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1 Introduction

Have you ever visited the Dutch Wadden Sea Region? No, not yet? It is

definitely a must visit! Everchanging water channels, seals lying on mud flats

and green flat lands with sheep inhabiting the bicycle lanes characterize the

area. The Dutch Wadden Sea Region is unique in its kind and its got many

things to offer. It has been inscribed on the UNESCO world heritage list

since 2009 for its exceptional nature characteristics [1]. The region contains a

diverse range of socio-economic activities such as agriculture, fishing, leisure

and tourism [2]. Particularly, agriculture has been one of the main determining

factors of the coastal, socio-economic and cultural landscape [3]. Think of its

small villages, farmhouses, the green fields with ditches and drainage systems;

all embodying the classical agricultural wide landscapes. The coastal area is

known as one of the best agricultural areas in Europe [4]. More specifically, the

west Dutch Wadden Sea coastal region, including the north of North-Holland

and West-Friesland, has a large share in the Dutch flower bulb cultivation

[4, 5]. The northern Dutch Wadden Sea coastal region mainly produces seed

potatoes [6, 7].

Agriculture in the area relies heavily on water management due to its

polder landscape. A polder is a low-lying piece of land enclosed by dikes

that is not naturally connected to outside water but of which the hydrological

system is manually controlled. Naturally, the area is also susceptible to the

effects of climate change, more extreme summer droughts and rising sea levels.

Particularly, the Wadden Sea coastal area has a shallow fresh water saline

water surface level. Therefore, its agriculture relies on fresh rain water lenses

floating on the saline groundwater. It is expected that these fresh water lenses

will disappear in the future due to climate change, sea-level rise and land

subsidence [4]. Hence the increasing water salinity results in salinization of the

available water which can become damaging to the crops and their agricultural

yield [8]. So how do we deal with salinization and how do we ensure the

availability of clean fresh water?

There are different possible approaches to this challenge; namely, desali-
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nating sea water, switching to salt minning agriculture, selective breeding of

crops to increase their salt and drought tolerance or implementing measures

to reduce fresh water losses and use the available fresh water as efficiently as

possible [9]. Desalinating sea water might sound as the perfect solution, how-

ever, it is still a very energy consuming and therefore expensive process which

produces a large amount of greenhouse gases [10, 11]. Making the switch to

cultivating alternative salt minning crops is currently not economically feasi-

ble for many farmers due to low market demands of the alternative crops. On

the other hand, selective breeding and improving drought and salt tolerance

levels of the current crops is seen by the farmers as an option worth exploring

further [12]. Improving the salt tolerance of current crops is being researched

at Salt Farm Texel by numerous research institutes such as VU University,

Wageningen University and Research, the Wadden Academy, and more. The

project started in 2006 and has continued ever since with the aim to inves-

tigate the opportunities of saline agriculture and hence serve as an example

for the other coastal agricultural areas in the Netherlands [13, 14]. Finally, a

straightforward approach is to investigate the exact processes underlying fresh

water losses and to subsequently find measures to reduce these losses. Impor-

tant to note is that the effects of climate change on the salinization of Dutch

agricultural areas is a relatively new research area. Knowledge on the effects

of salinization on local levels is missing. Accordingly, more research is needed

to predict future effects of climate change, sea-level rise and subsidence on the

ground and surface water [12,15].

For this reason, Acacia Water and the Waddenfonds started the project

Spaarwater in 2013 to investigate mitigation measures for increasing saliniza-

tion. Its main aim is to safeguard and improve fresh water supplies, whilst

taking the mitigation measures’ technical and economic feasibility into ac-

count. Therefore, an additional focus is on reduction of plants diseases (such

as Brown Rot) and on drainage of pesticides and unwanted nutrients. Ac-

cordingly, an important result is the protection and increase of the crops’

yields. The project is carried out in cooperation with multiple organizations

such as provincial water authorities, provincial governments, agrarians and
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agricultural business organizations in the Dutch coastal Wadden Sea region.

Altogether, there are four pilot locations in the Provinces of Noord-Holland,

Friesland and Groningen [4].

The water ditches in the farmlands are part of a complex hydrological

system. Therefore, it is labour intensive to check the effects of each of the

mitigation measures on the land’s salinization locally. Hence, there’s the am-

bition to develop a web application with underlying mathematical tools to

predict the local effects of introducing a mitigation measure. In this literature

review, we will investigate how to best design such a tool and particularly

what mathematical algorithms can be used for it to work fast . We will first

introduce some important hydrological concepts. Subsequently, we will elab-

orate on the problem statement, my research strategy and the scope of this

study. Then we will continue with giving an overview of the hydrological

concepts behind modelling open channel water flow and we will zoom into ex-

amples of existing hydrological models. Followingly, we will research the main

mathematical theory behind modelling this problem and investigate how to

apply the theory effectively. We will finish with concluding remarks and with

a project proposal for the continuation of the research.

2 Framework and problem statement

The above-mentioned salinizing farmlands in the Dutch polders are the focus

of this research. For clarification, in this study we talk of salinization in an

agricultural area if the water is too salty for optimal land use, or equivalently,

if it has an excessively high chloride content which is limiting optimal land

use [16, 17]. For now we do not specify salinization by a number because

harmful chloride concentrations highly depend on the type of crop.

Historically, research into salinization of agricultural land in the Nether-

lands has mostly been related to the effects of extreme floods. However, there

has always been a more gradual, continuing process of salinization as well;

namely, salinization of surface water because of sea water entering through

coastal inlets and salinization of ground water through saline seepage. Saline
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seepage is a process that occurs in coastal areas that lie below mean sea level.

Saline groundwater is pushed upward to the surface due to the hydrostatic

pressure difference with the surrounding more elevated areas [12,18] . Specif-

ically in the Netherlands, a country well known for its land reclamations and

low lying polders, seepage is an ever occuring process.

Salt accumulates in the soil during summer time especially, due to the

combination of seepage and evaporation. The net rain fall during the winter

months has in the Netherlands generally been sufficient to wash out the in

summertime accumulated salt to the sea. Flushing the ditches is normally

done with excess rainwater diverted from the rivers Rhine and Meuse and

the lake IJsselmeer [12, 19]. However, it is expected that climate change will

give rise to longer and more intense drought intervals resulting in smaller

rainwater lenses and diminishing freshwater supplies from the Rhine, Meuse

and the IJsselmeer. In addition, sea-level rise and land subsidence increase

hydrostatic pressure differences and accordingly intensify seepage [12, 18, 20].

Agriculture in the Wadden Sea coastal region of the Netherlands is possible

because of fresh rainwater lenses floating on the saline water. Saline water is

pushed upwards but will stay below the fresh water lenses due to its higher

density. There’s a mixed groundwater zone between the saline seepage and

the freshwater lenses, in which chloride concentrations increase with depth.

Accordingly, the rainwater lenses ensure fresh water supply in the crops’ root

zones. When the fresh water lenses become thinner in dry periods, saline water

reaches the root zone which can be harmful for agricultural yields [8,21,22]. In

summary, reasonable worries exist that dryer summers and diminishing water

supplies for flushing the ditches will result in salinization and even irrigation

water shortages.

Hence, Acacia Water is researching several mitigation measures for the in-

creasing salinization and freshwater shortages. The main mitigation measures

researched in the Spaarwater project are as follows [4];

1. Establishing locally self-sufficient water supplies by either artifically man-

aging groundwater recharge or by creating underground fresh water

buffers
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2. Enlarging the freshwater lenses through reducing salinization by system

specific drainage

3. Implementing new irrigation methods, such as drip-irrigation, to use the

available freshwater as efficiently as possible

Acacia Water tests the effects of these mitigation measures by determining

the salinity of water with an electrical conductivity (EC) meter. Electrical

conductivity easily translates to salt content. Therefore, an EC meter is a

simple and quick tool for determining salinity levels. A great advantage is

that farmers can also do these measurements themselves with a simple device

connected to their mobile phone. Accordingly, they collect datapoints about

the water’s salinity over time. Hence, Acacia Water would like to use this data

to develop a better understanding of the water system and salinization in a

polder’s ditches network. The first idea was to simply connect the datapoints

by interpolating the data. For interpolating the data, one needs to know about

the water flow in the infrastructure of a ditches network. More specifically,

one needs to know about the governing mathematical laws of the water flow.

The aim of this literature review is to investigate existing hydrological

models, and their underlying mathematical theory, suitable for modelling the

water flow in a ditches network in the coastal Wadden Sea region. In addition,

we will investigate general mathematical theory and algorithms applicable for

this case. This is a preparatory study for the follow-up practical research

project of designing and implementing such a model. Ultimately, the model

should give a general overview of the effects of a mitigation measure on the

water flow, water salinity and sediment transport.

Important for the first design of a model is that it is simple and runs fast

whilst keeping in mind that complexities can be added later. Therefore, in this

study we will solely focus on modelling water flow in a ditches network. We

will start with a simple network with one inlet and one outlet. Subsequently,

we will increase complexity by adding geographical features one by one. Think

for example of waterway junctions, dams, culverts and dead-end drains. Our

final ambition is to apply the model to a ditches network of a real life polder;
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namely, the Oude Bildtpollenpolder, located in North Friesland. Note that the

addition of water salinity to the model, in the form of chloride ion transport,

is the next step in the model development. Hence, this will be kept in mind

throughout the process of development of the water flow model.

Students of the VU university and Wageningen University and Research

(WUR) have previously looked into salinization of the Dutch polders in North

Friesland. Two studies have been done in 2016 on the effects on water salinity

of flushing the ditches [23,24]. Another study was done by four WUR students

and focused on the effects of climate change on the Dutch polders [21]. They

have modelled the water and salt fluxes between the ground water and the

surface water in the Oude Bildtpollenpolder. We will use the concepts used

in these studies and take the outcomes of the models into account for design

of the surface water model. The latest study was done by WUR student

Luc Scholten. He has automized the digitalisation of the infrastructure of

the waterways of a polder such that a mathematical model can be applied to

it. More specifically, he automised the discretisation of the waterways which

means that the data of the waterways are cut into bitesize chunks that can be

used as input for interpolation. In addition, he made a start with researching

possible algorithms for mathematical modelling of the surface water flow using

the Oude Bildtpollen polder as a case study [25]. We will use his findings as

a starting point. In particular, the automized discretization of the waterways

can be used in our modelling of the real life scenario.

3 Hydrological modelling of surface water flow

A variety of different hydrological transport models were developed since the

increase in the computer’s computational power and the rising demands for

detailed numerical forecasting. Hydrological transport models simulate stream

flow and calculate water quality parameters, with varying modelling purposes;

for example, groundwater transport, surface water flow, sediment transport

and so forth. We focus on surface water modelling in this study, and more

specifically, on open channel flow. Open channel flow entails the study of
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water flow with a free surface, which is subject to atmospheric pressure and is

driven by gravity [26,27]. Ultimately, we want to learn about the amounts of

water that flow past a specific point in a ditch over time. It is a first necessary

step for eventually getting an idea of the saline and fresh water flows.

Hydrological models can be broadly categorised into stochastic and deter-

ministic models. In a stochastic model, a given input generates output with

a random component; whereas in a deterministic model, a given input always

generates the same output. We will only consider deterministic models in this

study. Deterministic models can, in its turn, be categorised into lumped and

distributed models. In a deterministic lumped model, the system is averaged

over a given distance in space, hence not considering the hydrological processes

taking place in between the startpoint and endpoint of this distance. On the

other hand, a deterministic distributed model considers the hydrological pro-

cesses taking place at multiple points of this given distance and defines the

model variables as functions of space [28].

3.1 Flow routing

In hydrology, modelling surface water flow is generally done through flow rout-

ing. It is a commonly used technique to determine changes in the waterflow

rates at multiple points of a channel from known or assumed hydrographs. A

hydrograph is a graph showing the rate of flow (discharge) as a function of

time at a given location on the channel [28]. Flow routing is used in flood

forecasting for example. Routing makes use of the continuity principle result-

ing from the assumption that the given system is closed; which means that

the total amounts of inflow and outflow are equal and that there is no exter-

nal inflow. Routing methods are broadly separated into two classes; namely,

hydrologic (lumped) routing and hydraulic (distributed) routing.

3.1.1 Lumped routing

In lumped routing, the channel is divided into multiple boxes which each

represents one reach (one length of the river). Here, inflow and outflow are

linked by simple equations not associated with specific hydrological processes.
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Flow rates between boxes are set by parameters which have to be determined

empirically and optimized by comparing the observed and the computed data

[29]. Mathematically, inflow I(t), outflow O(t) and storage ST (t) are related

by the continuity equation given in [26,28]:

dST

dt
= I(t)−O(t) (1)

Note that in order to solve this system mathematically, a second relationship

is needed to relate ST with I and O. In general, this is referred to as the

storage function ST and may be written as an arbitrary function of I, O and

their time derivatives [28]:

ST = f(I,
dI

dt
,
d2I

dt2
, ..., O,

dO

dt
,
d2O

dt2
) (2)

3.1.2 Hydraulic routing

In contrast, hydraulic routing determines the waterflow as a function of both

space and time. This is done by solving the governing (partial differential)

equations of unsteady open channel flow, called the Saint-Venant equations.

These will be discussed more elaborately in a later section. Here, unsteady

refers to an instationary process in which water flow velocity varies with time.

Hydraulic routing requires a detailed geographical and hydrological description

of the research area in order to solve the partial differential equations [26,29].

3.2 Open channel hydraulics

Whereas routing is a specific type of modelling open channel flow using hydro-

graphs, the study of open channel hydraulics refers to a more general research

area which is concerned with modelling water flow using the Saint-Venant

equations. In the following paragraphs, we will first discuss the different types

of open channel flow, second we will introduce basic definitions and assump-

tions, third we will discuss their underlying energy principles and followingly

we will outline the governing equations of the different open channel flow types.
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3.2.1 Types of flow

Open channel flow is categorized according to steadiness, a condition related

to time, and uniformity, a condition related to space. In steady open channel

flow, the water flow velocity at any point of observation does not change with

time, hence it is a stationary process; whereas flow is unsteady when the water

flow velocity at a specific point changes from moment to moment, which is an

instationary process. Open channel flow is uniform if flow velocity is constant

at all points along the channel at all times; whereas flow in nonuniform, also

called varied, if the flow velocity changes with water moving along the channel.

Varied flow is usually subcategorized into gradually varied flow and rapidly

varied flow, where the flow varies gradually if the flow velocity varies slowly

with respect to distance and the flow varies rapidly if the flow velocity varies

significantly over a short distance [26, 27]. More specifically, rapidly varied

flow refers to a situation in which changes in depth and velocity occur over

short lenghts; considering a scale of a maximum of a couple of meters. Think

of flows beneath sluice gates or over weirs. Gradually varied flow refers to a

situation in which flow changes in depth and velocity occur over long distances;

considering a scale of tens of kilometers [30]. In this study we focus on the

latter; namely, gradually varied flow. We are merely interested in the water

flow over the entirety of a ditches network of about 10 kilometers in length.

Hence, we will neglect the short and local waves occuring around weirs and

sluice gates. The classification of open channel flow is shown in Figure 1 and a

graphical representation of the difference between gradually and rapidly varied

flow is shown in Figure 2.

Figure 1: Classification of flows as illustrated in Fig 1-7 of [27]
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Figure 2: Difference in wave lenghts around a weir between small and large
scales as illustrated in Figure 2.3 and Figure 2.4 in [30]

3.2.2 Basic definitions and assumptions

The description of open water waves in channels is given by :

The flow velocity field ~u(t, x, y, z)

The pressures p(t, x, y, z)

The water depths d(t, x, y)

which results in a complex system with three variables varying in three or

four dimensions. Hence, these dependencies need to be partly relaxed and

simplified to enable open water flow calculations [30]. In this section we shall

introduce basic definitions and discuss the assumptions commonly made to

simplify the open water flow equations to describe the waves as one dimen-

sional in space.

For every position x along a channel, the cross section A is the unique

plane perpendicular to the flow direction along the channel. We will assume

a horizontal water level in each cross section and the geometry of each cross

section to be completely known. Moreover, zb(x) denotes the lowest point of
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the cross section at x. The lowest point zb is measured from an arbitrary

horizontal zero fixed for the whole channel and usually taken to be sea level.

The wetted perimeter P is defined as the cross sectional area of the channel

that touches the water, as is also illustrated in Figure 3. Mathematically, the

wetted perimeter can be defined by

P =
∞∑
i=0

li (3)

where li is the length of each surface in contact with the water. Followingly,

the hydraulic radius R and the hydraulic depth D are defined by

R =
A

P

D =
A

B

with A being the cross sectional area and B the channel width.

Figure 3: Sketch of the crossectional area of a channel as illustrated in [27]. P
is the wetted perimeter, A the cross sectional area and B the channel width.

The amount of water flowing through a particular cross section, at a given

time, is determined by the velocity field ~u(t, x, y, z). Since we are focusing

on large wavelengths and large scales, we are merely interested in the average

velocity and total water flow in a cross section. To quantify this, we define the

discharge Q as the volumetric flow rate of water through a given cross sectional

area A (hence with a dimension of m3/s). Mathematically, the discharge is

given by

Q(t, x) =

∫ ∫
(y,z)∈A

ux(t, x, y, z)

which simplifies to

Q(t, x) = A(t, x)v(t, x) (4)
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where v(t, x) is the average velocity, over a given cross section A(t, x), given

by

v(t, x) =
1

A(t, x)

∫ ∫
(y,z)∈A

ux(t, x, y, z)

[30].

Another important simplifying assumption is that of hydrostatic pressure,

i.e. the pressure behaves the same as in still water. Again, we may make this

assumption because of the long waves. Hydrostatic pressure means that at

every point in the river, the pressure equals the static pressure of the water

column above. Hence, the pressure increases linearly from the top to the

bottom of the channel [30]. The relationship between pressure p and height z

is given by

p(t, x, z) = ρg(d(t, x)− z) (5)

where ρ is the volumetric mass density, g is the gravitational constant, d(t, x)

is the depth and z is the height of the point of consideration measured from

the lowest bottom point zb. Hence, the pressures for all the points in each

cross section along the channel are known. Thus the pressure p is considered

to be a given quantity.

3.2.3 Energy principles in open channel hydraulics

Before we dive into the specifics regarding the different types of open channel

flow, we will shortly introduce the energy principles needed for deriving the

equations for steady uniform and steady nonuniform flow. The total energy at

any point of an open channel is the sum of the elevation energy, pressure energy

and kinetic energy; where the elevation and pressure energy together form the

potential energy. The elevation energy refers to the elevation of the channel

bed above a specified datum. In open channel flow, there is atmospheric

pressure at the free surface. Therefore, the pressure is relatively constant and

the water surface is taken as the pressure reference for convenience [31].

At a given cross section in an open channel, the specific energy E is defined

as the energy per unit weight of water, with the channel bottom used as a

datum. H is the total energy, which is the total energy per unit weight of
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water measured from a horizontal datum, for example the mean sea level.

Hence, the specific energy E and the total energy H at a given cross section

are not generally equal. For a fixed point x along the channel, the specific

energy E is given by

E = d+ α
v2

2g
(6)

where d is the water depth, the term v2

2g is the kinetic energy term in which v

is the average cross sectional velocity and α is the velocity coefficient used to

account for nonuniformity in the velocity distribution when taking the average

velocity over the cross sectional area at point x. When assuming a uniform

velocity distribution, α can be set to equal α = 1. The total energy H is given

by

H = zb + d+ α
v2

2g
= zb + E (7)

where zb is the distance from the specified horizontal datum to the channel

bed. Figure 4 shows the composition of the total energy at a given cross

section. It also shows the energy grade line, which is given by the total energy

H along all points x along the channel. Sf is known as the slope of the total

energy line and is evaluated by

Sf =
dH

dx
=

dzb
dx

+
dE

dx
(8)

Figure 4: The composition of the total energy as illustrated in [27]

17



3.2.4 Steady uniform flow

Steady flow represents a stationary process, which is solely a function varying

in space and not in time. Thus, for steady flows the time derivative equals

zero:

dv

dt
= 0

In open channel hydraulics, one usually first considers the stationary process

in order to get a general idea of the direction of flow, the variation in flow

rate and flow depth along a channel. More specifically, here we start with

considering steady uniform flow in which also the spatial derivative equals

zero:

dv

dx
= 0

Hence, uniform flow in a channel represents a state of dynamic equilibrium. It

occurs when the depth of the water, the wetted channel surface area (wetted

perimeter) and the flow velocity remain constant in both time and in space,

along the channel. Naturally, open channel flow is governed by gravity. The

water flow in encounters resistance as it flows down the sloped channel bottom.

In a dynamic equilibrium, the gravitational force causing the downflow is equal

and opposite to the resistance forces obstructing the flow [31,32].

Equations describing the relation between friction and flow velocity for

steady uniform open channel flow have been developed semi-empirically, based

on field measurements and scale models [32]. Those formulas relate velocity

of flow to the hydraulic radius, R, and slope of the channel bed, S0. Chézy

was the first who developed such an equation, given by

v = C
√
RS0 (9)

where

v is the average velocity of the water flow (ms−1)

C is Chezy’s coefficient of boundary roughness (m
1
2 s−1)

R is the hydraulic radius (m) which is defined by A
P ; wetted area, A, divided

by wetted perimeter, P
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S0 is the channel bed slope or hydraulic gradient (dimensionless)

Figure 5: as illustrated and stated in Fig 3 of [32]: ”Uniform flow considers
the water depth, wetted area and velocity constant at each section through
the channel. This means that energy line, water surface and channel bed run
parallel.”

Chézy proposed his Equation(9) in 1775 for the design of water supply

channel near Paris. His work was not published until 1897 and only became

widely known after that year [26]. The Chézy coefficient of boundary rough-

ness has to be determined empirically.

Around that time, the Irish engineer Robert Manning carried out an empir-

ical research investigating the relation between the average velocity, hydraulic

radius and channel bed slope. This resulted in the Manning equation, which

he published in 1989, being

v =
1

nm
R

2
3S

1
2
0 (10)

where the Chézy coefficient in equation (9) is replaced by C = 1
nm
R

1
6 . The nm

in Manning’s Equation (10) is referred to as the Manning factor nm, a factor

relating the resistance to the roughness of the channel boundaries. Again,

Manning’s nm is to be determined empirically. Various studies have been done

to provide guidance in choosing appropriate values for nm . It is common

practice to assume that the Manning factor nm is not a function of depth,

hence a constant value nm is considered for a given channel reach [31]. To
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summarise, the above-mentioned Chézy and Manning equations have been

widely in use for estimating the average flow velocity for steady uniform flow

in open channels. It depends on tradition or convenience which formula of

these two will be chosen [32]. In order to do so, the roughness constants

have to be estimated empirically for a given channel which could in itself be

a separate research study.

3.2.5 Steady nonuniform flow

Similarly, Chézy’s and Manning’s equations hold for steady nonuniform flow.

The only difference being the slope term; namely, Sf is considered instead

of S0. Sf is known as the slope of the total energy line (dH/dx) as is given

in Equation (8). In uniform flow the energy gradient equals the channel bed

slope. However, this is not the case in nonuniform flow since the flow velocity

changes along the channel [27,31]. Accordingly, Chézy’s equation becomes

v = C
√
RSf (11)

and Manning’s equation becomes

v =
1

nm
R

2
3S

1
2
f (12)

which can also be rewritten, using A = Qv, as

Sf =
n2Q|Q|
A2R2/3

(13)

3.2.6 Unsteady flow

In unsteady open channel flow, flow velocities and depths change with time

at any fixed spatial position in the channel. Naturally, open channel flow

in channels is unsteady and nonuniform because of the free surface. Math-

ematically, this means that the two dependent flow variables, velocity and

depth, are functions of both distance x along the channel and time t. Hence,

mathematical problem formulation requires two partial differential equations

representing the continuity and momentum principles in the two unknown de-
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pendent variables [26]. These equations are called the Saint-Venant equations

or the dynamic wave equations. They have been derived from the more gen-

eral Navier-Stokes equations describing the motion of viscious fluid substances.

Analytical solutions to the the Saint-Venant equations can only be found in

extremely simplified forms. Hence, this led to the development of numerical

techniques to approximate solutions for the governing equations [26]. The

Saint-Venant equations and the available solution techniques will be discussed

in the following sections.

3.3 The Saint-Venant equations

The Saint-Venant equations consist of two partial differential equations de-

scribing the continuity and momentum principles. We derive the Saint-Venant

equations by considering a control volume of a channel, which is an infinitesi-

mal part of the river between the cross sections at x and at x+ ∆x. Accord-

ingly, we calculate the mass and the momentum that flows through the control

volume. In addition, we calculate the change in storage between times t and

t+ ∆t.

3.3.1 Continuity equation

The continuity equation is based on the conservation of mass principle. Let

us first consider an open channel with no lateral inflow, meaning that there

is no water flowing in from the sides of the river or from a reservoir. In

this channel, consider a control volume with two cross sections 1 and 2, as

illustrated in Figure 6.

Figure 6: Sketch of channel cross sections as illustrated in [27]

For this volume it must hold that in a specific time interval ∆t, the inflow
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volume equals the outflow volume. Usually, this principle is expressed in

discharge Q which is the volumetric flow rate of water that is transported

through a given cross sectional area [33]. Simply said, the cross sectional area

in section 1 is larger than in section 2. Therefore, the volumetric flow rate is

smaller at point 1 than at point 2.

Incorporating lateral inflow gives that the change in storage equals the sum

of the lateral flow with the difference between inflow and outflow. Followingly,

we will discuss each of these terms to eventually arrive at the continuity equa-

tion.

The change in storage is the change in mass in the control volume from

time t to time t+ ∆t. With ρA(t, x)∆x being the mass in the control volume

at time t, we get

change in storage = ∆x(ρA(t+ dt, x)− ρA(t, x))

≈ ∂ρA

∂t
(t, x)∆x∆t

The difference between inflow and outflow relates to the discharge Q(t, x).

At x, the discharge flowing into the control volume is Q(t, x). Hence, the total

amount of water entering the control volume between times t and t+∆t equals

∆tρQ(t, x). Over the control volume we get

flow in - flow out = ∆t(ρQ(t, x)− ρQ(t, x+ ∆x))

≈ −∂ρQ(t, x)

∂x
∆x∆t

The lateral flow Ql(t, x) refers to the inflow or outflow of water outside of

the river due events such as rainfall, seepage or evaporation. The total lateral

flow into the control volume is specified by

ρQl(t, x)∆x∆t

where Ql(t, x) can be taken as a constant or as a function of time and/or

space.
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Finally, this leads to the continuity equation given by

change in storage = inflow - outflow + lateral flow

∂ρA

∂t
(t, x)∆x∆t = −∂ρQ(t, x)

∂x
∆x∆t+ ρQl(t, x)∆x∆t

which can be simplified, by taking ρ = 1 constant for the density of water, to

∂A

∂t
(t, x) = −∂Q(t, x)

∂x
+Ql(t, x)

hence resulting in the continuity equation

∂Q

∂x
+
∂A

∂t
= Ql (14)

3.3.2 Equation of motion

For deriving the equation of motion, we consider conservation of momentum

in x direction which is the direction of flow. Momentum is defined by mass

times velocity; mv. Hence, the change in momentum is defined by

∂mv

∂t
= m

∂v

∂t
= ma = F

where a is the accelaration and F the sum of the external forces in the x direc-

tion. In a similar manner as was discussed in the previous section, the mass in

the control volume is defined as ρA(t, x)∆x. Hence, the momentum is given

by ρA(t, x)v(t, x) = ρQ(t, x) which gives a change in storage of momentum

given by

change in storage of momentum = ρ
∂Q(t, x)

∂t
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In addition, the total amount of momentum in the control volume between t

and t+ ∆t equals ∆tQ(t, x)v(t, x). Thus, we get

momentum inflow−momentum outflow =

= ∆t[ρQ(t, x)v(t, x)− ρQ(t, x+ ∆x)v(t, x+ ∆x)]

≈ −ρ∂Q(t, x)v(t, x)

∂x
∆x∆t

Accordingly, using ρ = 1, the equation of motion is written as

∂Q

∂t
+
∂Qv

∂x
= F (15)

where F = Fgravity + Fpressure + Ffriction is the sum of the external forces.

Gravitational force The total gravitational force Fg points down to the

center of the earth and for the control volume it is given by

Fg = −gmẑ

= −gρA∆xẑ

where ẑ denotes that the force is along the z axis. We only need the forces in

the direction of flow for the equation of motion. Hence, we decompose Fg into

two force components; namely, one in the direction of flow and one pointing

down while being perpendicular to the direction of flow. The decomposition

of the gravitational force is shown in Figure 7.
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Figure 7: Decomposition of the gravitational force as illustrated in Figure 3.5
in [30]

Accordingly, by geometrical arguments using the angle αb and the channel

bed slope S0 we derive the force in the flow direction, called F0 for convenience

F0 =
sin(αb)Fg

∆x
= gρAS0

where we use that for small αb we have S0 = tan(αb) ≈ sin(αb) ≈ αb [30].

Pressure force Pressure force can generate flow momentum even if the

channel bed slope is zero. We are assuming hydrostatic pressure, hence pres-

sure increases linearly with depth. Thus, all pressure forces are generated by

the differences in depths between the left and right of the control volume.

Figure 8: Graphical representation of the pressure forces on a control volume
as illustrated in Figure 3.7 in [30]
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As is shown in Figure 8, we have triangular pressure force fields due to

hydrostatic pressure. Accordingly, we calculate the pressure force per unit

length by evaluating the pressure differences between the cross sectional areas

at x and x+ ∆x. Here, the y axis corresponds to the channel width.

Fp =
ρg

∆x

∫
dy
d2(x+ ∆x, y)− d2(x, y)

2

≈ ρg

−2∆x

∫
dy
∂d2(x, y)

∂x

= − ρg

2∆x

∫
dy∆x[−2d(x, y)

∂d(x, y)

∂x
]

= −ρg
∫

dy
∂d(x)

∂x

= −ρg∂d(x)

∂x
A = −ρgASp

where ∂d(x)
∂x , the depth slope, is defined as the pressure slope Sp [30].

Friction force Flow loses momentum due to friction with the channel bed,

plants, geographical structures, and so forth. Here, it is impossible to calcu-

late the friction losses exactly because of the many different factors involved.

Hence, the expressions for the friction force are highly empirical. Frictional

forces created by the shear stress along the bottom and the sides of the con-

trol volume are given by −τ0Pdx as derived by Chow [28], where τ0 is the

bed shear stress and P is the wetted perimeter. With τ0 = ρgA
P Sf . Hence,

similarly to the gravitational and the pressure forces, the friction force also

takes the form

Ff = −ρgASf

As was discussed in Section 3.2.5, Sf is the total energy gradient and can be

determined empirically using Manning’s Equation 12. Thus we get

Sf =
n2
mQ

A2R
4
3

and accordingly the friction force becomes

Ff = ρgA
n2
mQ

A2R
4
3
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To conclude, the equation of motion resulting from Equation (15) is

∂Q

∂t
+
∂Qv

∂x
= gA(S0 − Sf − Sp) (16)

To summarise, the momentum equation consists of terms of physical processes

governing the flow momentum. These terms are, from left to right in Equation

(16) respectively, the local acceleration which is the change in momentum due

to the change in velocity over time, the convective accelaration term which

describes the change in momentum due to the change in velocity along the

channel, the gravity force term, the friction force term and the pressure force

term [28]. Note that the full equation of motion corresponds to unsteady,

gradually varied (nonuniform) flow. Equation (16) can be simplified to the

other, simpler types of flow by leaving out specific terms as is shown in Table

1.

Sf = S0 steady uniform flow

∂Qv
∂x = gA(S0 − Sf − Sp) steady gradually varied flow

∂Q
∂t = gA(S0 − Sf ) unsteady uniform flow

∂Q
∂t + ∂Qv

∂x = gA(S0 − Sf − Sp) unsteady gradually varied flow

Table 1: Overview of the equation of motion for different types of flow

3.4 Geographical features

For this research we focus on a ditches network in North Friesland, called

Polder Oude Bildtpollen. A map of the area is given in Figure 13, which

can be found in the Appendix. The area contains a variety of geographical

features such as waterway bifurcations, culverts, weirs, bridges, inlets and so

forth. Here, we shall only consider the most important features since we are

interested in the global water flow in the entirity of the ditches network. These

are waterway bifurcations, weirs, pumping stations and culverts.

3.4.1 Waterway bifurcations and confluence conditions

The Polder Oude Bildtpollen waterway network has been digitalised and pre-

pared for water flow modelling by Luc Scholten during his internship at Acacia
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Water [25]. Here, a branch represents a length of a waterway. Branches are

connected to each other by nodes. Hence, the network of branches and nodes

represents the geographical data of the area to be modelled, given in Figure

13 in the Appendix. Each branch connects two nodes and has the following

attributes:

• Begin node

• End node

• Branch length

• Information on the water flow; to be specified later, depending on which

type of flow is modelled and which version of the Saint-Venant equations

will be used

Each node can connect to multiple branches and waterway bifurcations can

be modelled accordingly. The type of node is determined by the branches it

connects to. One could express the network as a directed graph G = (V,E),

with V the set of nodes and E the set of directed edges which represent the

direction of water flow. Vi is an inlet or outlet if for a i ∈ 1, ...., n with n ∈ N,

it connects to exactly one edge Ej where j ∈ 1, ...,m with m ∈ N. A node is a

connecting node of two smaller lengths of a waterway if it connects to exactly

two edges Ej and Ek where j 6= k and j, k ∈ 1, ...,m. A node is a waterway

bifurcation if it connects to three or more edges. See Figure 9 for an example

of a waterway network.
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Figure 9: Network of nodes (grey and white circles and squares) and branches
(black arrows), adapted from Figure 1.49 in [34]

Importantly, confluence conditions for the waterway bifurcations need to

be specified. Specifically, waterway bifurcation nodes should satisfy the Saint-

Venant equations for conservation of mass and conservation of momentum.

To do so, a junction node is considered as a boundary node and discretized

accordingly for each connected branch. Summing over the discretization of

all the connected branches ensures two conservation laws to hold [34]. The

precise mathematical derivation is a topic for research in the research project

that follows from this literature review.

3.4.2 Weirs

Weirs are commonly used for measuring discharge in open channels. There are

many different types of weirs which may be classified broadly into sharpcrested

and broadcrested weirs. Which specific stage-discharge relationship to use is

very dependent on the type of flow and the type of weir. Therefore, this is a

point for further research at a later stage in the development of the water flow

model.

3.4.3 Pumping stations, inlets or outlets

Water is removed from wetland areas by pumping stations, pumping excesss

fresh water into the sea. Data of the pumping stations can provide informa-
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tion on discharge. Similarly, inlets or outlets are artifically controlled and can

therefore provide information on the discharge. Therfore, both pumping sta-

tions, inlets and outlets can be considered as a given boundary condition for

discharge in our model.

3.4.4 Culverts

A culvert is a construction which enables flow under a road or pathway. It

imposes a unique kind of constriction on the open channel flow. A culvert may

act as an open channel when its flow is partly full. It might seem like a simple

hydraulic structure, however, it imposes complex flow conditions. These flow

conditions are determined by many variables such as inlet geometry, size,

roughness, slope and inlet and outlet conditions. Hence, determining flow

through a culvert should be done empirically [27, 35]. In our research, we

will take culverts into account by imposing a resistance on the flow through

shrinking the cross sectional areas at the location of the culvert.

3.5 Salinity

In order to get an idea of the water salinity in the entire ditches network,

we need to consider the salt concentrations (salt mass per unit volume) at

every branch of the network. There are different ways of modelling these

concentrations of varying complexity.

The most complicated method would be to incorporate the fluid density

dependent variable ρ, considered as one of the unknown quantities, into the

Saint Venant equations. In order to do so, the salt concentrations can be deter-

mined by the advection-diffusion equation, also called the transport equation,

given by

∂c

∂t
+ v

∂c

∂x
+D

∂2c

∂x2
= f (17)

where c is the salt concentration, v the flow velocity, D the diffusion coefficient

and f a source term. Subequently, these salt concentrations are related to

water densities in the Saint Venant equations [34]. In order to do so, we would

need to consider the Navier Stokes equations from which we derive a new form
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of the Saint Venant equations.

To simplify above method, one could consider the Saint Venant equations

and the advection-diffusion equation separately. We will continue to assume

the water density ρ = 1 in the Saint Venant equations and, at the same time,

calculate the salt concentrations from Equation (18). This method will not

be as accurate as above method because the densities will not be updated

accordingly. However, it will give a rough idea on salinity.

The simplest method would be to apply a lumped approach for the salt

mass balance. Similarly to the water storage equation, we would define a salt

mass storage equation. Accordingly, we can apply the conservation of mass

principle using a balance equation where the change in salt storage equals the

sum of salt inflow and salt outflow.

A mathematical derivation and comparison between the possible methods

will be further considered in the research project following from this literature

review.

4 Mathematical problem formulation and solution

methods

There are various methods available for applying either the simplified or the

full Saint-Venant equations to modelling a water network. The main distinc-

tion between models is whether they apply the stationary or non-stationary

Saint-Venant equations. Stationary models generally apply the continuity

equation such as discussed for lumped routing, combined with either Man-

ning’s equation (10) for uniform flow or with the stationary Saint Venant equa-

tions combined with Manning’s equation (12) for gradually varied flow [30,35].

Additionally, there is also the steady dynamic wave model which is equivalent

to the stationary Saint Venant equations. Non-stationary models are classified

as kinematic, diffusive or dynamic wave models which all use the full Conti-

nuity Equation (14) and variations of the Equation of Motion (16) [33]. In the

following sections we discuss six models, of which three stationary and three

non-stationary, applied to a ditches network of n ∈ N nodes. In all the models
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we assume prismatic channels. Additionally, we assume depths and channel

bed slopes to be known.

4.1 Flow conservation assuming equilibrium discharge

The simplest model is based on the continuity equation (1) for lumped flow

routing and follows a pseudo-stationary approach. A channel is divided into

reaches of very short equal lengths with each reach being represented by a

control volume which has practically constant physical characteristics. Here,

the physical characteristics are based on the equilibrium situation so the bed

slope is assumed equal to the friction slope. Hence, the change in storage

is calculated for each control volume at a given time t. Accordingly, water

depths are updated and again calculated for subsequent times. Lateral inflow

is not incorporated in the model equations. Instead, lateral flow is neglected

if it is small compared to the in- and outflows or added or deducted from the

inflow in case they are not negligible [28,35].

To summarize the models main features and assumptions

• Lumped flow routing

• Pseudo-stationary approach; computes the flow rates and depths sepa-

rately

• Uniform flow; equilibrium discharge

• Lateral flows incorporated in inflow, if not negligible

• Channel is divided into control volumes of equal lengths

System of equations Let us assume a simple channel of length L. We

divide this channel into n ∈ N equal segments of length L
n , illustrating n

control volumes which altogether form a river of water reservoirs. Accordingly,

the change in storage is calculated for each control volume by the lumped flow

routing Equation (1). Including lateral flow yields

dST

dt
= Qin −Qout +Ql (18)
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which in terms of discharge can be rewritten as

Qnet = Qin −Qout +Ql (19)

Considering segment i ∈ N , we can rewrite the storage equation into

dSTi
dt

= Qi−1 −Qi +Qli (20)

where the discharge is determined from the equilibrium discharge given by

Qi =
1

nm
S

1/2
0 AiR

2/3
i

assuming S0 is a known constant along the channel. If S0 is changing along the

channel, one could also determine Qi per control volume with, for instance,

Qi =
1

nm

(
zb(i+ 1)− zb(i)

∆x

)1/2

AiR
2/3
i

The water level rises when dSTi
dt > 0 and falls when dSTi

dt < 0. Now consider

a given time t1. We can calculate the dSTi
dt for every cell of the channel and

update the depths per cell by Si = Si + ∆Si, which is directly related to the

depths in case of a rectangular channel with constant width; di = di + ∆di.

Consequently, we consider time t2 and repeat the process. Hence, we arrive

at a pseudo-stationary approach which means iterating a stationary system in

time.
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Figure 10: Graphical representation of lumped routing approach with the
equilibrium discharge, taken from [30,36]

Computational time and complexity In order to make a comparison in

complexity and computational time among the six different models, we make

the simplifying assumption of a broad rectangular channel for which holds that

the wetted perimeter is approximately the width of the channel, i.e. P ≈ B so

that AR2/3 = Bd5/3. Accordingly, the stage-discharge relationship simplfies

signficantly. In this case we have, per timestep,



dSTi
dt = Qi−1 −Qi +Qli xi ∈ (0, L)

Qi = 1
nm
Bd

5/3
i S

1/2
0 xi ∈ (0, L)

Q(x0 = 0) = Q0

Q(xn = L) = QN

(21)

Hence, at any timestep, we calculate the discharge Qi for all segments except

for the boundaries so for i ∈ 1, ..., n− 1. Subsequently, we calculate the change

in storage dSTi
dt for all segments n ∈ N. Finally, the depths can be updated

with di = di + ∆di. Calculating the discharge requires taking a square root

and one multiplication, assuming the 1
nm
BS

1/2
0 to be a constant. Calculating

the change in storage requires a substraction and an addition. Updating the
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water levels requires one more addition per control volume. Hence, assuming

that the operations +,−, ∗, /,√ all have the same operational cost, for nt

timesteps we get a computational cost of

5nxnt

in order of flops needed for the calculations. nx represents the number of

spatial discretization steps; more spatial discretization steps results in more

precise results. nt represents the number of time steps chosen for which the

stationary process is calculated.

4.2 Flow conservation with backwater effects

Here, again this model is based on the lumped routing continuity equation.

Instead of calculating the discharge per control volume through the equilibrium

stage-discharge equation, a new stage-discharge relation is determined from

the full Saint Venant equations to incorporate the so called backwater effects;

the effects of dams or obstructions in raising the water surface upstream from

it. The general backwater equations are rewritten from the stationary Saint

Venant equations as 
dQ
dx = Ql

dd
dx =

(S0−Sf−
2vQl
gA

)

1−F2

(22)

where F is the Froude number which is defined in [30] by

F =

√
Q2b

gA3
(23)

Plugging in the equations for S0 and Sf gives the following conservation of

momentum equation

dd

dx
=

(∂zb∂x −
n2
mQ|Q|

R4/3A2 − 2vQl
gA )

1− F2
(24)

Now, to derive a method for flow conservation with the backwater effects,

we consider the following version of Saint Venant equations, with equilibrium
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between gravity, friction and pressure, S0−Sf −Sp = 0 and no lateral inflow,

which gives 
∂Q
∂x + ∂A

∂t = 0

∂Q
∂t + ∂Qv

∂x = 0

(25)

which results in the Jones’ formula [37,38]

Q = Qeq(1−
1

S0

∂d

∂x
)1/2 =

1

nm
S

1/2
0 AR2/3(1− 1

S0

∂d

∂x
)1/2 (26)

Assuming that the Froude number F = 0, which is justified by considering

that we’re in a polder with slow water flow and small slopes, we arrive at

Q =
1

nm
(
∂h

∂x
)1/2AR2/3 (27)

where h = zb + d is the water level, or stage, from datum to the water surface

[30,36].

To summarize the models main features and assumptions

• Lumped flow routing

• Pseudo-stationary approach; computes the flow rates and depths sepa-

rately

• Nonuniform flow; incorporating backwater effects

• Stage-discharge relation derived by assuming Ql = 0, S0 − Sf − Sp = 0

and F = 0

• Lateral flows incorporated in inflow, if not negligible

• Channel is divided into control volumes of equal lengths

System of equations Similarly to the previous model, we have the storage

function with a stage-discharge relationship. However, the stage-discharge

relationship has now been derived from the backwater equations. The dis-

cretization is done a bit differently, since the bed channel slopes are assumed

to be varying.
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Figure 11: Graphical representation of lumped routing approach with the
backwater discharge, taken and adapted from [30,36]

Accordingly, we arrive at the following system of equations, which differs

slightly to the first model



dSTi
dt = Qi −Qi−1 +Qli xi ∈ (0, L)

Qi = B
nm

(
di+1+di

2

)5/3
sign

(
hi−hi+1

∆x

)
|hi−hi+1

∆x |1/2 xi ∈ (0, L)

Q(x0 = 0) = Q0

Q(xn = L) = QN

(28)

where the depths are subsequently updated according to di = di + ∆di.

Computational time and complexity Here, the computational complex-

ity of the discharge is larger than in the first model that we discussed. Now,

it requires three additions, twice taking a root, once taking a sign, three times

division and four multiplications. Hence, in total we arrive at a computational

order of

16nxnt

4.3 Stationary Saint-Venant equations

The third stationary model follows directly from the full Saint-Venant equa-

tions. If we simply assume all time dependencies to vanish, we are left with
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the stationary Saint-Venant equations


dQ
dx = Ql

dQv
dx = gA(S0 − Sf − Sp)

(29)

Doing so leads to the backwater equations, in terms of the change in depths

along the channel and the change in discharge along the channel which are

usually written as 
dQ
dx = Ql

dd
dx =

S0−Sf

1−F2

(30)

These are generally used for studying the backwater effects on of weirs for

example; which means that water is pushed back upstream due to a weir [26].

Commonly, the discharge is assumed to be known whereas the depths are

assumed to be unknown. However, here we are interested in the discharge

which is unknown. Accordingly, assuming the channel bed slope, initial depths

and cross sectional areas are known, the discharges and updates depths can be

calculated. In addition, we assume subcritical flow because of the mild slopes

and slow water flow hence Froude’s number F < 1.

To summarize the models main features and assumptions

• Steady flow; time derivatives are set to zero

• Nonuniform flow; incorporating backwater effects

• Pseudo-stationary approach; stationary situation is computed for fixed

t and given water levels and cross sectional areas at that time, and

subsequently updated with the new calculated values

• Subcritical flow due to mild slopes and slow flow velocities, thus F < 1

• Lateral flows are incorporated

• Depths, channel bed slopes and cross sectional areas are assumed to be

known

System of equations In the stationary Saint Venant equations, we simply

set all time dependencies to vanish. First we simplify the equation of motion
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(30) as follows

∂Qv

∂x
= gA(S0 − Sf − Sp)

⇔ 1

A

∂Q2

∂x
= gA(S0 − Sf − Sp)

⇔ 2Q

A

∂Q

∂x
− Q2

A2

∂A

∂x
= gA

∂zb
∂x
− gQ2n2

m

R4/3A
− gA∂d

∂x

from which an example of a possible discretization can be given:



Qi−Qi−1

∆x = Qli xi ∈ (0, L)

2Qli
A Qi +

(
gn2

m

R4/3A
− 1

A2 (Ai−Ai−1

∆x )
)
Q2

i = gAi

(
(
zbi−zbi−1

∆x )− (di−di−1

∆x )
)

xi ∈ (0, L)

Q(x0 = 0) = Q0

Q(xn = L) = QN

(31)

Additionally, when assuming a broad rectangular channel, the discretized sec-

ond equation reads

2Qli

B

Qi

di
+

(
gn2

m

B2d
10/3
i

− 1

Bd2
i

di − di−1

∆x

)
Q2

i = gBdi

(
zbi − zbi−1

∆x
− di − di−1

∆x

)

Hence, a detailed, but complicated expression to express dynamic waves. Ide-

ally, one would rewrite the discretized equation with the unknown depths on

the left hand side and all the other terms on the right hand side. Since this is

a stationary equation, one updates the depths according to di = di + ∆di.

Computational time This system of equations is considerably more com-

plex than previous ones discussed, especially since the second equation yields

a complex relation for calculating depths. For giving an indication on the

computational time, we would need to further specify a method for solving

this equation. Hence, this is an aspect for further research.

4.4 Kinematic wave model

The kinematic wave model is one possible simplifying model of the dynamic

wave model. The dynamic wave model describes one dimensional unsteady,
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gradually varied flow in open channels with Saint Venants equations and ap-

propriate initial and boundary conditions [33]. For kinematic waves, the same

assumptions hold as for dynamic waves, e.g. hydrostatic pressure and the

friction slopes are based on Chézy’s or Manning’s equation. Additionally, the

shallow water wave is assumed to be long and flat so that Sf almost equals the

channel bed slope S0, hence secondary terms in equation of motion disappear.

Thus, the bed slope, S0, is assumed to be large enough and the water wave

long and flat enough so that the change in depth and velocity with respect to

distance and the change in velocity with respect to time are negligible when

subtracted from S0 in the equation of motion. The discharge Q is assumed

to be a function of the water depth alone, so there is only one wave speed in

the direction along the channel. Hence, the wave celerity, or wave speed, is

given by c = ∂Q
∂A . Kinematic waves only propagate downstream and they do

not attenuate as they propagate downstream [33].

To summarize the models main features and assumptions

• Distributed flow routing model; computes the flow rates and depths

simultaneously

• It applies the full continuity equation and the equation of motion is

replaced by the equation for uniform flow

• Shallow water waves are assumed to be long and flat, so that S0 ≈ Sf

• Discharge Q is a function of water depths alone

• Waves only propagate downstream and do not attenuate

• The wave celerity, or wave speed, is given by c = ∂Q
∂A

• Lateral inflow can be incorporated in the continuity equation
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System of equations The kinematic wave is defined as



∂Q
∂x + ∂A

∂t = Ql xi ∈ (0, L), tj ∈ (0, t)

S0 = Sf xi ∈ (0, L), tj ∈ (0, t)

Q(x0 = 0, t) = Q0

Q(xn = L, t) = QN

(32)

which can be discretized using a finite difference approach as follows [28], again

assuming a broad rectangular channel and S0 given,



Qj+1
i+1−Q

j+1
i

∆x +
Aj+1

i+1−A
j
i+1

∆t =
Qj+1

li+1
+Qj

li+1

2 xi ∈ (0, L), tj ∈ (0, t)

Qj
i = B

nm
S

1/2
0 dji

5/3
xi ∈ (0, L), tj ∈ (0, t)

Q(x0 = 0) = Q0

Q(xn = L) = QN

(33)

where i ∈ (0, L) is the spatial discretization and j ∈ (0, t) is the time dis-

cretization.

Computational complexity and time In the non-stationary approach,

the depths and discharge values are calculated simultaneously. Hence, there is

no separate depth update time step required. The continuity equation requires

the following: For every discretization point in space i for xi ∈ (0, L) we require

a substraction and division. For every discretization point in time, an addition,

a substraction and two divisions are required. For calculating the discharge,

one square root and one multiplication is required, assuming that B
nm
S

1/2
0 is a

constant. Hence the computational complexity is of order

4nx4nt = 16nxny

4.5 Diffusive wave model

The diffusive wave model is another possible model simplyfing the dynamic

wave model. It is similar to the kinematic model, but incorporates the change
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in water depths ∂y
∂x . Diffusive waves also propagate downstream only at a

celerity of ∂Q
∂A . Unlike kinematic waves, diffusive waves attenuate as they

propagate downstream [33]. Even though the diffusive wave does not include

as many terms as the stationary Saint Venant equations, it appears to be more

accurate. This is because the terms ∂Q
∂t and ∂Qv

∂x are usually of the same order

of magnitude, but have opposite signs [33]. Thus, neglecting both of them is

more accurate than including one of them.

To summarize the models main features and assumptions

• Distributed flow routing model; computes the flow rates and depths

simultaneously

• It applies the full continuity equation and the equation of motion is

simplified to an equation only incorporating S0, Sf and ∂y
∂x

• Discharge Q is a function of water depths alone

• Waves only propagate downstream, but do attenuate as they move down-

stream

• The wave celerity, or wave speed, is given by c = ∂Q
∂A

• Lateral inflow can be incorporated in the continuity equation

System of equations The system of equations for the diffusive wave model

is given by 

∂Q
∂x + ∂A

∂t = Ql xi ∈ (0, L), tj ∈ (0, t)

∂d
∂x = S0 − Sf xi ∈ (0, L), tj ∈ (0, t)

Q(x0 = 0, t) = Q0

Q(xn = L, t) = QN

(34)

which can be discretized using a similar approach as the kinematic wave equa-

tions, where the equation of motion is simplified in the same way as in (28) ,

42



as follows

Qj+1
i+1−Q

j+1
i

∆x +
Aj+1

i+1−A
j
i+1

∆t =
Qj+1

li+1
+Qj

li+1

2 xi ∈ (0, L), tj ∈ (0, t)

Qj
i = B

nm
(
hj+1
i+1−h

j+1
i

∆x )
1/2

dji
5/3

xi ∈ (0, L), tj ∈ (0, t)

Q(x0 = 0) = Q0

Q(xn = L) = QN

(35)

where i ∈ (0, L) is the spatial discretization and j ∈ (0, t) is the time dis-

cretization.

Computational complexity and time Again, applying the same approach

as to the kinematic wave equations, we arrive at a computational time of order

8nx4nt = 24nxnt

.

4.6 Dynamic wave model

The dynamic wave refers to the distributed model applying the full Saint

Venants equations. To be able to apply these, the assumptions for deriving

the Saint Venants equations must hold, which are [28,35]

1. The flow is one-dimensional, hence the axis along the channel is assumed

to be a straight line. Depths and flow velocities are constant at any given

cross section of a channel and only vary along the channel. Additionally,

the water surface is horizontal across a cross section.

2. Flow rates are assumed to vary gradually along the channel so that

hydrostatic pressure holds and vertical accelerations are negligable. This

is true for mild slopes.

3. Chézy’s and Manning’s equations are applicable so that they can be used

to describe the friction forces.

4. The water is of constant density
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Accordingly, dynamic waves propagate both upstream and downstream and

they do attenuate. Therefore, in this model both upstream and downstream

boundary conditions need to be specified. General guidelines on when to apply

which model have been specified, but it depends on the situation whether these

are applicable [33].

Solution methods The solution methods available for solving the the full

Saint-Venant equations for unsteady flow are, discussed in for example [26–

28,31,35],

1. The method of characteristics

2. Finite difference method

3. Finite volume method

4. Finite element method

where also a combination of methods can be used, see for example [40].
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5 Conclusion

For the Spaarwater project we are looking for a simple and fast method to

model the water flow in the ditches network. The final goal is to use this

method for a fast mobile phone application. Commonly, the one dimensional

Saint Venant equations are used for modelling this type of open channel flow

either through a lumped or distributed modelling approach. In this literature

review, we have discussed both methods. In total, we have examined six dif-

ferent possible versions of the Saint Venant equations. However, note that this

is not an exhaustive list of all possible versions of the Saint Venant equations.

In a lumped model, the continuity equation is expressed in terms of the

change in storage per channel segment. Accordingly, the conservation of mo-

mentum equation can be simplified in different ways to find a relation for the

discharge which is necessary for solving the continuity equation. For this ap-

proach the water depths and channel bed slopes are assumed to be known.

Hence, the change in storage is calculated at a fixed time and updated per

timestep accordingly.

On the other hand, in a distributed model, a system of partial differential

equations is solved. In this literature review, we have discussed four possible

systems of equations for distributed modelling derived from the full one dimen-

sional Saint Venant equations; namely, the stationary Saint Venant equations,

the kinematic wave equation, the diffusive wave equation and the full Saint

Venant equations, also referred to as the dynamic wave equation.

The stationary Saint Venant equations describe detailed wave motion in

a fixed moment in time. It could serve as a good starting point for mod-

elling instationary wave motion through a pseudo-stationary approach. How

to implement this pseudo-stationary approach is a point for further research,

especially since the continuity equation has been simplified such that it does

not represent the conservation of flow. Important to note is that this would

model wave motion on small scales with much detail. Therefore, this might

not be the most preferable options. One of the instationary models could be

better for giving a fast and general idea of the waterflow.
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The kinematic, diffusive and dynamic wave equations automatically in-

corporate the timesteps in their computations. These models vary in their

level of detail depending on which version of the conservation of momentum

equation is applied. The kinematic wave simply models uniform waves with

large wavelengths. The diffusive wave models nonuniform waves incorporating

backwater effects, thus modelling attenuating waves. The full Saint Venant

equations model waves on local scales which move both upstream and down-

stream and which also attenuate.

The computational times are slightly smaller for the lumped approach

when we compare the uniform flow situations for the lumped (with Qeq) and

the distributed (kinematic wave) approach; namely, the computational times

are of order 5nxnt and 16nxnt respectively. We do not expect this to be a

significant difference in the scale of the ditches network under consideration.

The advantage of a lumped approach its simplicity and speed. A distributed

approach yields a more detailed and flexible model in which both variation

in space and time are calculated simultaneously without adding significant in-

crease in computational costs. It will be a more flexible method for calculating

water flow in larger networks.

6 Project proposal

There are many possible research directions varying in complexity. Therefore,

it is important to define the scope of the research project. We discussed six

different models in this literature review which we could all possibly imple-

ment. However, implementing each one of them is beyond the scope of this

research. Therefore, we will choose one model to start with. Accordingly, we

will investigate this model’s implementation and performance. Based on the

results, we either build further on this model or investigate another model for

comparison. Important is to start simple and increase model complexity on

the way.

We propose to start with implementing the simplest distributed model;

namely, the kinematic wave equations. It allows for both the discharge and
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the water depths to be uknown, which resembles the real situation. It means

that we will consider an instationary model. However, when only consider-

ing one timestep, the distributed model resembles the lumped model/pseudo-

stationary approach.

6.1 Project goal and research questions

The aim of the project is to make a first small step in modelling the water-

flow in a ditches network. The main focus is developing the mathematical

implementation and thereby a further understanding of the models discussed

in this literature review. In doing so, we aim to answer the following research

questions:

1. How do we discretize the kinematic wave equations using the finite vol-

ume method?

2. How does the kinematic wave equation compare to the other possible

models in terms of its applicability, computational time and accuracy?

3. How do we design the grid such that it represents the geographical struc-

ture of a ditches network?

4. How do we decide on the boundary conditions and how do we implement

boundary and confluence conditions into the grid, incorporating different

flow directions?

6.2 Methods

The model will have to be designed such that it fits into Acacia Water’s soft-

ware infrastructure. Therefore, Python 3 will be the programming language.

We will consider differen model problems of increasing difficulty in order to

answer abovementioned research questions.

Straight ditch The simplest test model is a straight ditch of length L with

n ∈ N nodes and branches of length L
n−1 . We will need to incorporate suitable

boundary conditions. We can extend this simple model by adding a culvert,

dam or pumping station to the ditch.
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Network with two waterway bifurcations The next test model has n ∈

N nodes of which two nodes have three neighbouring branches, thus including

two waterway bifurcations. We will have to apply both boundary conditions

and confluence conditions to this problem.

Figure 12: Test problem with two waterway bifurcations

Network with multiple waterway bifurcations The last test model will

be to apply the developed model to part of a real case ditches network. If and

how much we can do for this test problem depends on the progress on the

modelling of the previous two test problems.
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Figure 13: Map of the ditches network in which the Polder Oude Bildtpollen
is shown in purple on the left of the map. Source: Wetterskip Fryslân [42].
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