integral. A single iteration in the resulting approach looks like this

N
1
O 0 = Vo D (i 0) (75)

j=1

The fact that the points used to evaluate the integral are sampled randomly is important here.
If fixed points were used the algorithm would only minimize the integral at those points and not
necessarily over the entire domain. The neural network that is trained during this process can be
used to approximate the solution u(x) at any point in the domain.
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3.2 Deep Least-Squares Methods: An Unsupervised Learning-Based Nu-
merical Method for Solving Elliptic PDEs

In [33] an unsupervised deep learning based approach for solving PDEs is proposed. The method
uses least-squares functionals as loss functions that can be minimized by deep neural networks. The
authors consider the following problem. Let 2 be a bounded subset of R? with Lipschitz boundary
0Q =T'p UT'y. The authors consider the following second-order scalar elliptic pde

-V -(AVu)+ Xu=f, inQ (76)

with
u=gp, onI'pand —n-AVu=gy, on 'y (77)

with f € L?(Q), gp € HY/?(T'p), gy € H™Y/?(Ty). Furthermore, A(z) is a matrix of functions in
L2(€) that is symmetric and has dimension n x n, X is a differential operator that is linear and is
of order of at most one, and n is the outward unit vector normal to the I'yy. Lastly, the authors
assume that A is uniformly positive definite.

Since problem (76)-(77) is generally non-symmetric, it does not have an underlying minimization
principle that can be used to solve it. Since neural networks essentially solve minimization prob-
lems, (76)-(77) needs to be rewritten so that it does lend itself to minimization. This is where the
least squares formulation comes in. The authors use the so called first-order system least squares
(FOSLS) formulation that was introduced in [34]. It is possible to rewrite (76)-(77), a second order

problem, into a first-order system, by introducing a flux variable q = —AVu:
V. Xu =f,inQ
q+ Xu 1 .111 (78)
q+ AV =0, in Q
with
u=gp, on'pandn-q=gn, on 'y (79)
Now, the authors let
H(div;Q) == {v € L>(Q)¢: divv e L*(Q)} (80)

and denote the subsets of H(2) and H(div;() that satisfy the non-homogeneous boundary con-
ditions by

Hlllg(ﬂ) ={ve HY(Q) :v|r, = gp} and Hyg={T € H{div;Q): 7 -n|ry, =gn} (81)

Furthermore, they state that if gp = 0 and g = 0, then the subsets in (81) become subspaces and
will be denoted by H7,(2) and Hy (div; ). Let

Vy = Hy 4(div; Q) x Hp (Q) and Vo = Hy(div; Q) x Hp(9Q), (82)
Now, given (82) the FOSLS formulation is as follows: find (q,u) € V, such that

g(q,u;f): min G(T,U;f) (83)
(T,v)EV,

Here, f = (f,9p,gn) and Q(T,u;f) is defined as
G(r, v f) = ||V 7+ Xv = f[§ o + AT + AY2V0[ff o (84)
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The authors mention that it has been proven in [34] that the homogeneous functional G(7,v;0) is
coercive and bounded in Vj, i.e., positive constants ¢; and c¢o exist such that

all(r o)l* < G(r,v:0) < eoll (. v)IP, V(r,0) € o (85)
Here, the notation ||-||| is used to for the FOSLS energy norm given by
(o)l = (I7ll8. + 1V - 715 o + 0lF o) (86)

This result (the coercivity and boundedness of G(7,v;0)) is very important as it implies that (83)
is well-posed, i.e., that it has a unique solution.

The neural network that will be used to approximate the solution to (76) does need to satisfy
the boundary conditions (77). However, in [32] it was observed that in general it is not easy
to make a neural network satisfy prescribed boundary conditions. Therefore, the authors of [33]
proceed by adding both the Dirichlet and Neumann boundary conditions to the functional in (84)

G(r,v f) = IV-7+ Xv— fg o+ A2 + A2V (87)

+apllv = gplijar, +oavlln T —gnl21 0, (88)

for all (7,v) == H(div;Q) x H*(Q2). Here ap and ay are constants that need to be added to deal
with the difference in scale between the interior norm and the boundary norm (by the Sobolev trace
theorem). The new FOSLS formulation becomes: find (g, u) € ¥ such that

G(q,u; f) = min G(7,0; f) (89)

(T,v)ev

It is possible to prove the functional G(7,v;0) is coercive and bounded in V, which again means
that the problem (89) has a unique solution.

To approximate the solution (g(z,0),u(x,0)) a neural network is used, where 6 again is used to
denote all the parameters in the neural network. The parameters # can be optimized using any
kind of gradient descent algorithm and to train the network values for x can be sampled randomly
from the domain.

3.3 Weak Adversarial Networks

In [1] an new approach is proposed for solving PDEs. The usefulness of this approach lies in
the fact that it is very applicable to high-dimensional problems on arbitrary domains. Most of
the conventional approaches that are used to solve PDEs, like finite difference and finite element
methods, discretise the domain 2. While these methods are very capable at solving highly complex
problems, they suffer from the curse of dimensionality. As the dimension d of the PDE increases, the
number of grid points used in the discretisation increase exponentially. The method proposed in [1],
using so called weak adversarial networks (WAN) does not suffer from the curve of dimensionality
because it avoids using any kind of discretisation.
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3.3.1 Training the Weak Adversarial Networks

Instead of discretising the domain, the new method uses so-called weak adversarial networks to
solve the weak formulation of a PDE. In the weak formulation of the PDE, the weak solution and
the test function are parameterised using two neural networks. By rewriting the weak form into a
min max problem, these two networks can be trained in an unsupervised way. The first network,
representing the weak solution, will learn to minimize the loss function corresponding to this prob-
lem, while the second network will maximise the same loss function.

The authors use the second-order elliptic PDE with Dirichlet’s or Neumann’s boundary conditions
on a domain Q C R? as an example,

d d d
— Z al(z aijé‘ju) + Zbﬁzu + cu — f = 07 in Q
i=1 7j=1 i=1

w(z) —g(z) =0 or (du/d7)(x)— g(z) =0 on HN

(90)

Here, a;;,bi,¢ : Q@ = Rfori,j € [d =={1,...,d}, f : @ = R and g : 9Q — R are given, and
(8u/87 )(z) denotes the normal derivative of u at the boundary point # € #Q. The paper also
discusses solving PDEs that introduce time as another variable, but those will not be examined in
this literature review.

The weak formulation can be found by multiplying the left and right hand side of PDE in (90)
with a test function ¢ € H}(Q;R) and integrating by parts. The weak form corresponding to (90)
looks like this

Find v € H*(Q;R), such that

d d d
(Z > ai0udi¢+ Y biddiu + cug — qu) dx =0 (91)
=1

j=1i=1

Ao = [
Q
Blu] = 0, on 09

Here H}(Q;R) denotes the Sobolev space, and u is called the weak solution of (91).
The weak formulation (91) can be reformulated as a min max problem in the following way. First,

think of Afu] : H}(Q) — R as a linear functional operator so that A[u](¢) = (A[u], ¢}, defined in
(91). In that case the operator norm of A[u] that is derived from the L? is defined by

L] lop = max {(A[ul, 8)/lI¢ll2 | ¢ € Hy, ¢ # 0}, (92)

Here, [|¢]2 = ( [, |¢>(x)\2dm)1/2. With this definition of the operator norm of Afu] it becomes
evident that the weak solution u of (90) satisfies ||A[u]|lop = 0 and B[u] = 0 on 9. Since the
operator norm of Afu], ||A[u]llop, is zero or positive, the weak solution to (90) thus solves the
following two equivalent problems

. 2 . 2 2
Jnin [|Afu]llo, < min max [(Alu], &)|” /I ¢l12 (93)

In [1] these results are summarised in the following theorem
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Theorem. Suppose that u* satisfies the boundary condition Blu*] = 0, then u* is a weak solu-
tion of the BVP (90) if and only if u* solves the problems (93) and || A[u*]||op = 0.

Using the result in (93) it is possible to use what the authors of [1] call an ”adversarial approach” to
find the weak solution corresponding to (91). The goal of the approach is to train a neural network
with parameter @ to learn the function ug : R? — R, such that A[u] minimizes the operator norm
(93). At the same time a neural network with parameter 7 is trained to model the test function ¢,
that challenges ug by maximising (Afug), ¢,) modulus ||¢,||2. Given the strictly monotone nature
of the logarithm function, equation (93) which defines the loss function for ug and ¢,, on €, can be
reformulated into

Lins (0,m) == |(Alul, $)|* —log]| &y 3 (94)

Lastly, ug also needs to satisfy Blu] = 0 on 9 and it is not necessarily true that the neural network
that is trained to minimize (94) will automatically learn to satisfy the boundary condition too. If

{xl()j )}év_*’l are a set of N, points on the boundary 0f2, then the mean squared error of ug for the

Dirichlet boundary condition on 92 is as follows

Ny . N2
Lbary(8) = (1/Ny) - > |ug (") — g(a) (95)
j=1

If there is a Neumann boundary condition imposed instead, then uy (zl()j )) is simply replaced with
ni(ey)Opug ()

i.e., the outward normal derivative of ug. Using a weighted sum of Li,; and Lygqry the final objective
function for ug and ¢, is defined as a min max problem

m@in max L(6,n), where L(6,1) = Lint(0,n) + aLpdry () (96)
n

where a > 0 is a parameter that can be set to speed up convergence and is chosen by the user.

Evaluating the objective function (96) can then be done through evaluation of Li,; by sampling
points on the interior of €2, and through evaluation of Lyq4,y by sampling points on 9€2. Training the
networks then comes down to finding the gradients of L(6,7) with respect to the network parame-
ters 8 and n. With the gradients, # and 7 can be optimized using any gradient descent algorithm.
Depending on the configuration used, each iteration consists of performing K, steps of gradient
descent on 6, and then performing Ky steps of gradient descent on 7.

3.4 Physics Informed Neural Networks

Where weak adversarial networks use the weak formulation of a PDE to solve the strong form,
Physics Informed Neural Networks (PINNs), introduced in [4], use the strong form directly. PINNs
are deep neural networks that are used together with automatic differentiation. As these neural
networks will be differentiated with respect to their parameters and input data, they automatically
respect symmetries, invariances, and conservation principles that come from the physical laws gov-
erning the data, as they are modeled from the PDEs.

[4] is divided into two parts that focus on two main classes of problems: data-driven solution and

25



data-driven discovery of partial differential equations. In this literature review, the focus will be on
the first type of problem, the data-driven solutions of partial differential equations.

The authors consider parameterised and nonlinear partial differential equation of the form
us + Nu; A =0, 2€Q,te0,T], (97)

where u(t, z) denotes the unknown solution for which the equation should be solved, N A] is an
operator that is nonlinear and is parameterised by A, and  C R”. In [4], two types of algorithms
are considered, continuous and discrete time models. In this literature review only continuous time
models will be covered.
The authors define f(¢,2) to be the left hand side of equation (97), i.e., they define f(¢,z) such
that

f=u+ N[y (98)

and proceed by approximating u(¢, x) by a deep neural network. They explain that this assumption
together with equation (98) results in what is a so called physics-informed neural network f(t,x).
While this network has the same parameters as the network used to approximate u(t,z) it has
different activation functions due to the impact of the differential operator A/. The parameters that
are used by both u(t,x) and f(¢,z) can be optimized by minimizing the mean squared error loss

MSE = MSE, + MSE; (99)
with
A .
MSE, = — Y |u(t,,z}) —u'|, (100)
Nu =1
and
1 s P
MSEy = S| fth )| (101)
=1

In this formulation, the points {t!, z¢, ul}i\[:“1 represent the initial and boundary points on u(t, x),

while the collocation points for f(¢,x) are denoted by {t ,m}}f\ifl In this loss function, the part
MSE,, relates to the initial and boundary data and the part MSE; makes sure that equation (97)
is enforced at the collocation points.

The approach in [4] differs from existing approaches in the literature that use machine learning to
solve PDEs [9-21]. Those approaches use machine learning algorithms as what the authors of [4]
call black-box models. The approach in [4] goes one step further though, by directly implementing
the underlying differential operator into the custom loss functions. To see the difference, it makes
sense to think about another way in which a neural network could be trained to approximate the
solution to equation (97). One could approximate the solutions at a random set of points on the
domain using any type of algorithm, and then train a neural network to approximate the solution
at those points by using the mean squared error loss function. In doing just that, one might end up
with a neural network that can produce very accurate approximations, but the way in which the
network learns to approximate the solution is different. Updating the network’s weights based on
the approximate solution to (97) solely, means that the network only learns about the PDE through
its solution. When instead the network is provided with direct information about the PDE as in
(101), it can learn to approximate the solution using a much simpler architecture and using less
training data.
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3.5 VPINNSs: Variational Physics-Informed Neural Networks

In [22] a variational physics-informed neural network (VPINN) is developed. The approach in this
paper operates within the Petrov-Galerkin framework. In this framework the solution is approxi-
mated by a neural network, while the test functions come from linear function spaces. The approach
differs from the approach in [4] in that it evaluates the weak formulation of the problem, instead of
directly incorporating the strong form. It does so by constructing a wvariational loss function. The
authors of [22] list several advantages to this approach.

Firstly, using integration by parts to reduce the order of the differential operators, reduces the
required regularity in the solution space. One of the results of this strategy is that the VPINNs
will be less computationally expensive compared to PINNs. Besides being less computationally
expensive, the VPINNs use a loss function that can be expressed analytically. This means that
numerical analyses can be run. Furthermore, VPINNs use a small number of quadrature points
compared to the number of penalising points used in PINNs, which means that the network leads
less data to train. Lastly, the authors mention that the integrals in the weak formulation allow for
the possible benefit a decomposition of the domain. By dividing the domain up into sub-domains it
is possible to use a separate number of test functions based on the local regularity of the solution.
In the next section the VPINN network will be introduced using a steady state problem.

3.5.1 Training VPINNs

The following formulation of the governing equation of a physical problem in steady state is used
to demonstrate the VPINN
Ll(x) = f(x), x € Q (102a)

u(x) = h(x), x € 00 (102b)

Here Q C R with dimensionality d and boundaries 9. The function u(x) : @ — R is used to
represent the underlying physics, the forcing term f(x) is some external excitation, and lastly, the
authors mention that £ usually contains differential and/or integro-differential operators with the
parameters q.

The approximate solution %(x) is given by the weights and the biases of the neural network, uny.
Alternatively, 4(x) = unn(x; w, b). The equation (102a) is multiplied by a test function v(x) and
integrated over the whole domain to obtain the variational form

(Lfunn(x), v(x))a = (f(x),v(x))a (103a)

u(x) = h(x), x € 00 (103b)

Here, (-,-) represents the inner product. Now that the variational form is defined, the variational
residual is introduced as follows

Residual’ = R — F —r?, (104)
R = (Llunn,v)o, F = (f,v)a
Here, the variational residual is enforced for all test functions vg, k = 1,2, ... and r? is defined as
follows
(%) = unn (%) — h(x), Vx € 0Q (105)
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Then, the authors define a discrete finite dimensional space V using a finite set of admissible test
functions

Vi = span{vg, k=1,2,..., K} (106)
Using the definition of the residual Residual” and of 7* the variational loss function can be defined
L' =L%+ L, (107)

2

1 X T
Lh=2 > IRk = Fil?, Ly = T~ > (@)
k=1 Y =1
Here, 7 is a user chosen parameter and the superscript v is used to refer to the loss function
corresponding to the variational form of the residual. Using these new definitions the problem of
solving (103a) and (103b) can be reformulated as

find 4(x) = unn(x; w*, b") such that {w*,b*} = argmin(L"(w, b)) (108)

Given the objective function above, and the earlier defined variational loss function (107) the neural
network unn (x; w, b) can be trained using any type of gradient descent algorithm, by evaluating the
loss function at the collocation points and adjusting the parameters so that the result is minimised.
Figure 4 shows the VPINN approach, consisting of the network layers, the variational residual and
the test functions.

VPINN: Variational Physics — Informed Neural Network

{ Tnput Hidden Output Variational Form of (L(u), v)a= (f,%)n N
| layer layer layer Governing Equation By1 comdm est Functions
OO " e
7 i
@2 ) A O ) PO @
@ @ R = (L), v)a—(f.v)a B \v) ©) Polynomials
¥ Trigonometric
@ O ax/; @ Functions
@ @ delta Functions

Variational
Loss

Figure 4: VPINN approach, shown in [22]. The authors note that in the Petrov-Galerkin approach
the neural networks represent the trial functions and that the test functions can either be from
another neural network (as in the WAN approach) or other functions spaces. The green parts in
this Figure represent the test functions whereas the red parts represent the differential operators in
the trial function space.

3.6 Deep Operator Networks

In [3] an approach is introduced that approximates nonlinear operators using a new type of neural
network architecture, called a Deep Operator Network (DeepONet). In the papers that have been
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covered so far, neural networks were trained to approximate the solutions to a particular PDE.
Instead, the authors in [3] lay out a method that uses deep neural networks to approximate the
operator G that takes in the input function u. The value that the neural networks predict is
G(u)(y), the function value of the function that is G(u). Instead of taking in just a set of points on
a domain, the DeepONet takes in u and y. What makes this network so powerful for the application
in this thesis (especially compared to other networks), is that it can take in a trial function as an
input variable. The DeepONets will be able to generate the optimal test functions corresponding to
multiple different trial functions, while with the other network architectures a single neural network
per optimal test function would have been needed.

3.7 Training DeepONets

The authors base their approach on a theorem that states that a neural network can accurately
approximate any functional [25-27], which is a mapping from a function space to the real numbers,
or nonlinear operator [28,29], which is a mapping of a space of functions into a space of functions.
Based on this second result from [28], the authors present the following theorem

Theorem: (Universal Approximation Theorem for Operator). Suppose that o is a con-
tinuous non-polynomial function, X is a Banach space, K1 C X, Ky C R% are two compact sets
in X and R?, respectively, V is a compact set in C(Ky), G is a nonlinear continuous operator,
which maps V into C(Kz). Then for any € > 0, there are positive integers n, p, m, constants
ck, fj, 0F, ¢, € R, wy, € RY, z; €Ky,i=1,...,n,k=1,...,p,j=1,..., m, such that

P n m
OIS cfcf(Zszzu(xn 4 ai) ol y+ ) | < e (100)
k=1 =1 J=1 trunk
branch

holds for allu € V and y € Ky and where G(u)(y) denotes the function value of the output function
corresponding to the operator G and the input function u at the point y in the domain.

This theorem forms the basis for the DeepONet approach that is shown in Figure 5.
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Figure 5: Deep Operator Network Approach, [3]

In (A) of Figure 5, the inputs and outputs of the network are shown. The network is fed an array
[w(z1),. .., u(zm)] consisting of the values of an input function u at a finite number of fixed points,
called "sensors” and a point on the domain y € R%. (B) shows what the training data looks like:
input functions u evaluated at the fixed sensors, points in the domain y, and the corresponding so-
lutions G(u)(y). The DeepONet can be trained using any type of gradient descent based algorithm
by iterating over the training data.

(C) and (D) show two different variations of the actual network architecture. The architecture in
(C) is what the authors call a stacked DeepONet, that consists of multiple branches and a single
trunk. Each branch is a neural network and is used to process the information that is given by the
input function u, while the trunk, also a neural network, operates on the point of the domain y.
(D) shows what the authors call an unstacked DeepONet. It differs from the stacked network in
that it uses a single branch network to process the information that lies in the input function w.

The focus lies on being able to learn operators in a general setting, with the single requirement for
the training data being the fixed location of the sensors {z1,..., 2.} for the input functions. The
inputs consists of two parts: [u(z1),...,u(zm,)]” and y, and the goal is to reach high performance
by using a suitable architecture. Lu Lu et al. note that one approach would be to use a regular
neural network and concatenate the inputs, [u(x1),...,u(z.,),y], but explain that the drawback of
this idea would be that as the dimension d of y gets bigger, it would no longer match the dimension
of u(x;) for ¢ = 1,2,...,m. This in turn would mean that it would no longer be possible to treat
u(z;) and y equally. Therefore two separate networks are needed to deal with [u(zy),. .., u(z,)]T
and y.

When Lu Lu et al. define the DeepONet they mention that the branch and the trunk networks
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can be any types of neural networks. There are some general points that can be made about them
though. First, the trunk network takes in y as its input and outputs [t1,...,t,]7 € RP. Secondly,
the p branch networks each take in [u(z1),...,u(x,)]T as the input, and output a scalar b, € R
for k =1,2,...,p. Therefore, the approximation in equation (109) can be written in terms of the
outputs of the branches and the trunk

G(u)(y) = Y bit (110)
k=1

Lu Lu et al. use an activation function in the final layer of the trunk network, i.e., tx = o(-) for
k=1,2,...,p. If this fact is combined with equation (110), the trunk-branch network can be seen
as a trunk network where each weight in the last layers, i.e. b, is being parameterised by another
network instead of being treated as a classical parameter.

In [3] it is mentioned that p is at least of the order of 10, meaning that the stacked version of the
DeepONet is computationally expensive, see (C) of Figure 5. This is why the unstacked version is
created, see (D) of Figure 5. Here all the branch networks are merged into a single network that
outputs the vector [by,...,b,]T € RP.

3.7.1 Example: a 1D Dynamic System

The authors demonstrate that the DeepONets, due to their superior ability to generalise well,
achieve better results for solving ODEs and PDEs than regular fully connected neural networks
(FNNs). In one of their examples they consider the problem of finding s(x) over the domain [0, 1]
for any u(z) in the following 1D dynamic system

ds(x)
dz

=u(z), =z€]l0,]1] (111)

The authors mention that solving this problem can essentially be seen as learning the following
operator

G:u(x) — s(z) = /(;c u(T)dr (112)

To compare with, a regular FNN is trained to learn the operator in (112). A grid search is performed,
using a depth from 2 to 4, width from 10 to 2560, and learning rates 0.01, 0.001, and 0.001 together
with the Adam optimizer. Figure 6 shows the mean squared error of the resulting networks on a
test dataset.
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Figure 6: Errors of FNNs trained to learn the antiderivative operator, [3].

To compare with the regular neural network, a stacked and an unstacked DeepONet (see C and
D of Figure 5) are trained to learn (112). Of both types, two versions are trained: one with and
one without bias (resulting in four networks in total). The addition of bias means that instead of
outputting (110), the networks output

G(u)(y) = Y bity +bo (113)
k=1

where by is a parameter that is learned by the network. For all the DeepONets branches of depth
2, width 40, and trunks of depth 3, width 40 are used (the authors note that they did not try to
find the optimal configuration and did not use a grid search). The results of testing the DeepOnets,
together with the best performing FNN, are shown in Figure 7. One interesting point to make here
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is that the DeepONets have a much smaller generalisation error compared to the regular FNN, even
without a grid search.
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Figure 7: Errors of DeepONets trained to learn the antiderivative operator, [3].

3.8 Neural Network Approximation of Piecewise Continuous Functions:
Application to Friction Compensation

The universal approximation theorem that was introduced in [23] holds for continuous functions
only. In [37] an approach for approximating functions with discontinuities is proposed. If the
locations of the discontinuities of the function that is to be approximated are known, the authors
show that they can be dealt with using a specific type of activation function. Using a neural network
architecture that can deal with discontinuities could be very useful for this thesis. It was shown in
sections 2.1.4.2 and 2.2.2 that the optimal test functions with multi-element support exhibit jumps
between elements. As will be covered in section 4, a major goal of this thesis will be to generate
optimal test functions using neural networks. If the neural network of choice is not able to deal with
the inter-element jumps in the test functions, multiple networks will be needed to approximate the
continuous parts of the optimal test functions, which will reduce the efficacy of the overall approach.

3.8.1 Augmented Neural Network for Jump Function Approximation

One of the most commonly used activation functions in deep learning is the so called sigmoid
function, that is defined as follows .

o(z) = 1+e®
This activation function is used in the universal approximation theorem [23] for neural networks.
This theorem states that a neural network with a single layer together with a sigmoid activation
function can approximate any continuous function arbitrarily close, given enough neurons. The
universal approximation theorem does not make any statements about discontinuous functions
however, which is why the authors of [37] introduce a new type of activation called sigmoidal jump
approximation functions. Several choices for these discontinuous functions include

(114)

0, forz < xy
or(z) = 1—e"
14+e®

k (115)
) , forx > xy
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and
0, forx <xy
or(x) = (e“" —e

et 4+ e %

k (116)
) , for x >z

Here x; denotes the value of x for which the jump in the function occurs. These discontinuous
jump functions can be used in tandem with the sigmoid activation functions. The authors of [37]
propose an augmented neural network that is shown in Figure 8.

1] —»=o

Figure 8: Augmented Neural Network, [37].

With this type of architecture, the neural network output looks like this

L N

Y= Z w1, O’(’ULZI’ -+ Cl,l) —+ Z ’wgvk(pk(vg,kl’ -+ CQ,k) +b (117)
=1 k=1

Here, vy ; and vy correspond to the elements of VI and V3§ respectively, and w, ; and W}, COITe-
spond to the elements of Wi and Wy, respectively. Furthermore, ¢;; and ¢ ; correspond to the
biases of the sigmoid functions and sigmoidal jump approximation functions respectively, and b is
the bias associated with the last layer, i.e., with the output y.

To test the performance of the new network, it was used to approximate the following two discon-
tinuous functions

i -1
Y= s?n(gc) x < (118a)
sin(x) + 1 > -1
0.5z +1 x>0

The results were compared to approximating the same functions with a regular neural network
without jump approximation functions, as shown in Figures 9 and 10.
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G (b)

Figure 9: Approximation of function (118a), by a regular neural network (a), and by a neural
network with jump activation functions (b); neural network (full line), true function (dashed line),
37].

(@) (b)

Figure 10: Approximation of function (118b) by a regular neural network (a), and by a neural
network with jump activation functions (b); neural network (full line), true function (dashed line)
[37].

In both cases, the regular neural network and the jump approximation network had 20 sigmoid
nodes, and the jump network had two additional jump nodes. Both types of networks were trained
with the same number of iterations. The Figures show clearly that the augmented neural networks
are much better suited to the regular neural networks. The jump networks are able to determine
the height of the jump, while the regular neural networks appear to average out the function values
around the jump.
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4 Research Questions

The goal of this research is to find out out whether it’s possible to use the numerical approximation
methods together with the data-driven approaches that have been covered in the previous chap-
ter and combine the best of both worlds. The numerical methods like the DPG scheme [2] and
variations on that scheme [35] are more accurate than data-driven approaches like the Deep Ritz
Method [32], the Physics-Informed Neural Networks [4], the Variational Physics Informed Neural
Networks [22], the Weak Adversarial Networks [1], and the Deep Operator Networks [3]. Further-
more, these schemes are an improvement over regular finite element methods, since they use optimal
test functions to stabilize the approximate solution. The data-driven approaches however, while
less accurate, have advantages over the numerical approaches as well. One of the biggest being that
they require less computation and can produce an approximate solution almost instantaneously
once trained. New network architectures like the deep operator networks, can be trained to learn
operators that govern partial differential equations, and can thereafter be used to generate solutions
for different variations of a particular problem.

Research Question 1: Can data-driven approaches be used to generate optimal test functions
corresponding to particular trial functions, that improve the stability/accuracy of finite element
methods?

The data-driven approaches will be used to generate optimal test functions for the original DPG
scheme [2] and other comparable approaches that go one step further, like the AVS-FE method [35].
A neural network will be trained to approximate the optimal test function corresponding to a par-
ticular PDE and a particular trial function.

More specifically, the goal is to first generate the optimal test functions for the 1D pure convection
equation and 1D advection-diffusion equation using the deep learning approaches that were covered
previously, using trial functions that are non-zero on a single element, and allowing for inter-element
discontinuities in the optimal test functions, like was done in the original DPG scheme [2]. Once
the optimal test functions corresponding to these problems have successfully been generated, it is
possible to test how using them in finite element schemes improves the stability of the approximate
solutions, by comparing the results to other FEM schemes. If the 1D cases prove to be a success,
the 2D versions of these problems will be the next step.

The next step is to use globally continuous trial functions that are non-zero on multiple elements, as
was done in the AVS-FE scheme [35]. Approximating optimal test functions in the case of globally
continuous trial functions could be harder, as the support of each test function is identical to that
of the corresponding trial function, resulting in a piecewise continuous function that is non-zero
on multiple elements. Ideally, this piecewise continuous test function should be approximated by a
single neural network, but if this proves to be infeasible each continuous part could be approximated
with a single neural network. The paper on approximating piecewise continuous functions [37] could
prove very useful here. Once the optimal test functions for these globally continuous trial functions
have successfully been approximated, they will be implemented using finite element methods to see
if they improve the stability of the approximate solution.

Research Question 2: Can data-driven approaches be used to gemerate optimal test functions,
using trial functions as variables, that improve the stability/accuracy of finite element methods?

36



This is the most logical next step after the first research question has been proven to be a suc-
cess. Instead of training a network on a specific choice of trial functions, it will be interesting
to see whether it is possible to train a network to generate the optimal test function given using
the trial function as a variable. This would make it possible to try out several trial functions and
generate multiple optimal test functions without having to retrain the neural network. Again, once
the optimal test functions have been generated by the neural network, they will be implemented in
finite element schemes to see whether they improve the results.

Research Question 3: Can neural networks be trained to generate optimal test functions, us-
ing problem specific parameters like the diffusion coefficient as variables, to improve the stabil-
ity/accuracy of finite element methods?

Once the optimal test functions have been successfully approximated using deep learning archi-
tectures and their impact on the stability of the approximate solution has been tested, it is time
to go one step further. Consider the case of generating optimal test functions for the advection-
diffusion equation. What if instead of training a neural network for a specific value of the diffusion
coefficient, it would be possible to train a network that uses the diffusion coefficient as a variable?
This would greatly increase the overall applicability of the approach, especially when combined
with research question 2. After training a network for the advection-diffusion equation, it would be
possible to provide the network with a trial function, the problem’s parameters, and the network
would output the optimal test function.

Research Question 4: Can data-driven methods be used to estimate the finite element inte-
grals?

In the Galerkin method, the weak formulation is used to construct a system of equations that
can be used to determine the approximate solution of the original problem. Let’s consider this
system of equations, Kd = f, where K is a matrix whose elements consist of integrals over the trial
and test functions, d are the constants used in the approximate solution, and f is a vector whose
elements consist of integrals over the test functions and the function f from the original problem.
Instead of approximating the optimal test functions, which was the approach in the previous three
research questions, it might be possible to approximate the elements of K, i.e., the coefficients of
the finite element equations. This could make more sense, as the point-wise values of the optimal
test functions are not used in the finite element method. Instead of approximating the optimal test
functions and then using sampling to approximate their integrals, it would be possible to approxi-
mate the integrals directly.

Research Question 5: Can data-driven methods be used to estimate the perturbation introduced
to the finite element integrals, caused by using optimal test functions?

Suppose that v is the usual test function used and w is the optimal test function. The effect
of using an optimal test function can be seen as a perturbation to the finite element integrals. If
the integral over (v — w)u is close to zero (with trial function u), then no additional stabilization
would be needed. If this integral is not close to zero, it means that using the optimal test function
would change the coefficients used in the finite element equations.
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5 Implementing DeepONet Generated Optimal Test Func-
tions Into the Finite Element Method

In this section, DeepONets will be used to approximate and implement optimal test functions
into the finite element method, with the goal of improving the stability and the accuracy of the
approximate solution. The previous section covered many different neural network architectures
that can all be used to solve partial differential equations. In this thesis the only neural network
architecture that will be used is the DeepONet as it has a few deciding advantages over the other
network architectures.

The most distinctive difference between the DeepONet and the rest of the neural networks that
were summarised in the previous section is that the DeepONet approximates operators (a mapping
from one space of functions to another space of functions), using input functions as variables. This
is extremely useful in the context this thesis, as it means that a single DeepONet can approximate
multiple optimal test functions, by passing the trial functions as input variables to the network. In
the setting of a 2D weak formulation that does not employ a mixed strategy, there already exist
14 unique optimal test functions corresponding to trial functions that are the tensor product of C°
piecewise linear, C° quadratic, and C' quadratic B-splines. Using the VPINN architecture would
have meant that 14 different networks would have to be trained. In the case of a mixed weak
formulation that uses discontinuous test spaces in the spirit of the DPG method, the number of
neural network that would have had to been trained could be much higher.

Another advantage of the DeepONet over some of the other architectures is that it uses supervised
learning. This means that it is relatively easy to treat problem specific parameters like the diffusion
coefficient as a variable.

5.1 1D Non-mixed Weak Formulation

As was mentioned previously, the advection-diffusion equation will be used to test the implemen-
tation of the optimal test functions. More specifically, the following boundary value problem will
be considered )
d*u du
—6@ +C%:f, 336(0,1)

u(0) = 0, u(1) = 1

(119)

where € and c are scalars that denote the diffusion coefficient and advection velocity. In this thesis
c =1 will be used for all problems, and only € will be adjusted to experiment with different Péclet
numbers. This is a nice problem to test the use of optimal test functions with, as the exact solution
is known and the Galerkin method will produce oscillatory behaviour for large Péclet numbers.

5.1.1 Weak Form

Using a discretisation of the domain into open sub-intervals P = ZZ:1 Qp, with Q = (zr—1, zk),
and zp = 0,z = 1, the first weak form that will be used to find a weak solution to (119) is the
following

Find u € U such that

n n n
GZ/ u’w’—Z/ uw’:Z/ fv, YweV
k=17 k=17 k=1
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Here, the H'([0, 1]) space is used for the trial and test spaces U and V, i.e, U and V are defined as

follows
U={u:uecL?*]0,1]), v € L*([0,1])}

V ={v:veL2([0,1]), v € L*(0,1))}

By introducing the notation

b(u,v) = ¢ u'w' — ” uw’
)2,
l(v) = Z fv

k=1 Qk
the weak formulation can be written in compact form as follows

Find v € U such that
blu,v) =1(v), YwveV

(120)

(121)

(122)

That this weak form leads to a well defined finite element scheme can be seen in Figure 11. The
instability that has been show earlier can be seen here as well. As the number of elements in the
discretisation increases, the instability disappears as the local Péclet number becomes smaller.
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Figure 11: Galerkin method using C° linear shape functions corresponding to (120), € = 0.01.

5.1.2 Optimal Test Functions

To find the optimal test function corresponding to the trial functions u in (122), the map from trial
space to test space T': U — V is defined. As was done in [2], Tu in V is defined as the solution of

(Tu,v)y = blu,v), YveV (123)
where (-, )y denotes the inner product of V', and where b(u, v) denotes the bilinear form as defined

in (121). To derive the optimal test functions in, the inner product that will be used is induced by
the mesh dependent H'(P) norm which is defined as follows

ful iy = 3 /Q (B2 + 1) (124)
k=1 k
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where h is equal to the element length used in the finite element discretisation. The corresponding
inner product looks like this

(v, W)y (p) = Z/ (R? v w' 4+ vw) (125)
k=1

Now, to find the optimal test function v, corresponding to trial function u, the following problem
has be solved

GZ/ u'ag—z/ ws;:Z/ (W20, 8 + v 8,), W6, € HY([0,1]) (126)
k=1 k=17 k=1

In all the problems in [2], the optimal test functions could be approximated on a element-wise basis,
by choosing a weak formulation that allowed the test functions to be in L2([0,1]). If the space of
test functions in (120) would have been L?([0,1]), the local restriction of the optimal test function
Uy, to element Q in (126), vy, x, could have been computed on a local basis as well by solving

e/ u'(s;—/ ud,, :/ (h2v;7k 8 4+ Vuk Oy), Vo, €L2([0, 1]) (127)
Q. Qp Qp

However, since the trial space in (120) is an H'([0, 1]) space, the optimal test functions have to be
in H1([0, 1]) as well. Therefore, to find the optimal test function v,, corresponding to trial function
u; the following boundary value problem has to be solved

Find v,,, such that

e/ u,ol —/ u; 6, :/ (h* ), 8l 4 vy, 6,), in Sy, (128)
s s

ug Sui ug

vy, =0, on 05y,

where S, denotes the union of elements on which w; has non-zero support. Here, the boundary
conditions on v, are enforced to ensure that v,, € H'([0,1]). In Figure 12 a FEM approximation
is shown of the optimal test functions corresponding to (120) and inner product (125), for different
values of € and different element sizes, for a piecewise linear trial function. It is interesting to see
that the optimal test function show a clear upwind effect (i.e. they place more weight to the upwind
part of their support).

In this section the use of optimal test functions will be tested for implementations that use piecewise
linear, C°(2) quadratic and C'(Q2) quadratic trial functions, shown in Figure 13.
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Figure 12: Optimal test function v,, corresponding to piecewise linear trial function w, for different
values of € and different discretisations.
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(b) C° quadratic trial functions.
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Figure 13: Different types of trial functions used that will be used throughout this section.
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5.1.3 Implementing the Optimal Test Functions

The optimal test functions were implemented into a Petrov-Galerkin scheme based on the following
weak that was introduced earlier

Find v € U such that
S [ ww =3 [wi=X [ g wev (129)
k=1 k=1 k=17

The results are shown in Figure 14 for implementations that use piecewise linear trial functions
corresponding to (129) with f = 0. The boundary conditions corresponding to the strong form
(119) were enforced strongly. Implementations using optimal test functions lead to a much more
accurate solution in these cases when compared to Galerkin implementations that do not use optimal
test functions.

#el=20,£=0.01 #el=40,e=0.01 #el=60,£=0.01
1.01 — Exact Solution 1.0 | 1.0 i
~—— FEM with OTFs |
FEM without OTFs
0.5 0.5 0.5
ool o 5 00 0.0 }
-05 -05 -05
0.0 0.5 1.0 0.0 05 1.0 0.0 05 1.0
#el=20, £=0.0075 #el=40, e=0.0075 #el=60, e=0.0075
1.0 1.0 1.0
0.5 | 0.5 0.5
0.0 0.0 0.0
-05 -05 -05
0.0 0.5 1.0 0.0 05 1.0 0.0 05 1.0
#el=20, e=0.005 #el=40, e =0.005 #el=60, e =0.005
1.0 1.0 1.0
0.5 . 0.5 0.5
0.0 B 0.0 0.0
-0.5 : -0.5 : -0.5
0.0 0.5 1.0 0.0 05 1.0 0.0 05 1.0

Figure 14: Comparison of Galerkin method and Petrov-Galerkin method with linear trial functions
and optimal test functions corresponding to (129) with f = 0, for several finite element discretisa-
tions and values for €. As € gets bigger the oscillations near the boundary layer get worse. Increasing
the number of elements used in the finite element discretisation reduces the osciallations. The im-
plementations that use optimal test functions perform much better than those that do not.
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Figure 15: Comparison of the convergence of the error ||u — uy, | g1 (o) of the approximate solution
of (129) with f = 0, for the different trial functions shown in Figure 13 between implementations
that do and do not use optimal test functions.

Figure 15 and Figure 16 show a comparison between the ||u — u,||g1(q) error of finite element
implementations that use and do not use optimal test functions, for f = 0 and f = 1 respectively.
The solutions that use optimal test functions are clearly an improvement over their counterparts
that do not use optimal test functions. One thing that is interesting to see is that the Galerkin
methods that do no use optimal test functions appear to catch up with the methods that do use
optimal test functions rather quickly. As the discretisation is made finer, the relative difference
in the H! error between the Galerkin methods and the optimal test functions methods becomes
smaller. While the optimal test functions still do better than the regular test functions (as they
should), it appears that as the number of elements used in the discretisation increases and the local
Péclet number decreases the need for stabilisation is reduced.
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Figure 16: Comparison of the convergence of the error ||u — uy, | 71 (o) of the approximate solution
of (129) with f = 1, for the different trial functions shown in Figure 13 between implementations
that do and do not use optimal test functions.

5.1.4 Training DeepONet-1D-1

The first DeepONet that will be trained to approximate the optimal test functions is called DeepONet-
1D-1. Specifically, the network is trained to approximate the approximate solutions to the boundary
value problem in (128), for a finite element discretisation with 20 elements, and with the diffusion
coefficient set to € = 0.01. Note that without parameterising the diffusion coefficient and the in-
terval length of the discretisation, the DeepONet can only generate the optimal test functions for
fixed values of those parameters. A DeepONet trained for a discretisation using 80 elements and a
diffusion coefficient of € = 0.01 cannot be used to generate the optimal test functions correspond-
ing to a discretisation of 40 elements and a diffusion coefficient of ¢ = 0.005, as the optimal test
functions are different (see Figure 12).

The training dataset for DeepONet-1D-1 is generated by repeatedly approximating the solution
Uy, () in boundary value problem (128) for trial function u; at a random point « for all the unique
trial functions shown in Figure 13, except for the ones that are non-zero on the boundary. Before
the points on the domain = are passed to the network they are scaled to the interval [0,1]. In this
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section the boundary conditions on u will be enforced strongly which means that the first and last
B-spline of each class of functions will not be used. The solutions are approximated using the finite
element method using a discretisation of 200 elements and second order polynomial trial and shape
functions. Using this approach each point in the training dataset is a triplet that looks like this

(ui, x, 0y, (x)) (130)

Here u; is vector that contains the values of trial function u; evaluated at a set of fixed sensors,
x a random point from the interval [0,1] that corresponds to a point on the original domain on
which the trial function is non-zero, and 0, (x) is the approximate solution of (128) corresponding
to trial function u; at random point x. DeepONet-1D-1 uses the ReLLU activation function, has two
layers in the branch network consisting of 100 neurons each, and three layers in the trunk network
consisting of 100 neurons each.

To train the neural network the mean squared error (MSE) loss function is used. The MSE function
looks like this:

N
N 1 N
L(y,9) = N > (i —9i)° (131)
i=0
Here y; is the correct solution that the model needs to predict, y; is the value that the model

predicts, and N is the size of the batch for which the MSE is evaluated. Figure 17 shows the result
of training DeepONet-1D-1 for 100 epochs.

Training DeepONet-1D-1

1072 A

@
g 1073 4

1074 A

T
0 20 40 60 80 100
epochs

Figure 17: Convergence of MSE during training of DeepONet-1D-1.

The the MSE loss during training of DeepONet-1D-1 is shown in Figure. The model appears to
convergence well, which is confirmed by Figure 18 that shows a comparison between the finite
element optimal test function approximations, and the approximations by DeepONet-1D-1. The
difference between the finite element approximation and the DeepONet-1D-1 approximation is very
small.
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It’s interesting to see that the network is able to deal with the different interval lengths on which the
optimal test functions have non-zero support, without being passed that information as a variable.
It means that DeepONet-1D-1 is able to learn the solutions to three different variations of (128)
based on the shape of the trial functions, namely

)
g
J

0 0 0

0 0 0

0 0 0

T T X1
u,ol — / w;b = / (hgvl,. 0l + vy, 60)
x x
. /6/ . !/ . 2,/ /
wy0r — w0, = (hi vy, 0y + vy, Ou) (132)

xr3 xrs3 T3 9
st o AV
ui6v - / ui6v - / (h2 VU, 51} + Uy, 5’0)
x x

Essentially, the network DeepONet-1D-1 has learned to remember that separate operators have to
be used on the different trial functions, to approximate the correct solution.
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Figure 18: Comparison of DeepONet-1D-1 vs FEM approximation of globally continuous optimal
test functions corresponding to (128).

To approximate the derivatives of the optimal test functions, the gradient of the network is used.
This gradient is computed using automatic differentiation, which is the standard in TensorFlow.
Since the input variable x was scaled to the interval [0,11, the gradient has to multiplied by
1/(x1 — x0), 1/(x2 — x0), or 1/(x3 — o) depending on the length of the domain on which the trial
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function has non-zero support. Figure 19 shows a comparison between the FEM approximation
of the derivative and the DeepONet-1D-1 gradient aproximation for the optimal test functions
corresponding to the trial functions shown in Figure 13.
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Figure 19: Comparison betweem FEM and DeepONet-1D-1 gradient approximation of %v&l cor-
responding to (128) for d = 0.01, for different trial functions.

The DeepONet-1D-1 gradient approximations shown in Figure 19 resemble a step function. This is
a result of the activation function that is used. To see why, consider the ReLLU activation function

and its derivative

f(z) = max(0, x)

ooy J0, if z<0
f<‘”)_{1, if >0

(133)

The gradient of DeepONet-1D-1 is a sum of the derivatives of its activation functions with respect
to z. Instead using the DeepONet-1D-1 gradient approximation shown in Figure 19, it is possible
to train a separate network to approximate the optimal test functions’ derivatives (this approach
is employed in a later section). In the next section, the DeepONet-1D-1 network and its gradient
will be implemented into finite element method.
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5.1.5 Implementing DeepONet-1D-1

Figure 21 shows a comparison between a Galerkin finite element implementation, two implemen-
tations that use the DeepONet-1D-1 generated and FEM generated optimal test functions respec-
tively. The methods are implementations resulting from weak form (129) for e = 0.01 and f = 0,
using a finite element discretisation of 20 elements. Using the optimal test functions leads to sig-
nificant increase in the stability and accuracy of the finite element. That the optimal test functions
improve the finite element method for this case was shown previously in Figure 15, but Figure 21
shows that the DeepONet-1D-1 generated optimal test functions can do the same. In fact, the
DeepONet-1D-1 implementation is indistinguishable from the implementation that uses FEM gen-
erated optimal test functions, based on the plots that are shown. Moreover, it is promising to see
that the DeepONet-1D-1 gradient appears to be accurate enough to approximate the optimal test
functions’ derivatives (in fact, by setting f = 0 in (129) the optimal test functions disappear and
only their derivatives, and therefore the DeepONet-1D-1 gradients, are used).

The approximation errors of the implementations shown in Figure 21 are measured in the H! norm
and displayed in Figure 20. This table confirms that the optimal test functions indeed improve
the finite element method and lead to much smaller ||u — w, | g1 (q) errors. It also shows how well
DeepONet-1D-1 can be used in this context. The errors corresponding to the finite elements im-
plementations that used DeepONet-1D-1 generated optimal test functions are hardly smaller than
the methods using FEM generated optimal test functions.

Trial functions Galerkin Method | FEM w/ DeepONet OTFs | FEM w/ FEM generated OTFs
Piecewise linear 6.59 5.55 5.55
C°(Q) quadratic 3.12 3.02 3.05
C1(Q) quadratic 3.60 3.42 3.42

Figure 20: ||u — uy|| g1 (o) error comparison, corresponding to (129) with f =0 and e = 0.01.

The errors that are reported in Figure 20 show that the implementations using the C°(€) trial func-
tions has a higher accuracy than the implementations using C*(Q) trial functions. This is a result
of the fact that the same discretisation is being used for all the different implementations, meaning
that ones with C°(Q) quadratic trial functions have a lot more degrees of freedom. The reason that
all the implementations use the same discretisation has to do with the fact that DeepONet-1D-1
was trained for a discretisation of 20 elements and cannot be used with other discretisations.

It can’t go unnoticed that the results for the C°(Q) and C'(Q) quadratic trial functions in Figure
21 show a weird looking bubble in the approximate solution near the right boundary of the domain.
As the solution approaches the boundary layer, it first goes up and then dips down. Although
this behaviour might not be what one would expect from a method using optimal test functions,
the implementations have been debugged and are correct. Furthermore, while the solution using
optimal test functions may look weird, Figure 20 show that there is a significant improvement in
the H' errors when compared with the Galerkin method.

The optimal test functions were also implemented for (129) using a discretisation of 20 elements an

for e = 0.01, but this time for f = 1. The resulting approximate solutions are plotted in Figure 22
and the corresponding errors are shown in Figure 23.

49



1.0 4 — Exact Solution 1.0 { — Exact Solution
FEM w/ FEM Generated OTFs FEM w/ DeepONet

08 -~ FEM no OTFs 0.84 -~ FEMno OTFs

0.6 1 0.6 1

0.4 4 0.4 1

0.2 4 0.2 1

0.0 1 0.0 7
-0.2 i -0.2 4
-0.4 0.2

0.‘0 0:2 0:4 0:6 0.‘8 l:O (1.'0 0:2 0:4 0:6 Q:B 1:0
(a) Piecewise linear trial functions and FEM (b) Piecewise linear trial functions w/
generated optimal test function derivatives. DeepONet-1D-1 gradients.
1.0 — FExact Solution | 1.0 4" — Exact Solution
' FEM w/ FEM Generated OTFs FEM w/ DeepONet
-+ FEM no OTFs - FEM no OTFs

0.8 1 0.8 1

0.6 1 064

0.4 1 0.4 1

0.2 4 0.2 1

0.0 4 0.0

O.‘O 0:2 014 0.‘5 O.‘E l.‘O 0.'0 O.‘Z 0:4 O.‘é 0:3 1.‘0

(c) C° quadratic trial functions w/ FEM gen-
erated optimal test function derivatives. (d) C° quadratic trial functions w/ DeepONet-
1D-1 gradients.

104 — Exact Solution 1.0 + — Exact Solution
' FEM w/ FEM Generated OTFs | FEM w/ DeepONet
----- FEM no OTFs «==+== FEM no OTFs
0.8 4 0.8
0.6 064
0.4+ 0.4 4
0.2 1 0.2 4
0.0 1 0.04
02
T T T T T T 0.2+ T T T T T T
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0
(e) C' quadratic trial functions w/ FEM gen- (f) O quadratic trial functions w/ DeepONet-
erated optimal test function derivatives. 1D-1 gradients.

Figure 21: Comparison between Galerkin method, and methods that use FEM or DeepONet-1D-1
generated optimal test function derivatives for problem (129) with f =0 and ¢ = 0.01.
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Figure 22: Comparison between Galerkin method, and methods that use FEM or DeepONet-1D-1
generated optimal test functions for problem (129) with f =1 and e = 0.01.
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Except for the C° piecewise linear case, the DeepONet-1D-1 generated optimal test functions do
not improve the stability /accuracy of the finite element method.

Trial functions || Galerkin | FEM w/ DeepONet-1D-1 OTFs | FEM w/ FEM generated OTFs
Piecewise linear 6.59 5.68 5.55

C° quadratic 3.12 4.85 3.02

C' quadratic 3.61 4.76 3.42

Figure 23: ||u — uy|| g1 (o) error comparison, corresponding to (129) with f = 1.

Since the DeepONet-1D-1 generated optimal test functions did improve the finite element solution
for the f = 0 case and performed similarly to the FEM generated optimal test functions, the poor
results are somewhat surprising. Looking at Figure 18 and Figure 19, it makes sense to suspect
that the problems are caused by the (relatively) imprecise approximation of the derivatives of the
optimal test functions. What is puzzling is that in the previous implementation those same gra-
dients were used too and the accuracy appeared to be high enough. Somehow the approximation
errors that were introduced there did not affect the solution when the RHS was zero.

To better understand how the DeepONet-1D-1 generated optimal test functions are causing the
H?! error to increase, the implementation of weak form (129) is run again using DeepONet-1D-1
generated optimal test functions. This time however, the optimal test function derivatives are
approximated using the finite element method. By implementing DeepONet-1D-1 together with
FEM in such a fashion, the hypothesis that the disappointing results in Figure 23 are caused by
the DeepONet-1D-1 approximation error can be tested. The results of implementing this approach
are shown in Figure 24 and in Figure 25.

Trial functions || Galerkin | FEM w/ DeepONet-1D-1 & FEM combo | FEM w/ FEM generated OTFs
Piecewise linear 6.59 5.55 5.55

CY quadratic 3.12 3.02 3.02

C! quadratic 3.61 3.42 3.42

Figure 24: ||u — u,| g1 (o) error comparison, corresponding to weak form (129) with f = 1, for
implementations that use DeepONet-1D-1 to generate the optimal test functions and use the finite
element method to generate the optimal test function derivatives.

Using the combination of DeepONet-1D-1 generated optimal test functions and FEM generated
optimal test function derivatives leads to a big improvement in the error, which seems to confirm
the suspicion that the issue does lie with the approximation of the derivatives by the network
gradient. The table in Figure 24 shows that the DeepONet-1D-1 generated optimal test functions
are so accurate that using them produces results that are on par with using FEM generated optimal
test functions.

Besides the fact that the f = 0 and f = 1 exhibit somewhat contradictory results, it is interesting
to see that the optimal test functions and their derivatives have to be approximated very accurately
before they start to improve the stability and accuracy of the finite element method. Figure 26 shows
a FEM and DeepONet-1D-1 approximation of the optimal function and its derivative corresponding
to the piecewise linear trial function, evaluated at the quadrature points used to approximate the
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(a) Using piecewise linear trial functions. (b) Using C° quadratic trial functions.
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(c) Using C* quadratic trial functions.

Figure 25: Results of implementing weak form (129) for f = 1, ¢ = 0.01 with a 20 element
discretisation, using DeepONet-1D-1 to generate optimal test functions and using FEM to generate
the optimal test functions’ derivatives.

finite element integrals. Previously it was mentioned and shown that the DeepONet-1D-1 gradient
is a sum of discontinuous functions and might not be well suited to approximate the optimal test
function derivative (recall the step function like appearance shown in Figure 19). However, by
looking at Figure 26 it appears that it is not doing such a bad job after all. Although there is
clearly room for improvement, the DeepONet-1D-1 gradient sits quite close to the FEM approxi-
mation of the derivative. It would have been possible that using test functions that are closer to
the optimal test function than the regularly used test functions, would already have improved the
stability /accuracy of the finite element method. It turns that at least for the weak form in this
section that is not the case.

Based on the results of the previous experiment that used FEM generated derivatives together
with DeepONet-1D-1 generated optimal test functions it makes sense to try and improve the ap-
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proximation of the derivatives of the optimal test functions. To achieve this goal several approaches
could be used. Instead of using the ReLU activation function, a function with a continuous deriva-
tive could be used in an attempt to increase the smoothness of the network gradient. However, since
the optimal test function derivative is already being approximated quite accurately (see Figure 26
below), it is questionable whether this would make a big difference. Another approach would be to
train a second network that would be dedicated solely to approximating the optimal test functions’
derivatives. If the DeepONets do as good a job approximating the derivatives of the optimal test
functions as they do the optimal test functions themselves, this seems like the best option.
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Figure 26: FEM vs DeepONet-1D-1 generated optimal test function and its derivative evaluated at
the quadrature points corresponding to the piecewise linear trial function for (128) with ¢ = 0.01.



5.1.6 Training and ImplementingDeepONet-1D-1-grad

A new DeepONet, called DeepONet-1D-1-grad, is trained to approximate the optimal test functions’
derivatives. The training dataset is generated by repeatedly approximating the derivative of the
solution vy, (z), e.g. v, (), to (128) for trial function w; at a random point z for every unique
trial function that is zero on the domain boundary. The solutions are approximated using the finite
element method using a discretisation of 200 elements and second order polynomial trial and shape
functions. Using this approach each point in the training dataset is a triplet that looks like this

(wi,x, 0y, (2)) (134)

Similarly to the DeepONet-1D-1 model, the DeepONet-1D-1-grad model is trained using the MSE
loss function, shown in (131). Figure 27 shows the results of training DeepONet-1D-1-grad for
100 epochs. As was the case with the DeepONet-1D-1 network, the loss decreases rapidly for the
first few iterations after which the convergence seems to taper off. Figure 28 shows that the new
network is able to approximate the optimal test function derivatives very well. One thing that is
worth mentioning here is how well the network deals with the discontinuous nature of the gradients
corresponding to the trial functions that have C°(Q) regularity. Instead of averaging out the jumps
in the functions, DeepONet-1D-grad has learned that for some functions it needs to change its
predictions very rapidly around the element boundaries.

Training DeepONet-1D-1-grad

103 4

102 4

Loss

10! 4

T
0 20 40 60 80 100
epochs

Figure 27: Convergence of MSE loss of DeepONet-1D-1-grad during training.

Figure 29 shows a comparison between FEM and DeepONet-1D-grad generated approximations
of the optimal test functions’ derivatives evaluated at the quadrature points used in the finite
element method, for C°(2) trial functions. Figure 30 shows the same comparison but for C(€2)
trial functions. Both figures confirm what was shown in Figure 28; that the DeepONet-1D-grad
network is able to approximate the optimal test function derivatives very accurately. Although
there still exist differences between the FEM approximations and those of the neural network,
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using a dedicated network is definitely much more precise than using the DeepONet-1D-1 network
gradient. The approximation no longer exhibits the discontinuous steps that were associated with
the ReLU activation derivative.
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(d) C* quadratic trial function (e) C' quadratic trial function (f) C* quadratic trial function
u1 and DeepONet-1D-1-grad. uz and DeepONet-1D-1-grad. u20 and DeepONet-1D-1-grad.

Figure 28: Comparison of DeepONet-1D-1-grad vs FEM approximation of optimal test functions’
derivates 9;,, corresponding to (128), for a 20 element discretisation and using ¢ = 0.01.

While the approximation looks a lot better, implementing the Deep ONet-1D-grad network alongside
the previously trained DeepONet-1D-1 is not a big success. Figure 31 and Figure 32 show the
results of implementing DeepONet-1D-1-grad together with DeepONet-1D-1. Although the results
are an improvement over using just the DeepONet-1D-1 network, using a Galerkin method still
outperforms the DeepONet-1D-1 + DeepONet-1D-1-grad combination for both the C° quadratic
and C' quadratic trial functions. Since DeepONet-1D-1-grad appears to do a pretty good job of
approximating the test function derivatives, this is a bit disappointing.

During experiments neural networks with activation with continuous derivatives were trained for
longer periods of time (up to 250 epochs). Although the optimal test function approximation got
more accurate it did not improve the finite element solution by much. This makes it seem that using
deep learning to generate the optimal test functions for weak form (129) might not be a suitable
approach.
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Figure 29: Comparison between Deep ONet-1D-1-grad and FEM generate approximation of dv,,, /dx
evaluated at the quadrature points used in the implementation of (129).
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Figure 30: Comparison between DeepONet-1D-1-grad and FEM approximation of dv,,, /dx evalu-
ated at the quadrature points used in the implementation of (129).
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Trial functions || Galerkin | w/ 2 DeepONets | FEM w/ FEM generated OTFs
Piecewise linear 6.59 5.7 5.55

C° quadratic 3.12 3.79 3.02

C' quadratic 3.61 3.65 3.42

Figure 31: [|u — un||g1(q) error comparison, corresponding to (129) with f =1 and € = 0.01, using

DeepONet-1D-1 and the newly trained DeepONet-1D-1-grad.
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(a) Using C° piecewise linear trial functions.
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Results of implementing (129) using DeepONet-1D-1 to approximate v,,(x) and

DeepONet-1D-1-grad to approximate v, (z), with f =1 and e = 0.01.
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5.2 1D Mixed Weak Formulation
Again, consider the following boundary value problem

Pu  du
—€—— i 1
Gd:c2+dx f, ze€(0,1)

u(0) = ug, u(l) =0

(135)

To use a mixed weak form implementation, a weak form that was proposed in [2] is used. First an
auxiliary variable o is introduced, where o is set to be equal to ¢ = eu’. Using this new variable,
the second order PDE in (135) can be reduced to a first order system as follows

oc—euw =0
o' +u =f (136)
u(0) =0,u(l) =1

The original domain Q = [0, 1] is discretised using a partition of open subdomains (zy_1, z), for
k=1,...,N, such that

O=xp<m1<...<zxp1 < <...<2a2Nny=1 (137)

The equations in (136) are multiplied by test functions v and w respectively and are weakly enforced
on each subdomain, resulting in the following variational problem for each k =1,..., N

1 T Tk
*/ kak—/ ’LL;C’LU]CZO
€
133012—1 Zkfkl T (138)
/ —0, Uk —|—/ ),V :/ for
Tp—1 Tk—1 Tr—1

The equations in (140) can be rewritten using integration by parts into

1 Tk Tk ,
E / oWk + / UpWy, + uk(xk,l)wk(ack,l) — u(xk)w(xk) =0
Tp_1 . Tp_1 .
/ ORV) — / upvy — Ug(Tp—1)vk(Tr_1) + u(zk) v (T8) (139)
Th—1 Tk—1

o (@h—1)vk(TR-1) — o (TK) VK (TI) = /“ fuk

By introducing the fluxes as unknowns, e.g., introducing &(xp) = o(zk), a(xg) = w(zg),k =
0,..., N, the weak form can be stated as follows:

Find oy, us, €L*(xy_1,xy) and fluxes &(xy), @(xr), k =0, ..., N such that for every k= 1,..., N,

1 T Tk B B
7/ oW + / upwy, + w(wp_1)wi(rr_1) — w(z)wi(z) =0

k—1 k—1
Tk Tk
/ oKV — / upvy, — W(rp—1)vg(Tr—1) + @(zg )oK (T8)
Tp—1 Tr—1
Tk
+ 6(zp—1)v(x—1) — 6(zR)V(28) = / for
Th-1

V(vg, wi) € H (wp—1,z1)
(140)
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Here i(z) = 0 and @(zy) = 1 are known and are moved to the right hand side. Using the following
notation

b((ukvo—kaﬂ(wl)v"'7ﬁ(xN—1)7&(x0)7“w&(xN))v(rUkawk)) -
(1 " , " I zkuv’ &(x v(x —&(xp)v(x
;{EémakwkﬁLL“ukwwr/xm KU /rk_1 k k}+}§< (@e-1)v(2R-1) — 0 (2K)0( k))
N-1
'y (a(zk_nwk(a:k_l) ~ ey wn(er) — zn 1) (ee ) + a<zk)vk<xk))
k=2
N
l(vg, wy) = Z for — upwg(zo) + vk (o)
k=1"%k-1

(141)
the weak form can be written in its final compact form as

Find oy, up, €L*(x)_1, ) and fluxes &(xy), @(xr), k =0, ..., N such that

b((uk, ok,ﬁ(w1)7 e ,ﬁ($N71)75($0>, e ,5’(1‘]\7)), (’Uk, wk)) = l(vk,wk), (142)
Y(vg, wi) EH (zp_1,21)

5.2.1 Optimal Test Functions

To derive the optimal test functions corresponding to (142) the H! norms will be used

N 1/2
ool = (Xlhuel? + o?)
k=1

T

g2 = / (el + i ?) (143)
Tr—1
Tk

ol = / (104 + [on?)
Tp—1

These norms induce the following inner product

N
<w' 8 +w 5w) + Z (v' 5 +w 61,) (144)
k=1"Tk-1

Using the bilinear form of (142) and using (144) the optimal test functions are defined by the
following problem

Tk

Thk—1

N
((’LU,U), (6w7 5v))V = Z
k=1

b((uka O—kaﬁ(xl)7 sy a(xN—1)7(~7(x0)7 s ’5(1.1\/))7 (v,w)) = ((w,v), (6103 51)))‘/ (145)

The weak form in (142) allows the optimal test functions to be discontinuous, meaning that they
can be computed on an element-wise basis. The local variational problems for determining optimal

61



test functions are as follows:

Th 1 Tk Tk
/ (W8, + wby,) = E/ 010w —|—/ ull, + U(Tr_1)0w(TE_1) — W(xk) 0w (Tk)

k—1 Tk—1 Tr—1

/ ‘ (V'8 + vd,) :/ o0 f/ ‘ by, — W(xp—1)0p (Tr—1) + W2 )dy (z) (146)

Tk—1

+ 6 (Tk-1)00 (k1) — 7 (2k) 00 (k)

for all 6, € HY(xp_1,2),6, € H*(w_1,7)). Using (146) the problems that define the local re-
strictions of the optimal test functions are:

Find (ws,,vs, ) such that

Tk , , 1 Tk L
/ (wak(;w + wak(sw) = g/ O—kéwa Vo, € H (:Ek?flwrk)
x x

k—1 k—1
(147)
Tk Tk
/ (’Uék(% + ’ngév) = / (J'k(%7 V(Sv S Hl(xk,hxk)
Tk—1 Tk—1

Find (wy,,, vy, ) such that

T Th
/ (U/;ké;} + Wy, O) = / updl,, Vo, € H' (zp_1,x1)

S " (148)
/ (v'uk_(% + Uy, 0y) = —/ updl, Vo, € H' (xp_1,x1)
Thk—1 Tr—1

Find (0,v5(s,)) such that

/ ’ (U:%(xk)(S?/) + v&(wk)611> = —6(z)0y(z), Vo, € Hl(l‘k_l,l‘k)

9;2: (149)
/ (VB + Voo B) = 5 (R0 (1), Y6, € H (, 2551)

Tk

Find (wg(g,), Va(e,)) such that
Ty
/ (w:l(rk)(s:u =+ wﬁ(xk)éw) = 7ﬁ($k)5w($k), Vo, € Hl(xk_l,xk)
Tho1

Th41
/ (w;](q;k)éiu + wﬂ(a:k)(sw) = fL(xk)(sw(l’k), v§w S Hl(xk; zk+1)

R (150)
/ (v%(mk)(% + Via(zy)00) = U(xp)0y(21), Vo, € H(zp_1,21)

k—1

Th4+1
/ (Vi) O + Va(ay)0u) = —W(xx)dy (28), Vo, € H" (21, Tr41)
x

k

A finite element approximation of the optimal test functions corresponding to the fluxes in (149)
and (150) is shown in Figure 33, while Figure 34 and Figure 35 show similar optimal test func-
tion approximations corresponding to (147), and Figure 36 and Figure 37 show the optimal test
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function approximations corresponding to (148). The optimal test functions shown in these figures
correspond to a diffusion coefficient of € = 0.01 and a discretisation of the domain © = [0, 1] into
80 elements. To approximate the optimal test functions using FEM, a discretisation of 40 elements
and fourth order polynomials are used. In each of these Figures, o; denotes a trial function, and
We,, Us,, €tc, denote the corresponding optimal test function approximation. Unlike the optimal
test functions in the 1D non-mixed case, these optimal test functions do no place more weight to
the upwind part of their support.
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Figure 33: FEM approximation of optimal test functions (wg(z,), Va(e,)) and (0,vs(4,)) as defined
in (150) and (149) corresponding to fluxes @(xy) and &(xy), corresponding to a discretisation using
80 elements.
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Figure 34: FEM approximation of optimal test functions (w,, v, ) as defined in (147), corresponding
to a discretisation using 80 elements and ¢ = 0.01, for constant, piecewise linear, and C°(Q)
quadratic trial functions.

64



0o Wo, 3333000000081 0o Vo,

10 00040 10 0001
08 00038 08
0.000
00036
06 06
0.0034 -0.001
04 04
0.0032
-0.002
02 0.0030 02
0.0028
00 00 -0.003

Xo X1 Xo X1 Xo X1 Xo X1
o1 Wo, 01 Vo,
— 50
06 06 0.003
45
05 05 0.002
40
04 04 0.001
35
03 03
» / 0000
02 02
25 -0.001
01 01
20 -0.002
00 | 00
15
Xo X1 X2 Xo X1 X2 Xo X1 X2 Xo X1 X2
O3 Wcr3 O3 Vu3
0.004
07 07
60
06 06
0.002
05 50 05
04 04 0,000
40
03 03
02 30 02 -0.002
01 01
20
00 [ — | 00 -0.004
Xo X1 X2 X3 Xo X1 X2 X3 Xo X1 X2 X3 Xo X1 X2 X3
Ogo Woy, Oso Vog,
_— %0
06 06 0.002
45
05 05 0.001
40
04 04 0.000
35
03 03
30 -0.001
02 02
2 -0.002
01 01
20 -0.003
00 —— 00
15
Xo X1 X2 Xo X1 X2 Xo X1 X2 Xo X1 X2
Og1 Wy, +3.333000000001 Og1 Voe,
10 10 0.0030
0.0040
0.0025
08 00038 08
0.0020
0.0036 0.0015
06 06
0.0034 0.0010
04 04
00032 0.0005
0.0000
02 0.0030 02
-0.0005
0.0028
00 00 -0.0010
Xo X1 Xo X1 Xo X1 Xo X1

65

Figure 35: FEM approximation of optimal test functions (w,, v, ) as defined in (147), corresponding
to a discretisation using 80 elements and using € = 0.01, for C1(2) quadratic trial functions.
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Figure 36: FEM approximation of optimal test functions (w,, v, ) as defined in (148), corresponding
to a discretisation using 80 elements, for constant, piecewise linear, and C°() quadratic trial
functions.
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Figure 37: FEM approximation of optimal test functions (w,, v, ) as defined in (148), corresponding
to a discretisation using 80 elements, for C'!(Q) quadratic trial functions.



5.2.2 Implementing the Optimal Test Functions

Having found the optimal test functions (we, , Vo, ), (Wuy, Vuy,), (Wa(zy)s Va(ey))s and (0, V5(z,)), the
weak form becomes

Find oy, u €L?(xy_1, ;) and fluxes @(zg),k =1,...,N — 1, and 5(z),k = 0,..., N such that

1 T T , T , Tr )
E/ OpWe, +/ upwy, + U(Tk—1)We,, (Th—1) — W(Tk) W, (T1) +/ oKV, 7/ RV,
Tp_1 x T

k— k—1 Tk—1

T
= U(Tk—1)Vo (T—1) + WTk)Vo, (Tk) + T (Th—1) Vo (Th—1) — T (T) Ve, (Th) = foo,
Tr—1
1 Tk Tk Tk Tk
,/ O|Wy,, +/ upwy, + W(Tp—1) Wy, (Th—1) — @(2R) Wy, (T8) + ORUy, — / URUy,
€ Th_1 Th_1 Tk—1 $k5i
= U(Tp—1)Vuy (Th—1) + W@k)Vu, (Tk) + T (Th—1)Vuy (Th—1) — T (Tk) V0, (T1) = J0uy,
Tk—1
1 Tk Tk ~ ~ Tk
c / O'kwa(wk) +/ U,kw%(mk) + u(xk:—l)wﬂ,(xk)(xk—l) - u(xk)wﬁ(zk)(xk) +/ akv;ﬁ(mk)
Tp—1 Tp—1 Tk—1

Tk
- / Wk = 1) V(o) (T1) + T8 Vi) (78) + 5 (00 1)Vt (1)

K1 =0 (k) Va(ay) (Th) = /

T —

Tk

JVa(ar)

Tk Tk
/ ThV5(z) —/ UKV () = WUTh—1)V5 (25) (Th—1) + (1) V5 (2y) (Tk) + T(Th-1)V5(2y) (Th-1)

k—1 k—1 Tr
(1) vy (71) = / Foscon
Tr—1

(151)
The results of implementing this weak form for ¢ = 0.01 are shown in Figure 38. Both the errors
|lu—u"||12(0) and |lo — o 12(q) converge nicely. While the convergence of the error in ¢” is not
shown in [2], the convergence of u" in [2] is the same to the one shown in 38. Although the order of
convergence is not reported for these graphs, the difference between the error at 10 and 70 degrees
of freedom in this thesis is very similar to the difference shown in [2].
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Figure 38: Implementation of the optimal test functions shown in Figure 33, Figure 34, Figure
35, Figure 36, and Figure 37, for piecewise constant, piecewise linear, C°(Q) quadratic, and C*(Q)
quadratic trial functions, and for e = 0.01.

5.2.3 Training the DeepONets

Similar to the 1D non-mixed case, DeepONets are used to approximate the optimal test functions.
To approximate the optimal test functions (w,,vs) and (wy,v,) in (147) and (148) respectively,
four different DeepONets are trained, called DeepONet-1D-w,, DeepONet-1D-v,, DeepONet-1D-
Wy, and DeepONet-1D-v,,, corresponding to a discretisation of the domain 2 into 80 elements
and € = 0.01. For every DeepONet a training dataset is built by approximating the optimal test
functions corresponding to the piecewise constant, piecewise linear, C°(f2) quadratic, and C*(Q)
quadratic trial functions, at random points on the domain. As was done in the non-mixed case, the
x values that represent points on the domain are scaled to the interval [0, 1]. Using this approach,
a datapoint in one of the four resulting datasets is a triplet that looks like this:

(i, z, 0y, () (152)

Here u; is vector that contains the values of trial function u; evaluated at a set of fixed sensors, x a
random point from the interval [0, 1] that corresponds to a point on the original domain on which
the trial function is non-zero, and v, (x) is an approximation of the optimal test function. Similar
to before, 100 sensors will be used to evaluate u; on. The same DeepONet network configuration
that was used in the previous 1D section will be used, using three layers in the trunk network, each
using 100 neurons, and two layers in the branch network, each using 100 neurons. Lastly, the ReLU
function will be used as an activation function again.

Since the approximation error of the DeepONets proved to be a problem in the previous section,
the approach in this section will start by using FEM to approximate the optimal test functions
corresponding to the fluxes as defined in (149) and (150), and the derivatives of the optimal test
functions defined in (147) and (148). The DeepONets will initially just be used to implement the
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optimal test functions corresponding to (147) and (148).

Figure 39 shows the convergence of the MSE loss during the training of the four networks. While
the errors of DeepONet-1D-v,, DeepONet-1D-w,,, and DeepONet-1D-v, converge nicely, the error of
DeepONet-1D-w, barely improves after the first epoch. Looking at the DeepONets approximations
of the optimal test functions in Figure 40, Figure 41, Figure 42, and Figure 43, it becomes clear
that the networks DeepONet-1D-v,, DeepONet-1D-w,,, and DeepONet-1D-v, indeed approximate
the optimal test functions very accurately, while the DeepONet-1D-w, does not do as good of a
job. In each of these Figures, the trial function is again denoted by o; or u; and the corresponding
optimal test functions by W, w,,, etc.

Training DeepONet-1D-w, Training DeepONet-1D-v,

102 §
10-5 4

101 4
1075 4

10" 4

Loss.
Loss.

1072 4

10-2 4
1079 4
T T T T T T

(a) (b)
Training DeepONet-1D-w, Training DeepONet-1D-v,
10-%
107°
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1075
1077 4
% 1077 5 3
8 8
1078 10-8
107 10-%
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch
(c) (d)

Figure 39: Convergence of MSE loss during training of DeepONets DeepONet-1D-w,, DeepONet-
1D-v,, DeepONet-1D-w,,, and DeepONet-1D-v, for 50 epochs each.
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Figure 40: FEM vs DeepONet-1D-w, and DeepONet-1D-v, approximation of the optimal test
functions in (147) corresponding to a discretisation of 80 elements and ¢ = 0.01, for piecewise
constant, piecewise linear, and C°(Q) trial functions.
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Figure 41: FEM vs DeepONet-1D-w, and DeepONet-1D-v, approximation of the optimal test
functions in (147) corresponding to a discretisation of 80 elements and € = 0.01, for C*(Q) quadratic
trial functions.
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Figure 42: FEM vs DeepONet-1D-w, and DeepONet-1D-v, approximation of the optimal test
functions in (147) corresponding to a discretisation of 80 elements and ¢ = 0.01, for piecewise
constant, piecewise linear, and C°§2) quadratic trial functions.
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Figure 43: FEM vs DeepONet-1D-w, and DeepONet-1D-v, approximation of the optimal test
functions in (147) corresponding to a discretisation of 80 elements and € = 0.01, for C*(2) quadratic
trial functions.

5.2.4 Implementing the DeepONets

As was mentioned in the previous section, the initial testing for this mixed weak form is done
by using DeepONets to approximate the optimal test functions corresponding to (147) and (148)
only. The optimal test functions corresponding to the fluxes in (149) and (150) are generated using
FEM, as will the derivatives of the optimal test functions shown in (147) and (148). The results
of implementing DeepONet-1D-o,,, DeepONet-1D-o,,, DeepONet-1D-u,,, and DeepONet-1D-u, into
the finite element method, using piecewise constant, piecewise linear, C°(2) quadratic, and C'*(Q)
quadratic trial functions are shown in Figure 48. The corresponding errors in L? are shown in
Figure 44 and 45. Clearly the method using the four DeepONets does considerable worse than
the method using FEM generated optimal test functions. Especially in the CY(2) case, where the
solution starts to exhibit extreme oscillations for both u" and
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Trial functions

FEM w/ four DeepONets

FEM w/ FEM generated OTFs

Piecewise constant
Piecewise linear
C°(Q) quadratic
C*(Q) quadratic

0.114
0.210
0.214
0.215

0.0534
0.00428
0.000618
0.000652

Figure 44: ||u — uh”LQ(Q) error comparison, corresponding to (142) with f = 0 and e = 0.01, with
a discretisation of 80 elements, using all four DeepONets.

Trial functions

FEM w/ four DeepONets

FEM w/ FEM generated OTFs

Piecewise constant
Piecewise linear
CY(Q) quadratic
C'(Q) quadratic

0.0461
0.0752
0.2621
0.0737

0.024
0.00414
0.000592
0.000619

Figure 45: |0 — "||2(q) error comparison, corresponding to (142) with f = 0 and € = 0.01, with
a discretisation of 80 elements, using all four DeepONets.

o". Looking at the errors in Figures 44 and 45 it becomes clear how much worse the method

performs when the optimal test functions are being generated by the DeepONets. In not one
of these cases is the method using DeepONets remotely close to the original method. Based on
the convergence of the MSE error of the four networks and the comparison between FEM and
DeepONet generated optimal test functions shown in Figure 40, it makes sense to think that the
problems shown in Figure 48 are caused by the inaccurate approximation of optimal test function
w, by DeepONet-1D-w,. To test this hypothesis, the optimal test functions generated by the
networks DeepONet-1D-v,, DeepONet-1D-w,,, and DeepONet-1D-v,, are implemented into (142),
while approximating the optimal test function w, using FEM. The results of this approach are
shown in Figure 46, Figure 47, and Figure 49 and prove that it is indeed the approximation error of
DeepONet-1D-w, that is the problem. Using FEM to approximate w, instead of using DeepONet-
1D-w, leads results comparable to the original FEM implementation. Therefore it makes sense to
try and improve the approximation results of this network, which is the goal of the next section.

Trial functions FEM w/ three DeepONets | FEM w/ FEM generated OTFs
Piecewise constant 0.053 0.0534

Piecewise linear 0.00428 0.00428

C°(Q) quadratic 0.000618 0.000618

C1(Q) quadratic 0.000654 0.000652

Figure 46: [lu — u"||12(q) error comparison, corresponding to (142) with f = 0 and e = 0.01, with

a discretisation of 80 elements, not using DeepONet-1D-w, .
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Trial functions

FEM w/ three DeepONets

FEM w/ FEM generated OTFs

Piecewise constant
Piecewise linear
C%(Q) quadratic
C1(Q) quadratic

0.024
0.00414
0.000593
0.000620

0.024
0.00414
0.000592
0.000619

Figure 47: |0 — 0"||12(q) error comparison, corresponding to (142) with f = 0 and e = 0.01, with
a discretisation of 80 elements, not using DeepONet-1D-w, .
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(d) Using C*(Q) quadratic trial functions.

Figure 48: Comparing the exact solution of (135) with the implementation of (142) using FEM
generated optimal test functions and using all four DeepONets to generate the optimal test functions
as shown in Figure 40, Figure 41, Figure 42, and Figure 42, with f = 0 and ¢ = 0.01, using a
discretisation of 80 elements.
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Figure 49: Comparing the exact solution of (135) with the implementation of (142) using FEM
generated optimal test functions and using DeepONet-1D-v,, DeepONet-1D-w,,, and DeepONet-1D-
v, to generate the optimal test functions as shown in Figure 40, Figure 41, Figure 42, and Figure
42, with f = 0 and € = 0.01, using a discretisation of 80 elements. If you compare these plots to
the ones shown in Figure 49, it becomes clear that the approximation error of DeepONet-1D-w,,
is the root cause of the deterioration of the finite element solution associated with using the four
DeepONets.

5.2.5 Training a New DeepONet

In an attempt to improve the approximation error of w,, a new DeepONet is trained. The network
is trained in the same way as the DeepONet-1D-w, network, but uses a sine activation function in
all layers where the ReLU activation function was used, which is why it is called DeepONet-1D-
wg-sin. Besides using a different activation function, the new network is trained for 150 epochs
(instead of 50). Figure 50 shows the MSE loss during training of DeepONet-1D-w,-sin. Comparing
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this plot to the convergence of the loss of the DeepONet-1D-w, network from the previous section
(see Figure 39 a)), it might seem that the new network does not do a much better job. However,
when looking at its approximations of the optimal test functions shown in Figure 51, it becomes
clear that the new network is a big improvement.

Training DeepONet-1D-wg-sin

101 4
107 4
@
S
1071 4
102 A
1073 4 T T T T T T T T
0 20 40 60 80 100 120 140
Epoch

Figure 50: Convergence of MSE loss during training of DeepONet DeepONet-1D-w, -sin.

The results of implementing the new DeepONet-1D-w,-sin network together with DeepONet-1D-
vy, DeepONet-1D-w,,, and DeepONet-1D-v,, are shown in Figure 52, 53, and 54. While the newly
trained DeepONet does a much better job at approximating the optimal test functions, the improve-
ment is not good enough. Using the newly trained network is an improvement over the original
DeepONet-1D-w, network, but the results are still nowhere near the original implementation using
FEM generated optimal test functions. Using the DeepONets to approximate the optimal test
functions leads to much larger errors for both u and o. The only case where the error is somewhat
close to the original implementation is for the piecewise trial functions. For those trial functions the
approximation of ¢ is reasonably accurate, as shown in 53 and which is again confirmed in Figure 54.

In the previous section it was shown that by using FEM to approximate w, and using the three
networks DeepONet-1D-v,,, DeepONet-1D-w,,, and DeepONet-1D-v,, to approximate the rest of the
trial functions, results similar to the fully FEM generated optimal test function approach could
be achieved. To isolate the impact of the approximation error of DeepONet-1D-w,-sin on the
finite element implementation, a new test is run. Now every optimal test function is generated
using FEM except for the optimal test function w,, which is approximated by the neural network
DeepONet-1D-w,-sin. The results are shown in Figure 55.
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Figure 51: FEM vs newly trained DeepONet-1D-w,-sin approximation of the optimal test functions
in (147) corresponding to a discretisation of 80 elements and ¢ = 0.01, for piecewise constant,
piecewise linear, C%(£)) quadratic, and C'*() quadratic trial functions.
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Trial functions FEM w/ four DeepONets | FEM w/ FEM generated OTF's
Piecewise constant 0.086 0.0534

Piecewise linear 0.0583 0.00428

C°() quadratic 0.0255 0.000618

C1(Q) quadratic 0.0356 0.000652

Figure 52: |lu—u"||;2(q) error comparison, corresponding to (142) with f = 0 and € = 0.01, for a dis-
cretisation using 80 elements, using the newly trained Deep ONet-1D-w,-sin and the three networks
that were trained in the previous section, DeepONet-1D-v,, DeepONet-1D-w,,, and DeepONet-1D-
Uy -

Trial functions FEM w/ four DeepONets | FEM w/ FEM generated OTFs
Piecewise constant 0.0257 0.0241

Piecewise linear 0.0115 0.00414

C°(2) quadratic 0.02751 0.000592

C1(Q) quadratic 0.00692 0.000619

Figure 53: ||0—UhHL2(Q) error comparison, corresponding to (142) with f = 0 and € = 0.01, for a dis-
cretisation using 80 elements, using the newly trained DeepONet-1D-w,-sin and the three networks
that were trained in the previous section, Deep ONet-1D-v,, DeepONet-1D-w,,, and DeepONet-1D-
V-

Although replacing the approximations of DeepONet-1D-v,, DeepONet-1D-w,, and DeepONet-1D-
v, with finite element generated optimal test functions does lead to better results (compare results
of the C°(Q) quadratic trial functions in Figure 54 with Figure 55), the results are not nearly as good
as the original implementation that uses only finite element generated optimal test functions. As
was mentioned DeepONet-1D-w, is now the only neural network that is used in the implementation.
The fact that a small error in a single optimal test function can cause such a big difference in the
finite element method resembles the results that were presented in the non-mixed setting of the 1D
section. This time however, the diffence between the FEM approximation of w, and the DeepONet-
Wy -8in approximation appears to be even smaller than the approximation errors that were seen in
the non-mixed case.

It makes sense to further investigate the DeepONet-1D-w,-sin approximation that was shown in
Figure 51. Figure 56 and 57 show an examination of the DeepONet-1D-w, approximation of the
discontinuous pieces, while zooming in considerably. The network is very accurate (notice the very
small rate of change on the y-axis), but is unable to correctly approximate the shape of the optimal
test functions. It appears this small difference between the DeepONet output and the finite element
approximations of the optimal test functions are causing big differences in the corresponding finite
element implementations.

In the next section an experiment will be run where a small perturbation that is of similar magnitude
as the approximation errors of DeepONet-1D-w, is added to the FEM approximtated optimal test
function w,. It will be shown that adding such a small perturbation has similar effects on the finite
element solution as using DeepONet-1D-w, had.
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(b) Using piecewise linear trial functions.
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(c) Using C°(Q) quadratic trial functions.
(d) Using C*(Q) quadratic trial functions.

Figure 54: Comparing the exact solution of (135) with the implementation of (142) using FEM
generated optimal test functions and using the newly trained DeepONet-1D-w,-sin, and the three
previously trained networks DeepONet-1D-v,, DeepONet-1D-w,,, and DeepONet-1D-v, to generate
the optimal test functions as shown in Figure 40, Figure 41, Figure 42, and Figure 42, for f =0
and € = 0.01, using a discretisation of 80 elements.
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(a) Using piecewise constant trial functions.
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(c) Using C°(Q) quadratic trial functions.

Figure 55: Comparing the exact solution of (135) with the implementation of (142) using FEM
generated optimal test functions and using the newly trained DeepONet-1D-w,-sin to approximate
w, as shown on the left side of Figure 40 and Figure 41, while generating all the other optimal
test functions using FEM, for f = 0 and € = 0.01, using a discretisation of 80 elements. The
approximation error of DeepONet-w, may be small, but its impact on the finite element solution

is very big.
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(b) Using piecewise linear trial functions.
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(d) Using C*(Q) quadratic trial functions.
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Figure 56: FEM vs newly trained DeepONet-1D-w,-sin approximation of discontinuous pieces of
the optimal test functions in (147) corresponding to a discretisation of 80 elements and e = 0.01,
for piecewise constant, piecewise linear, and C°(§2) quadratic trial functions.
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Figure 57: FEM vs newly trained DeepONet-1D-w,-sin approximation of discontinuous pieces of
the optimal test functions in (147) corresponding to a discretisation of 80 elements and € = 0.01,
for C1(Q2) quadratic trial functions.

5.2.6 Adding Small Perturbations to Optimal Test Function w,

As a final test the original DPG [2] is implemented while adding a small perturbation to the optimal
test function w,. The perturbations are sampled randomly from the interval [—2  F, 2 x E], where
FE is the mean of the absolute value of the approximation errors of DeepONet-1D-w,-sin at the
quadrature points. The approximation errors for the different types of trial functions are shown in
Figure 58. The results of implementing the DPG method using this perturbation to w, are shown
in Figure 59, Figure 60, and Figure 61.
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Trial functions E
Piecewise constant || 0.0006458
Piecewise linear 0.0006473
C%(Q) quadratic 0.0003618
C1(Q) quadratic || 0.0002595

Figure 58: MSE at the quadrature points of DeepONet-1D-w,-sin when compared to a FEM
approximation, corresponding to different trial functions.

Trial functions FEM w/ perturbation | FEM w/ FEM generated OTFs
Piecewise constant 0.0856 0.0534

Piecewise linear 0.13176 0.00428

C%(Q) quadratic 0.0254 0.000618

C1(Q) quadratic 0.0343 0.000652

Figure 59: ||u — u"||;2> error comparison, corresponding to (142) with f = 0 and e = 0.01, for a
discretisation using 80 elements, using finite element generated optimal test functions while adding
a small perturbation to w,.

Trial functions FEM w/ perturbation | FEM w/ FEM generated OTF's
Piecewise constant 0.0257 0.0241

Piecewise linear 0.0219 0.00414

C°(Q) quadratic 0.02782 0.000592

C1(Q) quadratic 0.006184 0.000619

Figure 60: || — o"||z2 error comparison, corresponding to (142) with f = 0 and € = 0.01, for a
discretisation using 80 elements, using finite element generated optimal test function while adding
a small perturbation to w,.

The perturbation causes the approximate solution to become much worse, similarly to the Deep ONet-
w, approximation error. Given the fact that some of the optimal test functions (we have found
at least one) are so sensitive to small perturbations probably means that the DPG method in this
form doesn’t lend itself well to the use of machine learning. Neural networks like the DeepONet
that use supervised learning will never be, at least intentionally, as accurate as the finite element
method. Other networks like the VPINN of WAN are not suitable (especially in this DPG case
where the optimal test functions are allowed to be discontinuous), because those architectures are
able to approximate the optimal test function corresponding to a single trial function at a time.
An argument can be made that those networks would have been applicable in the previous section
as the number of unique optimal test function was relatively low. In the DPG case however, many
different VPINNs or WANs would have to be trained to approximate all the discontinuous optimal
test function pieces.
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(c) Using C°(Q) quadratic trial functions.
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Figure 61: Comparing the exact solution of (135) with the implementation of (142) using the correct
finite generated optimal test functions and using finite element generated optimal test functions
while adding a small perturbation to w,, for f = 0 and € = 0.01, using a discretisation of 80
elements.
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5.3 Non-mixed Weak Formulation in 2D

5.3.1 Problem Definition

Let © = [0,1] x [0,1] and let ' = 9. To test the 2D implementation of optimal test function the
following two dimensional advection-diffusion problem will be considered

Find w such that:

-V -(eVu)+b-Vu=f, inQ (153)
u=0, onl

where e denotes the diffusion coefficient and b is the advection coefficient. As was the case in
the 1D setting, only € will be used to change the Peclet number, and the advection will be set to

b=[1 1]"
5.3.2 Weak Formulation

To approximate the solution to this problem, the following weak form will be used

Find v € U such that

Z e/ Vu-Vuo+b -Vuv =
Km

Km€Pn

Z / fv YveV (W1)
K

Km€Pn

where P}, is the partition of {2 into square subdomains K7, Ks, ..., K and where the trial and test
space are defined as U = H(Q) and V = H'(Q). By introducing the following notation

b(u,v) = Z e/ Vu-Vv + b-Vuv
K

Km€Pn

(154)
= [ p
K €Py Km
The weak formulation can be written as follows:
Find v € U such that
(155)

b(u,v) =1l(v), YveV

5.3.3 Finite Element Implementation

For the 2D problem two dimensional shape functions are needed. Here the shape functions that
will be used as trial and test functions are the tensor product of the B-splines that were used in
the 1D sections, shown in Figure 62 for a four element discretisation.
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Figure 62: The one-dimensional B-splines that were used as trial and test functions in the 1D finite
element implementation.

The two dimensional shape functions will be denoted as u; ;(«,y), where the i and j subscript
indicate which 1D B-splines were used to build the 2D version. For example, the two dimensional
shape function that is the product of the piecewise linear B-splines uq(z) and wuq(y) is shown in
Figure 63 and will be denoted as wj,1(x,y). Each piecewise linear B-spline is non-zero on two
elements, and the new two-dimensional shape function will therefore be non-zero on four elements.
The 2D shape functions that are the tensor product of the C°(2) and C1(£2) quadratic B-splines
are shown in Figure 64 and Figure 65 respectively. Here the two-dimensional shape functions that
use either the first or last B-spline corresponding to each class of functions are not shown. As the
boundary conditions in this weak form will be strongly enforced these shape functions are not used
in the finite element scheme. One thing to note is that in all the plots in this
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Figure 63: 2D shape function wu; ; that is product of piecewise linear B-splines uq(z) and us(y).

Note that the y-axis is inverted.
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Figure 64: Shape functions that are the product of the quadratic C°(£2) B-splines show in Figure

62. Note that the first and last B-splines are not used.
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Figure 65: Shape functions that are the product of the quadratic C*(£2) B-splines show in Figure
62. The first and last B-splines are not used in the finite element implementations in this section.

two dimensional setting the y-axis is reversed, meaning that the origin sits in the top left corner of
every plot. Since the advection coefficient is set to b = [1 1]T in this section, that means that
the flow points from the upper left corner to the lower right corner.

Figure 66 shows an implementation of the Galerkin method resulting from (155) for e = 0.01 using
test and trial functions that are the tensor products of the piecewise linear B-splines shown in
Figure 63, using a discretisation of 100 elements, and by choosing the source term f such that the
solution is given by

ePe T _1 ePe~y -1
o) = o+ T | v+ e | (156)
Setting € = 0.01 means that the problem is advection dominated. Similarly to the 1D setting, the
finite element solution in the 2D problem starts oscillating as it approaches the steep gradient on
the lower right corner of the plot. It’s clear that the method resulting from (155) is well defined
and leads to a stable scheme. As the number of elements used in the discretisation is increased the
oscillations in the approximate solution become less and less, as the method converges to the exact
solution.
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Figure 66: Implementation of the Galerkin finite element method resulting from (155) using test
and trial function that are shown in 63, for € = 0.01, where the source term f is chosen such that
the solution is given by (156).

5.3.4 Globally Continuous Optimal Test Functions

To derive the optimal test functions corresponding to weak formulation (155) the following problem
needs to be solved
b(u,v) = (Tu,v)y, YweV (157)

where Tu denotes the optimal test function corresponding to w, b(u,v) denotes the bilinear form
in (154), and (-,-)y denotes the inner product of the test space V. In this example, the mesh
dependent H' inner product will be used, e.g.,

(v,w)y = /Q(h2 Vo - Vw +vw) (158)
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Here, h is equal to the diagonal of the elements used in the discretisation. To find the optimal test
function vy, ; corresponding to trial function w; ;, the following problem needs to be solved

Find vy, ;, such that

e/ (Vu;; - Vo, +b-Vu, ;6,) = / (h? Vuy, ;- Vy + vy, ; 6,), in Sy, (159)
S s

Ui, j Yi,j

Uy, ; =0, on dS,,

where Sy, ; denotes the union of elements on which u; ; has non-zero support. The homogeneous
boundary condition on 95, ; is required to ensure that the optimal test functions are in H LQ).
Figure 67 shows the optimal test function corresponding to the trial function that is the tensor
product of piecewise linear B-splines (shown in Figure 63).
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Figure 67: Globally continuous optimal test function defined by (159), with ¢ = 0.1 and a discreti-
sation of 4 x 4 elements, corresponding to the shape functions that are the tensor product of C°(Q)
piecewise linear B-splines.

The optimal test function shows a clear upwinding effect, placing more weight on the upwind part
of the element (again, b = [1 l]T and the origin sits on the top left of the plot). The optimal
test functions corresponding to the shape functions that are generated by the C°(Q) and C*(Q)
quadratic B-splines are shown in Figure 68 and Figure 69 respectively. The upwind effect is not as
easy to spot for every one of these trial functions, due to the fact that some of the trial functions
themselves place more weight on the downwind part of the element. Consider for example the
optimal test functions that are shown in either the last row or column of Figure 68. These optimal
test functions correspond to trial functions that use the second-last 1D B-splines on either the =
or y axis (or both). Since these B-splines place a lot more of their weight on the downwind part of
the elements, there appears to be no upwind effect.

For the optimal test functions that do not correspond to trial functions with a lot of weight down-
wind, the upwind effect is more easily recognisable. Take the optimal test function shown in the top
right corner of Figure 68, e.g., 0y, ,(,y), corresponding to the trial function that is the product of
the C°() quadratic trial functions ui(x) and ua(y). There is slightly more weight on the upper
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and left side of the plot. What will be interesting to see in later sections is that as the Péclet
number gets larger, the upwind effect will become stronger, as the need for stabilization increases.

Vuy (X, Y) Vu,, (X, ¥)

Yo

szo X1 X2

Figure 68: Optimal test functions defined by (159) for e = 0.1 with a discretisation of 4 x 4
elements, corresponding to shape functions that are the tensor product of the quadratic C°(Q)
B-splines, shown in Figure 64.

Figure 70 shows a comparison between finite element methods that use optimal test functions and
finite element methods that do not. It is clear that implementing the optimal test functions into
the finite element method leads to a much smaller error in the H' norm. The difference between
the methods that use optimal test functions is particularly visible for problems with a large peclet
number. While the difference between the Galerkin implementation and the optimal test func-
tion implementation is not as big in the left plot of 70, the plot on the right which corresponding
to € = 0.01 shows that using optimal test functions leads to a big improvement in the approximation.

In the previous 1D sections it was found that there exist weak formulations for which the op-
timal test function approximations need to be very accurate to improve the error in the finite
element implementation. Small perturbations to the optimal test functions could had extreme ram-
ifications for the approximate finite element solutions. In the next few subsections it will be shown
that neural networks can be successfully implemented into the finite element method, can greatly
improve the approximation error of the finite element method, and can stabilize solutions. In fact,
it will be shown that by passing € as a variable to a trained DeepONet, a single neural network can
improve the finite element implementation corresponding to many differrent values of e.
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Figure 69: Optimal test functions defined by (159) for e = 0.1 with a discretisation of 4 x 4
elements, corresponding to shape functions that are the tensor product of the quadratic C*(£2)
B-splines shown in Figure 65.
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Figure 70: Convergence of the error ||u — u,| g1 (o) of the approximate solution to (155), with and
without using optimal test functions, for different values of e.
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5.3.5 Training the DeepONet

In the rest of this chapter, several DeepONets will be trained. The DeepONet that will be trained
in this subsection is called DeepONet-2D and can be used to approximate the optimal test functions
defined in (159) for a discretisation of 4 x 4 elements and a diffusion coefficient of ¢ = 0.1. Since the
DeepONets will have to deal with two dimensional input functions the DeepONets will be made
wider. Specifically, the branch network will use two layers that have a width of 300 and 200 neurons,
and the trunk network will use three layers that have width 100, 200, and 300. These configurations
are based on the DeepONets that are used in [?], that also deal with two dimensional input func-
tions. Similarly to the DeepONets used in the 1D section, the ReLU activation function will be used.
To train the DeepONet-2D a dataset is generated by repeatedly approximating the solution v,  (z,y)
to (159) for trial function u, ; at random point (x,y) for each of the 14 trial functions shown in Fig-
ure 63, Figure 64, and Figure 65. The solutions are approximated using the finite element method.
Using this approach each point in the training dataset is a triplet that looks like this

('u’i,j’ ($7y)7@ui,j (x,y)) (160)

Here u; ; denotes a vector that holds the values of trial function u; j(z,y) evaluated at grid points
(called sensors) on the element on which it is non-zero.

For DeepONet-2D, a grid of 20 x 20 sensors is used for each trial function. The optimal test func-
tions are approximated using a discretisation of 26 x 26 elements, using C'(Q) quadratic B-splines
for both the trial and test functions. For each of the 14 trial functions the corresponding optimal
test functions are approximated at 10.000 randomly sampled points each, meaning that the training
dataset consists of 140.000 points in total. The DeepONet is trained by iterating over this dataset
with SGD, doing 200 epochs in total, using the mean squared error loss function.

The result of the training in shown in Figure 71. The model appears to converge well and exhibits
a very small loss after 200 epochs.

Training of DeepONet-2D
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Figure 71: Average MSE loss during training of DeepONet-2D.
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Figure 72: Comparison between FEM approximation and DeepONet approximation of optimal test
function vy, , (x,y), corresponding to trial function u;,; shown in Figure 63.
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Figure 73: Comparison of FEM approximation and DeepONet approximation of optimal test func-
tion corresponding to the trial functions shown in Figure 64.
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Figure 74: Comparison of FEM approximation and DeepONet approximation of optimal test func-
tion corresponding to the trial functions shown in Figure 65.

Figure 72 shows a comparison between the FEM approximation of optimal test function vy, , (z,y)
and the DeepONet-2D approximation. The network has converged to the optimal test function and
it shows that DeepONets can approximate the optimal test functions very accurately. Figure 73
and Figure 74 show a comparison between the FEM approximation of the optimal test functions
corresponding to the trial functions shown in 64 and 65, and the DeepONet-2D approximations.
Again, the DeepONet-2D approximate every optimal test function very accurately. Now that the
DeepONet is trained and tested, it can be implemented into the finite element method.

5.3.6 Implementing DeepONet-2D

DeepONet-2D is implemented into the finite element method in a similar fashion as the networks
from the 1D section. To approximate the gradients of the optimal test functions, the gradient of
DeepONet-2D is used. Since DeepONet-2D was trained in Tensorflow, automatic differentiation is
used to calculate the gradients. Figure 75 shows a comparison between the FEM approximated
partial derivative v, , (x,y) and the derivative of the DeepONet with respect to x.
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Figure 75: Comparison of FEM approximation of partial derivative of optimal test function v, ,
and the approximation by using the DeepONet-2D gradient.

While the DeepONet gradient provides a reasonably accurate approximation, there does exist a
considerable difference between the finite element approximation of the gradient and the DeepONet
approximation (which is the gradient of DeepONet-2D). As was observed in the 1D section, the
blocky approximation on the right hand side of 75 is a result of the fact that the ReLU activation
function is used in the DeepONet. Recall from the 1D section that the ReLU function and its
derivative look like this

f(z) = max(0, )

f,(x):{o, if 2<0 (161)

1, if >0

Since the ReLU activation function has a discontinuous derivative, the gradient of DeepONet-2D
is the sum of discontinuous functions. In the 1D section this was solved for by using separate
DeepONets to approximate the derivatives of the optimal test functions.

While approximating the continuous gradient of the optimal test function using the neural network
gradient might not ideal, it leads to nice results in this 2D setting. Using DeepONet-2D together
with its gradient in the finite element implementation of (155) with trial functions that are the
products of C° piecewise linear trial functions as shown in 63, leads to an improvement in the
finite element approximation. The results are shown in Figure 76. The methods using optimal test
functions (either FEM or DeepONet-2D generated) lead to a significant improvement in the error
measured in the || - || g1(q) norm. These results are somewhat surprising considering the fact that
the implementations used in 1D did not respond well to perturbations in either the optimal test
functions or the optimal test functions’ derivatives. It is true that the DeepONet-2D approximates
the optimal test functions very accurately, but based on the previous experiments it would have
seemed likely that the gradient approximation shown in Figure 75 would not be good enough. It
seems that the importance of accuracy when implementing the optimal test functions depends on
the corresponding weak formulation.

98



07
Galerkin FEM . Exact Solution 0.6 0 FEM w/ DeepONet 00 Exact Solution
05
0.4

0.3

00 02 04 06 08 00 02 04 06 08 0.1
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of C°(Q) B-splines as shown in 63, resulting in an functions, resulting in an approximation error of
approximation error of ||u — un || g1 (q) = 0.891. [l — unll g1y = 0.827.
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Figure 76: Comparison of regular FEM implementation of (155) to a FEM implementation that
uses DeepONet-2D b) and FEM c) generated optimal test functions. All implementations use a
discretisation of 4 x 4 elements for ¢ = 0.1, with trial functions that are the tensor product of the
C°(Q) piecewise-linear B-splines as shown in 63.

Implementing the DeepONet-2D generated optimal test functions proves to be a success for schemes
that use the higher order trial functions as well. Figure 77 shows a comparison between the regular
Galerkin method based on trial and test functions as shown in Figure 64 (that are the product of
the C°(Q) quadratic B-spline products), and two methods that use the DeepONet-2D generated
and FEM generated optimal test functions. Figure 78 shows a similar comparison but for schemes
that use the trial functions that are shown in Figure 65 (that are the product of the C'(Q) quadratic
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B-spline products). In both cases, the version that uses Deep ONet-2D generated optimal test func-
tions performs better than the original Galerkin method.
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(a) Using test functions that are tensor product of (b) Using DeepONet-2D generated optimal test
C° () B-splines as shown in Figure 64, resulting in functions, resulting in an approximation error of
an approximation error of ||u — || g1 (o) = 0.248. [l — wunl g1 () = 0.245.

FEM w/ FEM OTF Exact Solution
0.0

(¢c) Using FEM generated optimal test func-
tions, resulting in an approximation error of |ju —

Figure 77: Comparison of regular FEM implementation of (155) to a FEM implementation that
uses DeepONet-2D b) and FEM c¢) generated optimal test functions. All implementations use a
discretisation of 4 x 4 elements for ¢ = 0.1, with trial functions that are the tensor product of the
C°(2) quadratic B-splines as shown in 64.
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C* () B-splines as shown in Figure 65, resulting in functions, resulting in an approximation error of
an approximation error of ||u — || 10y = 0.295. [l — wnll g1 () = 0.287.
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Figure 78: Comparison of regular FEM implementation of (155) to a FEM implementation that
uses DeepONet-2D b) and FEM c¢) generated optimal test functions. All implementations use a
discretisation of 4 x 4 elements for ¢ = 0.1, with trial functions that are the tensor product of the
C1(Q) quadratic B-splines as shown in Figure 65.

5.3.7 Training DeepONet-2D-2

Another DeepONet is trained to generate optimal test functions corresponding to (159), but this
time for a larger Peclet number, by setting e = 0.01. This new network will be called DeepONet-2D-
2. Network DeepONet-2D-2 is trained in the exact same fashion as the network from the previous
section and uses the same configuration. The losses during training are plotted in Figure 79.
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Figure 79: Average MSE loss during training of DeepONet-2D-2.

Like the DeepONet that was trained in the previous section, the model converges well and after
200 epochs the training MSE loss is very small. Figure 80, Figure 81 and Figure 82 confirm that
DeepONet-2D-2 is able to approximate the optimal test functions with a very high accuracy. Note
that for the C*(£2) shape functions the subscripts of the optimal test functions are different. This
has to do with the fact that a discretisation of 10 x 10 elements is used instead of the discretisation
that was used previously with 4 x 4 elements.

Comparing the optimal test functions shown in Figures 80-82 that correspond to a diffusion coeffi-
cient of € = 0.1, to the optimal test functions shown in Figures 72-74 that correspond to a diffusion
coefficient, it can be observerd that the upwind effect gets stronger as the Péclet number becomes
larger. As the diffusion coefficient increases, the need for stabilisation is greater, and more weight is
being placed on the upwind part of the element. To see this, consider Figure 74 and Figure 82. First
focus on Figure 74 and look at the optimal test functions in the last row or the last column. These
optimal test functions correspond to shape functions where at least one of the 1D B-splines used to
build them is the second-last B-spline shown in Figure 62 c). The second-last C''(2) B-spline puts
a lot more weight on the downwind part of the domain which makes the upwind effect less easy to
spot. Now consider Figure 82 and focus on the same row/column. The weight of the optimal test
function has moved upwind considerably.

Figure 83 shows a comparison between the regular Galerkin method based on trial and test functions
as shown in Figure 63 (that is the C°(£2) one dimensional piecewise-linear B-spline product), and
two methods that use the DeepONet-2D-2 generated and FEM generated optimal test functions.
The DeepONet-2D generated optimal test functions appear to get rid of most of the oscillations in
the approximate solution. Figure 85 and 85 show similar results for the higher order trial functions.
In both cases using the DeepONet-2D-2 generated optimal test functions leads to a much smaller
approximation error, and visibly milder oscillations.
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Figure 80: Comparison of FEM approximation and DeepONet-2D-2 approximation of optimal test
function vy, , (z,y), corresponding to trial function u;; shown in Figure 63 corresponding to (159)
with € = 0.01, for a discretisation using 10 x 10 elements.
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Figure 81: Comparison of FEM approximation and DeepONet-2D-2 approximation of optimal test
functions corresponding to the C°(2) B-spline products as shown in 64, for problem (159) with
e =0.01.
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Figure 82: Comparison of FEM approximation and DeepONet approximation of optimal test func-
tion corresponding to the trial functions shown in Figure 65, for problem (159) with e = 0.01.

Compared to the case where ¢ = 0.1, the difference in the error measured in the H! norm between
the Galerkin method and the methods using optimal test functions (either FEM or DeepONet-2D-2
generated) is much bigger. One thing to note here is that the results using C°(Q) quadratic trial
functions result in a lower error and a less oscillatory approximate solution than the method using
C1(Q) trial functions. This shouldn’t happen generally and is a result of the fact that DeepONet-
2D-2 was trained for a fixed discretisation. Since the C°(Q) and C'*(Q) trial functions use the same
discretisation, the implementation using C°(£2) quadratic trial functions has a lot more degrees of
freedom, as can be seen in Figure 62.
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(a) Using test functions shown in Figure 63 that (b) Using DeepONet-2D generated optimal test
are tensor product of C°(f) piecewise-linear B- functions, resulting in an approximation error of
splines, resulting in an approximation error of [l = unll g1y = 5.224.
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Figure 83: Comparison of regular FEM implementation of (155) to a FEM implementation that
uses DeepONet-2D-2 b) and FEM c) generated optimal test functions. All implementations use a
discretisation of 10 x 10 elements for ¢ = 0.01, with trial functions that are the tensor product of
the C°(Q) piecewise-linear B-splines as shown in Figure 63.
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(a) Using test functions that are tensor product (b) Using DeepONet-2D generated optimal test
of C°(Q) quadratic B-splines as shown in Figure functions, resulting in an approximation error of
64, resulting in an approximation error of |u — [l = unll g1 () = 4.317.
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tions, resulting in an approximation error of |ju —

Figure 84: Comparison of regular FEM implementation of (155) to a FEM implementation that
uses DeepONet-2D b) and FEM c¢) generated optimal test functions. All implementations use a
discretisation of 10 x 10 elements for ¢ = 0.01, with trial functions that are the tensor product of
the C°(Q) quadratic B-splines as shown in Figure 64.
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C*(9) B-splines as shown in Figure 65, resulting in functions, resulting in an approximation error of
an approximation error of ||u — || g1 (0) = 5.209. [l — unll g1 () = 4.538.
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Figure 85: Comparison of regular FEM implementation of (155) to a FEM implementation that
uses DeepONet-2D b) and FEM c¢) generated optimal test functions. All implementations use a
discretisation of 10 x 10 elements for ¢ = 0.01, with trial functions that are the tensor product of
the C(Q) quadratic B-splines as shown in Figure 65.

5.3.8 Training DeepONet-2D-VP

Now that a problem is found for which the DeepONets can be implemented to improve the finite
element approximation, it makes sense to try and answer the third research question in this the-
sis. Namely whether it is possible to train a neural network to generate optimal test functions,
using problem specific parameters like the diffusion coefficient as variables, to improve the stabil-
ity /accuracy of finite element methods. The last deeponet that is trained in this thesis will try to
do just that and will therefore be called DeepONet-2D-VP, as it is going to deal with variable Péclet
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(VP) numbers. This network will use the exact same configuration as the other two networks in this
section, but instead of generating the solutions to (159) for a single value of € this time solutions
are generated for different € ranging between 2.5 x 1073 and 1. Using € as an additional variable to
the DeepONet-2D-VP network, each point in the the training dataset now looks like this:

(wij, (2,9, €), 05 5(2,y) (162)

Here wu; ; again denotes the vector with the values of the input function u; ; evaluated at the fixed
sensors, and 0; j(x,y) denotes the finite element approximation of the corresponding optimal test
function. Like the points on the domain (z,y), the values for € that are fed to the network are
scaled to the interval [0,1]. This step is important for the training process, as the values of (z,y)
and € have very different scales.

Figure 86 shows the MSE loss of the DeepONet-2D-VP during training. The error after training is
much higher when compared to those of the DeepONet-2D and DeepONet-2D-2 as shown in Figure
71 and Figure 79 respectively. This makes sense since DeepONet-2D-VP now needs to take into
account an additional variable, using the same configuration.

Training of DeepONet-2D-VP

10-2 4

Loss

1073 4

T T T T T
0 50 100 150 200 250 300
Epoch

Figure 86: MSE loss during training of DeepONet-2D-VP.

Figure 87 shows a comparison between the DeepONet-2D-VP and the FEM generated optimal
test functions corresponding to the trial functions shown in Figure 64, for a diffusion coefficient
€ = 0.0025. While the DeepONet-2D-VP does not approximate the optimal test functions as well
as the two previous models did, it is still very precise.

To test the DeepONet-2D-VP network, it is used in the finite element implementation of problem
(155) for multiple values of € and is compared to implementations that use finite element generated
optimal test functions and Galerkin finite element implementations. The results are shown in Figure
88 for the trial functions that are the tensor product of the C°(Q2) piecewise linear, C°(Q) and C(€2)
quadratic trial functions.
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Figure 87: Comparison of FEM approximation and DeepONet-2D-VP approximation of optimal
test functions corresponding to the C°(€2) B-spline products as shown in Figure 64, for problem
(159) with € = 0.0025.

It is quite remarkable how well the DeepONet implementation works in this case, especially af-
ter the dissapointing results in 1D. For all the types of different trial functions, implementing
DeepONet-2D-VP leads to a decrease in the approximation error that is on par with the results of
the implementations that use FEM generated optimal test functions. For some values of € the
implementations with DeepONet-2D-VP generated optimal test functions actually do better than
the implementations with fem generated optimal test functions. This is effect is particularly visible
for the implementations that use C°(2) quadratic B-spline tensor products, i.e., Figure 88 b). It
appears that in these cases the network accidentally got to a better approximation of the optimal
test functions (the FEM generated optimal test functions are just approximations after all).

It is worth mentioning that DeepONet-2D-VP was trained by randomly sampling Péclet values
Pe; from the interval [1,400] and by setting the diffusion coefficient to €; = 1/Pe;. It follows that
DeepONet-2D-VP has only seen diffusion coefficients from the interval [0.0025, 1] during its train-
ing, meaning that the predictions shown in Figure 88 for e < 0.0025 are out of sample predictions.
The grey vertical line in the plots indicates the out of sample threshold, where the arrow below the
plot points of the direction of the region that is out of sample.
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Figure 88: Comparison of Galerkin FEM implementation of (155) to FEM implementations that
use DeepONet-2D-VP and FEM generated optimal test functions for varying values of e. All
implementations use a discretisation of 10 x 10 elements. Here, the grey vertical lines and the
arrows below them indicate the point from which the optimal test functions are predicted for e
values that are out of sample (the arrows point in the direction of values that are out of sample).

The fact that is possible to train a network that can generate optimal test functions for a range
of values for ¢ and improve the stability/accuracy of the finite element method can be very valu-
able. A single neural network could potentially be integrated in a software package that can is
used to solve PDEs using the finite element method. A user would have access to optimal test
function approximations that could used almost immediately. Another very useful application of
the DeepONet-2D-VP network would be the case where € is not a constant but instead varies over
the domain. After training a network, instead of computing the optimal test functions for each
element separately they could be generated instantaneously.
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6 Conclusion

The goal of this master thesis was to find out whether machine learning approaches can be used to
generate optimal test functions that improve the stability/accuracy of the finite element method.
This idea was tested on three different weak forms corresponding to the steady state advection-
diffusion equation in 1D and in 2D. In every case the Péclet number was chosen such that the
problem was advection dominated and the Galerkin finite element solution exhibited oscillations
near a boundary layer. For one of the problems in 1D a mixed weak formulation was implemented
by introducing auxiliary variables for the fluxes and derivative of the solution. For the other
two problems in 1D and 2D a regular weak formulation was used (no auxiliary variables). As
there can exist quite a large number of unique optimal test functions per problem, Deep Operator
Networks (DeepONets) were used to generate the optimal test functions. The DeepONet can learn
to approximate operators, which is very convenient in the case of generating optimal test functions.
The architecture is able to take in a trial function as a variable and predict the values of the
corresponding trial functions at points in a domain. This means that instead of training a single
neural network per optimal test function, a single network can be trained to approximate multiple
optimal test functions. Let’s consider the results by revisiting the research questions that formed
the underpinning of the experiments in this thesis.

6.1 Revisiting the Research Questions

Research Question 1: Can data-driven approaches be used to generate optimal test functions
corresponding to particular trial functions, that improve the stability/accuracy of finite element
methods?

Research Question 2: Can data-driven approaches be used to gemerate optimal test functions,
using trial functions as variables, that improve the stability/accuracy of finite element methods?

Research Question 3: Can neural networks be trained to generate optimal test functions, us-
ing problem specific parameters like the diffusion coefficient as variables, to improve the stabil-
ity/accuracy of finite element methods?

It was found that the applicability of deep learning generated optimal test functions varies based
on the particular weak form that is used. In the 1D non mixed weak formulation case the accuracy
of the finite element methods turned out to be very sensitive to small perturbations in the optimal
test functions when a non-zero source term was present. In the 1D mixed formulation case similar
results were found, as small perturbations to the optimal test functions were enough to cause a sub-
stantial decrease in the accuracy of the finite element solution. Although the DeepONets learned to
generate the optimal test functions very accurately, in these cases their small approximation errors
led to much greater errors in the finite element implementations for which they were used.

For the non-mixed 1D problem the impact of the perturbation was so significant that the methods
using DeepONet generated optimal test functions produced approximate solutions that were worse
that the original Galerkin implementations when using the C%(Q) and C*(f2) quadratic trial func-
tions. To improve the solution in this non-mixed case, a new network was trained to approximate
the derivatives of the optimal test functions. While the approximate solution of the finite element
methods using this network did improve, they did not reach the accuracy of the Galerkin imple-
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mentations.

For the mixed form in 1D, the DeepONets were used just to approximate only a handful of the
optimal test functions. Moreover, the derivatives of these optimal test functions were generated by
the finite element method from the start. Even under those conditions the implementation using
DeepONets showed a considerable decrease in accuracy when compared to the implementations that
used FEM generated optimal test functions. To conclude the 1D mixed form experiment a small
perturbation was added to one of the optimal test functions that seemed to cause the worsening of
the finite element solution. The method that used the perturbed optimal test function showed a
significant decrease in accuracy.

One of the interesting findings of this thesis was that there do exist weak formulations for which
using DeepONets generated optimal test functions can improve the stability /accuracy of the finite
element method. In the 2D case it was shown that DeepONets can even use problem specific param-
eters like the diffusion coefficient € as variables, and produce optimal test function approximations
for many variations of a single weak form that are accurate enough to improve the approximate
finite element solutions. Here, it turned out that the goals set out in the three research questions
could be achieved. The DeepONets can approximate the optimal test function corresponding to a
trial function (research question 1), corresponding to variable trial functions (research question 2),
and using problem specific parameters like the diffusion coefficient as variables (research question
3), to improve the stability /accuracy in the finite element method. By training a DeepONet to take
in problem specific parameters like the diffusion coefficient, it becomes possible to use a single net-
work to improve the stability /accuracy of the finite element method for a large variety of problems
without any further computations. One of the cases where this could be very useful is problems
where the diffusion coefficient is not constant but changes over the problem domain.

6.2 Discussion and Future Research

The results in this master thesis have shown that there are cases where optimal test functions
generated by machine learning can be used to improve the stability /accuracy of the finite element
method. That being said, a lot of questions remain. This subsection will briefly address a number of
points that have not be covered successfully in this report and could be the focus of future research.

1. In the 1D non-mixed case it has been shown that the finite element approximations are very
sensitive to perturbations to the optimal test functions, but it is not necessarily clear how and
when the DeepONet approximation errors impact the stability /accuracy of the solution. As
the optimal test functions are approximated extremely accurately the point could be made that
the lack of accuracy in the derivatives’ approximation is causing the problems. That suspicion
seemed to be confirmed when the DeepONet generated test functions were used together with
fem generated derivatives. That implementation yielded results that were identical to those
that used only fem generated derivatives and optimal test functions. However, this does not
seem consistent with the findings in the f = 0 case. There the DeepONet implementation
is so successful that it is barely distinguishable from the implementations that use FEM
generated optimal test functions. If the approximation error in the derivative of the optimal
test function is what’s causing the deterioration of the finite element solution, then why didn’t
it cause those problems for the f = 0 case? To gain a better understanding of the problem
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it would be nice to add different types of perturbations to the optimal test function and its
derivative (and to both of them separately), and see how the finite element solution would
respond.

. In the 1D mixed formulation, the DeepONet implementation seemed to work for all but one
of the optimal test functions. This optimal test functions was scaled by 1/¢ and appeared to
be approximated not accurately enough. It was shown that adding a tiny perturbation to the
FEM generated approximation of this optimal test function was enough to make the finite
element solution deteriorate dramatically. It would have been nice to see whether changing
the weak formulation by moving e to different parts of the problem, other test functions would
have become the bottleneck.

. In the 2D non-mixed case the implementation was successful; using DeepONet generated
optimal test functions improved the stability and accuracy of the finite element method. Why
the implementation was successful is unclear though. The 1D problems showed that the
finite element method can be very sensitive to perturbations in the optimal test functions.
It is unclear whether the success in 2D was the cause of using a weak form for which the
approximation errors did not pose an issue, or whether the optimal test functions that were
used were more accurate (compared to the 1D case). Although the results seem to suggest that
the first of those statements is true (that the weak form is not that sensitive to perturbations
in the optimal test functions), it would be worthwhile to test this hypothesis. This could be
done by adding perturbations to the fem generated optimal test functions and comparing the
corresponding solutions.

. While the DeepONet that was used in the 2D section was trained to use the problem specific
parameter € as a variable, it did not use the direction of the flow. It would be nice to use both
the Péclet number and the advection direction as variables to the network as doing so would
make it applicable to all variations of the weak form that was used. A good next step would
be to also pass the element length used in finite element discretisation as a variable to the
network. A drawback of the current setup is that one network is needed per discretisation,
which puts a big restriction on its usability. Based on the results of this thesis using the flow
direction and the element length as additional variables is possible, and doing so successfully
appears to be just a matter of finding the right network configuration.
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Appendices

A 2D Mixed Weak Formulation

Here, an unsuccessful attempt will be made to implement 2D mixed weak formulation that is the
same as the one used in [35]. Consider the following 2D advection-diffusion equation with Dirichlet
boundary conditions

{_v (eVu) +b-Vu=f, inQ (163)

u=0, on 9Jf
where € denotes the diffusion coefficient, b the advection velocity, and where Q = [0,1] x [0,1]. A

mixed FE methodology is applied by introducing the variable q = ¢Vu as an auxiliary variable.
Using this new variable the second order PDE in (163) can be reformulated as a first order system

q—eVu=0 in Q,
-V-q+b-Vu=f inQ (164)
u=0, ondQ

To derive a DPG weak formulation of (163), as in [35], first the original domain  is divided into
a partition Pj of square sub-domains K, such that

Q=int( |J Kn) (165)
Km€Ph

Then, by multiplying the first two equations in (164) with a test function and using Green’s identity,
and by enforcing the Dirichlet boundary condition on u strongly (and thereby enforcing vjgq = 0),
the following weak form can be derived:

Find (u,q) € U(2) such that:

Z { / |:(qm - evum) ‘W + Qm - VU, + (b : vum) Umil dx
Kn€Pn Km

(166)
_/ Yo (Am) 70" (V) ds} = Z {/ fom dx}a
DK \OQ Koep, VK,
V(v,w) € V(Pp)
with the trial and test space defined as follows
U(Q) < {(u,q) € H'(Q) x H(div, Q) : 78" (tm) ok, nrp = 0, VK € Ph},
(167)

V(Pr) = {(v,w) € H'(Py) x H(div,Q) : Y0 (Vm) oK nr, = 0, VKN € Ph}
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where 7§ and 7" denote the trace and normal trace operators, as in [35]. Now, let’s introduce the
following notation

B((u, q); (v,w)) def Z { /K [(qm — eVUm) Wi + Qm - Vo, + (b - Vg, vy, |dz (168)

K., €P,

_/aK o™ (qm)%”(vm)ds}
e Ko eph{/ fvmdx} (169)

Using this new compact notation, (166) can be written as follows:

Find (u,q) € U(R) such that:

B((w,q); (0.w)) = F((v,w)), V(v.w) € V(Py) (170)

A.1 Deriving the Optimal Test Functions

To derive the FE discretisation, the authors in [35] first introduce the family of invertible maps,
{F,, : K C R? = Q}, such that every K,, € P} is the image of the element K through one of the
mapppings F',,. Using this mapping the space of trial functions can be defined as follows:

Uh(Q) def{(ebh 0") € C°(Q) x [CO()]* : (], .0k, ) = ($.0) o F
(171)
b€ PP(R)AB e [P (R, VI, € ph}

Here, pm denotes the polynomial degree of approximation on K,,. The approximate solutions u"

and " = {¢/, ¢/'}" are linear combinations of trial functions (¢’ (x ) (Bi(x), Ei(x))) € UM(Q), ie.,

N N N
=Y ufel(@), qi(@) =) dIE(x), q@) =) "Bz (172)
i=1 j=1 k=1

Here, ul*, "7, and ¢"* fori=1,...,N,j=1,...,Nand k=1,..., N are the degrees of freedom

that will be found by solving the system resulting from the finite element implementation. To derive
the optimal test functions, the following inner product, (-, )y (p,) : V(Pr) x V(Pn) — R, will be
used

((T7 Z)’ (U5 W))V(Ph) d§f Z / |:h Vlr’l'ﬂ V,U’H'L + T’H'Lvm + Zm W7n:| dx (173)

K,eP

Now, each of the 3N trial functions e‘(zx), EJ(z), and E{j(w) is paired with a vector-valued test
function. Specifically, e’(x) is paired with (v, w},) € V(Py), Ef(z) with (v _,w! ) € V(Py), and
E¥(x) with (véy , wéy) € V(Py,). These optimal test functions can be found by solving the following
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variational problems
<(r,z)7(vz,wz)) = B((¢",0), (r,2)), V(r,z) e V(P), i=1,...,N,
V(Pn)
((r,z),(vfh,wzw)) = B((0,(E,0)), (r,2)), Y(r,z) e V(P,), j=1,...,N, (174)
V(Pr)
<(r,z)7(véz,wéy)) = B((0, (O,E;j)),(?",z)), V(r,z) e V(P,), k=1,....,N
V(Pn)

The local formulation of the first equation in (174), the problem that can be solved to find the local
restriction of the optimal test function (v}, w?,) corresponding to trial function €’, is as follows

/ (hanrm . Vvim + vaim + Zm ~wim>dx =
Ko (175)

/ ( —eVel -z, +b-Vel rm> dz, N(rm,zm) € V(Pr)
Km

This problem can be decoupled into two equations. The problem becomes: find Uim and Wim such
that

/ <h,2nV7“m . Vvim + r,,vatm) = / b-Vel rm, Vrm € HY(Pp)
Ko o (176)

/ Zon - W, :/ —eVel, - z,, Vze[L*(Q)?
K K

. ) . T
Using z,, = [zl ZQM]T and w;, = [wl w;, ] , the second equation in (176) can be rewrit-

Uy, U2,
ten and decoupled from
, , del de!
21, w. 429w = — oy ="z 177
A,,,L( 1m U1, 2m ugm) /[{m 6( 8.13‘ 1 8y 2m ( )
into )
- Oe!
/ P Wiy, :/ Ty P
m m (178)

7
7 o _ 8em

22, Wy, = € 3 Z2,,
Km K Y

Therefore, combining the first equation of (176) and the two equations in (178), finding the local
restriction of optimal test function (v!,w?) corresponding to trial function e’, is equivalent to
solving

/ <h$nwm Vol 4 rmvgm) = / b Vel rm, Vry, € H'(P)
Km Km

/ 21, Wy, = / e Lm 2, Yz, € L*(Q) (179)
Kom " K, Ox

/ 29, wfnm :-/K —€ Bae;n 2., Yz, € L*()

m

m
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for v, ,w! ,and w_  separately. Note that it follows here that

» P,
wl = —¢ Oein
o O (180)
i der,
Wy, = € ay

The local formulations of the second and third equations in (174) can be decoupled in a similar
fashion. Consider the local formulations of the second and third equation of (174)

/ <h72nV7"m . vahm + rmvfhm + Zm ~thm>dx = / ( [ES 0] -z, + [El 0] Vrm)
= [ apdED 0D

0K \OQ
/ (h?nVrm . vaizym + vaéym + Zoy, - wéym>dx = / ( [O Ezlj] “Z + [O E{ﬂ . Vrm)

~[ o B
K 1, \OQ
(181)
By writing out some of the dot products and decoupling the equations, solving the two problems
in (181) can be reduced to solving

, . o .
B2 V7 - Vi 40l = Bl " — n1 Bl rp,
m qz Az x ax x
K, K OKm\OQ2

wt = 7 0] -
/ Z - Wy, = / [EI, 0] Zom
K, K

: - or
/ (hanrm . vah + rmv; ) = / E’; = _ / o Ezl; Tm
Ko v v K. 0y  Jor,\00

/K Zm ~wf1ym = /K [O,E;j] “Zm

m

where n; and ny denote the first and second element in the normal vector n. Now, the second

m

m

(182)

and

(183)

. . . . . . T
equation in (182) and the second equation in (183) can be rewritten using z,, = [21,, 22.] ,
. . ’ T ) X . T
w, = {wfhlm w‘zlwm} and w, = [wflylm wzyzm} to arrive at the following

| ma, i, = [ Bl Ve, e QP

(184)
Jo At o, = [ B o) < PO
It follows that w? = w! =0, and that w? and w! need to satisfy
Qe 1, 921, vz,
/ 2, Wy, = / Bz, Va, € L*(Q)
K ) K (185)

22, Wy = E) 2y, V2o ELQ(Q)
K m Y2, K Yy Tem m
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Note that this immediately gives the solutions

wfhl = E;
T (186)
w‘lygml - Y

To summarise the results of the previous derivations; the optimal test functions (wy,, wy,), Wq,
and wg, shown in (180), and (186) respectively. The rest of the local restrictions of the optimal
test functions corresponding to (174) can be found by solving

/ (hf,LVTm . vatm + vaim> = / b- Vein T, Vrm € V(Pp) (187)
Ko Ko

for vﬁm, by solving

. ) O, )
/ (hfnvrm Vo, +rmuy, > = / E? Tm_ / ni Bl rm, Yrp € V(PL)  (188)
Km " " Km Ox OK, \OQ

for vfhm, and finally by solving

. . Orm
/ <h,2nVrm . szym + rmv;ym> = / Eé“ 5 —/ ny Ezlj Tms  Vrm € V(Pr)  (189)
Ko K Y 0K, \ON

for véy” . One important point is that it appears to be necessary to enforce boundary conditions
on the optimal test functions vy, v,,, and v,, on the domain boundary. This requirement follows
from the definition of the test space, e.g.,

V(P,) & {(v,w) € HY(Py) x H(div,Q) : 7" (vm)jox,.rp = 0, VK s € Ph} (190)

where the trace of the function v is set to zero.

A.2 Finite Element Implementation

Implementing the optimal test functions into the finite element method comes down to testing (170)
with the optimal test functions (vg, , (wg,, 0)), (vq,, (0 wg,,)), and (vy, (wu, wy,)) that are
the linear span of the optimal test function approximations in (174). The new weak formulation is
shown in (194), where VO}IL)t is the span of the optimal test function approximations found by solving
(174). Building a stiffness matrix for this problem can be done by building the matrices associated
with the terms in (194) and using them as building blocks. The matrices are

QeWas s QuVar, QuVos, UW,, UV, (191)
used to build the parts corresponding to the optimal test function (v, (wy, ,0)) and

Qx‘/:]y ’ Qquy2 ’ Qy%y’ UWQy2 ) U‘/Ily (192)
used to build the parts corresponding to the optimal test function (v, , (0,wy,, )), and

QaWuy, Qu Vi, QyWay, Qy Vi, UWa, , UWy, , UV (193)
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x

Find (u", (¢! ¢%)) € H'(Q)xH(div,Q) such that:

ou Ovg, V.,
Z { / |:q137n walm — € a;n wq;nlm + qun aqu + quL aq - + (b . Vum) ,quﬂm
K €P Ko Yy
»E€Ph

- ~/8Km\89 (198" (4,.) + 1278 (23..)) 781(%1,1)} = 2 { / f Ve,

O, vy, g,
Z { /I( [Qym wqyzm - ETwa?/an + qZEm T; + Qym 8; + (b : Vum) qum
K’"'L eph m }

-/ (mw$@M>+mv$m%»v$w%n}= 3 {/ f v,
aKm\aﬂ K., €Pp

Oy, ou,
Z . Gz Wuy,, T Ay, Wu,,, — (€ O Wy, T € dy wmm)

K €Pp
ovy,,, Ovy,,

gr D
@) 1 0,0) 2§ ) | =
K, \OQ

+qmm + (b : Vum) UV,

= (/]

Kn€Ph

h
V(vg,, (qul O)), (qua (0 w‘]yz))’ (Vu, (wul wuz)) € Vopt
used to build the parts corresponding to the optimal test function (v, (w.,,w.,)). Here every
first and second capital letter are used to indicate which trial and which test function are used
respectively. For example, the matrix @,V corresponds to the terms in (194) for trial function g,
and test function v,,. Using these matrices the following system can be built and solved

QxWQzl + vaql‘ Qy‘/qt UWle + Uvz C(Iz F‘/:]z
QaVg, QyWay, +QyVy, UWg,, +UV,, Co, | = [FVy, (195)

where Cy, , Cy, , and C, denote the vectors with degrees of freedom corresponding to ¢, ¢, and u,
and F'V,, , F'V, , and F'V, denote the vectors associated with the terms on the right hand side of
the equations in (194). In this system the boundary conditions on u are enforced strongly as was
done in [35].

A.3 Incorrect Results

The convergence of the approximation errors measured in several norms corresponding to the
method that follows from (194) are shown in Figure 89. The implementation is incorrect as the
order of convergence corresponding to the different errors is much lower than reported in [35]. For
example, the paper states that the L?(£2) norm of the error u—u" exhibit convergence rates of order
p+ 1 and p, where p refers to the order of the trial functions used in the implementation. A rough
estimation of the slopes shown in Figure 89 corresponding to ||u — || g1 (o) gives —0.50, —1.03,
and —1.15 for the piecewise linear, C%()) quadratic, and C!(Q) quadratic trial functions respec-
tively. Besides the incorrect order of convergence, something definitely seems of when looking at
the error measured in the L?(2) norm corresponding to o for the C'(Q) trial functions. There, the
convergence rate starts to flatten out.
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Figure 89: Convergence of method in (194) for C°(Q) piecewise linear, C°(Q) quadratic, and C'*()
quadratic trial functions, for e = 0.1 and b = [1 1]T.

Besides an incorrect implementation, a possible explanation for the results could be the accuracy
of the optimal test function approximation.

A.4 Potential DeepONet Implementation

It is questionable whether implementing neural networks into weak formulation (194) makes sense,
given the nature of the optimal test function problems in (188) and in (189). To see why, let’s focus
on (188) and think about the different sides of the element boundary that can be included in the
boundary integrals.

For elements that do not intersect the domain boundary, so called ”interior” elements, all the
sides of the element are included in the boundary. Therefore, for the interior element Kjy,,, the
expression that needs to be solved to find the optimal test functions is simply

J.

Here, a single DeepONet can be trained to approximate the solutions to (194) for all the C°(Q)
piecewise linear, C°(Q2) quadratic, and C1(2) quadratic trial functions.

However, for boundary elements there exist eight different versions of (188), depending on which
faces lie on the domain boundary. That means that eight different DeepONets would have to be
trained to approximate v, on the boundary. This in turn would imply that in total 19 Deep-
ONets would have to be trained to approximate all the optimal test functions used in (194), eight

_ . 9 .
(1530 v/ V2V, S / i im / 1m0 Bty i € V(Py) (196)
e 9azm K ax aK;ntm

inty,, inty,
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DeepONets for the boundary elements plus one DeepONet for the interior element for v,,, eight
DeepONets for the boundary elements plus one DeepONet for the interior element for v,,, and one
DeepONet for v,,.

It has to be said that it’s probably possible to reduce the number of DeepONets that would have to
be trained here. By using transformations on the optimal test functions corresponding to bound-
ary elements, it seems possible to reuse some of them (for example by mirroring or scaling them).
However, this approach will not be tried in this thesis due to time limits.
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