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Preface

This is a research report for the degree of Master of Science for the study
Applied Mathematics, faculty of Electrical Engineering, Mathematics and
Computer Science of the Delft University of Technology. The graduation
work was done in the unit of Numerical Analysis, taking a total of nine
months of work.

The first three months focused on problem definition, study of literature,
and planning the research for the next six months. The work done in this
period is reported in [Ide05]. The remaining six months of the graduation
work were spend on the actual research of finding a solution for the defined
problem. Of that second period this is the report.

The research project was carried out at FROG Navigation Systems. FROG
is a manufacturer of Automated Guided Vehicles. They have developed a
multitude of vehicles that transport products within factories of companies
like Sony and General Motors, but also have an automatically driven bus for
public transport driving in the center of Eindhoven. For more information
see their website www.frog.nl.
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1 Introduction

In the preceding preliminary research report [Ide05], we introduced the fol-
lowing general problem description.

Suppose an AGV has to perform an action in the world.

Find the best control input for the AGV to achieve the action.
(1)

We have shown that for our application we could split all actions, that are
not related to the path the vehicle drives, out of the problem. Thus we
focused on the task of finding a path between two points.

Within this task we distinguished four stages.

Internal constraint research: research into the constraints on a path as
a result of the limitations of the vehicle control mechanism, e.g., max-
imum speed and minimum radius needed to be able to take a corner.

External constraint research: research into the constraints on a path as
a result of the dimensions of the vehicle and obstacles along the path,
but also things like speed restrictions for a certain road.

Cost and heuristics research: research to uncover how to quantify if a
path is good or bad, and to find heuristics to find a good path.

Solver algorithm research: when the first three stages of research are
finished, the results can be used in a solver algorithm to automatically
find a good path. The final stage is to investigate what solver algorithm
is best suited for that task.

This research report focusses mainly on the first stage, the internal constraint
research, focusing on the geometrical aspects of vehicle paths.

We start with the introduction of a general definition of the vehicle path con-
cept in Section 2, and define some important operations on vehicle paths.
Followed by the introduction of the vehicle model we will use in Section 3,
and a treatment of the limitations of the steering mechanism with the re-
sulting restrictions on a vehicle path. As we will show, these restrictions can
be expressed in the curvature of the path curve and its derivative.

As was explained in the preceding preliminary research report, the mathe-
matical representation of choice for vehicle paths is that of B-Splines and
NURBS. In Section 4 we start to use B-Splines as a mathematical descrip-
tion for a vehicle path. Further we introduce control point repositioning on
B-Splines. This is the operation that we are using to change the shape of a
path curve throughout this report.
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Then in Section 5 we combine the work of the preceding sections into the
feasible repositioning set concept. These are sets of all control point repo-
sitionings on a path that change the path into one that satisfies the path
restrictions treated in Section 3. We show how to calculate such sets, not
only giving us a method to check if a path meets the restrictions, but also
handing us a tool to find a feasible path in a smart way.

Next, in Section 6 we extend the notion of control point repositioning. We
show that the results of Section 5 are also usable on NURBS curves, and
that we can reposition multiple control points at once instead of the single
control points repositioning we originally focused on.

The next step is to develop a method to construct vehicle paths. There are
many ways to do this. Our method of choice is treated in Section 7. We show
how to create single bend curves, and how to merge them together into a
larger path curve. Further we show how to use the results of the preceding
sections to guarantee that the path we construct can actually be driven by
the vehicle for which it is designed.

Finally, in Section 8 we reflect on the entire research project, and make some
recommendations for further research.
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2 Vehicle Paths

This section introduces the general definition of a vehicle path, and treats
some basic operations on vehicle paths. These operations are calculating
the distance the vehicle traveled, calculating the speed of the vehicle, and
calculating the curvature of the path.

Definition 2.1. A vehicle path is a continuously differentiable curve

C (u) =

(

x (u)
y (u)

)

, u ∈ [a, b] ,

with
∣

∣

∣

∣C′ (u)
∣

∣

∣

∣

2
6= 0 , u ∈ [a, b] .

We call C (a) the start point, and C (b) the endpoint of the path.

The above definition specifies a geometric curve parameterized by u. This
does not specify, however, where the vehicle is at a certain time t. So a
vehicle path alone is not enough to specify how a vehicle should drive from
the start point to the endpoint. To accomplish a full specification we use a
time-parameter function, that defines which parameter value u belongs to a
certain time t.

Definition 2.2. A time-parameter function is a continuously differentiable

function

uT (t) , t ∈ [ta, tb] ,

such that

uT (ta) = a ,

uT (tb) = b ,

u′T (t) > 0 , t ∈ (ta, tb) .

Note that the positivity requirement u′T (t) > 0 for all t ∈ (ta, tb), together
with uT (t) being continuously differentiable, makes that

u′T (t) ≥ 0 , for all t ∈ [ta, tb] .

The time-parameter function uT (t) should be interpreted as a reparameter-
ization function for C (u), such that C (uT (t)) is the position of the vehicle
at time t. The vehicle is not allowed to stop along its path, except in the
start point or endpoint, neither is the vehicle allowed to drive backwards.
These restrictions are ensured by the positivity requirement on u′T (t). Stop-
ping and reverse gear operations should be implemented by using multiple
contiguous vehicle paths.
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In this section we introduce definitions for the distance traveled over a vehicle
path, the velocity of the vehicle and the curvature at a point on the path.
These quantities should reflect the actual situation of a vehicle driving along
the path, therefore they should all be defined with respect to the time t.

However in practice, the time-parameter function uT (t) is usually not known
explicitly. It is only implicitly defined by a speed function for the vehicle.
We would like to do as much operations and calculations on the vehicle
path as possible, before defining that speed function. For example, we would
like operations on the vehicle path that ensure that a physical vehicle can
actually follow it, and that the vehicle can drive the path as fast as possible.
Obviously these operations should be executed before a speed function for
the vehicle is chosen.

Therefore we also provide definitions of the above mentioned quantities,
that depend on the curve parameter u. Quantities and operations that can
be fully defined without the use of the time t we call static. Quantities and
operations that need the use of the time t we call dynamic.

2.1 Distance

The distance is the arc length of a certain part of the vehicle path. This
is a geometric quantity and should therefore be independent of the time-
parameter function. We use the formula for the arc length to define the
distance, both with respect to the time t and with respect to the curve
parameter u. Then we prove that these definitions are indeed consistent
with each other.

Definition 2.3. Let C (uT (t)) be a continuously differentiable vehicle path.
Then the distance sT (t) from the start point to C (uT (t)) is

sT (t) =

∫ t

ta

∣

∣

∣

∣

∣

∣

∣

∣

dC

dt
(uT (τ))

∣

∣

∣

∣

∣

∣

∣

∣

2

dτ , t ∈ [ta, tb] .

Let C (u) be a continuously differentiable vehicle path. Then the distance

s (u) from the start point to C (u) is

s (u) =

∫ u

a

∣

∣

∣

∣

∣

∣

∣

∣

dC

du
(µ)

∣

∣

∣

∣

∣

∣

∣

∣

2

dµ , u ∈ [a, b] .

Theorem 2.1. The definitions of sT (t) and s (u) are consistent with each

other, i.e.,

sT (t) = s (uT (t)) .

So the distance is a static quantity.
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Proof. Using that u′T (t) is nonnegative we can write

sT (t) =

∫ t

ta

∣

∣

∣

∣

∣

∣

∣

∣

dC

dt
(uT (τ))

∣

∣

∣

∣

∣

∣

∣

∣

2

dτ

=

∫ t

ta

∣

∣

∣

∣

∣

∣

∣

∣

dC

du
(uT (τ))u′T (τ)

∣

∣

∣

∣

∣

∣

∣

∣

2

dτ

=

∫ t

ta

∣

∣

∣

∣

∣

∣

∣

∣

dC

du
(uT (τ))

∣

∣

∣

∣

∣

∣

∣

∣

2

u′T (τ) dτ

=

∫ uT (t)

ta

∣

∣

∣

∣

∣

∣

∣

∣

dC

du
(µ)

∣

∣

∣

∣

∣

∣

∣

∣

2

dµ = s (uT (t)) .

2.2 Velocity

The velocity is the speed with which the vehicle traverses the path, with
respect to time. This is obviously a dynamic quantity.

Definition 2.4. Let C (uT (t)) be a continuously differentiable vehicle path.
Then the velocity vT (t) of the vehicle at time t is

vT (t) =
dsT
dt

(t) =

∣

∣

∣

∣

∣

∣

∣

∣

dC

du
(uT (t))

∣

∣

∣

∣

∣

∣

∣

∣

2

u′T (t) , t ∈ [ta, tb] .

Let C (u) be a continuously differentiable vehicle path. Then the velocity

v (u) of the vehicle at parameter value u is

v (u) = vT (tu) , u ∈ [a, b] ,

where tu is such that uT (tu) = u.

This is where we use the requirement ||C′ (u)||2 6= 0 imposed on a vehicle
path in Definition 2.1. Suppose that ||C′ (ũ)||2 = 0 for some ũ ∈ [a, b], and
let t̃ be such that uT

(

t̃
)

= ũ, then

vT
(

t̃
)

=
∣

∣

∣

∣C′ (ũ)
∣

∣

∣

∣

2
u′T
(

t̃
)

= 0 .

So we would not be able to control the speed of the vehicle, using the time-
parameter function, in that point.

Note that, because of the way uT is defined, for each u ∈ [a, b] the value
tu exists and is unique. Further note that the velocity vT (t) depends on
the time-parameter function, and is therefore not a geometric quantity, i.e.,
v (u) is generally not equal to ds

du
(u).
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2.3 Curvature

The curvature of a curve is a measure of how much the curve bends. This is
a geometric quantity of the curve, and should therefore be a static quantity.
We define the curvature with respect to the time t, and with respect to the
curve parameter u, as the standard curvature for plane curves. Then we
prove that these definitions are indeed consistent with each other, like we
did for the distance. For convenience reasons we write uT for uT (t).

Definition 2.5. Let C (uT ) = (x (uT ) , y (uT )) be a twice continuously dif-

ferentiable vehicle path. Then the curvature κT (t) of the curve C (uT ) is

κT (t) =
dx
dt

(uT )
d2y
dt2

(uT )− d2x
dt2

(uT )
dy
dt

(uT )
(

(

dx
dt

(uT )
)2

+
(

dy
dt

(uT )
)2
)

3

2

, t ∈ [ta, tb] .

Let C (u) = (x (u) , y (u)) be a twice continuously differentiable vehicle path.

Then the curvature κ (u) of the curve C (u) is

κ (u) =
x′ (u) y′′ (u)− x′′ (u) y′ (u)
(

(x′ (u))2 + (y′ (u))2
)

3

2

, u ∈ [a, b] .

Theorem 2.2. The definitions of κT (t) and κ (u) are consistent with each

other, i.e.,

κT (t) = κ (uT (t)) .

So the curvature is a static quantity.

Proof. For the terms in the numerator we can write

dx

dt
(uT )

d2y

dt2
(uT )

=

[

dx

du
(uT )u

′
T

] [

d

dt

(

dy

du
(uT )u

′
T

)]

=

[

dx

du
(uT )u

′
T

] [

d

dt

(

dy

du
(uT )

)

u′T +
dy

du
(uT )u

′′
T

]

=

[

dx

du
(uT )u

′
T

] [

d2y

du2
(uT ) u

′
T

2 +
dy

du
(uT )u

′′
T

]

=

(

dx

du
(uT )

d2y

du2
(uT ) u

′
T

3

)

+

(

dx

du
(uT )

dy

du
(uT )u

′
Tu
′′
T

)

,

and following the same method
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d2x

dt2
(uT )

dy

dt
(uT )

=

(

d2x

du2
(uT )

dy

du
(uT ) u

′
T

3

)

+

(

dx

du
(uT )

dy

du
(uT )u

′
Tu
′′
T

)

.

For the denominator we find

(

(

dx

dt
(uT )

)2

+

(

dy

dt
(uT )

)2
)

3

2

=

(

(

dx

du
(uT )

)2

u′T
2 +

(

dy

du
(uT )

)2

u′T
2

)
3

2

=

(

(

dx

du
(uT )

)2

+

(

dy

du
(uT )

)2
)

3

2
∣

∣u′T
∣

∣

3
.

Combining the above results, and using the nonnegativity of u′T (t), gives

κT (t) =

(

dx
du

(uT )
d2y
du2 (uT ) u

′
T

3
)

−
(

d2x
du2 (uT )

dy
du

(uT ) u
′
T

3
)

(

(

dx
du

(uT )
)2

+
(

dy
du

(uT )
)2
)

3

2 ∣

∣u′T
∣

∣

3

= sgnu′T

(

dx
du

(uT )
d2y
du2 (uT )

)

−
(

d2x
du2 (uT )

dy
du

(uT )
)

(

(

dx
du

(uT )
2
)

+
(

dy
du

(uT )
)2
)

3

2

= κ (uT (t)) .

Note that for a vehicle path we have

∣

∣

∣

∣C′ (u)
∣

∣

∣

∣

2
=
(

(

x′ (u)
)2

+
(

y′ (u)
)2
)

1

2 6= 0 , u ∈ [a, b] .

Therefore κ (u) is well defined, and, due to Theorem 2.2 above, so is κT (t).
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3 Vehicle Path Restrictions

Not all vehicle paths can be driven by any vehicle. For example, sharp turns
could be a problem for some vehicles. In this section we introduce a simple
vehicle model that we use as a guideline to the restrictions that are needed on
a curve to ensure it can be used as a path. We explore what restrictions this
model imposes, and how they influence vehicle paths. We will see that for the
vehicle model used, the imposed vehicle restrictions translate to restrictions
on the curvature and its derivative.

3.1 Vehicle Model

The model we use is that of a vehicle with three wheels, two rear wheels and
one steering front wheel. Figure 1 below shows a schematic drawing of the
vehicle model. There are three important parameters to this configuration

ϕ : steering angle of the front wheel, ϕ ∈
(

−π
2 ,

π
2

)

,
R : radius of curvature, R > 0,
W : wheelbase, i.e., distance between front and rear axis, W > 0.

The radius of curvature R is equal to one over the curvature, i.e., R = 1/κ.

W

R

 

ϕ

ϕ

Figure 1: Vehicle Model for Curve Restrictions



3 VEHICLE PATH RESTRICTIONS 12

3.2 Steering Angle Restriction

The most obvious restriction on the path of a vehicle, is a restriction on the
steering angle at each point on the path

ϕ ∈ [ϕmin , ϕmax] . (2)

We assume that ϕmin ∈ [−2π, 0) and ϕmax ∈ (0, 2π].

Since we have

tanϕ =
W

R
= Wκ ,

the restriction (2) on the steering angle ϕ gives the following requirement
for the curvature, which should be met on each point on the curve,

κ (u) ∈
[

tanϕmin

W
,
tanϕmax

W

]

. (3)

3.3 Steering Angular Velocity Restriction

We can extend the model, by imposing a restriction on the the angular
velocity ω = dϕ/dt of the steering mechanism

ω ∈ [ωmin , ωmax] . (4)

We assume that ωmin < 0 and ωmax > 0, because if these assumptions are
not met the vehicle is not able to steer properly.

Unlike the steering angle restriction, which was static in each point, this is
a dynamic restriction. Therefore we have to work with the time dependent
curvature κT (t).

For the angular velocity of the steering we can write

ω (t) =
dϕ

dt
(t) =

d arctan (WκT (t))

dt
=

W

1 +W 2 (κT (t))2
dκT (t)

dt
.

Using that κT (t) = κ (uT (t)) and Definition 2.4, we find

ω (t) =
W

1 +W 2κ (uT (t))2
dκ

du
(uT (t))u′T (t)

=
W

1 +W 2κ (uT (t))2
vT (t)

R (uT (t))
1

2

dκ

du
(uT (t)) , (5)

where

R (u) =

∣

∣

∣

∣

∣

∣

∣

∣

dC (u)

du

∣

∣

∣

∣

∣

∣

∣

∣

2

2

.
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Note that, since W , vT (t) and R (u) are positive, for all t we have

sgnω (t) = sgn
dκ

du
(uT (t)) .

In the start point and endpoint we may have u′T (t) = 0. Then by equa-
tion (5), ω (t) = 0 in that point, and restriction (4) is automatically satis-
fied. For all t for which u′T (t) 6= 0 we can combine this restriction (4) with
equation (5) to get

dκ

du
(uT (t)) ∈

[

ωmin
R

1

2

vT (t)

W 2κ2 + 1

W
, ωmax

R
1

2

vT (t)

W 2κ2 + 1

W

]

, (6)

where κ and R denote κ (uT (t)) and R (uT (t)) respectively.

In practice, when we want to apply the angular velocity restriction to a vehi-
cle path, vT (t) is usually not yet known. Therefore this constraint equation
cannot be used as is. This does not render restriction (4) useless however.

A common practical constraint on a path, is that the vehicle should be able
to drive along the path with a certain minimum speed

vT (t) ≥ vmin > 0 . (7)

Combining this speed restriction with equation (6) we get

dκ

du
(uT (t)) ∈

[

ωmin
R

1

2

vmin

W 2κ2 + 1

W
, ωmax

R
1

2

vmin

W 2κ2 + 1

W

]

,

where again κ and R denote κ (uT (t)) and R (uT (t)) respectively.

Substituting u for uT (t), we effectively have a static constraint,

κ′ (u) ∈
[

ωmin
R (u)

1

2

vmin

W 2κ (u)2 + 1

W
, ωmax

R (u)
1

2

vmin

W 2κ (u)2 + 1

W

]

. (8)

There is yet another way to use restriction (4). For all points in which
dκ
du

(uT (t)) 6= 0, we can write equation (5) as

vT (t) = ω (t)R (uT (t))
1

2
W 2κ (uT (t))2 + 1

W dκ
du

(uT (t))
.

Note that the right-hand side of this expression is always nonnegative.

Now, using vT (t) = v (uT (t)) and restriction (4), we find the following
requirement for the velocity of the vehicle

v (uT (t)) ∈



























[

0 , ωminR
1

2
W 2κ2 + 1

W dκ
du

]

, if dκ
du

(uT (t)) < 0 ,
[

0 , ωmaxR
1

2
W 2κ2 + 1

W dκ
du

]

, if dκ
du

(uT (t)) > 0 ,
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where once again κ and R are functions of uT (t).

This is effectively a static constraint on the vehicle speed, at a point on a
given vehicle path, due to a restriction on the angular velocity of the steering
mechanism

v (u) ∈



























[

0 , ωminR (u)
1

2
W 2κ (u)2 + 1

W dκ
du

(u)

]

, if dκ
du

(u) < 0 ,
[

0 , ωmaxR (u)
1

2
W 2κ (u)2 + 1

W dκ
du

(u)

]

, if dκ
du

(u) > 0 .

(9)

If dκ
du

(u) = 0 then the angular velocity is also 0, i.e., the path is straight at
that point, and there is no bound on the velocity v (u) due to restriction on
the angular velocity.

The velocity restriction (9) can be very useful in the application of heuristics
that are based on the velocity of a vehicle along the path. For example,
equation (9) gives us an upper bound for the velocity of the vehicle for all
u. The maximum average speed the vehicle can achieve, driving the path,
is given by the integral of the upper bound for the velocity, divided by the
length of the path. This maximum average speed can be used as a measure
of how good a path is for a vehicle.
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4 B-Spline Paths

To apply the restrictions treated in Section 3 to a vehicle path, we need a
mathematical representation of that path. As described in Section 1, our
representation of choice is that of B-Spline curves.

Definition 4.1. Let m > 0, and let a set U = {u0, . . . , um} be given, with
ui ∈ [a, b] nondecreasing and u0 = a, um = b. We call U the knot vector, and

ui the knots. Let 0 ≤ n < m, and let a set of control points P = {P0, . . . ,Pn}
be given, with Pi ∈ R

d. Define the degree p as

p := m− n− 1.

A B-spline, given the control points P and the knot vector U , is a curve

C (u) =
n
∑

i=0

PiNi,p (u) , u ∈ [a, b]

where the basis functions Ni,p (u), for i ≤ n, are given by the recursive

formula

Ni,0 (u) = 1[ui,ui+1) =

{

1 , u ∈ [ui, ui+1)
0 , otherwise

Ni,k (u) =
u− ui

ui+k − ui
Ni,k−1 (u) +

ui+k+1 − u

ui+k+1 − ui+1
Ni+1,k−1 (u) .

Note that Ni,k can contain the quotient 0
0 . This quotient is defined to be 0.

For an overview of the relevant B-Spline theory see [Ide05]. For more infor-
mation on B-Splines see [dB01] and [PT97].

From now on, with the term vehicle path we mean a vehicle path in B-Spline
form that has basis functions that are three times continuously differentiable.
This ensures that the derivative of the curvature as used in the steering
angular velocity restriction (8), and later the repositioned version, exist.

To generate a good vehicle path we could randomly generate paths and
hope to find a good one. Obviously, this is not a method we would like to
use in practice. Instead, in Section 4.1 we introduce a convenient class of
variations on a given vehicle path, parameterized by one variable z. This
is the class of paths that has one control points repositioned with respect
to the original path. We take special interest in the consequences for the
curvature of vehicle paths, because the vehicle path restrictions treated in
Section 3 depend on it. These consequences are treated in Section 4.2.

Our main focus is the repositioning of a single control point of a B-Spline.
However, in Section 6 we introduce two extensions to this principle. We
extend the repositioning to control points of NURBS curves, and treat the
repositioning of multiple control points at once.
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4.1 Repositioned Vehicle Path

Given a B-Spline vehicle path with three times continuously differentiable
basis functions

C (u) =
n
∑

i=0

PiNi,p (u) , u ∈ [a, b] ,

we are going to reposition the kth control point Pk along a line through the
original control point Pk. From now on we presume the restriction u ∈ [a, b],
instead of explicitly noting it every time.

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

C(u) 

C(u,z) 

Figure 2: Control Point Repositioning

Definition 4.2. Given a vehicle path C (u), a control point index k, and a

reposition direction

α = (α1, α2) , ||α||2 = 1 ,

we define the repositioned control points

P̄k = Pk +αz , z ∈ R ,

P̄i = Pi , i 6= k .

Then the repositioned vehicle path is

C (u, z) =
n
∑

i=0

P̄iNi,p (u) = C (u) +αzNk,p (u) .

Further we define x (u, z) and y (u, z) to be the coordinates of the repositioned
vehicle path,

C (u, z) =

(

x (u, z)
y (u, z)

)

=

(

x (u) + α1zNk,p (u)
y (u) + α2zNk,p (u)

)

.
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Figure 2 above illustrates the control point repositioning principle. The solid
curve and lines represent the original curve C (u) and its control polygon.
The dashed curve and lines show the curve C (u, z) after a repositioning of
the second from left control point along a vertical line.

4.2 Repositioned Vehicle Path Curvature

The curvature κ (u, z) of the repositioned path C (u, z) is given by

κ (u, z) =

∂x(u,z)
∂u

∂2y(u,z)
∂u2 − ∂2x(u,z)

∂u2

∂y(u,z)
∂u

(

(

∂x(u,z)
∂u

)2
+
(

∂y(u,z)
∂u

)2
)

3

2

.

Substituting the formula from Definition 4.2 and simplifying the expression,
we get

κ (u, z) =
S (u) z + T (u)

(P (u) z2 +Q (u) z +R (u))
3

2

, (10)

where

P (u) =
(

N ′
k,p (u)

)2
,

Q (u) = 2
(

α1x
′ (u) + α2y

′ (u)
)

N ′
k,p (u) ,

R (u) =
(

x′ (u)
)2

+
(

y′ (u)
)2

=
∣

∣

∣

∣C′ (u)
∣

∣

∣

∣

2

2
,

S (u) =
(

α1y
′′ (u)− α2x

′′ (u)
)

N ′
k,p (u)−

(

α1y
′ (u)− α2x

′ (u)
)

N ′′
k,p (u) ,

T (u) = x′ (u) y′′ (u)− x′′ (u) y′ (u) .

Note that P (u) ≥ 0 and R (u) ≥ 0, and that R (u) is the same as defined in

Section 3.3. Further note that κ (u) = T (u) /R (u)
3

2 .

By definition, for the basis functions we have

Nk,p (u) = 0 , for all u ∈ [a, uk) ∪ [uk+p+1, b] .

Since we have three times continuously differentiable basis functions

Nk,p (u) = N ′
k,p (u) = N ′′

k,p (u) = 0 for all u ∈ [a, uk] ∪ [uk+p+1, b] . (11)

Note the closure of the interval for u.

Using the equations (10) and (11), it follows that

κ (u, z) = κ (u) for all u 6∈ (uk, uk+p+1) . (12)

Therefore we can restrict our investigation of the influence of control point
repositioning on the curvature to u ∈ (uk, uk+p+1). For such u we define

κu (z) = κ (u, z) .
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Based on the form of κu (z) we distinguish a few different cases in our in-
vestigation of this function.

Case N ′
k,p (u) = 0

B-Splines with p = 0 are not of interest, since they consist of only the control
points. For p > 0 it is known from B-Spline theory that each basis function
Nk,p (u) attains exactly one maximum. Let this maximum be attained at
u = ū. This parameter value ū is the only point of interest in whichN ′

k,p (u) is
possibly equal to 0. Any other point for which N ′

k,p (u) = 0 would necessarily
be a minimum of Nk,p (u), and the minimum value of a basis function is
always 0. Due to the construction of the basis function, such a minimum
can only be attained at u = uk or u = uk+p+1, but we have already shown
that κ (u, z) = κ (u) at these points, see equation (12).

Note that it is not necessarily true that N ′
k,p (ū) = 0. For example it is

not true for all k when p = 1, and for p > 1 in some cases when knots of
multiplicity greater than 1 are involved.

Now assume that u = ū and N ′
k,p (ū) = 0, then the graph of κu (z) is a line

κu (z) =
S (u) z + T (u)

R (u)
3

2

=

(

S (u)

R (u)
3

2

)

z + κ (u) . (13)

See Figure 3 below for a graphical representation of this function. From
equation (13) it is easy to see that κu (0) = κ (u), and that z0 = −T/S is
the unique value such that κu (z0) = 0.

0
z

κ  (0) = κ(u)u

z   = -T/S0

κ  (z)u

Figure 3: Curvature at u when N ′
k,p (u) = 0
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Case N ′
k,p (u) 6= 0

For all u for which N ′
k,p (u) 6= 0 the graph is slightly more complicated than

it was for N ′
k,p (u) = 0. The highest order of z in the denominator is 3, which

is higher than that of the numerator. Therefore the curvature κu (z) goes to
0 for z to ±∞.

If N ′
k,p (u) 6= 0, the derivative of κu (z) is given by

dκu (z)

dz
=

2S
(

Pz2 +Qz +R
)

− 3 (Sz + T ) (2Pz +Q)

2 (Pz2 +Qz +R)
5

2

= −(4PS) z2 + (6PT +QS) z + (3QT − 2RS)

2 (Pz2 +Qz +R)
5

2

. (14)

For convenience we have left out the dependence of P , Q, R, S and T on u
in the above expression.

Suppose that S (u) = 0. If T (u) = 0 then simply κu (z) = 0 for all z, so let
us suppose that T (u) 6= 0. Then we have

κu (z) =
T

(Pz2 +Qz +R)
3

2

, (15)

and
dκu (z)

dz
= − 6PTz + 3QT

2 (Pz2 +Qz +R)
5

2

. (16)

From equation (15) it easily follows that, if S (u) = 0, the function κu (z)
has no root. And by equation (16) its derivative has exactly one root

dκu (z)

dz
= 0⇔ z = − Q

2P
. (17)

Therefore κu (z) does not intersect the x-axis, and has exactly one extreme
value, which is a global maximum for T (u) > 0 and a global minimum for
T (u) < 0. This extreme value is

κext = κu

(−Q
2P

)

=
T

(

R− Q2

4P

)
3

2

. (18)
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Further we can prove that κu (z) is symmetrical around z = −Q
2P , as follows

κu

(

ξ − Q

2P

)

=
T

[

P
(

ξ2 − Q
P
ξ + Q2

4P

)

+Q
(

ξ − Q
2P

)

+R
]

3

2

=
T

[

Pξ2 −Qξ + Q2

4 +Qξ − Q2

2P +R
]

3

2

=
T

[

Pξ2 + Q2

4 −
Q2

2P +R
]

3

2

.

The value of this expression is the same for ξ and −ξ, hence κu (z) is sym-
metrical around z = −Q

2P .

From these facts we can conclude that the graph of κu (z) typically has the
shape shown in Figure 4 below. Note that the presented graph is for the
case T (u) > 0.

0
zz = -Q/(2P)

κ  (0) = κ(u)u

κ  (z)u

Figure 4: Curvature at u when N ′
k,p (u) 6= 0, S (u) = 0 and T (u) > 0

When S (u) 6= 0, then κu (z) has exactly one root

κu (z) = 0⇔ z = −T
S
.

The roots of the derivative can be found using

dκu (z)

dz
= 0 ⇔ (4PS) z2 + (6PT +QS) z + (3QT − 2RS) = 0

⇔ z1,2 =
−(6PT+QS)±

√
(6PT+QS)2−(16PS)(3QT−2RS)

8PS . (19)
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From the facts that κu (z) goes to 0 for z to ±∞, and that it intersects the x-
axis at exactly one point, combined with the absence of vertical asymptotes
because Pz2 + Qz + R > 0, it follows that the graph must attain exactly
one maximum and one minimum. The values of z at which these extreme
values are found, are necessarily the solutions of equation (19). Therefore
these solutions must be real valued.

We can also proof this mathematically.

Lemma 4.1. Given that P,Q,R, S, T ∈ R, P > 0 and Pz2 + Qz + R ≥ 0
for all z, the values

z1,2 =
− (6PT +QS)±

√
∆

8PS
,

with ∆ the polynomial discriminant

∆ = (6PT +QS)2 − (16PS) (3QT − 2RS) ,

are real numbers.

Proof. Since P,Q,R, S, T ∈ R it only remains to be shown that ∆ ≥ 0, i.e.,

z1,2 ∈ R ⇔ (6PT +QS)2 − (16PS) (3QT − 2RS) ≥ 0

⇔ 36P 2T 2 − 36PQST +Q2S2 + 32PRS2 ≥ 0

Using that Pz2 +Qz + R ≥ 0 for all z, we continue by eliminating R from
of this equation, and rewriting the remaining equation to a square, which is
of course non-negative.

From Pz2+Qz+R ≥ 0 for all z it follows that the equation Pz2+Qz+R = 0
has at most one solution. This is true if and only if the discriminant of that
quadratic equation is non-positive, i.e.,

Q2 − 4PR ≤ 0 ⇔ 4PR ≥ Q2.

Therefore we can write

∆ = 36P 2T 2 − 36PQST +Q2S2 + 32PRS2 ≥
36P 2T 2 − 36PQST +Q2S2 + 8Q2S2 =

9
(

4P 2T 2 − 4PQST +Q2S2
)

=

9 (2PT −QS)2 ≥ 0 .

We now have enough information to derive the typical shape of the graph
of κu (z) for S (u) 6= 0. Figure 5 below shows this shape for S (u) < 0.



4 B-SPLINE PATHS 22

0

z

κ  (0) = κ(u)u

z   = -T/S0

κ  (z)u

Figure 5: Curvature at u when N ′
k,p (u) 6= 0 and S (u) 6= 0



5 B-SPLINE PATH RESTRICTIONS 23

5 B-Spline Path Restrictions

In Section 3 we derived the steering angle restriction (3), and the steering
angular velocity restriction (6). A vehicle path has to satisfy both these
equations, in order for a vehicle to be able to drive the path.

In this section we apply these restrictions to the class C (u, z) of repositioned
vehicle paths, for some given C (u), k, and α. We use our knowledge of the
curvature of the repositioned vehicle path, to calculate what choices z = z̃
give a path C (u, z̃) that satisfies the path restrictions. But we start with a
definition of a curvature restriction, and the feasible repositioning set.

Definition 5.1. A curvature restriction R (q, µ, ν) is a condition

µ (u, z) ≤ ∂qκ

∂uq
(u, z) ≤ ν (u, z) .

It is allowed that either µ (u, z) = −∞ or ν (u, z) =∞, but not both.

We say that z̃ satisfies the curvature restriction R (q, µ, ν) for ũ, if the con-
dition is met for u = ũ when z = z̃.

The feasible repositioning set F (q, µ, ν), is the set of all z that satisfy the

curvature restriction R (q, µ, ν) for all u.

The problem of finding the feasible repositioning set F (q, µ, ν) is generally
too complex to solve analytically. Therefore we discretize the problem in the
u direction. That is, for each vi in a finite discretization set V = {vi}, with
vi ∈ [a, b] for all i, we calculate the set Fvi

of all z that satisfy the restriction
R (q, µ, ν) for u = vi.

The reason that we discretize in the u direction, instead of the z direction, is
that the curvature of a repositioned vehicle path is a very complex expression
of u, but it is a fairly simple expression of z.

Now let us define the intersection FV of all Fvi
,

FV =
⋂

iFvi
.

We then have
F (q, µ, ν) ⊆ FV .

In our application κ (u, z) should be a smooth function, and we also intend to
use smooth functions µ (u, z) and ν (u, z). Therefore, in practice, FV will be
a good approximation of F (q, µ, ν), provided that we choose an appropriate
set discretization V .
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5.1 Steering Angle Restriction

The simplest curvature restriction is a lower and upper bound on the cur-
vature, i.e.,

R0 = R (0, µ0, ν0) with µ0, ν0 ∈ R . (20)

Taking µ0 = tanϕmin/W and ν0 = tanϕmax/W , this is exactly restric-
tion (3) applied to a set of repositioned curves, which yields bounds on the
steering angle of the vehicle. Because of this application we assume that
µ0 < 0 and ν0 > 0.

Since lower and upper bounds can be treated in the same way, we only
concern ourselves with the upper bound problem. To find the set Fu of all
z that satisfy R0 for u, we therefore have to solve the following equation

κu (z) ≤ ν0 , ν0 > 0 .

We distinguish the cases N ′
k,p (u) = 0, and N ′

k,p (u) 6= 0 with either S (u) = 0
or S (u) 6= 0. For simplicity reasons we drop the dependence of P , Q, R, S
and T from u in notations for the remainder of this section.

Case N ′
k,p (u) = 0

Using equation (13), the equation we have to solve to find Fu is

κu (z) =
Sz + T

R
3

2

≤ ν0 ⇔ Sz ≤ ν0R
3

2 − T .

We then have to distinguish the following possibilities

S = 0 ⇒
{

Fu = R , if ν0R
3

2 ≥ T
Fu = ∅ , otherwise

S < 0 ⇒ Fu =

[

ν0R
3

2 − T

S
,∞
)

S > 0 ⇒ Fu =

(

−∞,
ν0R

3

2 − T

S

]

.

As described in Section 4.2, there is at most one value ū ∈ (uk, uk+p+1) for
which N ′

k,p (ū) = 0. Therefore it will almost never be in our discretization
set V . This ū is still of significant value though. As we will see, for all other
u very large positive and very large negative values of z are always feasible.
By adding ū to our discretization set V we can make sure that the large
values of z are removed from the feasible interval, as they should be.
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Case N ′
k,p (u) 6= 0 and S (u) = 0

In this case the the equation we have to solve to find Fu becomes

κu (z) =
T

(Pz2 +Qz +R)
3

2

≤ ν0 .

Using the typical shape of κu (z) in this case, as shown in Figure 4, we can
immediately see that

T ≤ 0 ⇒ Fu = R .

If T > 0 then κu (z) has exactly one maximum value. By equation (17) this
maximum of the curvature κu (z) is

κmax
u = κu

(−Q
2P

)

=
T

(

− Q2

4P +R
)

3

2

.

It is easy to see that

T > 0 and ν0 ≥ κmax
u : Fu = R

T > 0 and ν0 < κmax
u : Fu = (−∞, z1] ∪ [z2,∞) ,

where z1 and z2 are the solutions of the equation κu (z) = ν0, with z1 < z2.

Note that in the described situation T > 0 and ν0 ∈ (0, κmax
u ), the equation

κu (z) = ν0 has indeed exactly two unique solutions z1 and z2. Further note
that, since κu (z) is symmetric with respect to z = −Q/ (2P ), we can write
z1 = −Q/ (2P )− ξ and z1 = −Q/ (2P ) + ξ for some ξ > 0.

Case N ′
k,p (u) 6= 0 and S (u) 6= 0

The equation we have to solve in order to find Fu becomes

κu (z) =
Sz + T

(Pz2 +Qz +R)
3

2

≤ ν0 .

The curvature κu (z) has two extreme values, one of which is a maximum.
Using equation (19) we see that this maximum is attained at

z̄ =
− (6PT +QS)−

√
∆

8PS
for S < 0 ,

z̄ =
− (6PT +QS) +

√
∆

8PS
for S > 0 ,

where
∆ = (6PT +QS)2 − (16PS) (3QT − 2RS) .
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Let κmax
u denote the maximum value of κu (z), i.e.,

κmax
u = κu (z̄) .

Again, it easily follows that

T > 0 and ν0 ≥ κmax
u : Fu = R

T > 0 and ν0 < κmax
u : Fu = (−∞, z1] ∪ [z2,∞) ,

where z1 and z2 are the solutions of the equation κu (z) = ν0, with z1 < z2.

Note that in the described situation T > 0 and ν0 ∈ (0, κmax
u ), the equation

κu (z) = ν0 indeed has exactly two unique solutions z1 and z2.

5.2 Steering Angular Velocity Restriction

The angular velocity restriction (6) on the steering mechanism, applied to
a repositioned curve C (u, z), yields the following curvature restriction

R1 = R (1, µ1, ν1) with µ, ν ∈ R , (21)

where

µ1 (u, z) = ωmin
R (u, z)

1

2

vmin

W 2κ (u, z)2 + 1

W
,

ν1 (u, z) = ωmax
R (u, z)

1

2

vmin

W 2κ (u, z)2 + 1

W
,

with

R (u, z) =

∣

∣

∣

∣

∣

∣

∣

∣

∂C

∂u
(u, z)

∣

∣

∣

∣

∣

∣

∣

∣

2

2

= P (u) z2 +Q (u) z +R (u) .

Again since lower and upper bounds can be treated in the same way, we
only discuss the upper bound problem, i.e.,

∂κ

∂u
(u, z) ≤ ν1 (u, z) .

Writing out the expression for ∂κ
∂u

(u, z) gives

∂κ

∂u
(u, z) =

(S′z + T ′)
(

Pz2 +Qz +R
)

− 3
2 (Sz + T )

(

P ′z2 +Q′z +R′
)

(Pz2 +Qz +R)
5

2

,
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and when we write out ν1 (u, z) we get

ν1 (u, z) =
ωmax

vmin
R (u, z)

1

2

(

Wκ (u, z)2 +
1

W

)

=
ωmax

vmin

(

Pz2 +Qz +R
)

1

2

[

W (Sz + T )2

(Pz2 +Qz +R)3
+

1

W

]

=
ωmax

vmin

[

W (Sz + T )2 + 1
W

(

Pz2 +Qz +R
)3

(Pz2 +Qz +R)
5

2

]

.

Out of convenience we are leaving out the dependence of P , Q, R, S, and T
on u in the notation.

Combining the above three equations, it follows that

∂κ

∂u
(u, z) ≤ ν1 (u, z)⇔
(

S′z + T ′
) (

Pz2 +Qz +R
)

− 3

2
(Sz + T )

(

P ′z2 +Q′z +R′
)

≤
ωmax

vmin

[

W (Sz + T )2 +
1

W

(

Pz2 +Qz +R
)3
]

.

Some simple, though tedious, calculations show that the equality of the
above expression is equivalent to

6
∑

i=0

ρiz
i = 0 , (22)

where

ρ0 = ωmax

vmin

(

1
W
R3 +WT 2

)

+ 3
2R

′T −RT ′ ,

ρ1 = ωmax

vmin

(

3
W
QR2 + 2WST

)

+ 3
2Q

′T −QT ′ + 3
2R

′S −RS′ ,

ρ2 = ωmax

vmin

(

3
W

(

PR2 +Q2R
)

+WS2
)

+ 3
2P

′T − PT ′ + 3
2Q

′S −QS′ ,

ρ3 = ωmax

vmin

(

1
W

(

6PQR+Q3
))

+ 3
2P

′S − PS′ ,

ρ4 = ωmax

vmin

(

3
W

(

P 2R+ PQ2
))

,

ρ5 = ωmax

vmin

(

3
W
P 2Q

)

,

ρ6 = ωmax

vmin

(

1
W
P 3
)

.

In other words, we have to find the roots of a polynomial of degree 6 in z.
These roots can be calculated with a numerical root finding algorithm. From
these roots it is easy to determine the intervals for z, on which the original
inequality ∂κ

∂u
(u, z) ≤ ν1 (u, z) holds for the chosen value of u.
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6 Extended Repositioning

As mentioned in Section 4, our main focus is the repositioning of a single
control point of a B-Spline. However, the work done in Section 4 and 5 is
quite easily extended to the repositioning of control points of NURBS curves,
and to the repositioning of multiple control points at once.

In this section we introduce both extensions, following the same ideas as
for the repositioning of a single control point of a B-Spline. And we show
that the work on vehicle path restrictions from Section 5 is almost directly
applicable on these extensions.

6.1 NURBS Vehicle Path Repositioning

A NURBS curve is a Non-Uniform Rational B-Spline curve, i.e., a B-spline
on a nonuniform knot vector with rational basis functions.

Definition 6.1. Let m > 0, and let a knot vector U = {u0, . . . , um} be

given, with ui ∈ [a, b] nondecreasing and u0 = a, um = b. Let 0 ≤ n < m,

and let a set of weights W = {w0, . . . , wn}, with wi > 0, and a set of control
points P = {P0, . . . ,Pn} be given, with Pi ∈ R

d. Define the degree p as

p := m− n− 1.

A NURBS curve, given control points P , knot vector U and weights W , is

a curve

C (u) =
n
∑

i=0

PiRi,p (u) , u ∈ [a, b] ,

where the rational basis functions Ri,p are given by

Ri,p (u) =
Ni,p (u)wi

∑n
j=0Nj,p (u)wj

.

with Ni,p the standard B-spline basis functions.

NURBS are more flexible than ordinary B-Splines. Every possible B-Spline
can also be described as a NURBS curve, by using the same control points
and setting all weights equal to 1. And a lot of curves that cannot be de-
scribed as B-Splines, can be captured as NURBS curves. Therefore it could
be beneficial to work with vehicle paths in NURBS form, rather than in
B-Spline form. For an overview of the relevant NURBS theory see [Ide05].
For more information on NURBS curves see [PT97].

The extension of the definition of control point repositioning to a NURBS
vehicle path is straightforward.
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Definition 6.2. Given a NURBS vehicle path C (u) with three times contin-
uously differentiable basis functions, a control point index k, and a reposition
direction

α = (α1, α2) , ||α||2 = 1 ,

we define the repositioned control points

P̄k = Pk +αz , z ∈ R ,

P̄i = Pi , i 6= k .

Then the repositioned vehicle path is

C (u, z) =
n
∑

i=0

P̄iRi,p (u) = C (u) +αzRk,p (u) .

Further we define x (u, z) and y (u, z) to be the coordinates of the repositioned
vehicle path,

C (u, z) =

(

x (u, z)
y (u, z)

)

=

(

x (u) + α1zRk,p (u)
y (u) + α2zRk,p (u)

)

.

Substituting the formula from Definition 6.2 into the curvature, like we did
for B-Splines in Section 4.2, we again get

κ (u, z) =
S (u) z + T (u)

(P (u) z2 +Q (u) z +R (u))
3

2

,

but now with

P (u) =
(

R′k,p (u)
)2

,

Q (u) = 2
(

α1x
′ (u) + α2y

′ (u)
)

R′k,p (u) ,

R (u) =
(

x′ (u)
)2

+
(

y′ (u)
)2

=
∣

∣

∣

∣C′ (u)
∣

∣

∣

∣

2

2
,

S (u) =
(

α1y
′′ (u)− α2x

′′ (u)
)

R′k,p (u)−
(

α1y
′ (u)− α2x

′ (u)
)

R′′k,p (u) ,

T (u) = x′ (u) y′′ (u)− x′′ (u) y′ (u) .

As in Section 4.2 we have P (u) ≥ 0 and R (u) ≥ 0.

By definition, for the NURBS basis functions we have

Rk,p (u) = 0 , for all u ∈ [a, uk) ∪ [uk+p+1, b] .

Following the same reasoning as for the B-Spline case we find that we can
restrict our investigation of the influence of control point repositioning on
the curvature, to u ∈ (uk, uk+p+1).
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All calculations for the vehicle restrictions, that we have done in Section 4
and 5, are in terms of P (u), Q (u), R (u), S (u) and T (u). With the above
described properties of these functions the results for the calculation of fea-
sible repositioning sets remain valid, independent of the exact form of these
functions. The only exception is the distinction we make between the cases
N ′
k,p (u) = 0 and N ′

k,p (u) 6= 0. For NURBS vehicle paths, this translates
into distinguishing the cases R′k,p (u) = 0 and R′k,p (u) 6= 0.

6.2 Multiple Control Point Repositioning

Instead of repositioning a single control point of a NURBS curve in a certain
direction, given by the reposition direction α, we can also reposition multiple
control points into that direction.

Definition 6.3. Given a NURBS vehicle path C (u) with three times contin-
uously differentiable basis functions, a control point index k, and a reposition
direction

α = (α1, α2) , ||α||2 = 1 ,

we define the repositioned control points

P̄i = Pi + ζiαz , z ∈ R , ζi ∈ [−1, 1] , i = 0, . . . , n .

Then the repositioned vehicle path is

C (u, z) =
n
∑

i=0

P̄iRi,p (u) = C (u) +αz
n
∑

i=0

ζiRi,p (u) .

Further we define x (u, z) and y (u, z) to be the coordinates of the repositioned
vehicle path,

C (u, z) =

(

x (u, z)
y (u, z)

)

=

(

x (u) + α1z
∑n

i=0 ζiRi,p (u)
y (u) + α2z

∑n
i=0 ζiRi,p (u)

)

.

Again we can write

κ (u, z) =
S (u) z + T (u)

(P (u) z2 +Q (u) z +R (u))
3

2

,

but for multiple control point repositioning we have

P (u) =
(
∑n

i=0 ζiR
′
i,p (u)

)2
,

Q (u) = 2
(

α1x
′ (u) + α2y

′ (u)
)
∑n

i=0 ζiR
′
i,p (u) ,

R (u) =
(

x′ (u)
)2

+
(

y′ (u)
)2

=
∣

∣

∣

∣C′ (u)
∣

∣

∣

∣

2

2
,

S (u) =
(

α1y
′′ (u)− α2x

′′ (u)
)
∑n

i=0 ζiR
′
i,p (u)

−
(

α1y
′ (u)− α2x

′ (u)
)
∑n

i=0 ζiR
′′
i,p (u) ,

T (u) = x′ (u) y′′ (u)− x′′ (u) y′ (u) .
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As before we have P (u) ≥ 0 and R (u) ≥ 0, and it is simple to see that we
can restrict our investigation to

u ∈
⋃

i∈I+

(ui, ui+p+1) ,

where
I+ = {i ∈ {0, . . . , n} | ζi > 0} .

So we can also directly use the results from Section 4 and 5 for curves with
multiple repositioned control points, as long as the control points are reposi-
tioned in the same direction α. The distinction we originally made between
the cases N ′

k,p (u) = 0 and N ′
k,p (u) 6= 0, translates into distinguishing the

cases
∑n

i=0 ζiR
′
i,p (u) = 0 and

∑n
i=0 ζiR

′
i,p (u) 6= 0 when dealing with multi-

ple repositioned control points.

Note that, if multiple control points would be repositioned in different di-
rections, an extra term M (u) z2, that is generally nonzero, would appear in
the numerator of the curvature function κ (u, z). In that case the results of
Section 4 and 5 would no longer be applicable to the repositioned curve.

Further note that it is obvious that we can also use these results to work with
B-Splines with multiple repositioned control points, since NURBS curves are
an extension of B-Splines.
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7 Path Construction

In this section we research a practical application of the theory and methods
we developed in the previous sections. The goal is to develop a method that
can be used to construct feasible paths for a vehicle and is easy to use.

The general idea of the path construction method is this. We start with
a linear approximation of the path we want the vehicle to drive. Next we
choose pairs of points between which we want the linear path to be rounded
to create bends. Figure 6 shows an example of a linear path approximation
in black, with rounded bends between chosen endpoints in red.

Figure 6: Single Corner Application

Thus, given two endpoints E1 and E2 on two different line segments, we
want to construct a B-Spline curve between the endpoints that is straight at
these endpoints, and has the same direction as the line segment the endpoint
is on. This is because the bend curve has to fit geometrically to the part of
a line segment that is not rounded, allowing us to combine the curve and
such straight parts, or other bend curves, to one single path.

First we introduce a control point scheme for the construction of a single
bend curve between two given endpoints, and we explore the parameters
of this construction scheme. Then we show how to connect multiple single
bends to a larger path curve, and we discuss how to safeguard the feasibility
of the path we are constructing. Finally we discuss some extensions and
alternatives to the presented construction method.

7.1 Single Bend Curve Construction

When constructing a bend curve for a vehicle path, obviously the curve
needs to satisfy the general requirements for a vehicle path, i.e, it has to be
three times continuously differentiable in all points, including the endpoints.
Therefore we use a B-Spline curve with degree p = 4, and a uniform knot
vector. Note that to get a three times continuously differentiable vehicle path
it would be enough to have no internal knot with multiplicity larger than
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1, but we will need the uniformness of the knot vector later. Furthermore
we assume that the curve parameter u ∈ [0, 1], but the results are easily
extended to B-Splines with a curve parameter u ∈ [a, b].

For the curve to be a valid vehicle path we assume that the norm of the
derivative of the B-Spline is larger than 0 along the entire curve. There are
some artificial classes of B-Spline curves that do not satisfy this requirement.
An example of such a class is the class of B-Splines that has multiple consec-
utive control points at the same coordinates. But in our field of application
this requirement on the derivative will almost surely be met.

7.1.1 Construction Scheme

The general control point scheme that we use to construct a single bend
curve is shown in Figure 7 below. The order of the control points is the
logical order along the curve.

The red control points E1 = P6 and E2 = P12 are the given endpoints of
the bend curve. So the actual bend we are going to use is the piece of curve
between E1 and E2. The rest of the control points, and curve, are employed
only to make the scheme behave like we need it to.

The lines L1 and L2 are the continuation of the line segments the two end-
points are on.
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T = P9

L 1 L 2

Figure 7: Single Corner Construction
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The position of the endpoints P6 and P12 is given, and should therefore
remain fixed. The yellow intermediate points P4, P5, P7 and P8 have to be
located on L1, symmetrical around the endpointP6. The yellow intermediate
points P10, P11, P13 and P14 need to be positioned on L2, around P12 in
the same way. The green top point T and the blue auxiliary control points
can be placed freely.

To show that the control point scheme accomplishes our goal independent of
the placement of the top point T and the auxiliary points, we first need to
understand the basis functions involved. Figure 8 shows the basis functions
corresponding to the control points in the same colour coding that we used
in Figure 7. The names of some important control points are shown above
the basis function with which they are multiplied.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

E1 E2T

u9 u14

Figure 8: Single Corner Construction

We start by showing that the curve indeed goes through the endpoints E1

and E2, i.e., we prove that there are parameter values e1, e2 ∈ [0, 1] such
that C (e1) = E1 and C (e2) = E2.

Theorem 7.1. Using the control point configuration in Figure 7 we have

C (e1) = E1 for e1 =
(u8 + u9)

2
,

and

C (e2) = E2 for e2 =
(u14 + u15)

2
.
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Proof. We proof the statement for e1 only. The proof for e2 can be conducted
using the same method.

The bend curve is given by the B-Spline formulation

C (u) =
n
∑

i=0

PiNi,4 (u) .

From Figure 7 we know that E1 = P6. Now define the vectors

D1 = E1 −P5 = P7 −E1 ,

and
D2 = E1 −P4 = P8 −E1 .

Then, for any u ∈ (u8, u9) we have

C (u) =
n
∑

i=0

PiNi,4 (u) =
8
∑

i=4

PiNi,4 (u)

= (E1 −D2)N4,4 (u) + (E1 −D1)N5,4 (u) +

+ E1N6,4 (u) + (E1 +D1)N7,4 (u) + (E1 +D2)N8,4 (u)

=
8
∑

i=4

E1Ni,4 (u)−D2N4,4 (u)−D1N5,4 (u) +

+ D1N7,4 (u) +D2N8,4 (u)

= E1 −D2N4,4 (u)−D1N5,4 (u) +D1N7,4 (u) +D2N8,4 (u) .

In the last step we used the fact that

8
∑

i=4

E1Ni,4 (u) = E1

8
∑

i=4

Ni,4 (u) = E1

n
∑

i=0

Ni,4 (u) = E1 .

Since we are using a uniform knot vector we have

N4,4

(

u8 + u9

2

)

= N8,4

(

u8 + u9

2

)

,

and

N5,4

(

u8 + u9

2

)

= N7,4

(

u8 + u9

2

)

.

Therefore the above expression for C (u) gives

C

(

u8 + u9

2

)

= E1 .
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Note that the only control points we used in the above proof are the red
endpoints E1 and E2, and the yellow intermediate points. Thus Theorem 7.1
is independent of the position of the green top point T and the blue points.
Further note that for this proof we do need the knot vector to be uniform.

A direct consequence of Theorem 7.1 is that the position of the blue auxiliary
points does not influence the bend curve. For, as can be seen from Figure 8,
the blue basis functions that are multiplied with these control points, are
all situated entirely outside the parameter interval [e1, e2]. We do need the
auxiliary points though, as is explained in Section 7.2.

The next step is to show that, at each of the endpoints, the curve is straight
and has the same direction as the line segment that endpoint is on. This is
actually fairly simple. We show it here for the endpoint E1 only. The proof
for E2 can be conducted in the same way.

Suppose all control points P1, . . . ,P18 would be positioned on the line L1.
Then the resulting B-Spline curve is a straight line. As can be seen from
Figure 8, at the parameter interval u ∈ (u8, u9) the B-Spline curve is only
influenced by the control points P4,. . . ,P8. And, according to Theorem 7.1,
the endpoint E1 is attained in the middle of this parameter interval. So if
we change the position of the other control points according to the scheme
in Figure 7, around E1 the curve will remain straight and will have the same
direction as L1.

7.1.2 Top point Positioning

In this section we look at various options for the position of the top point
in the control point scheme as shown in Figure 7. We consider four options
with plots of the resulting curves.

The control point scheme we use to demonstrate the influence of the position
of the top point is the following. The endpoints are given by E1 = (−9, 0)
and E2 = (9, 0). L1 is the line through E1 and S, and L2 is the line through
E2 and S, where S is such that ||S−E1||2 = ||S−E2||2 = 12. The position
of the yellow intermediate points is determined by d1 = d2 = d3 = d4 = 3.

As shown before, in Section 7.1.1, the position of the blue auxiliary control
points does not influence the bend curve. In our examples we have put them
very close to the nearest yellow control point, such that they do not show
in the plots.

With our control points scheme fixed, we can now examine different positions
of the top point T. We only move T along the angle bisector of the top angle
∠E1SE2. Other directions of movement are of course also possible, but lead
to similar results.
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Each position of the top point we consider is accompanied by three plots.
The top plot shows the control points scheme and the resulting bend curve.
The middle plot displays the curvature of the curve and the upper and lower
bounds on the curvature, as imposed by the steering angle restriction. And
the bottom plot shows the first derivative of the curvature with upper and
lower bound functions, as imposed by the steering angular velocity restric-
tion. The bounds on the curvature and its derivative are calculated using
the vehicle parameters

W = 2 , φmax = −φmin = π/4 , ωmax = −ωmin = 2 , vmin = 3 .

The first option we look at is placing the top point above the point S, see
Figure 9. It is clear that the resulting curve is not a single bend any more.
Starting in lower left it first bends to the left a bit, then there is a big bend
to the right, and finally it bends back to the left a bit again. These are not
the kind of curves we are aiming at to construct. If we want to make a curve
with multiple bends we should build it from multiple single bend curves.
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κ (u)
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Figure 9: Top point Position 1

The same argument holds when we put the top point very low, as can be
seen from Figure 10.

Both the top point positions from Figure 9 and 10 could also be said to be
taking a detour. If we interpret the curve as a path to take a certain corner
as it was originally intended, then both options take a detour making the
path longer than it has to be, with more steering action needed to drive the
path. Thus these paths are not efficient.
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Figure 10: Top point Position 2

There is an interval for the top point, along the angle bisector of the top
angle, that results in a bend that does not take a detour. This interval runs
from the position S down to the position S′, where S′ is the position that
results in a curve that has a curvature of 0 at C (0.5). The options S and S′

are shown in Figure 11 and Figure 12 respectively.
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Figure 11: Top point Position 3
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In terms of vehicle control, putting the top point at position S corresponds
to steering into the corner and back as smoothly as is possible within the
bounds of our configuration scheme. It results in a smooth curve with only
a single bend, that puts as little strain as possible on the vehicle and its
contents. This is obviously a very natural choice for the top point position.
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Figure 12: Top point Position 4

Positioning the top point at S′ corresponds to steering into the corner as
fast as possible, then steering back and going straight for a while in the
middle of the curve, then steering as fast as possible again to complete the
corner. This bend is not as smooth as the previous one, and puts more strain
on the vehicle and its contents. But, depending on the steering motor and
mechanism it might possibly be more power efficient, because there is a
small part in the middle of the bend where no steering action is required.

However, again, if we want a curve like this we could build it from two
smooth single bends. Therefore we will use S as the default position for the
green top point.

Now that we have chosen a fixed position of our top point, it could be argued
that we do not need this top point any more. We could leave it out and let
the yellow control points P8 and P10 coincide into a new fixed top point. All
essential properties of the control point configuration scheme would remain.
This would greatly reduce the flexibility in shaping the curve, however, as
well as reducing our flexibility when connecting single bend curves to form
a larger curve with multiple bends. Therefore we have chosen to keep the
top point, to retain the flexibility of our control point scheme.
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7.1.3 Intermediate Point Positioning

In the previous sections we introduced a control point scheme for the con-
struction of a bend curve, showed that the blue auxiliary control points do
not influence the shape of this bend curve, and argumented that we will
usually keep the green top point at a fixed position. This leaves the yellow
intermediate points as parameters to shape the bend curve.

In Appendix A we present plots of several distinct choices for the placement
of the intermediate points. We use these plots to describe the influence the
placement of those points has on the shape of the curve.

In each of the plots the knots of the B-Spline curve are marked. The place-
ment of the shaping points has a strong influence on the position of the
knots, in relation to the control point scheme. Since we plotted each knot
ui as a marker at C (ui) in the plot of the bend curve, we conveniently in-
terchange the notions of a knot value and the value of the curve at that
knot.

We saw in Theorem 7.1 already that the endpoint E1 lies between the knots
u8 and u9. Also, from Figure 8 we can see that the position of the top point
T = P9 only influences the curve between u9 and u14. However we chose to
keep the top point at a fixed position, at the intersection of the lines L1 and
L2. In the same way, the position of P8 only influences the curve between
u8 and u13, and the position of P10 only influences the curve between u10

and u15.

Following the same argumentation we used in Section 7.1.1 to show that the
bend curve is straight around the endpoints, we can now conclude that the
bend curve is straight along L1 from E1 to u10, and straight along L2 from
u13 to E2. Thus, only the part of the curve between u10 and u13 is rounded.

Since the original idea was to make a rounded curve between two given
endpoints, it makes sense to choose the positions of the intermediate points
in such a way that u10 is close to the endpoint E1, and that u13 is close
to the endpoint E2. From the plots in Appendix A it can be seen that u10

is approximately halfway between P7 and P8 in most cases, except when
both of those points are either very close to the endpoint E1, or very close
to the top point. But even then u10 is close to the point halfway P7 and P8,
relative to the larger scale of the entire bend curve.

From the above observations we derive the following rule of thumb, that can
be used to ensure there will not be a large piece of straight curve around
the endpoints:

The intermediate points P7 and P8 should be placed close to the endpoint E1,

and the intermediate points P10 and P11 should be placed close to E2.
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Note that the position of the intermediate points P4, P5, P13 and P14 is
also determined by this rule, since they are linked to the other intermediate
points.

An example of a curve resulting from the above rule of thumb, is shown
in Figure 13. In this figure we used the same control point scheme as in
Appendix A.
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Figure 13: Curve Shaping: d′1 = d′2 = d′3 = d′4 = 1/1000

An additional advantage of placing the yellow intermediate points close to
the endpoints, is that our control point scheme does not have to extend far
outside 4E1TE2, unlike for example the scheme shown in Figure 22. As is
discussed in Section 7.2, this is very convenient when connecting single bend
curves to form a larger path.

7.2 Connecting Single Bend Curves

In the previous section we explained how to design single bend curves. The
next step is to connect such curves, to create a larger path curve. We show
how to connect two single bend curves A and B, using a superscript A or B
on curve parameters to indicate to which curve they belong.

To connect two single bend curves A and B and merge them into a single
larger path curve, we have to make one end of curve A the same as one end
of curve B. Only then we can overlap these ends and merge the two curves
into one.
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When we overlap two control points of two different curves to merge them,
we obviously can only have one basis function belonging to that control point
in the merged curve. Therefore, if the control points had basis functions with
different shapes belonging to them, merging them could change the shape
of one of the original single bend curves, because at least one of the control
points will by multiplied by a different basis function in the merged curve.

This is why, in the construction scheme introduced in Section 7.1.1, we have
used four blue auxiliary control points on each side of the scheme. These
points, together with the fact that we are using a uniform knot vector,
ensure that all basis functions that influence the actual bend curve between
the endpoints have the same shape.

With this knowledge it is now fairly simple to connect two single bend curves.
For the merged curve we again use a uniform knot vector, but with more
knots. This way all basis functions for the merged curve, have the same
shape as the basis functions for the two original bend curves.

The only exceptions are the basis functions that belong to those four aux-
iliary points of each of the curves that overlap with the other curve. The
basis functions belonging to these points are different in the merged curve.
However, this does not pose a problem since the auxiliary points do not
influence the actual bend curves.

Figure 14 below illustrates how to connect the curves A and B, if we want
a straight piece of curve with length q between the two curves, where

q =
∣

∣

∣

∣EA
2 −EB

1

∣

∣

∣

∣

2
= dB1 + dB2 + dA3 + dA4 + q̄ , with q̄ > 0.

Since we are free to place the blue auxiliary points of either curve wherever
we like, we can set

PA
15 = PB

4 , PA
16 = PB

5 , PA
17 = PB

6 , PA
18 = PB

7 ,

and
PB

0 = PA
11 , PB

1 = PA
12 , PB

2 = PA
13 , PB

3 = PA
14 ,

to accomplish the connection shown in Figure 14.

E   1
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d   1
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d   2
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d   3
A

d   4
A q

Figure 14: Connecting Bend Curves 1



7 PATH CONSTRUCTION 43

If we do not want a straight piece between the endpoints, we can connect
the curves A and B as shown in Figure 15. In this type of connection we set

EA
2 = EB

1 ,

and set the surrounding control points to overlap too, as shown in Figure 15.
Note that the blue auxiliary points are not shown in the correct position, be-
cause this would unnecessarily complicate the image. Each should be placed
overlapping the next control point in line, like in Figure 14.
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B
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Figure 15: Connecting Bend Curves 2

A direct consequence of this type of connection is that we need to set

dB1 = dA4 and dB2 = dA3 .

If we want a straight piece with length q ≤ dB1 + dB2 + dA3 + dA4 between the
endpoints, a connection type could be used that lies somewhere between the
two extreme options we have shown. However, as we saw in Section 7.1.3, we
usually want to place the yellow shaping points very close to the endpoints.
As a result q will be very small, and we will have no need for any of the
intermediate connection types.

7.3 Feasibility

As for any path, when we construct a path from single bend curves, we want
the path to be feasible, i.e., we want the vehicle for which we are designing
the path to be able to drive that path. In previous sections we have already
developed tools for this purpose. In this section we discuss how they can be
used when constructing a path from single bend curves.

Since vehicles that cannot drive straight usually do not make much sense,
we assume the vehicle can. Therefore all straight pieces between curves are
always feasible, and we can restrict ourselves to checking the feasibility of
each single bend curve. If all curves from a set of single bend curves are
feasible for a certain vehicle, that vehicle will be able to drive any path
composed of these bend curves.
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It is not hard to check the feasibility of a single bend curve. We can discretize
the interval of the curve parameter u, and use equations (3) and (8), to test
if the curve is feasible at the discretized parameter values.

The problem becomes more difficult if we want to calculate how we can
reposition the control points in the construction scheme to get a feasible
curve. However, all important operations on the configuration scheme can
be described as the repositioning of one or more control points along a single
line. Therefore we can use the method to calculate the feasible repositioning
interval, developed in Section 5, with the extension treated in Section 6.2 if
needed.

If we want to reposition the top point along the angle bisector of the top
angle, we can directly use the theory developed in Section 5. If we want
to reposition an intermediate point, then another intermediate point moves
with it in opposite direction. This can easily be described as a multiple
control point repositioning, by setting α to the direction of movement, and
setting the ζi values to +1 and −1 respectively for the two moving interme-
diate points, and to 0 for all other control points.

As we explained in Section 7.1.2 and 7.1.3, the repositioning of the top point
and intermediate points is not needed in most cases. Usually the curve is
determined by the choice of the position of the endpoints, with the neigh-
bouring intermediate points close to it. Changing the position of an endpoint
along a line, can also be described as a multiple control point repositioning.
We can do this by setting the ζi values for the endpoint we want to move
and its four neighbouring intermediate points all to 1, and to 0 for all other
control points.

An interesting note is, that these repositioning principles can still be directly
applied on single bend curves after they have been merged into a larger path
curve.

7.4 Variations and Alternatives

There are a lot of possible variations on the construction concept we have
presented in the foregoing sections. There are also interesting, altogether
different options to construct path curves. In this section we will describe
some of these variations and alternatives.

As explained in Section 7.1.2, we can simplify the construction scheme by
removing the green top point. The opposite is also a possibility. We could
insert more control points between the top point and the neighbouring inter-
mediate points. These points could be placed freely, and would dramatically
increase the flexibility of shaping single bend curves.
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In our construction method we have only treated the use of B-Spline single
bend curves, created by means of our control point scheme, and straight
lines. A very good addition would be to introduce more standard shapes
to combine with the curves. By far the most interesting additional shape
is a circular bend, because a vehicle that complies with the vehicle model
presented in Section 3.1 can follow a circular bend by keeping one fixed
steering position along the entire bend. For the steering installation, this is
the most energy efficient way possible to take a corner.

An entirely different approach would be to try to construct the entire path
from one single curve, instead of construction parts and connecting them.
To do this, we would have to start with some approximation of the path
the vehicle has to drive. Since B-Spline and NURBS theory offers some
nice interpolation and approximation tools, see [PT97], we could get a set
of points along the desired path and interpolate or approximate a curve
through it.

After inserting control points to get a good spread and density of control
points on the initial approximation of the path, we could change the positions
of the control points in order to create a better path for the vehicle. This
could be done by hand or, preferably, by some optimization algorithm.
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8 Conclusions and Recommendations

The ultimate goal of FROG Navigation Systems, the company that initiated
this research project, is to develop a tool that can automatically generate
the optimal vehicle path for a certain vehicle given a map of the area and a
starting point and destination.

This is a very ambitious goal and we are still far away from it. However,
the methods developed in this report are big steps in the right direction. In
this final section we discuss the value of our research for FROG, and make
recommendations on how to proceed to that ambitious goal.

The most important merit of our research is the work on feasible reposition-
ing sets for B-Spline paths. With it the internal constraint problem men-
tioned in Section 1, is effectively solved. These constraints were the biggest
problem for human designers who had to construct a path manually, which
makes our method to calculated feasible repositioning sets invaluable on its
own.

So far only small tests have been run, calculating the feasible reposition-
ing sets of small curves with a MATLAB implementation of the developed
methods. All tests conducted within parameters anywhere near the FROG
application behaved very nicely. Since the calculation of the feasible reposi-
tioning set is a local problem, there is no reason that the application on full
scale practical problems would give any trouble.

The fact that we reposition a control point along a line is not really a
limitation. In most cases it is preferred to move a control point at right
angles to the curve at that point. And otherwise it is easy to combine the
feasible repositioning sets along different lines into an approximated feasible
repositioning area for a control point.

In Section 6.1 we extended the repositioning principle from B-Splines to
NURBS curves. There are more options when working with NURBS curves
though. The difference between NURBS and B-Splines is the set of weights
that NURBS curves use. If we want to use the extra flexibility that NURBS
curves get from these weights, we should allow not only control point repo-
sitionings, but also weight changes.

Further it should be noted that the developed calculation method for fea-
sible repositioning sets is only usable for the vehicle model presented in
Section 3.1. However, almost all FROG vehicles can be modeled by the pre-
sented model.

The feasible repositioning sets find a nice application in the path construc-
tion method presented in Section 7. This construction method is not univer-
sally applicable. It is not very suitable for the construction of paths along
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the winding roads we usually find in everyday traffic. But it is very good
for industrial applications where the road system is less complex, which is
currently the main field of application for FROG.

The presented construction method was developed from a principle used by
FROG. The designer would manually add the intermediate points that lie
between the two endpoints, and the top point. We put this into a control
point scheme to make sure that the positions would be correct, and to take
the work out of the hands of the designer. Further we added the control
points outside the endpoints to be able to merge curves together without
complications. Finally we researched the scheme to find the best values for
its parameters.

Summarizing, we developed the following tools for B-Spline paths:

• A solution of the internal constraint problem through the calculation
of feasible repositioning sets.

• A user friendly path construction method for industrial applications
that can use feasible repositioning sets to construct a feasible path.

Constructing vehicle paths by hand is an enourmous task, and very time
consuming. The developed tools can reduce the time to produce feasible
vehicle paths greatly.

The most interesting directions for further research are:

• Complement the method to calculate feasible repositioning sets, with
a method to calculate feasible intervals for weights in NURBS curves.

• Extend the path construction method with some of the options men-
tioned in Section 7.4.

• Develop tools to solve the external constraint problem.

The first two of these research directions are further developments of the re-
search we have done. When completed they make the methods we developed
in this report even more flexible.

The development of a solution to the external constraint problem is the next
big step in the direction of the ultimate goal. From here we can continue by
quantifying what is a good feasible path, and what is a bad one, and finally
combine the results together with our internal constraint research into a
solver algorithm that automatically constructs a good path.
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A Single Bend Curve Shaping

This section shows plots of the resulting curve when we use the yellow shap-
ing points in the control point scheme, introduced in Section 7.1.1, to shape
the curve.

The control point scheme we use is the following. The endpoints are given by
E1 = (−9, 0) and E2 = (9, 0). L1 is the line through E1 and S, and L2 is the
line through E2 and S, where S is such that ||S−E1||2 = ||S−E2||2 = 12.

Let d′1 and d′2 denote the fractions d1 and d2 are of ||S−E1||2, and let d′3
and d′4 denote the fractions d3 and d4 are of ||S−E2||2, i.e., d′i = di/12 for
i = 1, . . . , 4. As a reference we use d′3 = d′4 = 1/4 in all plots. The values d′1
and d′2 are varied to show how the position of the shaping points influences
the shape of curve.

Each choice for the positions of the shaping points is accompanied by three
plots. The top plot shows the control points scheme and the resulting bend
curve. The middle plot displays the curvature of the curve with upper and
lower bounds. And the bottom plot shows the first derivative of the curvature
with upper and lower bound functions. The bounds on the curvature and
its derivative are calculated using the vehicle parameters

W = 2 , φmax = −φmin = π/4 , ωmax = −ωmin = 2 , vmin = 10 .

Black asterisks are used to indicate the position of knots in the plots.
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Figure 16: Curve Shaping: d′1 = 1/4, d′2 = 1/4
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Figure 17: Curve Shaping: d′1 = 1/20, d′2 = 1/20
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Figure 18: Curve Shaping: d′1 = 1/20, d′2 = 9/20
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Figure 19: Curve Shaping: d′1 = 1/20, d′2 = 18/20

−15 −10 −5 0 5 10 15

−4

−2

0

2

4

6

8

10

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

−0.5

0

0.5

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

−10

−5

0

5

10

u 10
u 13

C(u)

κ (u)

κ(u)

du

Figure 20: Curve Shaping: d′1 = 9/20, d′2 = 1/20
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Figure 21: Curve Shaping: d′1 = 1/2, d′2 = 9/20
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Figure 22: Curve Shaping: d′1 = 18/10, d′2 = 1/20



REFERENCES 52

References

[dB01] Carl de Boor. A Practical Guide to Splines. Springer-Verlag, New
York, revised edition, 2001.

[Ide05] Reijer Idema. Optimal path synthesis for automated guided vehicles:
Preliminary research. Master’s thesis, Delft University of Technol-
ogy, 2005.

[PT97] Les Piegl and Wayne Tiller. The NURBS Book. Springer-Verlag,
Berlin, second edition, 1997.


