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Abstract
Topology optimization is a branch of mechanical engineering in which the topology of a structure is
created and optimized to certain conditions and restrictions. In the last few decades, the demand for
highly accurate and complex models of these structures has increased and it has a big effect on the
computational power needed. To ease the computational load for the dynamical systems one can use
model order reduction methods to reduce the size of the models. Classic Arnoldi is a widely used
method for model order reduction (MOR) with topology optimization. In this thesis, we discuss two-
sided Arnoldi and IRKA to help find a suitable moment-matchingMORmethod for topology optimization.
These two reduction methods are implemented and improved to create a high fidelity reduced model.
For improvements in the accuracy, the use of orthogonalization methods is analysed and discussed
as well as including rigid body modes for IRKA and a preconditioner for two-sided Arnoldi. Lastly, a
participation factor is discussed and improved to help reduce the model created with two-sided Arnoldi.
In the end, we find that two-sided Arnoldi in combination with the participation factor performs better
than IRKA by creating a smaller and more accurate reduced model.
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1
Introduction

Topology optimization is a branch of mechanical engineering in which the topology of a structure is
created and optimized to certain conditions and restrictions. Applications can range from bookshelf
brackets to equipment in high-tech industries. Especially for the bigger/critical structures, you want to
have a model of the structure as accurately as possible. This requires a very fine mesh of the domain
used with the finite element method to solve differential equations. Only, this can get very expensive to
calculate. The computational cost for topology optimization can be reduced with the use of Model Order
Reduction (MOR) for it reduces the size of the model. There is a large variety of MOR methods to help
us reduce the size of a model. In this thesis, the category moment matching is discussed. Reduced
models created with moment matching approximate the full model around one or multiple interpolation
points. The interpolation points play a crucial role in where the reduced model is accurate.

The main research question for this thesis is

What is a suitable moment matching MOR method for topology optimization?

Before this question can be answered we should know

How to choose the interpolation points for moment matching MOR?

and

How to choose the size of the reduced-order system?

In the category moment matching, there are still a large number of methods to choose from. In this
thesis, the focus will lie on a variant of Arnoldi and IRKA. Arnoldi is chosen for it is extensively described
in the literature and often used. The variant that will be discussed is two-sided Arnoldi and is an
extension of the original algorithm. IRKA is chosen to evaluate since it can iteratively determine the
’optimal’ location of the interpolation points. To help determine the size of a reduced-order system a
participation factor will be introduced for Arnoldi. This participation factor calculates howmuch influence
certain vectors have and vectors with a small influence can be discarded, which will reduce the size of
the reduced model created with Arnoldi.

The thesis is structured by first introducing the methods of topology optimization, model order re-
duction and the participation factor. Then various improvements are suggested for IRKA, two-sided
Arnoldi and the participation factor. These improvements will then be evaluated on two examples, of
which one is a topology optimization example. Lastly, the methods will be evaluated on benchmark
problems created for model order reduction.
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2
Methods

To properly show the results of this report an introduction is required on several topics. Therefore,
this chapter is dedicated to the introduction of the three subjects. First topology optimization to get a
grasp on the situations where the reduction methods can be used. Then model order reduction will
be explained and some of its methods. Shortly, different orthogonalization methods are disccused and
lastly, the participation factor will be introduced, this factor is used to improve one of the model order
reduction methods.

2.1. Topology Optimization
In this section, topology optimization will be introduced as well as its relationship to LTI systems which
later on will be used for model order reduction. Also, some of the mathematical properties of these
systems will be shown.

2.1.1. What is Topology Optimization?
Topology optimization is a broad subject and is used for different applications. It tries to find the ’best’
structure given some user-defined load, conditions and constraints. How ’best’ is defined depends on
the problem, it can vary from maximizing the load capacity of a structure to minimizing resonance or
material in a structure. These goals can be used as constraints as well. For example, maximizing the
load capacity of a structure while only using a certain amount of the material. Sometimes the structure
has to fulfill some conditions. For example when the structure needs to be bolted to another object it
needs material for the bolts to hold onto. At the same time there might be some areas of the structure
where no material is allowed, because the area is already occupied by other structures. A large class
of dynamical systems is described by the following matrix equation

𝑀�̈� + 𝐷�̇� + 𝐾𝑥 = 𝑏𝑢
𝑦 = 𝑐𝑇𝑥 (2.1)

where𝑀, 𝐷 and𝐾 are themass, dampening and stiffnessmatrix respectively. 𝑢 is the actuator/input,
𝑦 is the sensor/output and 𝑥 is the state of the system. The systems discussed in this report all assume
that 𝑀 is invertible.

The topology optimization algorithm is applied to a discretized domain where it starts with an initial
guess. In every iteration it moves material until it creates the ’best’ structure and every node ends with
having the value one or zero corresponding to having material or having no material. Since in every
iteration the material moves, the stiffness (and mass) matrix changes and therefore a linear system of
equations has to be solved multiple times. These operations can get very expensive.

2.1.2. Example of Topology Optimization
A popular topology optimization example is the 99 line Matlab code fromO. Sigmund [21] in which topol-
ogy optimization is used for a Messerschmitt-Bölkow-Blohm (MBB) beam. This is a classic structural
design problem of a symmetric beam with a downward directed load in the middle and has supports on

3



4 2. Methods

Figure 2.1: The design domain and full domain of an MBB beam which is a classical example for topology optimization [21].

both sides. The objective for topology optimization here is to minimize the compliance with a constraint
on the amount of material used. In Figure 2.1 the design area of the full domain and half domain is
shown. For this example, the stiffness matrix is calculated and 𝐾𝑥 = 𝑏 is solved in every iteration. The
evolution of the topology is shown in Figure 2.2.

(a) Iteration 10 (b) Iteration 16 (c) Iteration 90

Figure 2.2: The optimization process within different stages showing iteration 10, 16 and 90.

2.1.3. The Equations used for MOR Methods
The focus of this thesis lies in topology optimization for more complex systems, which use actuators
and sensors. The MOR methods that we will consider are for first-order systems. The second-order
system will therefore first be reduced to a first-order by introducing an auxiliary variable 𝑧 = �̇� [4, 17,
18]. Substituting this in the first line of Equation (2.1) results in

𝑀�̇� = −𝐷𝑧 − 𝐾𝑥 + 𝑏𝑢(𝑡) (2.2)
�̇� = 𝑧 (2.3)

The full first-order system becomes

[𝑀 0
0 𝐼] [

�̇�
�̇�] = [

−𝐷 −𝐾
𝐼 0 ] [

𝑧
𝑥] + [

𝑏
0] 𝑢(𝑡)

𝑦 = [0𝑐]
𝑇
[𝑧𝑥]

(2.4)

Now the model order reduction methods can be used for this first-order linear time-invariant (LTI)
system used in topology optimization.



2.1. Topology Optimization 5

2.1.4. Natural Frequencies of the System
A natural frequency or eigenfrequency of a system is a frequency at which the system resonates natu-
rally, which means without external interference or input. For many applications you want to know what
the natural frequencies are, since resonance caused by natural frequencies can jeopardise a structures
integrity. Therefore avoiding resonance in a certain frequency band is sometimes used as one of the
constraints for topology optimization.

To find the eigenfrequencies of a system we have to mention eigenvalues and eigenmodes and how
these three relate to each other. To find the eigenvalues and eigenmodes of a second-order system a
solution has to be found for the homogeneous linear equation

𝑀�̈� + 𝐷�̇� + 𝐾𝑥 = 0. (2.5)

The general solution is of the form 𝑥(𝑡) = �̃�𝑒𝜆𝑡 with a constant eigenvector or eigenmode �̃� and eigen-
value 𝜆 [6].

The homogeneous equation can be rewritten with the general solution to

(𝜆2𝑀 + 𝜆𝐷 + 𝐾)�̃� = 0 (2.6)

This is known as the quadratic eigenvalue problem. For systems with 𝑛 degrees of freedom it has 2𝑛
solutions, which are real or in conjugate pairs. Suppose 𝜆 = 𝛼 + 𝑖𝛽 then the solution can be written as

𝑥(𝑡) = �̃�𝑒𝛼𝑡(cos(𝛽𝑡) + 𝑖 sin(𝛽𝑡))

The real part of the eigenvalue of the solution determines the decay of the corresponding eigenmode
over time and the imaginary part describes the rate of oscillation of that eigenmode. The eigenfrequency
of the system is𝜔 = 𝛽 [16, 22]. For systemswithout dampening all the eigenvalues are purely imaginary
[14].

For the first-order homogeneous linear equation

𝐸�̇� = 𝐴𝑥 (2.7)

with

𝐸 = [𝑀 0
0 𝐼] and 𝐴 = [−𝐷 −𝐾

𝐼 0 ]

the eigenvalue problem is

𝐴𝑣 = 𝜆𝐸𝑣

The eigenvalues andmodes can be easily calculated when they are already known for the second-order
system of Equation (2.4). They are calculated as

(𝐴 − 𝜆𝐸)𝑣 = 0

[−𝐷 − 𝜆𝑀 −𝐾
𝐼 −𝜆𝐼] [

𝑣1
𝑣2] = 0

−𝐷𝑣1 − 𝜆𝑀𝑣1 − 𝐾𝑣2 = 0
𝑣1 = 𝜆𝑣2

𝜆𝐷𝑣2 + 𝜆2𝑀𝑣2 + 𝐾𝑣2 = 0

thus the eigenvalues of the first-order linear system are the same as the eigenvalues of the polynomial
eigenvalue problem of Equation (2.6).
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2.1.5. LTI Systems
LTI systems are systems that are linear and time-invariant. First, a linear system is a system where the
result of taking a linear combination of the inputs is the same as the linear combination of the result of
each of the individual inputs. Second, time-invariant systems are systems which always give the same
output given the same input independent of when in time it happens. These systems are recognizable
when the matrices do not depend on time. The first order LTI system is

𝐸�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝑏𝑢(𝑡)
𝑦(𝑡) = 𝑐𝑇𝑥(𝑡) (2.8)

in which u,y and x are the input, output and state variables respectively. To get a direct relation be-
tween the input and the output a Laplace transformation is applied to the three variables. The Laplace
transformation is defined by

ℒ{𝑓(𝑡)} = ∫
∞

0
𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 (2.9)

The Laplace transformed variables are 𝑈(𝑠), 𝑌(𝑠) and 𝑋(𝑠). The system can now be written as

𝑌(𝑠) = 𝐻(𝑠)𝑈(𝑠)
𝐻(𝑠) = 𝑐𝑇(𝑠𝐸 − 𝐴)−1𝑏 (2.10)

where 𝐻(𝑠) is called the transfer function of the system and is the relation between the input and the
output of the system.

2.2. Model Order Reduction
A large variety of physical phenomena are modelled with linear time-invariant systems. These systems
are getting increasingly complex and bigger, due to more detailed modelling of the underlying physical
problem. These developments require more and more computational power. One of the methods
to alleviate this computational load is called Model Order Reduction (MOR). This reduces the size of
the problem and therefore decreases the computational power needed to solve the system. There
is a range of different methods to reduce the order of a model. In this report only moment matching
methods are discussed.

2.2.1. Theory
MOR methods are used to reduce a system of size 𝑛 to size 𝑟 with 𝑟 << 𝑛. The methods create a 𝑉,𝑊
of size 𝑛 × 𝑟 where 𝑥 ≈ 𝑉𝑥𝑟 and the reduced model is

𝐸𝑟�̇�𝑟(𝑡) = 𝐴𝑟𝑥𝑟(𝑡) + 𝑏𝑟𝑢(𝑡)
𝑦𝑟(𝑡) = 𝑐𝑇𝑟 𝑥𝑟(𝑡)

(2.11)

with

𝐴𝑟 = 𝑊∗𝐴𝑉 𝐸𝑟 = 𝑊∗𝐸𝑉
𝑏𝑟 = 𝑊∗𝑏 𝑐𝑟 = 𝑐𝑉

Often𝑊 is chosen to be the same as 𝑉 for simplicity of the reduction.
One category of methods that reduces the order of models is called moment matching. This method

evaluates the transfer function by making a Taylor expansion of 𝐻(𝑠) around one or multiple interpola-
tion points 𝑠𝑖 ∈ ℂ, which are not a pole of 𝐻(𝑠). To demonstrate how to rewrite the transfer function we
use one interpolation point 𝑠0.

The transfer function is
𝐻(𝑠) = −𝑐𝑇(𝐴 − 𝑠0𝐸 − (𝑠 − 𝑠0)𝐸)−1𝑏 (2.12)

For ease of notation we define

𝛽 = −(𝐴 − 𝑠0𝐸)−1𝑏 and 𝐺 = (𝐴 − 𝑠0𝐸)−1𝐸
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In the steps of rewriting the transfer function we use the properties of a Neumann series. When a
Neumann series converges then the following property holds

(𝐼 − 𝑇)−1 =
∞

∑
𝑘=0

𝑇𝑘

The transfer function can now be written as

𝐻(𝑠) = −𝑐𝑇(𝐴 − 𝑠0𝐸 − (𝑠 − 𝑠0)𝐸)−1𝑏 (2.13)
= −𝑐𝑇(𝐼 − (𝐴 − 𝑠0𝐸)−1(𝑠 − 𝑠0)𝐸)−1(𝐴 − 𝑠0𝐸)−1𝑏 (2.14)
= 𝑐𝑇(𝐼 − (𝑠 − 𝑠0)𝐺)−1𝛽 (2.15)

=
∞

∑
𝑘=0

𝑐𝑇𝐺𝑘𝛽(𝑠 − 𝑠0)𝑘 (2.16)

𝐻(𝑠) = 𝑐𝑇𝛽 + 𝑐𝑇𝐺𝛽(𝑠 − 𝑠0) + 𝑐𝑇𝐺2𝛽(𝑠 − 𝑠0)2 + ... (2.17)
𝐻(𝑠) = 𝜇0 + 𝜇1(𝑠 − 𝑠0) + 𝜇2(𝑠 − 𝑠0)2 + ... (2.18)

with 𝜇𝑖 = 𝑐𝑇𝐺𝑖𝛽 are the moments of the transfer function. Further information can be found in [4]. The
moment matching methods create a V (and W) by matching the first 𝑘 moments in the reduced transfer
function 𝐻𝑟(𝑠) with the moments of 𝐻(𝑠):

𝐻(𝑠) = 𝐻𝑟(𝑠) + 𝒪((𝑠 − 𝑠0)𝑘). (2.19)

The more moments you match the better the approximation of the reduced system becomes. The
moments of the transfer function can be calculated explicitly

with 𝜇𝑗 = 𝑐𝑇𝐺𝑗𝛽 or with 𝜇2𝑗 = ((𝐺𝑇)𝑗𝑐)𝑇(𝐺𝑗𝛽) and 𝜇2𝑗+1 = ((𝐺𝑇)𝑗𝑐)𝑇(𝐺𝑗+1𝛽).

The explicit calculations of the moments should be avoided since it is an extremely ill-conditioned
problem [4, 9]. The moments can also be calculated implicitly which is done with the use of Krylov
subspaces. A Krylov subspace is defined for a matrix 𝑁 and vector 𝑞 and the subspace is the span of
the vector 𝑞 and the multiple multiplications of 𝑞 with the matrix 𝑁. This subspace is denoted as

𝒦𝑟(𝑁, 𝑞) = span{𝑞, 𝑁𝑞, 𝑁2𝑞, ..., 𝑁𝑟−1𝑞}. (2.20)

If only the right-sided Krylov subspace 𝒦𝑟(𝐺, 𝛽) is used in a MOR method then 𝑟 moments are
matched and 𝑊 is chosen to be the same as 𝑉. When the left-sided Krylov space 𝒦𝑟(𝐺𝑇 , 𝑐) is used it
can match up to 2𝑟 moments. How the matrix and vector in the Krylov space are chosen depends on
the location of the interpolation point(s). There are three possibilities. The interpolation point is in 0, in
𝜎 or in ∞. The right-sided Krylov subspaces for these three interpolation points are respectively

𝒦𝑟(𝐴−1𝐸, 𝐴−1𝑏), 𝒦𝑟((𝐴 − 𝜎𝐸)−1𝐸, (𝐴 − 𝜎𝐸)−1𝑏) and 𝒦𝑟(𝐸−1𝐴, 𝐸−1𝑏).

The left-sided Krylov subspaces for the three interpolation points are respectively

𝒦𝑟(𝐸∗𝐴−∗, 𝑐), 𝒦𝑟(𝐸∗(𝐴 − 𝜎𝐸)−∗, 𝑐) and 𝒦𝑟(𝐴∗𝐸−∗, 𝑐)[4, 9].

Since the focus of this report lies on matching the transfer function around the smallest eigenvalues
we focus on the interpolation point 𝜎 using the Krylov subspaces 𝒦𝑟((𝐴 − 𝜎𝐸)−1𝐸, (𝐴 − 𝜎𝐸)−1𝑏) and
𝒦𝑟(𝐸∗(𝐴 − 𝜎𝐸)−∗, 𝑐). This is often called the shift-and-inverted Krylov subspaces.

In this report two different moment matching methods will be discussed and compared. The first
method is Arnoldi and its variant two-sided Arnoldi, which matches 𝑟 and 2𝑟 moments respectively.
The second method is called IRKA, a relatively new method for model order reduction that uses 𝑟
interpolation points to create a 𝑉 and𝑊 and matches two moments at each interpolation point.
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2.2.2. Arnoldi and Two-sided Arnoldi
The Arnoldi method [3] is a widely used method for moment matching model order reduction. When it
was first created the method was meant to find the largest eigenvalues of the equation

(𝜆𝐼 − 𝐴)𝑥 = 0.

This is done by first reducing the order of the system. The Arnoldi method creates a 𝑉 to be an orthog-
onal basis of the Krylov subspace with 𝑉∗𝑉 = 𝐼. For the reduction of the system one takes𝑊 = 𝑉. The
reduced eigenvalue problem can then be written as

𝑉∗(𝜆𝐼 − 𝐴)𝑉𝑥𝑟 = 0
(𝜆𝑉∗𝑉 − 𝑉∗𝐴𝑉)𝑥𝑟 = 0

When an eigenvector is a linear combination of the vectors 𝑣𝑖 then their corresponding eigenvalue is
an eigenvalue of 𝑉∗𝐴𝑉. This method can be extended to large unsymmetric generalized eigenproblem
[15]

𝐴𝑥 = 𝜆𝐸𝑥. (2.21)

The process of Arnoldi’s method as shown in Algorithm 1 [24] starts with an initial vector for the
Krylov subspace 𝑞, normalizes the vector and then starts finding the next vector in the Krylov subspace
by multiplying it with a matrix 𝑁. To retain orthonormality a modified Gram Schmidt orthogonalization
is applied before creating the next vector in the Krylov subspace. After k iterations you get a reduced
matrix 𝐴𝑟 and the orthonormal columns that span the Krylov subspace are in the matrix 𝑉. This method
can be used for different goals when a different 𝑁 and 𝑞 are chosen. For example when we want to
use moment matching around a shift we have to choose 𝑁 = (𝐴 − 𝜎𝐸)−1𝐸 and 𝑞 = (𝐴 − 𝜎𝐸)−1𝑏. This
is called shift-and-invert Arnoldi [15].

The Arnoldi method uses the right-sided Krylov subspace and creates only a 𝑉matrix. This means it
canmatch at most 𝑟moments of the transfer function. Therefore wewant to introduce two-sided Arnoldi.
This method creates a right-sided Krylov space 𝑉 with 𝒦𝑟(𝐺, 𝛽) and a left-sided Krylov space 𝑊 with
𝒦𝑟(𝐺𝑇 , 𝑐) by doing the Arnoldi method twice and can therefore match up to 2𝑟 moments of the transfer
function [19]. The matrices 𝑉 and 𝑊 are orthogonalized with themself and not bi-orthogonalized. The
method is shown in Algorithm 2. This algorithm can be used for shift-and-invert two-sided Arnoldi
when the input is chosen as A = (𝐴 − 𝜎𝐸)−1𝐸, b = (𝐴 − 𝜎𝐸)−1𝑏 and c = 𝑐. The reduced matrices are
calculated with 𝐴𝑟 = 𝑊∗𝐴𝑉 and 𝐸𝑟 = 𝑊∗𝐸𝑉.

Algorithm 1: Arnoldi
Input: 𝐴, 𝑏, 𝑘
Initialize: 𝑟 = 𝑏, 𝛽 = ||𝑟||2

1 for 𝑗 = 1...𝑘 do
2 𝑣𝑗 = 𝑟/𝛽
3 𝑟 = 𝐴𝑣𝑗
4 for 𝑖 = 1...𝑗 do
5 ℎ𝑖𝑗 = 𝑣𝑇𝑖 𝑟
6 𝑟 = 𝑟 − ℎ𝑖𝑗𝑣𝑖
7 𝛽 = ||𝑟||2
8 if 𝑗 < 𝑘 then
9 ℎ𝑗+1,𝑗 = 𝛽

10 𝑣𝑘 = 𝑟/𝛽
Output: 𝐴𝑟 = 𝐻[1 ∶ 𝑘, 1 ∶ 𝑘], 𝑉 = [𝑣1, ..., 𝑣𝑘]

2.2.3. IRKA
In [13] Gugercin et al introduce an Iterative Rational Krylov Algorithm (IRKA). This is an interpolatory
model reduction method that aims to construct an 𝐻𝑟(𝑠) that interpolates 𝐻(𝑠) in a set of shifts 𝜎𝑖 ∈ ℂ.
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Algorithm 2: Two-sided Arnoldi
Input: 𝐴, 𝑏, 𝑐, 𝑘
Initialize: 𝑟 = 𝑏, 𝛽 = ||𝑟||2, 𝑠 = 𝑐, 𝛾 = ||𝑠||2

1 for 𝑗 = 1...𝑘 do
2 𝑣𝑗 = 𝑟/𝛽
3 𝑤𝑗 = 𝑠/𝛾
4 𝑟 = 𝐴𝑣𝑗
5 𝑠 = 𝐴𝑇𝑤𝑗
6 for 𝑖 = 1...𝑗 do
7 ℎ1 = 𝑣𝑇𝑖 𝑟
8 ℎ2 = 𝑤𝑇𝑖 𝑠
9 𝑟 = 𝑟 − ℎ1𝑣𝑖
10 𝑠 = 𝑠 − ℎ2𝑤𝑖
11 𝛽 = ||𝑟||2
12 𝛾 = ||𝑠||2
13 𝑣𝑘 = 𝑟/𝛽
14 𝑤𝑘 = 𝑠/𝛾

Output: 𝑉 = [𝑣1, ..., 𝑣𝑘],𝑊 = [𝑤1, ..., 𝑤𝑘], 𝐴𝑟 = 𝑊∗𝐴𝑉

The shifts have a positive real part and are closed under conjugation and are a Hermite interpolation
points such that

𝐻(𝜎𝑖) = 𝐻𝑟(𝜎𝑖), 𝐻′(𝜎𝑖) = 𝐻′𝑟(𝜎𝑖) for i = 1...𝑘 (2.22)

A standard method for judging the accuracy of the approximation of the reduced transfer function
is by taking theℋ2 norm. Theℋ2 norm is described for a function 𝐹(𝑠) by [27]

||𝐹||22 =
1
2𝜋 ∫

∞

−∞
trace[𝐹∗(𝜔𝑖)𝐹(𝜔𝑖)]𝑑𝜔 (2.23)

IRKA aims to find a high fidelity reduced system by minimizing the error ||𝐻−𝐻𝑟||22. To achieve this
the shifts should be well placed. Antoulas et al. found out that the shifts should be the mirror images of
the poles of the reduced-order system [2, 13]. Since these shifts are not known a priori the algorithm
finds them iterative. The method is shown in Algorithm 3 [5, 17].

When a certain tolerance is met or when the maximum iteration is reached IRKA constructs a 𝑉 and
𝑊 with the latest found 𝜎’s such that

𝑟𝑎𝑛𝑔𝑒(𝑉) = span{(𝜎1𝐸 − 𝐴)−1𝑏, ..., (𝜎𝑘𝐸 − 𝐴)−1𝑏} (2.24)
𝑟𝑎𝑛𝑔𝑒(𝑊) = span{(𝜎1𝐸 − 𝐴)−∗𝑐, ..., (𝜎𝑘𝐸 − 𝐴)−∗𝑐} (2.25)

The matrices of the reduced system are calculated by 𝐸𝑟 = 𝑊∗𝐸𝑉, 𝐴𝑟 = 𝑊∗𝐴𝑉, 𝑏𝑟 = 𝑊∗𝑏 and 𝑐𝑟 = 𝑐𝑉
[2].

2.3. Orthogonalization Methods
The orthogonality of vectors in a matrix is discussed extensively in this thesis, but has not been formally
introduced yet. The standard method of orthogonalization ’transforms’ a matrix 𝑉 such that 𝑉∗𝑉 = 𝐼 as
is shown in Algorithm 4. It is also possible to transform two matrices such that 𝑊∗𝑉 = 𝐼, this is called
biorthogonalization and is shown in Algorithm 5. The orthogonalization of matrices can be extended
to include a mass matrix, this is called mass-orthogonalization. The idea of mass-orthogonalizing 𝑉
and𝑊 is often seen in physics. The vectors are normalized or orthogonalized with respect to the mass
matrix. The effect of this is that parts or particles with a large mass gets prioritized over parts or particles
of the system with a relatively small mass. To apply this idea in the first-order system the matrices 𝑉
and𝑊 should be orthogonalized with respect to the matrix 𝐸, resulting in 𝑉∗𝐸𝑉 = 𝐼 and𝑊∗𝐸𝑊 = 𝐼 or
for biorthogonalization𝑊∗𝐸𝑉. The algorithms are shown in Algorithm 6 and Algorithm 7.
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Algorithm 3: IRKA Algorithm
Input: A,E, b, c, k, tol
Initialize: Select 𝑆𝑘 = {𝜎1, ..., 𝜎𝑘} ∈ ℂ closed under conjugation

1 Choose 𝑉 and𝑊 such that
2 Ran(𝑉) = span {(𝐴 − 𝜎1𝐸)−1𝑏, ..., (𝐴 − 𝜎𝑘𝐸)−1𝑏},
3 Ran(𝑊) =span {(𝐴 − 𝜎1𝐸)−∗𝑐, ..., (𝐴 − 𝜎𝑘𝐸)−∗𝑐}.
4 while 𝑡𝑜𝑙 < relative change in {𝜎𝑖} do
5 𝐴𝑟 = 𝑊∗𝐴𝑉, 𝐸𝑟 = 𝑊∗𝐸𝑉
6 assign 𝜎𝑖 = −𝜆(𝐴𝑟 , 𝐸𝑟)
7 update 𝑉 and𝑊 such that
8 Ran(𝑉) = span{(𝐴 − 𝜎1𝐸)−1𝑏, ..., (𝐴 − 𝜎𝑘𝐸)−1𝑏} and
9 Ran(𝑊) =span{(𝐴 − 𝜎1𝐸)−∗𝑐, ..., (𝐴 − 𝜎𝑘𝐸)−∗𝑐}.
Output: 𝐴𝑟 = 𝑊∗𝐴𝑉, 𝑏𝑟 = 𝑊∗𝑏, 𝑐𝑟 = 𝑐𝑉, 𝐸𝑟 = 𝑊∗𝐸𝑉

Algorithm 4: Orthogonalisation
Input: V
Initialize: 𝑘 = 𝑠𝑖𝑧𝑒(𝑉)

1 for 𝑗 = 1...𝑘 do
2 𝑣 = 𝑉(∶, 𝑗)
3 for 𝑖 = 1...𝑗 − 1 do
4 𝛼 = 𝑉(∶, 𝑖)∗𝑣
5 𝑣 = 𝑣 − 𝛼𝑉(∶, 𝑖)
6 𝑉(∶, 𝑗) = 𝑣/√𝑣∗𝑣
Output: 𝑉

Algorithm 5: Biorthogonalisation
Input: V,W
Initialize: 𝑘 = 𝑠𝑖𝑧𝑒(𝑉)

1 for 𝑗 = 1...𝑘 do
2 𝑣 = 𝑉(∶, 𝑗)
3 𝑤 = 𝑊(∶, 𝑗)
4 for 𝑖 = 1...𝑗 − 1 do
5 𝛼 = 𝑊(∶, 𝑖)∗𝑣
6 𝛽 = 𝑉(∶, 𝑖)∗𝑤
7 𝑣 = 𝑣 − 𝛼 𝑉(∶, 𝑖)
8 𝑤 = 𝑤 − 𝛽 𝑊(∶, 𝑖)
9 𝑉(∶, 𝑗) = 𝑣/(𝑤∗𝑣)
10 𝑊(∶, 𝑗) = 𝑤

Output: 𝑉,𝑊

Algorithm 6: Mass-orthogonalisation
Input: 𝑉, 𝐸
Initialize: 𝑘 = 𝑠𝑖𝑧𝑒(𝑉)

1 for 𝑗 = 1...𝑘 do
2 𝑣 = 𝑉(∶, 𝑗)
3 for 𝑖 = 1...𝑗 − 1 do
4 𝛼 = 𝑉(∶, 𝑖)∗𝐸𝑣
5 𝑣 = 𝑣 − 𝛼 𝑉(∶, 𝑖)
6 𝑉(∶, 𝑗) = 𝑣/√𝑣∗𝐸𝑣
Output: 𝑉
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Algorithm 7: Mass-Biorthogonalisation
Input: 𝑉,𝑊, 𝐸
Initialize: 𝑘 = 𝑠𝑖𝑧𝑒(𝑉)

1 for 𝑗 = 1...𝑘 do
2 𝑣 = 𝑉(∶, 𝑗)
3 𝑤 = 𝑊(∶, 𝑗)
4 for 𝑖 = 1...𝑗 − 1 do
5 𝛼 = 𝑊(∶, 𝑖)∗𝐸𝑣
6 𝛽 = 𝑉(∶, 𝑖)∗𝐸𝑤
7 𝑣 = 𝑣 − 𝛼𝑉(∶, 𝑖)
8 𝑤 = 𝑤 − 𝛽𝑊(∶, 𝑖)
9 𝑉(∶, 𝑗) = 𝑣/(𝑤∗𝐸𝑣)
10 𝑊(∶, 𝑗) = 𝑤

Output: 𝑉,𝑊

2.4. Participation Factor
With model order reduction a basis is created for the projection of the full system. A difficult task for this
is to estimate how big the basis should be. Wilson et al. [25] came up with an idea to help decrease the
size of the basis. After creating a basis for the reduced system, each basis vector will be given a value
depending on its importance in the original system. When a basis vector has little to no importance to
the system it can be removed. The reduced system will be smaller and less computational power is
needed to compute the reduced system.

Wilson et al. [25] worked on a dynamic equation for a structural system and with the displacement
vector 𝑥.

𝑀�̈� + 𝐷�̇� + 𝐾𝑥 = 𝑏 (2.26)
For his model order reduction they used a basis 𝑉 created from the Krylov space 𝒦𝑟(𝐾−1𝑀,𝐾−1𝑏)

with each vector of v being mass-orthogonalized. They did not include damping for their Krylov sub-
space.

The participation factor for the basis vectors they introduced was

𝑝𝑖 = 𝑣𝑇𝑖 𝑏 (2.27)

with 𝑣𝑖 ∈ 𝑉. The load vector is described by the finite series

𝑏 =∑
𝑗
𝑞𝑗𝑀𝑣𝑗

and since the vectors 𝑣 are mass-orthogonalized 𝑉𝑇𝑀𝑉 = 𝐼, this 𝑞𝑗 = 𝑝𝑗. The error for the load vector
is defined as

𝑒 = 𝑏 −∑
𝑗
𝑝𝑗𝑀𝑣𝑗

An error norm for the load vector is introduced as

𝜖 = 𝑏𝑇𝑒
𝑏𝑇𝑏 .

When the reduced model exist of zero vectors then this error norm is one. When the reduced model
contains all the vectors of the system then this error norm is zero. Alternatively, the contribution of each
basis vector to the load vector can be described by

ℎ𝑖 =
𝑏𝑇𝑝𝑖𝑀𝑣𝑖
𝑏𝑇𝑏 (2.28)

The downside of this method is that it does not take into account the dynamics of a system and is only
suitable for low-frequency problems.
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Then Gu et al. [12] extended this idea, where they worked on the same matrix equation of the linear
structural dynamics of Equation 2.26. To create a reduced system suitable for higher frequency they
used a different Krylov space. They used 𝒦𝑟((𝐾 + 𝑖𝜔𝑐𝐷 − 𝜔2𝑐𝑀)−1𝑀, (𝐾 + 𝑖𝜔𝑐𝐷 − 𝜔2𝑐𝑀)−1𝑏) in which
𝜔𝑐 is in the middle of the frequencies of interest. They included this idea also in the participation factor
and defined it as

𝑝𝑖 =
|𝑣𝑇𝑖 𝑠|

[(𝑣𝑇𝑖 𝑣𝑖)(𝑠𝑇𝑠)]1/2
(2.29)

𝑠 = (𝐾 + Ω𝑖𝐷 − Ω2𝑀)−1𝑏 (2.30)

where 𝑠 is the frequency response at a specific frequency Ω. When there is a system in which multiple
frequencies are of interest the following participation factor is suggested

𝑝𝑖 =max
𝑗

|𝑣𝑇𝑖 𝑠𝑗|
[(𝑣𝑇𝑖 𝑣𝑖)(𝑠𝑇𝑗 𝑠𝑗)]1/2

(2.31)

𝑠𝑗 = (𝐾 + Ω𝑗𝑖𝐷 − Ω2𝑗𝑀)−1𝑏 (2.32)

with Ω𝑗 the different frequencies of interest.
This new participation factor gives a value between 0 and 1. This can be further extended to a

participation factor 𝑝𝑖𝑗 where multiple frequencies Ω𝑗 are used.



3
Contributions

To use the theory mentioned before, it has to be implemented and evaluated. By doing so we came
across several issues and new ideas to improve the existing algorithms. In this section the implemen-
tations and possible improvements are discussed. In the next section all these modifications will be
evaluated on their performance. First the improvements to IKRA is discussed. Second Arnoldi and
two-sided Arnoldi is improved and as third the participation factor is revisited.

3.1. Improvements to IRKA
The basic IRKA algorithm shown in Algorithm 3 often breaks down for the LTI systems used in topology
optimization. The modifications made to the algorithm are to deal with singular matrices and to improve
the stability of the algorithm.

For many realistic problems the stiffness matrix is singular in the second-order linear system. When
the second-order system is rewritten to a first-order system thematrix 𝐴 is singular as well. This singular
matrix will cause problems for IRKA. The strength of IRKA lies with finding the optimal shifts 𝜎, which
are the mirror images of the poles of the reduced system. For reduced system where 𝑉 contains a
eigenvector the corresponding pole is zero and IRKA will use a shift of zero. This is a problem since
IRKA tries to calculate (𝐴 − 𝜎𝐸)−1𝑏 and (𝐴 − 𝜎𝐸)−∗𝑐 which are now 𝐴−1𝑏 and 𝐴−∗𝑐, but 𝐴 is singular
thus the inverse does not exist. Due to the methods in Matlab and its computational precision, these
operations still give a result, although the accuracy is questionable. To solve this problem the first few
vectors with an eigenvalue of zero will be calculated differently. Some MOR methods decomposes the
system in its eigenvectors/eigenmodes and use these to create a reduced system. This idea can be
applied here since we know the eigenmodes/rigid body modes with eigenvalue zero. The standard
IRKA can then be resumed for the other eigenvalues.

The second modification was made to improve the stability of the algorithm. First the vectors for 𝑉
and𝑊 where chosen such that 𝑣𝑖 = (𝐴 − 𝜎𝑖𝐸)−1𝑏 and 𝑤𝑖 = (𝐴 − 𝜎𝑖𝐸)−𝑇𝑐. In some cases the reduced
model created with this 𝑉 and 𝑊 is stable, but unfortunately this is not true in general. Therefore to
improve the stability we choose to evaluate the orthogonalization of 𝑉 and 𝑊 as well as evaluate the
biorthogonalization of 𝑉 and𝑊. These methods are shown in Algorithm 6 and Algorithm 7 respectively.
These algorithms aim to improve the stability, but are more expensive computational and timewise.

3.2. Improvements to Two-sided Arnoldi
The implementation of two-sided Arnoldi has been done by implementing Arnoldi twice as is shown
in Algorithm 2. The matrices 𝑉 and 𝑊 are orthogonalized, since this is done in Arnoldi. This means
𝑉∗𝑉 = 𝐼 and𝑊∗𝑊 = 𝐼.

The two improvements made for two-sided Arnoldi are mass-orthogonalizing the matrices 𝑉 and𝑊
and using a preconditioner for𝑊.

First we analyse the effect of a different orthogonalization method. Let 𝐸 = 𝑄∗𝑄. The relation
between 𝑉 and the mass orthogonalized 𝑉 = 𝑄−1𝑉. Same holds for 𝑊. This relation can be derived

13
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from

𝑉∗𝐸𝑉 = 𝐼
𝑉∗𝑄∗𝑄𝑉 = 𝐼
if 𝑉 = 𝑄−1𝑉

𝑉∗𝑄−∗𝑄∗𝑄𝑄−1𝑉 = 𝐼
𝑉∗𝑉 = 𝐼

For standard orthogonalization the first-order linear equation can be approached with the reduced
system as follows

𝐸�̇� = 𝐴𝑥 + 𝑏 (3.1)
�̇� = 𝐸−1𝐴𝑥 + 𝐸−1𝑏 (3.2)
𝑥 ≈ 𝑉𝑧 (3.3)
𝑉�̇� ≈ 𝐸−1𝐴𝑉𝑧 + 𝐸−1𝑏 (3.4)

𝑊∗𝑉�̇� ≈ 𝑊∗𝐸−1𝐴𝑉𝑧 +𝑊∗𝐸−1𝑏 (3.5)
if (𝑊∗𝑉)−1 exist then

�̇� ≈ (𝑊∗𝑉)−1𝑊∗𝐸−1𝐴𝑉𝑧 + (𝑊∗𝑉)−1𝑊∗𝐸−1𝑏 (3.6)
𝑉�̇� ≈ 𝑉(𝑊∗𝑉)−1𝑊∗𝐸−1𝐴𝑉𝑧 + 𝑉(𝑊∗𝑉)−1𝑊∗𝐸−1𝑏 (3.7)
�̇� ≈ 𝑉(𝑊∗𝑉)−1𝑊∗𝐸−1𝐴𝑥 + 𝑉(𝑊∗𝑉)−1𝑊∗𝐸−1𝑏 (3.8)
�̇� ≈ 𝑉(𝑊∗𝑉)−1𝑊∗(𝐸−1𝐴𝑥 + 𝐸−1𝑏) (3.9)
�̇� ≈ 𝑉(𝑊∗𝑉)−1𝑊∗𝑄−1𝑄−∗(𝐴𝑥 + 𝑏) (3.10)

For mass-orthogonalization the first-order linear equation are

𝐸�̇� = 𝐴𝑥 + 𝑏 (3.11)
𝑥 ≈ 𝑉𝑧 (3.12)

𝐸𝑉 ̇̃𝑧 ≈ 𝐴𝑉𝑧 + 𝑏 (3.13)
𝑊∗𝐸𝑉 ̇̃𝑧 ≈ 𝑊∗𝐴𝑉𝑧 +𝑊∗𝑏 (3.14)

𝑊∗𝑄−∗𝐸𝑄−1𝑉 ̇̃𝑧 ≈ 𝑊∗𝑄−∗𝐴𝑉𝑧𝑊𝑇𝑄−∗𝑏 (3.15)
𝑊∗𝑉 ̇̃𝑧 ≈ 𝑊∗𝑄−∗𝐴𝑉𝑧 +𝑊∗𝑄−∗𝑏 (3.16)

if (𝑊∗𝑉)−1 exist
̇̃𝑧 ≈ (𝑊∗𝑉)−1𝑊𝑇𝑄−∗𝐴𝑉𝑧 + (𝑊∗𝑉)−1𝑊∗𝑄−∗𝑏 (3.17)

𝑉 ̇̃𝑧 ≈ 𝑉(𝑊∗𝑉)−1𝑊∗𝑄−∗𝐴𝑉𝑧 + 𝑉(𝑊∗𝑉)−1𝑊∗𝑄−∗𝑏 (3.18)
�̇� ≈ 𝑄−1𝑉(𝑊∗𝑉)−1𝑊∗𝑄−∗𝐴𝑥 + 𝑄−1𝑉(𝑊∗𝑉)−1𝑊∗𝑄−∗𝑏 (3.19)
�̇� ≈ 𝑄−1𝑉(𝑊∗𝑉)−1𝑊∗𝑄−∗(𝐴𝑥 + 𝑏) (3.20)

The two model approximation are

�̇� ≈ 𝑉(𝑊∗𝑉)−1𝑊∗𝑄−1𝑄−∗(𝐴𝑥 + 𝑏) (3.21)
�̇� ≈ 𝑄−1𝑉(𝑊𝑇𝑉)−1𝑊∗𝑄−∗(𝐴𝑥 + 𝑏) (3.22)

The two orthogonalization methods are the same when 𝑄−1 commutes with 𝑉(𝑊∗𝑉)−1𝑊∗. For example
when 𝑄−1 is the identity matrix. The accuracy of the model is determined by how well the matrix
𝑉(𝑊∗𝑉)−1𝑊∗ approximates the identity matrix.

The second improvement for two-sided Arnoldi is to use the preconditioner (𝐴 − 𝜎𝐸)−1 with the
matrix 𝑊∗ [11]. This new matrix (𝐴 − 𝜎𝐸)−1𝑊∗ can be calculated explicitly with (𝐴 − 𝜎𝐸)−∗ and 𝑊 or
it can be calculated implicitly by using a different Krylov space when creating 𝑊. First 𝑊 was created
with the Krylov space

𝒦𝑟(𝐸∗(𝐴 − 𝜎𝐸)−∗, 𝑐). (3.23)
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This subspace is defined by

span{𝑐, 𝐸∗(𝐴 − 𝜎𝐸)−∗𝑐, 𝐸∗(𝐴 − 𝜎𝐸)−∗𝐸∗(𝐴 − 𝜎𝐸)−∗𝑐, …}. (3.24)

Multiplying each vector of 𝑊 with the preconditioner is the same as multiplying 𝑊 with the precondi-
tioner. Thus the range of𝑊 should be

span{(𝐴 − 𝜎𝐸)−∗𝑐, (𝐴 − 𝜎𝐸)−∗𝐸∗(𝐴 − 𝜎𝐸)−∗𝑐, (3.25)
(𝐴 − 𝜎𝐸)−∗𝐸∗(𝐴 − 𝜎𝐸)−∗𝐸∗(𝐴 − 𝜎𝐸)−∗𝑐, …} (3.26)

This can be described with the Krylov space 𝒦𝑟((𝐴 − 𝜎𝐸)−∗𝐸∗, (𝐴 − 𝜎𝐸)∗𝑐). This Krylov space will
be evaluated with the use of the error plot for the test problems and with the condition number of the
reduced matrix 𝐸𝑟. This condition number describes how sensitive a system is to small pertubations.

3.3. Improvements to Participation Factor
The participation factor proposed by Gu et al. explained in Section 2.4 was

𝑝𝑖 =
|𝑣𝑇𝑖 𝑠|

[(𝑣𝑇𝑖 𝑣𝑖)(𝑠𝑇𝑠)]1/2
(3.27)

𝑠 = (𝐾 + Ω𝑖𝐷 − Ω2𝑀)−1𝑏 (3.28)

with 𝑣𝑖 ∈ 𝑉 and Ω a frequency of interest. This participation factor is equivalent to

𝑝𝑖 =
|𝑣𝑇𝑖 𝑠|

[(𝑣𝑇𝑖 𝑣𝑖)(𝑠𝑇𝑠)]1/2
(3.29)

𝑠 = (Ω𝑖𝐸 − 𝐴)−1𝑏 (3.30)

for first-order linear system. Twomodifications are made to the participation factor to improve its results.
First modification is to include the mass matrix for the dot-products. This is chosen for two reasons.

First, the basis vectors are mass-orthogonalized. Second, we want to prioritize the modes or points with
a large mass since resonance of structures with a large mass have a bigger influence on the behaviour
of the structure then the resonance of the structures with a smaller mass. This participation factor is
described by

𝑝𝑖 =
|𝑣𝑇𝑖 𝐸𝑠|

[(𝑣𝑇𝑖 𝐸𝑣𝑖)(𝑠𝑇𝐸𝑠)]1/2
(3.31)

𝑠 = (Ω𝑖𝐸 − 𝐴)−1𝑏 (3.32)

The second modification focuses on the influence of a basis vector in the output vector 𝑦 instead of the
state-variable 𝑥. To this end we define a new participation factor as

𝑘𝑖 =
|𝑣𝑇𝑖 𝐸𝑠|

√(𝑣𝑇𝑖 𝐸𝑣𝑖)(𝑠𝑇𝐸𝑠)
(3.33)

𝑠 = (Ω𝑖𝐸 − 𝐴)−1𝑏 (3.34)

𝑝𝑖 = 𝑘𝑖
|𝑐𝑇𝑣𝑖|

√(𝑣𝑇𝑖 𝑣𝑖)(𝑐𝑇𝑐)
(3.35)

The efficiency of these participation factors will be tested in combination with Arnoldi. To differen-
tiate between the three participation factors, they will be called Gu’s, Gu’s with mass norm and the
new/transferred participation factor.





4
Evaluation

To evaluate the algorithms and their modifications they will be examined using two examples. First,
these examples will be introduced. Second, the location of the shift for shift-and-invert Arnoldi is dis-
cussed. Third, the reduced models of Arnoldi and shift-and-invert Arnoldi are compared. Fourth, the
modification to the orthogonalization of shift-and-invert Arnoldi is shown. Fifth, the participation factors
are discussed for shift-and-invert Arnoldi with the orthogonalization methods. Then the performance
of IRKA and its modifications are discussed and lastly, the performance of shift-and-invert Arnoldi and
IRKA are compared.

4.1. An Acoustic Example and a Topology Optimization Example
In this subsection two test examples are introduced to evaluate all the modifications made to the reduc-
tion methods. First, an acoustic example is described and second, a topology optimization example is
introduced. Then the method to asses the accuracy of the reduced models is explained.

4.1.1. Acoustic Example
The fist example used to evaluate all the modifications of the MOR methods is an acoustic example
discussed in [23]. This example models the propagation of sound in a room in two dimensions. One of
the four walls is coated in sound-dampening material and has an absorbing boundary. The other walls
have a reflective boundary.

The propagation of sound can be described by the wave equation

1
𝑐2
𝜕2𝑝
𝜕𝑡2 = △𝑝 in Ω (4.1)

with △ the Laplace operator and with 𝑐 = 340 m/s the speed of sound.
The reflective boundary is described by the homogeneous Neumann condition

𝜕𝑝
𝜕𝑛 = 0

and the absorbing boundary is described by

𝜕𝑝
𝜕𝑛 = −

1
𝑐𝑍𝑛

𝜕𝑝
𝜕𝑡

with 𝑍𝑛 = 0.2 − 1.5𝑖 the acoustic impendance of the wall.
This problem can be solved numerically with the FE method using triangular elements. Following

all of the steps of FEM ,as shown in [23], the discretized quadratic eigenproblem is described by

𝜆2𝑀𝑝 + 𝜆𝐶𝑝 + 𝐾𝑝 = 0 (4.2)

with M, C and K are the mass, dampening and stiffness matrices.

17
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In the middle of the room is a sound source that excites the dynamical system and a sensor that
records the sound. The dynamical system of this structure is described by

𝑀�̈� + 𝐶�̇� + 𝐾𝑝 = 𝑏
𝑦 = 𝑐𝑇𝑝 (4.3)

The size of the matrices are 121 by 121. When this system is written to the first-order matrix equation
the size of the matrices are 242 by 242.

4.1.2. Topology Optimization Example
The second problem used for the evaluations is taken from a two dimensional topology optimization.
The design and evolution of the topology are shown in Figure 4.2 with iteration 0, 30 and 60. The two
block at the bottom of the figure can be exited and the vibrations of the system are measured at the
top of the structure.

The optimization process has the objective to maximize the smallest three eigenfrequencies. The
objective and objective function are

max
𝜌

𝑔Ω(𝜌) (4.4)

𝑔Ω(𝜌) =
3

∑
𝑖=1

1
Ω𝑖(𝜌)

(4.5)

with Ω𝑖 is the 𝑖-th eigenfrequency of the dynamical system. The dynamical system is described by

𝑀(𝜌)�̈� + 𝐾(𝜌)𝑥 = 𝑏
𝑦 = 𝑐𝑇𝑥 (4.6)

The matrices, vectors and rigid body modes are provided by Arnoud Delissen, who did the optimization
of this design. To evaluate the MOR methods we choose to use the matrices of the last iteration. The
size of the matrices are 18914 by 18914. Since we rewrite it to a first-order linear system the matrices
used for MOR are 37828 by 37828.

With the optimization of this topology only the location of the eigenfrequencies in the frequency
band where considered in the objective. If it were possible to ’cheaply’ calculate the frequency response
function (FRF), then the area under the FRF or the height of the peaks could be included in the objective
for the optimization. This is where model order reduction methods could be used to improve topology
optimization.

4.1.3. How to Asses the Accuracy
To determine the accuracy of the model order reduction methods and their modifications we check how
well the FRF of the reduced models matches the FRF of the full model. This is done with the help of
two Matlab functions. sparss to create sparse first-order state-space model object and sigma for the
frequency response of the model. The response in the frequency response function is the imaginary
part of 𝐻(𝜔𝑖), with 𝜔 the frequency. It is scaled to decibel by

𝑑𝐵(𝑥) = 20 log10(𝑥). (4.7)

The accuracy is assessed both visually and numerically. Visually by checking how well the first few
peaks of the reduced systemmatch and how big the reduced system should be to match the full system.
Numerically by calculating the difference in the response between the full system and the reduced
system at the different frequency points.

4.2. Preconditioner used for Two-Sided Arnoldi
The preconditioner used for two-sided Arnoldi is (𝐴 − 𝜎𝐸)−1. In both examples the preconditioner
increases the accuracy of the reduced model significantly. Figure 4.3 shows the increased accuracy
for the acoustic example. This is done by plotting the error of the reduced models with and without the
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(a) the FRF for the room (b) The FRF of the structure in topology optimization

Figure 4.1: The frequency response function for the two examples

(a) Iteration 0 (b) Iteration 30

(c) Iteration 60

Figure 4.2: Evolution of the topology
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(a) Without Preconditioner (b) With Preconditioner

Figure 4.3: The error of the reduced model of size 40, 80 and 120 with and without the use of a preconditioner for the acoustic
example

(a) Without Preconditioner (b) With Preconditioner

Figure 4.4: The error of the reduced model of size 20, 40 and 60 with and without the use of a preconditioner for the topology
example

use of a preconditioner. The figure on the left side shows the error for the reduced models of size 40,
80 and 120 without the preconditioner and on the right side the error is shown for the same models
with the use of a preconditioner. The figure shows clearly that the use of a preconditioner decreases
the error significant.

An error plot for topology optimization example is also made and is shown in Figure 4.4. Here the
reduced models are of size 20, 40 and 60. This figure shows as well that the error decreases when a
preconditioner is used.

The increasing accuracy might be explained with the condition number of 𝐸𝑟, since for the reduced
model the equation 𝐸𝑟�̇�𝑟 = 𝐴𝑟𝑥𝑟 + 𝑏𝑟 or �̇�𝑟 = 𝐸−1𝑟 𝐴𝑟𝑥𝑟 + 𝐸−1𝑟 𝑏𝑟 is used. For different sizes of the
reduced model the condition number is shown in Table 4.1 for both examples.

For the acoustic example the condition number does not change for 𝐸𝑟 when a preconditioner is
used with 𝑊. For the example of topology optimization the condition number does change with a
factor 100. Although this condition number does not fully covers the reason to why the preconditioner
improved the system, the preconditioner will be used further on as it showed an improved accuracy in
the error plot.

4.3. The Location of the Shift for the Shift-and-Invert Arnoldi’s
The location of the shift determines how well the reduced model performs. For these locations there are
various options to choose from. The shift can be real and larger than the absolute largest eigenvalues
[20] or the shift can be strictly imaginary and in the interested frequency domain. This gives a better
approximation locally, but has slow convergence globally [11]. A third option is combining these shifts
to get a complex shift [8]. Since we are only interested in matching the peaks around the smallest
eigenfrequencies the imaginary shifts are probably best to use, but for completeness we will evaluate
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size of model Acoustic Topology optimization
𝑊 (𝐴 − 𝜎𝐸)−1𝑊 𝑊 (𝐴 − 𝜎𝐸)−1𝑊

5 X X 121 41
6 7.8 4.05 150 12
10 12 14 1.9e4 13
20 2e4 1.5e4 8.7e4 8.9e3
30 3e4 1.25e5 3.9e7 1e4
40 5e4 1.7e5 3.9e6 4.8e4
50 4.6e4 1.35e5 7.6e7 1e5
60 1.3e5 5.9e5 1.2e8 3.3e6
70 2.6e5 4e5 2.5e9 1.4e6
80 2.6e5 3.5e5 1.5e8 6.7e6
90 1.6e5 3.2e5 6.3e9 3.6e7
100 2.6e5 5.6e5 5.5e8 2.9e8

Table 4.1: Condition number of the matrix 𝐸𝑟 for different sizes of a reduced model created with two-sided Arnoldi with and
without the preconditioner

a real shift and a complex shift as well. The five options discussed for the shift are

• imaginary shift at the start of the frequency domain

• imaginary shift in the middle of the frequency domain

• imaginary shift at the end of the frequency domain

• real shift larger than the eigenfrequencies in the frequency domain

• complex shift with an imaginary part in the middle of the domain and real part larger than the
largest eigenfrequency

The best performing shift will be used in the other evaluations.

4.3.1. Acoustic Example
The frequencies of interest for the acoustic example are between 10 and 1000 rad/s. Therefore the
imaginary shifts are chosen as 10𝑖, 100𝑖 and 1000𝑖. The real shift should be larger than the eigenfre-
quencies in the frequency domain. In Figure 4.1a it shows that the largest eigenfrequency lies around
400 rad/s. A safe choice for this shift would be 500. The complex shift should be a combination be-
tween the real shift and an imaginary shift in the middle of the domain, thus the complex shift used is
500 + 100𝑖.

For the evaluation of the imaginary shifts we used a reduced model of size 70. The frequency
response functions of the different shifts are shown in Figure 4.5. The blue line in these figures is the
response function of the full system and should be matched by the red line, which is the frequency
response of the reduced system. One of the criteria to judge the reduced model was how well the
reduced system matches the first few peaks of the full system. At first glance we can see that a shift of
1000𝑖 does not satisfy this criteria. To judge the accuracy we also plotted the error of the three methods
as is shown in Figure 4.6. For both the shifts 10𝑖 and 100𝑖 the accuracy at the start is close to machine
precision (approximately 10−16) and a shift of 100𝑖 holds this accuracy for a larger bandwidth, therefore
we can conclude this shifts performs the best of the three imaginary shifts.

For the evaluation of the real shift 500we tested different sizes of the reducedmodel. The frequency
responses are shown in Figure 4.7a. To match the first few peaks the reduced model has to be of size
100. To visually match the frequency response of shift 100𝑖 the reduced model with a real shift is of
size 140. In Figure 4.7b we have plotted the error of the response of the various reduced model. When
the reduced model with real shift of size 70 is compared with the imaginary shift 100𝑖 the error is worse
with a factor of 109. For the larger models the accuracy goes to 10−12, which is still worse than when
an imaginary shift was used.

For the evaluation of the complex shift 500 + 100𝑖 the reduced models are of size 70, 100, 120
and 140. This is chosen to make the results of the response function comparable with the results of
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(a) Shift of 10𝑖 (b) Shift of 100𝑖 (c) Shift of 1000𝑖

Figure 4.5: Acoustic example with imaginary shifts

Figure 4.6: Error plot of the reduced systems with imaginary shift for the acoustic example

the response function of the reduced model using a real shift. In Figure 4.8 the performance of the
reduced models and the error are shown. For the use of a complex shift and a real shift both the
response function behaves similar and both errors are of the same magnitude. Since both perform
worse than the imaginary shift we will use a shift of 100𝑖 in further evaluations.

4.3.2. Topology Optimization Example
In the topology optimization example we try to match the frequencies between 10 and 100 rad/s. The
pure imaginary shifts tested are 10𝑖, 30𝑖 and 100𝑖. For the real shifts multiple values are tested, but
since they all perform similar we will discuss only the shift 250. The complex shift is a combination of
the real and imaginary shift and is thus chosen as 250 + 30𝑖.

For the imaginary shifts 10𝑖, 30𝑖 and 100𝑖 a reduced model of size 50 is used to evaluate the
response function. The FRF of these shifts is shown in Figure 4.9. The blue line is the frequency
response of the full system and the response of the reduced models is shown in red. In this figure we
can see that a shift at 100𝑖matches the response at higher frequencies, but not at the lower frequencies.
Both the shifts 10𝑖 and 30𝑖 can match the response at the lower frequencies well, but struggle at the
higher frequencies. Since we focus on matching the lower frequencies a shift of 100𝑖 is not preferred.
Visually the best shift to use is 30𝑖. This is further confirmed by the error plot of the three shifts shown
in Figure 4.10.

For the evaluation of the real shift 250 we tested different sizes of the reduced system as is shown in
Figure 4.11a. The blue line is the response of the full system which should be matched by the reduced
models. The frequency response function of the model of size 50 is terrible. This already demonstrates
that a real shift performs worse than an imaginary shift. The reduced models starts to approximate the
response of a few peaks at 150 vectors. We can see that this reducedmodel starts to find the location of
the peaks, but not the height. When the reduced model is of size 200 it matches the response function
of the full system. The error of these three different sizes of the reduced model are shown in Figure
4.11b. We see that the accuracy increases by increasing the size of the reduced model, but the error
is still much worse than for the reduced model with an imaginary shift.

The complex shift used in this example is 250 + 30𝑖. The accuracy of the reduced models are
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(a) Reduced model of size 100, 120 and 140 (b) Error of the reduced systems

Figure 4.7: Various reduced models with a real shift and its error for the acoustic example

(a) Reduced model of size 100, 120 and 140 (b) Error of the reduced systems

Figure 4.8: Various reduced models with a complex shift and its error for the acoustic example

evaluated for the sizes 50, 150 and 200. The response function for these models are shown in Figure
4.12 together with the error. Again a reduced model of size 50 performs worse than when a imaginary
shift is used. The FRF of these three models are similar to the FRF when a real shift is used. Still, the
best shifts are the pure imaginary shifts. In further evaluations shift-and-invert Arnoldi will use 30𝑖 as a
shift for the example of topology optimization.

4.4. Arnoldi vs Two-Sided Arnoldi
For MOR a commonly used method is Arnoldi. Previously we discussed that Arnoldi matches 𝑟 mo-
ments of the transfer function for a reduced system of size 𝑟. We also mentioned that two-sided Arnoldi
could improve the reduced system for it matches 2𝑟 moments. In this section we evaluate the perfor-

(a) Shift of 10𝑖 (b) Shift of 30𝑖 (c) Shift of 100𝑖

Figure 4.9: Reduced models of size 50 using imaginary shift for the topology optimization example
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Figure 4.10: Corresponding error of the reduced models in Figure 4.9 for the topology optimization example

(a) Reduced model of size 50, 150 and 200
(b) Error of the reduced systems

Figure 4.11: Various reductions with a real shift and its error for topology optimization example

(a) Reduced model of size 50, 150 and 200
(b) Error of the reduced systems

Figure 4.12: Various reductions with a complex shift and its error for the topology optimization example
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(a) Error of the different Arnoldi’s for a model of size 70 (b) Error of the different Arnoldi’s for a model of size 140

Figure 4.13: Arnoldi and two-sided Arnoldi for Acoustic Problem

Figure 4.14: Error of the SI Arnoldi and two-sided SI Arnoldi for Acoustic Problem

mance of Arnoldi versus two-sided Arnoldi and the performance of shift-and-invert (SI) Arnoldi versus
two-sided SI Arnoldi.

4.4.1. Acoustic Example
To evaluate the accuracy of the different method we will only look at the error of the reduced models.
For the standard Arnoldi methods we tested a reduced model of size 70 and 140. The error is shown
in Figure 4.13. For both sizes Arnoldi performs better than two-sided Arnoldi. This is not necassarily
contradicting the theory discussed before, since these reduced models matches the transfer function
around the point infinity. Thus two-sided Arnoldi should perform better at the higher frequencies. These
frequencies lie outside the domain of interest.

The performance of the SI Arnoldi methods are evaluated by comparing the error of the model
created by two-sided Arnoldi with the error of the model created by Arnoldi. First the comparison is
done for the same size reduced models and second the comparison is done between a reduced model
created with two-sided Arnoldi and a reduced model of twice the size created with standard Arnoldi.
The second comparison is to evaluate the models when they match the same number of moments in
the transfer function. Figure 4.14 shows two error plots. First one shows Arnoldi of size 20 and 40
and two-sided Arnoldi of size 20, the second error plot shows Arnoldi of size 30 and 60 and two-sided
Arnoldi of size 30. Both figures show that the reduced model created with two-sided Arnoldi performs
better than the reduced model of Arnoldi of the same size. When two-sided Arnoldi is compared with
the larger Arnoldi model it shows that two-sided is locally more accurate than the larger Arnoldi model
and when both increases two-sided Arnoldi gets more accurate over a bigger bandwidth than the larger
Arnoldi model.
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Figure 4.15: FRF of reduced model created with Arnoldi of size 1000 for topology optimization example

(a) Error of Arnoldi and two-sided Arnoldi with
reduced size 20

(b) Error of Arnoldi and two-sided Arnoldi with
reduced size 30

(c) Error of Arnoldi and two-sided Arnoldi with
reduced size 50

Figure 4.16: Error of SI Arnoldi and two-sided SI Arnoldi with a shift of 30𝑖 for topology optimization

4.4.2. Topology Optimization Example
For the topology optimization example only the shift-and-invert Arnoldi methods are tested, because
the reduced models created with the standard Arnoldi methods needs to be enormous before it starts
to approximate the FRF. An example is shown in Figure 4.15 where a reduced model of size 1000 is
used, created with Arnoldi.

Shift-and-invert Arnoldi methods will be evaluated similar to the acoustic example. Comparing the
error of a model using two-sided Arnoldi with a model using Arnoldi of the same size and of twice the
size of the model created with two-sided Arnoldi. In Figure 4.16 the error of the models are shown
with two-sided Arnoldi of size 20, 30 and 50. In every figure we see that two-sided Arnoldi (yellow line)
performs better than Arnoldi of the same size (blue line). For the big model of Arnoldi the figure shows
that two-sided Arnoldi is more accurate near the location of the shift, but is less precise further away
from the shift. When the model created with two-sided Arnoldi increases is size, the model becomes
more accurate on a larger frequency domain than a model created with Arnoldi of twice it size.

4.5. OrthogonalizationMethods for Two-SidedShift-and-Invert Arnoldi
For two-sided Arnoldi different orthogonalization methods are evaluated. These are the standard
method (orthogonalizing V and W such that 𝑉∗𝑉 = 𝐼 and 𝑊∗𝑊 = 𝐼) and mass-orthogonalization
(𝑉∗𝐸𝑉 = 𝐼 and 𝑊∗𝐸𝑊 = 𝐼). In theory the choice of orthogonalization methods should not affect
the result of the model order reduction.

4.5.1. Acoustic Example
To evaluate the difference between standard orthogonalization and mass-orthogonalization the error
of the reduced models are compared for the sizes 20, 30 and 40. This is shown in Figure 4.17. When
the error is not close to machine precision the error for both orthogonalization methods are identical.
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(a) standard orthogonalization (b) mass-orthogonalization

Figure 4.17: Reduced models with different orthogonalization methods for the acoustic example

(a) Standard orthogonalization (b) mass-orthogonalization

Figure 4.18: Reduced models of size 10, 20 and 30 with different orthogonalization methods for the topology example

4.5.2. Topology Optimization Example
The difference in the orthogonalization methods are evaluated by comparing the error of the reduced
models. The error of the reduced models of size 10, 20 and 30 are shown in Figure 4.18. Again the
error of the reduced models of the same size are identical for standard orthogonalization and mass-
orthogonalization.

4.6. The Three different Participation Factors
In this section three different participation factors are discussed to help reduce the size of the reduced
models even further. They are used for the models created with two-sided Arnoldi in combination with
standard orthogonalization and mass-orthogonalization. The three participation factors are called Gu’s,
Gu’s with mass and the transferred participation factor.

4.6.1. Acoustic Example
In this example we start with a reduced model of size 100. Although it is shown before that the reduced
model is already accurate for a smaller models a large model is chosen to show the effects of the
participation factor.

For the use of the participation factors a few variables have to be determined beforehand. These
are the frequency or frequencies of interest and the tolerance of the participation factor. Since we are
interested in matching the first few peaks of the response function we choose Ω as

[10 90 200]

To determine the tolerance for each of the different participation factor method the values are calculated
as mentioned in Section 3.3, Since the choice of orthogonalization influences the participation factor
we plot them in two different figures. In Figure 4.19 are the three different participation methods shown
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(a) Gu’s (b) Gu’s with mass (c) Transferred

Figure 4.19: The three different participation factors with orthogonalized 𝑉 and𝑊 for the acoustic example

(a) Gu’s (b) Gu’s with mass (c) Transferred

Figure 4.20: The three different participation factors with mass-orthogonalized 𝑉 and𝑊 for the acoustic example

for the orthogonalized 𝑉 and𝑊 and in Figure 4.20 this is done with the mass-orthogonalization. Each
line corresponds to a different value of Ω.

In three of the six graphs it clearly shows how large the reduced model should be to included certain
frequencies in its approximation. These figures are the participation factor with Gu and standard orthog-
onalization and the participation factors Gu with mass and the new one with mass-orthogonalization
of the vectors. It is clear to see that frequency 90 can be captured with less than 20 vectors and the
frequency 200 around 60 to 80 vectors. One strange behaviour of these graphs are the increasing
values after the sharp decline. For the other three graphs the importance of the vectors for the different
frequencies are unclear.

To show the effects of a given tolerance the error of the frequency response function of the reduced
models are calculated with multiple tolerances. This is shown in Figure 4.21. For Gu and Gu with mass
the tolerance chosen is

[10−2 10−3 10−4 10−5]

The reduced model decreases to a size between 59 and 87. For the transferred participation factor the
tolerance is chosen as

[10−6 10−7 10−8 10−9 10−10]

The reduced model decreases to a size between 43 and 67. To summarize the inclusion of a partici-
pation factor helps to reduce the size of the reduced model even further. One downside to the use of
the participation factor is you have to guess the tolerance in advance.

4.6.2. Topology Optimization Example
Again we start with a large reduced model to show the effects of the participation factor. In this example
the reduced model to start with is of size 100 The Ω’s in this example are chosen as

[10 25 50 80].

As mentioned before the orthogonalization of the vectors in 𝑉 and 𝑊 influences the behavior of the
participation factors. In Figure 4.22 the vectors are standard orthogonalized for the three methods and
in Figure 4.23 the vectors are mass-orthogonalized. Each line corresponds to a different value of Ω.
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(a) Error of Gu’s (b) Error of Gu with mass (c) Error of the new participation factor

Figure 4.21: Multiple tolerances used with the participation factors

(a) Gu’s (b) Gu’s with mass (c) Transferred

Figure 4.22: The three different participation factors with orthogonalized 𝑉 and𝑊 for the topology example

(a) Gu’s (b) Gu’s with mass (c) Transferred

Figure 4.23: The three different participation factors with mass-orthogonalized 𝑉 and𝑊 for the topology example
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(a) Error of Gu’s for tolerance 10−3, 10−5
and 10−7

(b) Error of Gu’s with mass for tolerance
10−3, 10−5 and 10−7

(c) Error of the new participation factor for
tolerance 10−7, 10−9 and 10−11

Figure 4.24: Multiple tolerances used with the participation factors

In these two figures there are three graphs that show a usable participation factor and it is clear
to see that the participation factor should use a vector norm corresponding with the method of orthog-
onalization. For Gu’s participation factor the MOR method should use standard orthogonalization for
the basis and for Gu’s with mass and the transferred participation factor this means using model order
reduction with mass-orthogonalization.

The three graphs of the participation factors indicates how large the reduced model should be to
capture certain frequencies. They all show that with a reduced model of size 20 the frequency 25 is
captured and with a reduced model of size 50 they capture the frequencies 10, 25 and 50.

Normally a tolerance should be guessed in advance, but here we only evaluate multiple tolerances
for the different participation factors. The error of the response function is shown in Figure 4.24. For
Gu and Gu with mass the tolerances used are

[10−3 10−5 10−7]

and for the transferred participation factor the tolerance used is

[10−7 10−9 10−11]

The reduced model decreases its size independent of which participation factor to be between 55 and
70.

4.7. IRKA with Orthogonalization Methods
For IRKA two modifications where suggest to improve the algorithm. These are including an orthogo-
nalization method and including the rigid body modes (rbm). In this section the orthogonalization will
be discussed.

4.7.1. Acoustic Example
IRKA without any modifications made to it performs terrible. The idea behind IRKA is finding iteratively
the optimal shifts for the reduced model, but at the moment it can do only three iterations before the
algorithm crashes. This crash starts when it calculates 𝑣𝑖 and 𝑤𝑖 with entries of infinity and then calcu-
lating the new shifts. The largest reduced model to create without crashing is of size 10. This model
can only match the first peak and is shown in Figure 4.25.

IRKA improves significantly when one of the orthogonalization methods is included. The algorithm
will now run until the shifts stop changing much between iterations or when the limit of iterations is
reached. The response function of the reduced models with both orthogonalization methods is shown
in Figure 4.26 for the sizes 20,60 and 100. The functions are not very precise, but it matches the
location of all the peaks and valleys of the function. It became clear when evaluating the error plot that
one orthogonalization method is not better than the other. It changes for different reduced model sizes
as is shown in Figure 4.27 for the sizes 50,70 and 100. The difference might be caused by the location
of the shifts, since the algorithm determines iteratively the location of its shifts and the optimal location
does not have to be unique.



4.7. IRKA with Orthogonalization Methods 31

Figure 4.25: IRKA without modifications for the acoustic example

(a) Orthogonalization (b) Bi-orthogonalization

Figure 4.26: Orthogonalization and bi-orthogonalization used with IRKA for the acoustic example

(a) Reduced model of size 50 (b) Reduced model of size 70 (c) Reduced model of size 100

Figure 4.27: Error of IRKA with orthogonalization and biorthogonalization methods for the acoustic example
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Figure 4.28: IRKA without modifications for topology optimization

(a) Orthogonalization (b) Bi-orthogonalization

Figure 4.29: Orthogonalization and bi-orthogonalization used with IRKA for the topology optimization example

4.7.2. Topology Optimization Example
IRKA without any modifications crashes after four iterations due to numerical instability. This is caused
by a singular matrix 𝑉 and/or𝑊, which means the vectors in that matrix are linear dependent. That, in
turn, creates singular matrices 𝐴𝑟 and 𝐸𝑟. The last stable iteration for a reduced model of size 10 has
a frequency response function which only matches one peak, as is shown in Figure 4.28.

IRKA is improved significantly when either of the orthogonalization methods is included. For both
methods IRKA does not crashes after four iterations and the reduced models can be increased in size.
To show this the FRF is shown in Figure 4.29 for the reduced models of size 10, 40 and 70 with orthog-
onalization and with biorthogonalization of the vectors in 𝑉 and𝑊. At first glance the orthogonalization
methods perform similar with only a small difference around frequency 50 rad/s.

To evaluate the accuracy we focused on the frequency between 10 and 50 rad/s. The error plot is
shown in Figure 4.30. The two most noticable differences are first the accuracy for the reduced model
of size 40 with biorthogonalization is higher at the lower frequency with a factor 10 and second, with
orthogonalization the reduced models are more accurate around 35 rad/s. Overall one is not clearly
better than the other.

4.8. IRKA with Rigid Body Modes
For IRKA two modifications where suggest to improve the algorithm. These are including an orthogo-
nalization method and including the rigid body modes (rbm). In this section the rigid body modes will
be discussed with and without the inclusion of the orthogonalized 𝑉 and𝑊.

4.8.1. Acoustic Example
First IRKA crashed after a few iterations for a very small model when no modifications where made to it.
Now the performance of IRKA is improved when the rigid body modes are included in the algorithm. It
can create a reduced model of size 14 without a limit on the number of iterations. This model is still far
from a good approximation as can be seen in Figure 4.31. For larger models the algorithm still crashes
as it did before.

When IRKA is combined with rigid body modes and one of the orthogonalization methods then the
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(a) Error for orthogonalization method (b) Error for bi-orthogonalization method

Figure 4.30: Error of the reduced models of size 10, 40 and 70 with IRKA and the orthogonalization methods for the topology
optimization example

Figure 4.31: IRKA with rigid body modes for the acoustic example

accuracy increases and the reduced model can be much larger compared with IRKA using only the
rigid body modes.

When IRKA with rigid body modes and orthogonalization is compared with IRKA using only orthog-
onalization it is as accurate or slightly less acurate. This is the case for both orthogonalization methods.
In Figure 4.34 the error is shown for both methods using the regular orthogonalization method. The
reduced models are of size 50, 70 and 100.

4.8.2. Topology Optimization Example
The inclusion of the rigid bodymodes also improves the results for the example of topology optimization.
Without any modifications the largest model created with IRKA was of size 10. With the inclusion of
the rigid body modes IRKA can reduce the system to a model of size 27. The response of this model
is shown in Figure 4.33. For a larger model the algorithm breaks down just like before.

The algorithm can be further improved by orthogonalizing the vectors of 𝑉 and 𝑊. IRKA can now
create the same size reduced models as IRKA with only orthogonalization. The accuracy is again the
same or slightly worse than IRKA with only orthogonalization. The error and frequency response of
the reduced models with size 40 and 70 are shown in Figure 4.34 for these two methods with regular

(a) Reduced model size 50 (b) Reduced model size 70 (c) Reduced model size 100

Figure 4.32: Error of IRKA using orthogonalization with and without the rigid body modes for the acoustic example
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Figure 4.33: IRKA with rigid body modes for the topology optimization example

(a) Frequency response of reduced model size 40 (b) Frequency response of reduced model size 70

(c) Error of reduced model size 40 (d) Error of reduced model size 70

Figure 4.34: Error and FRF of IRKA using orthogonalization with and without the rigid body modes for the example of topology
optimization

orthogonalization. As has been demonstrated IRKA improves when the rigid body modes are used,
but a better improvement is including one of the orthogonalization method.

4.9. Two-Sided SI Arnoldi with Participation Factor vs Orthogonal-
ized IRKA

One of the main questions of the thesis is how well do these two methods perform against each other
and there are multiple strategies on how to judge this. The twomain criteria will be how well the reduced
models can approximate the system over the frequency domain and the number of vectors needed to
match the first few peaks of the FRF.

4.9.1. Acoustic Example
IRKA with orthogonalization needs a reduced model of size 100 to visually match the FRF on the
whole domain of interest. To achieve the same result with two-sided Arnoldi the reduced model needs
to be of size 180. When the error plot is checked for these reduced models it shows that two-sided
Arnoldi is more accurate and this level of accuracy is unattainable for IRKA. For Arnoldi of size 100 the
approximation around frequency 300 is worse than IRKA, but the error for Arnoldi is still better overall.
The FRF and error of these models are shown in Figure 4.35.

When the objective is to match only the first few peaks of the response function then IRKA is in-
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Figure 4.35: Comparison between IRKA and Arnoldi matching the full domain of interest for the acoustic example

Figure 4.36: Comparison between IRKA and Arnoldi matching the start of the domain of interest for the acoustic example

herently worse than Arnoldi, since its interpolation points are spread among the whole domain. For a
reduced model of size 30 it approximates the first peaks and valleys somewhat. Two-sided Arnoldi has
an advantage with this, since it has one interpolation point in the middle and can reduce its size even
further when combined with a participation factor. To evaluate the performance of two-sided Arnoldi we
start with a reduced model of size 50 and use the transferred participation factor with the frequencies
of interest as [10 90] and a tolerance of 10−5. The response function and error for both methods are
shown in Figure 4.36. Again, two-sided Arnoldi performs better than IRKA.

4.9.2. Topology Optimization Example
For this example two-sided Arnoldi wins the visual approximation of the FRF. With a reduced model of
70 vectors it can fully match the frequency response function. IRKA can match most of the peaks but
not all, as is shown in Figure 4.37. When the participation factor is included for two-sided Arnoldi the
model reduces to size 54.

Matching the first peak for IRKA is still difficult. For a reduced model of size 50 it can match most
of the peaks at the start apart from one. The reduced model of size 50 created with Arnoldi can almost
match the FRF over the full domain. When the transferred participation factor is used with a tolerance
of 10−6 and frequencies of interest [10 25], then Arnoldi massively outperforms IRKA by creating a
reduced model of size 15. This is all shown in Figure 4.38. Overall two-sided Arnoldi is a better choice
for the example of topology optimization.

Figure 4.37: Comparison between IRKA and Arnoldi matching the start of the domain of interest for the acoustic example
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Figure 4.38: Comparison between IRKA and Arnoldi matching the start of the domain of interest for the acoustic example



5
Benchmark Problems

There exist a collection of benchmark problems for model order reduction to validate new methods
and their implementation. They reflect ’real world’ problems, but often cause problems for numerical
methods due to ill-conditioning or near-singularity. The benchmark problems are described in [7] and
can be downloaded at ”http://slicot.org/20-site/126-benchmark-examples-for-model-reduction”. We will
discuss three of these benchmark problems to evaluate IRKA and two-sided Arnoldi. These three
problems are the CD player, the Partial Element Equivalent Circuit (PEEC) model and the international
space station (ISS). All of the examples are or are written to first-order linear equations. The CD player
and the ISS problem have an extra complexity to them, which is havingmultiple input and output vectors.
We will treat them as single input single output systems with some of the possible combinations for the
input and output vectors.

5.1. CD Player
One of the most used examples for model order reduction is the CD player. In this example, the
mechanics of a CD player are modelled with two inputs (actuation of the arm and focus of the lens) and
two outputs (tracking error and focus error) [26]. The schematics of the CD player are shown in Figure
5.1.

Figure 5.1: Schematics of the CD player [26]

The CD player can be described as four single input single output (SISO) system since it has two
inputs and two outputs. These SISO systems are described by

�̇� = 𝐴𝑥 + 𝑏𝑖
𝑦 = 𝑐𝑇𝑖 𝑥

(5.1)

37
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The systems are of size 120 and its domain of interest is [10−1 105]. Many of the modifications sug-
gested in this thesis are redundant, since 𝐸 = 𝐼 in this example. For model order reduction we will
evaluate the performance of two-sided SI Arnoldi using the preconditioner with a shift at 100𝑖 in com-
bination with the participation factors and the performance of orthogonalized IRKA.

The performance is evaluated by matching the two more complex response functions of the four
possible SISO systems. These are the systems combining the first input with the second output and
the second input with the first output. Their response functions are shown in Figure 5.2.

Figure 5.2: Response function of the two SISO systems for the CD player

To assess the methods we focused on visual matching the transfer functions of the reduced models
with the full model. The matching for the response function using the first input and second output can
be divided into three stages. Matching the response between 10−1 and 104 and between 10−1 and 105
and on the full domain. The size of the smallest possible models to fully match the frequency on these
domains is shown in Table 5.1. From this table, we can conclude two findings. First, when you have
the time to test different sizes of reduced models for Arnoldi you will find the same size model as when
one of the two participation factors are used. Second, orthogonalized IRKA performs better sizewise
than two-sided SI Arnoldi with all the improvements added.

For the second response function, the domain could not be divided as nicely as for the first re-
sponse function, because Arnoldi would match the response at the lower frequencies for small models
and IRKA would match the response at higher frequencies. The frequency domain are respectively
[10−1 104] and [102 105]. For Arnoldi on the smaller domain, the smallest possible size model which
matches the response function is of size 30 and is achieved without the use of a participation factor.
When a participation factor is included for Arnoldi starting with a model of size 100 it creates a reduced
model of size 41. The choice of participation factor does not matter in this instance. When the focus lies
on matching the response function on the full domain the same results occur. This is shown in Table
5.2. When orthogonalized IRKA is used as a reduction model the reduced model size is smaller than
when Arnoldi is used. This is also shown Table 5.2. Overall IRKA performs better for the CD example.

Domain two-sided SI Arnoldi Arnoldi size 100 with Gu Arnoldi size 100 with the transferred Orthogonalized IRKA

[10−1 104] 40 40 (tol 10−5 Ω = 1000𝑖) 39 (tol 10−7 Ω = 1000𝑖) 30
[10−1 105] 88 89 (tol 10−6 Ω = 100.000𝑖) 90 (tol 10−9 Ω = 100.000𝑖) 50
full domain 88 89 (tol 10−6 Ω = 100.000𝑖) 90 (tol 10−9 Ω = 100.000𝑖) 76

Table 5.1: Reduced models for the CD player with the first input and second output

Domain two-sided SI Arnoldi Arnoldi size 100 with Gu Arnoldi size 100 with the transferred Orthogonalized IRKA

[10−1 104] 30 41 (tol 10−4 shift 1000𝑖) 41 (tol 10−7 shift 1000𝑖)
[102 105] 20
full domain 68 73 (tol 10−5 shift 80.000𝑖) 73 (tol 10−8 shift 80.000𝑖) 35

Table 5.2: Reduced models for the CD player with the second input and first output
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5.2. PEEC Model
The PEEC model is modelled after a patch antenna structure [7] and is described by

𝐸�̇� = 𝐴𝑥 + 𝑏
𝑦 = 𝑐𝑇𝑥 (5.2)

The difference between this problem and the other benchmark problems is the additional matrix 𝐸,
unfortunately for this problem is the matrix very ill-conditioned. This causes the improvements related
to the mass matrix to fail. The response function of this antenna on the domain [10−1 105] is shown
in Figure 5.3a. IRKA could only create a reduced model which matches the transfer function at the
start of the domain. For orthogonalized IRKA the largest reduced model that could be created is of
size 25 and only matches the response up to frequency 4 rad/s. For bi-orthogonalized IRKA the largest
reduced model is of size 70 and matches the response up to a frequency of 10 rad/s. Bi-orthogonalized
IRKA is slightly better and more stable than orthogonalized IRKA. The response function is shown in
Figure 5.3b. A reduced model with Arnoldi performs better than IRKA, but could not match the full
response function. For a reduced model of size 40, the response function does not match between
the 1 and 10 rad/s, and for a reduced model of size 120 the response function does not match for
frequencies larger than 3000 rad/s. This can be seen in Figure 5.3c. Overall two-sided SI Arnoldi
without mass-orthogonalization performs better than IRKA, but both are not created for a problem with
an ill-conditioned 𝐸.

(a) Response function (b) IRKA (c) Two-sided SI Arnoldi

Figure 5.3: PEEC

5.3. International Space Station
The international space station example models the component 1r (Russian service module) of the ISS
[1] and is described by the second-order system

𝑀�̈� + 𝐷�̇� + 𝐾𝑥 = �̂� (5.3)

with the assumption that𝑀 is invertible. This system is rewritten to a first-order systemwith the matrices

𝐴 = [ 0 𝐼
−𝑀−1𝐾 −𝑀−1𝐷] 𝐸 = 𝐼

and the vectors

𝑏 = [ 0
𝑀−1�̂�] 𝑐 = 𝑏𝑇

The first-order system is of size 270 and has three inputs and three outputs. This results in 9 possible
response functions. Since the response functions behave all very similar we choose one of them to
evaluate the response functions of the reduced models. The response function is shown between the
frequency 10−1 rad/s and 105 rad/s. This is shown in Figure 5.4a.

The reduced model created with IRKA of size 30 can already match the response function great. It
does not matter if orthogonalized IRKA or bi-orthogonalized IRKA is used. IRKA performs better than
Arnoldi using a shift of 10𝑖 as can be seen in Figure 5.4b. The peaks and valleys around the frequency
3 rad/s are not matched when Arnoldi is used. To match these peaks Arnoldi must be of size 65. Arnoldi
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is also tested in combination with the participation factor and starting with a model of size 100. Both of
the participation factors find a reduced model matching all the peaks smaller than 60. This is shown
in Table 5.3 together with the tolerance and omega used. The response function of the four models is
shown in Figure 5.4c.

(a) Response function (b) Reduced models of size 30 (c) Response function of all methods

Figure 5.4: ISS

Domain two-sided SI Arnoldi Arnoldi size 100 with Gu Arnoldi size 100 with the transferred Orthogonalized IRKA

full domain 70 58 (tol 0.001 Ω = 10𝑖) 55 (tol 10−7 Ω = 10𝑖) 30

Table 5.3: Reduced models for the ISS component
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Conclusion

The main research question of this thesis is

What is a suitable moment matching MOR method for topology optimization?

To help determine a suitable MORmethod we evaluated and discussed two-sided SI Arnoldi and IRKA.
For two-sided SI Arnoldi, we learned that the interpolation point should be purely imaginary and in the
middle of the frequency domain. For IRKA the choice of the initial interpolation points is not relevant
for its algorithm determines the location of the interpolation points by itself.

To determine the size of a reduced-order system the inclusion of the participation factor for Arnoldi
is a major improvement. Although a tolerance should be guessed a priori, it will discard any vectors
with a low influence on the system. Extra interest should be paid to the choice of orthogonalization of
the vectors with SI Arnoldi for when the participation factor is used. In the two examples discussed the
choice of orthogonalization method had no influence on the response function, but it had a big influence
on the efficiency of the participation factor. when mass-orthogonalization is used for the vectors then a
dot-product with respect to the mass matrix should be used in the participation factor. The same holds
for the standard orthogonalization and the standard dot-product in the participation factor. For IRKA we
learned that including the rigid body modes improves the reduced model to an extent, but the biggest
improvement is orthogonalizing the basis created with IRKA. When IRKA with an orthogonalization
method is compared with two-sided SI Arnoldi using a participation factor, one must conclude that the
second is more suitable for topology optimization. One of the main reasons is the much higher accuracy
of SI Arnoldi with the participations factor and the smaller models for the two evaluation examples.

For future research, the comparison between IRKA and Arnoldi can be further evaluated since
with the benchmark problems IRKA was the better choice by far. A possible start for such research
could lie with the rigid body modes used for IRKA. For the acoustic example, we used one rigid body
mode, which was known for the second-order LTI system, but in the first-order LTI system we only had
one rigid body mode for two eigenvalues equal to zero. This was the same situation for the topology
optimization example where we knew three rigid body modes, but the first-order LTI system had six
zero eigenvalues.
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