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Introduction

Magnetic Resonance Imaging (MRI) is an imaging technique which produces three dimensional detailed
anatomical images. It is one of the most powerful non-invasive technologies available at the current mo-
ment, but unfortunately it is also extremely expensive. Superconducting magnets are used in conventional
MRI scanner which produce very high magnetic fields and guarantee high quality resulting images. These
magnets have a nominal cost of $ 1M per Tesla (T) of magnetic field, and scanners in common use require 1.5
or 3 T [16]. Furthermore, the generation of such a strong magnetic field produces a tremendous amount of
heat. For this reason, cooling is required, which is done using liquid helium, and requires a lot of energy [11].

Furthermore, a high level of expertise is required for operation and repair, making the scanners completely
out of reach for many communities, especially in low-development countries. A significant reduction in cost
is possible by eliminating the superconducting magnet from the MRI system, but this comes with a large
reduction in available magnetic field strength [13].

For the past four years teams at the TU Delft, Leiden University Medical Center (LUMC), Pennsylvania
State University (PSU) and Mbarara University of Science and Technology (MUST) have been working on
developing a low-cost, portable MRI scan with a magnetic field in the milliTesla (mT) range (∼ 50 mT). In
Figure 1 the scanner currently at LUMC. The main motivation behind this scanner lies in the will to be able to
export these scanner to African countries, such as Uganda, in order to make it possible to detect hydrocephalus
in children and newborns.

In particular, the CURE children’s hospital in Uganda, specialized in the detection and treatment of infant
hydrocephalus, uses Computed Tomography (CT) brain imaging, the use of which is potentially dangerous for
developing children due to X-ray radiation.

Figure 1: LUMC MRI scanner during a measurement of a phantom (an apple, in this case).
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Hydrocephalus (from the Greek ‘hydro’, meaning water, and ‘cephalus’, head) is a condition of which the
primary characteristic is excessive accumulation of fluid in the brain. The ‘water’ is actually cerebrospinal fluid
(CSF), a clear fluid that surrounds the brain and spinal cord [1]. The build-up of this liquid causes a widening
of the brain ventricles, which in turn creates potentially harmful pressure on the tissues of the brain. Without
treatment, death or permanent disability may occur [1].

It is estimated that hundreds of thousands of children in sub-Saharan Africa develop hydrocephalus every
year, with 1,000 to 2,000 cases in Uganda alone [11].

Motivation

The motivation for this literature review comes from the will to explore possibilities to improve both the
resolution and the scanning times for the MRI scanner at LUMC. Indeed, the major problem with such low-field
MRI systems is simply signal-to-noise ratio (SNR), since reducing the magnetic field strength from a typical
clinical strength of 1.5 T to ∼ 50 mT comes with a several hundred fold reduction in SNR [13]. Furthermore,
it is also crucial to be able to reduce the scanning time as much as possible, in order to account for possible
(likely) movements from the subject scanned, especially because the goal is to be able to effectively scan
children and even newborns. Simultaneously, the image quality must be high enough to allow to detect signs
of hydrocephalus.

In [6] Super Resolution Reconstruction (SRR) techniques were already presented as a possibility to reach
these goals. Unfortunately, by the time this research was carried out, it was not possible yet to generate proper
images using the scanner at LUMC or PSU, hence it was not possible to test SRR techniques on actually working
low-field machines. Since the start of the low-field MRI project major progress has been made, and it is now
possible to do tests on real data (see Figure 2), which is the first innovation with respect to the previous work.

(a) (b) (c)

Figure 2: MRI scans of a pear, shifted of 1.7 cm one from the other. yz plain. Data acquired on 28-01-20.

Furthermore, as appears clear from Figure 2, we only have enough intensity in the central part of the scan.
This is due to the small Field of View (FoV), but also to inhomogeneities in the magnetic field and gradient
non-linearities along the bore of the scanner. This implies that, in order to have a complete observation of
a subject (if the subject is bigger than the FoV), more than one scan is needed and those scans need to be
combined.

In order to acquire multiple scans within a shorter time, it is possible to coarsen the resolution in the
through-plane direction. The slice thickness can be substantially higher than the in-plane resolution in order
to increase the Signal to Noise Ratio (SNR) [15]. However, even if the scanned subject fits in the FoV, there is a
great advantage of multi slice images, compared to full 3D acquisitions. That is that it is possible to interleave
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the acquisition of slices, which makes it possible to record multi-slice images significantly faster than full 3D
images with the same resolution [15].

It has also been shown by several authors how, for a given acquisition time, it is possible to obtain super
resolution reconstructed images which have a higher SNR than images directly acquired at the same resolution
[17].

Hence, the idea is to acquire multiple scans within a short time by coarsening the resolution in the through-
plane direction, and then combine those scans into a high resolution image with isotropic voxels. This would
result in a significant step forward on the path of reducing the scanning time and improve the quality of the
images. That is why the focus of this research will be on SRR techniques, which will be tested on real data
produced by LUMC low-field MRI scanner.

Sections Outline

After the Introduction, Section 1 covers the basics of the working of a conventional MRI scanner, together with
some information on the low-field version at LUMC. Next, in Section 2 and 3 respectively, the standard Super
Resolution Reconstruction and some solution methods are presented. Section 4 contains a few details about
the data used for the initial experiments, which are described together with the current results in Section 5.
Finally, Section 6 focuses on the research questions for this thesis project and ideas for its development.
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1 MRI Background

In this section we will briefly and concisely describe the process which allows us to obtain 2D and 3D data
from a conventional MRI scanner. Finally, we will make some observations to put in relation what was said
with the low-field MRI scanner at LUMC. The section is mainly based on [12].

1.1 Form of the Signal

MRI scanners use the body’s natural magnetic properties to produce detailed images from any part of the
body [4]. The strong magnetic field inside the scanner has an effect on the body by forcing the protons in
the hydrogen molecules to align with that field. This uniform alignment creates a magnetic vector oriented
along the axis of the MRI scanner [4]. When a radiofrequency current is added to the magnetic field, the
magnetic vector is deflected. When the radiofrequency source is switched off the magnetic vector returns to
its resting state (the protons realign with the magnetic field). This process is called free precession, and it
causes a receiving signal to be emitted, and from this signal images are obtained.

An MRI scanner is made of three components: a main magnet, a magnetic field gradient system and a
Radio Frequency (RF) system.
The main magnet generates the strong, uniform static magnetic field B0. The gradient system is made of three
orthogonal coils, which serve the purpose of generating time-varying magnetic fields which vary linearly in
each spatial dimension. Finally, the RF system is made of a transmitter coil and a receiver coil. The first
generates the B1 field (also known as RF pulse), which is responsible for exciting the electron spins in the
object (or person) that is to be imaged [6], while the latter transforms the energy released as the protons
realign with the magnetic field into a signal.

The form of the receiving signal is

S(t) =
∫

object
Mxy(r,0)e

−iγ∆B(r)tdr, (1.1)

where M is the net magnetization. The net magnetization vector in MRI is the summation of all the magnetic
moments of the individual hydrogen nuclei. A parallel and antiparallel hydrogen nuclei have equal but op-
posite magnetic moments and cancel each other out [3]. However, a parallel alignment constitutes a lower
energy state than an antiparallel alignment. Therefore, spins will be more likely to assume the parallel align-
ment [6], which means there are always slightly more hydrogen nuclei parallel to B0. This slight difference
constitutes the net magnetization vector M . For an extensive background on the derivation of the signal
model, the reader is referred to [12].

1.2 Spatial Information Encoding

For 2D imaging, MRI scanners turn the 3D imaged object into a 2D image. In order to do so, a slice has to be
selected and only the hydrogen protons in that slice will be excited. This selective excitation is done through
two components: a gradient field and a shaped RF pulse. A RF pulse can only be frequency selective, and
protons at different spatial locations will be excited in the same way if they resonate at the same frequency.
This means that the RF pulse has to be made spatially selected by making the protons resonance frequency
position-dependent. A way to do so is to augment the B0-field with a linear gradient field during the excitation
period.

After the RF pulse, spatial information can be encoded into the signal during the free precession period,
which we mentioned earlier. Since the signal is in the form of a complex exponential, there are essentially
two ways to encode this information: frequency encoding and phase encoding [12].

Frequency encoding makes the oscillation frequency of an activated MR signal linearly dependent on its
spatial origin, and it is used to determine one axis in the xy-plane of the selected slice. This is done by applying
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a linear gradient field to the magnetic field after the RF pulse, for instance a gradient Gx in the x-direction.
As thoroughly described in [12], this leads to the signal

S(t) =
"

object
ρ(x,y)e−iγGxxtdxdy. (1.2)

Because the magnetic field strength only varies in one direction, Equation 1.2 enables us to distinguish
between different locations along the x-direction only. For the two-dimensional spatial localisation, phase
encoding is needed.

The basic idea behind phase encoding is to pre-frequency encode the signal for a short time interval. After
an RF pulse, a phase-encoding gradient Gy is turned on for a short interval Tpe, and then turned off. During
the interval 0 ≤ t ≤ Tpe, the local signal is frequency encoded. As a result of this frequency encoding, signals
from different y-positions accumulate different phase angles after a time interval Tpe. At time Tpe, the signal
will have an initial phase angle

ϕ(y) = −γGyyTpe (1.3)

ϕ(y) is linearly dependent on the position y, so the signal is phase-encoded.
After demodulation (i.e. removal of the carrier signal e−iω0t), we have

S(t) =
"

object
ρ(x,y)e−iγGyyTpedxdy. (1.4)

Combined with the previous signal model, we can now determine both the x- and y-coordinates of each
signal component. So if a frequency-encoding gradient is turned on in the x-direction and a phase-encoding
gradient in the y-direction, we obtain

S(t) =
"

object
ρ(x,y)e−i(γGxxt+γGyyTpe)dxdy. (1.5)

It is possible to rewrite the signal in the following form

S(kx, ky) =
"

object
ρ(x,y)e−i(kxx+kyy)dxdy (1.6)

by performing the transformation {
kx = γGxt
ky = γGyTpe

(1.7)

Hence, we expressed the signal in the so-called k-space notation. k-space is an abstract concept and refers
to a data matrix containing the raw MRI data [2].

1.3 2D Image Reconstruction

Since we are imaging a 3D object, of which we have selected one slice, ρ will actually also depend on z, i.e
ρ(x,y,z). Hence, 1.6 needs to be replaced by

S(kx, ky) =
"

object

∫
slice

ρ(x,y,z)e−i(kxx+kyy)dxdydz. (1.8)

Denoting the desired image function by I(x,y), in the slice-selective imaging case from [12] we have that

I(x,y) =
∫ z0+∆z/2

z0−∆z/2
ρ(x,y,z)dz, (1.9)
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Substituting 1.9 to ρ(x,y) in 1.8, the basic imaging equation is the 2D Fourier transform

S(kx, ky) =
"

object
I(x,y)e−i2π(kxx+kyy)dxdy, (1.10)

where now 
kx =

γ

2π
Gxt

ky =
γ

2π
GyTpe

(1.11)

A few more observations lead to the final Fourier reconstruction formula

I(x,y) =∆kx∆ky

N/2−1∑
n=−N/2

M/2−1∑
m=−M/2

S
(
n∆kx,m∆ky

)
ei2π(n∆kxx+m∆kyy)

|x| < 1
∆kx

, |y| < 1
∆ky

.

(1.12)

I(x,y) can then be obtained by performing an inverse FFT, i.e. using an inverse Fast Fourier Transform algo-
rithm.

1.4 3D Case

A future goal for this thesis project is to apply SRR to 3D data. The challenge in three-dimensional imaging
lies in sorting out all the signal components from different spatial locations. This could be done by using
slice-selective excitations for localization in the third dimension, leaving the other two dimensions to be done
with encoding methods. Alternatively, it is possible to encode information along all three dimensions into the
activated signals. Because of the nature of MRI signals, one dimension would be frequency encoded, while
the other two could be either phase or frequency encoded. The general imaging equation for 3D would be in
any case of the following form

S
(
kx, ky , kz

)
=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
I(x,y,z)e−i2π(kxx+kyy+kzz)dxdydz. (1.13)

It is important to note that the description of MRI given in this section also applies to low-field MRI, with some
variations described in [13]. In particular, the image is obtained from the signal by performing an inverse FFT
for both the conventional and the low-field MRI. Unfortunately, as mentioned in the Introduction, towards the
edge of the scanner our gradients deviate from a linear pattern. Especially the gradient in the z-direction is
very nonlinear towards the edges, which is consistent with the images in Figure 2. Moreover, the background
field is more inhomogeneous and there is much more noise in the signal of the low-field scanner. All these
factors combined result in the relationship between signal and image not to be perfectly governed by an FFT.
As a consequence, we can notice irregularities and artifacts in the images.
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2 Super Resolution Reconstruction

In this section the idea behind Super Resolution Reconstruction (SRR) is explained and the standard technique
is presented. This section is mainly based on [6, 14], as well on some other sources which will be cited later
in the text.

SRR techniques are devoted to the restoration of high resolution (HR) images from a set of several degraded
and aliased low resolution (LR) samples. The idea is to have multiple LR observations of the same "scene",
and to use the non-redundant information contained in those images in order to generate a new one. This
ideally results in a HR image in which high frequency components are enhanced and lost ones are retrieved.

In order for each of these LR images to contain new information, we need them to be shifted with subpixel
precision one from the other. Indeed, if we would have integer shifts, every image would contain the same
information and therefore it would not be possible to retrieve the desired HR image.

Figure 3: Sub-pixel shifts provide new information and lead to HR images. Source [20].

Depending on the kind of scene which is observed and by the mechanism of the observation (e.g a camera,
an MRI scan, etc...), those sub-pixel shifts may be due to uncontrolled motions, like movements of the objects,
or controlled motions, like images acquired from orbiting satellites. If those motions, whether controlled or
not, can be estimated with sub-pixel accuracy, it is possible to combine the down-sampled LR images into an
HR image.

2.1 Observation Model

In order to talk about SRR techniques, the first step to be taken is the formulation of an observation model
which links the original HR images to the LR images. We first introduce the following notation. X and Yk ,
k = 1, . . . ,p denote the L1N1 × L2N2 HR image and the N1 ×N2 LR images respectively in matrix form. L1
and L2 represent the down-sampling factors for the horizontal and vertical directions respectively. x and yk ,
k = 1, . . . , P denote instead the same images, but in lexicographical vector form. Hence, for instance we have
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Figure 4: Scheme of the acquisition process. Source [17].

x = vec(X) =


x1
...

xN

 ,
with N = L1N1 × L2N2 and where xi is the ith column of X. In the following observation model it is

assumed that x remains constant during the acquisition of the samples, except for motions and degradations
allowed by the model. In Figure 4 a scheme of the acquisition process is shown. From a mathematical point
of view, the model can be represented as

yk =DkBkGkx+ vk , k = 1, . . . , P . (2.1)

In 2.1, vk is the noise, which is usually assumed to be independent, identically distributed Gaussian noise.
Dk ,Bk and Gk are three matrices that represent the transformations that lead from the original scene x to
the LR images yk , with dimensions N1N2 × L1N1L2N2, L1N1L2N2 × L1N1L2N2 and L1N1L2N2 × L1N1L2N2
respectively. As shown in 4, first a geometric deformation Gk is applied, which can be a sub-pixel translation,
rotation, or both. Bk is the blurring matrix, which models the blurring occurring during the imaging process.
This is done through the Point Spread Function (PSF). The PSF is a function that describes the blurring of one
pixel over its surrounding pixels [6]. Finally, Dk models the down-sampling operator. It is usually assumed
that every LR image has the same down-sampling factor and that the blurring operator is spatially invariant.
So Dk and Bk do not actually depend on k. Hence, the system in 2.1 can be replaced by

yk =DBGkx+ vk , k = 1, . . . , P . (2.2)

Expressing the matrix product in the RHS of 2.2 as a single matrix yields

yk = Akx+ vk , k = 1, . . . , P . (2.3)

If we now vertically concatenate the vectors yk , the matrices Ak and the noise vectors vk as follows

y =


y1
...
yP

 , A =


A1
...
AP

 , v =


v1
...
vP

 ,
we obtain the final system

y = Ax+ v, (2.4)
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where the matrixA has dimensionsN1N2P ×L1N1L2N2, y and v areN1N2P ×1 vectors, and x is a L1N1L2N2×
1 vector.

The details concerning the implementation of the matrices themselves will be explored in Section 5.

2.2 Least-Squares Formulation

The aim of SRR is to solve system 2.4 for x, therefore "inverting" the process which leads to the blurred, down-
sampled LR images and retrieving the HR image. We can immediately notice that the matrix A in 2.4 is not
necessarily square, unless P = L1L2.

We recall the following definitions for a system

Ax = y, with A ∈ Cm×n, x ∈ Rn, b ∈ Cm. (2.5)

Definition 2.1. A linear system is called underdetermined if the number of unknown variables exceeds the
number of equations (m < n).

Definition 2.2. A system is called formally determined if the number of unknowns is the same as the number
of equations. (m = n)

Definition 2.3. A system is called overdetermined if there are more equations than unknowns (m > n) [19].

From these we can tell that system 2.4 might have zero, one, or infinitely many solutions. In particular, if
A is invertible, then a determined system has a unique solution.
When A is not square, a system equivalent to 2.5 can be solved:

A∗Ax = A∗y. (2.6)

This system is Hermitian semi-positive definite (semi HPD) and it is called the system of normal equations
associated with the least-squares problem

min
x
‖y −Ax‖22 (2.7)

Equation 2.6 is generally used when dealing with overdetermined systems. In this case, if the system is
consistent (i.e. it has at least one solution), rank(A) = n with m ≥ n and A∗A is invertible, then the least
squares minimum norm (LSMN) solution is given by

xls = (A∗A)−1A∗b. (2.8)

Equation 2.8 is called LSMN because it is one particular solution of 2.7 which minimizes both ‖y −Ax‖22 and
the 2-norm of the solution itself.

Most of the times when dealing with SRR for MRI data, our system will be underdetermined. Similarly as
we had before, if the system is consistent and rank(A) =m with m ≤ n, the LSMN solution is

xls = A
∗(AA∗)−1y. (2.9)

Indeed, if y = Ax, we can set x = A∗u. So we will have

y = Ax ⇔ y = AA∗u.

Since A is full rank, AA∗ is invertible. Thus, we have u = (AA∗)−1y ⇒ x = A∗(AA∗)−1y.
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A first attempt of determining 2.9 could then be done by computing the pseudoinverse of A. In particular,
we will compute the Moore-Penrose inverse. We recall that the SVD of A is

A =UΣW ∗, (2.10)

with U , Σ and V respectively the left singular vectors, the singular values σi and the right singular vectors of
A.
Given 2.10, the Moore-Penrose inverse of A is A+ = WΣ+U ∗, and x = A+y is our xls. Note that W + is the
pseudoinverse of W , defined as

W + =
[
W +
m 0
0 0

]
, W +

m = diag(1/σ1,1/σ2, . . . ,1/σr ), where r = rank(A). (2.11)

However, this naive method becomes unreliable when having large, noisy systems with very small singular
values. xls is equal to

xls = A
+y =WΣ+U ∗y = x+WΣ+U ∗v, (2.12)

where we used that y = Ax + v. The last term in the equation is called inverted noise, and it can be explicitly
computed as

WΣ+U ∗v =
r∑
i=1

u∗iv

σi
wi (2.13)

It appears clear that if the singular values are too close to 0, the inverted noise will grow and contaminate the
reconstructed image.

2.3 Regularization

As we have seen, naive solutions like the pseudoinverse method lead to images potentially heavily corrupted
by noise. Furthermore, we introduce the following definition.

According to Jacques Hadamard, a problem is well-posed if:

1. A solution exists

2. The solution is unique

3. The solution’s behaviour changes continuously with the initial conditions.

A problem is said to be ill-posed if one or more of these properties do not hold. System 2.4 is ill-posed,
as inverse problems typically are. Indeed, the condition number of matrix A becomes very large, and A is
said to be ill-conditioned. As a consequence, solutions become very sensitive to small perturbations in the
right-hand side y. This is why we introduce the idea of regularization. Through the regularization term, we
add additional information about x, which results in more feasible solutions.

2.3.1 Tikhonov Regularization

Adding the Tikhonov regularization term to 2.7 yields the following new minimization problem

min
x

1
2
‖y −Ax‖22 +

1
2
λ‖Fx‖22, (2.14)
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where λ is the regularization parameter and F is the regularization matrix, typically a discrete finite difference
approximation of a derivative operator. In the context of MRI scans, it can in particular be chosen to be a first-
order difference matrix. In MRI images it is very likely for neighbouring pixels to have the same value, and
such a choice of a regularization matrix penalizes jumps between pixels.
The parameter λ gives the balance between minimizing ‖y −Ax‖22 and minimizing ‖Fx‖22, hence the balance
between a solution which fits the data well and enforcing prior information on the solution.

There exist several ways to determine the value of λ. One of the most popular choices is to employ the
L−curve method [8].
The L-curve is a log-log-plot of ‖y−Ax‖2 versus ‖Fx‖2, with λ as the parameter. The curve basically consists of
two parts: a “flat” part where the regularization errors dominates, and a “steep” part where the perturbation
error dominates. The optimal regularization parameter is supposed to lie somewhere near the L-curve’s corner.
The scale is chosen as such because it emphasizes the two parts and the corner of the curve.

Observe now that the objective function of minimization problem 2.14 is a convex function (linear com-
bination of composition of l2-norms), hence by posing its gradient equal to 0 we can find the global optimal
solution to our problem. Therefore we have

(A∗A+λF∗F)x = A∗y (2.15)

which leads to

x = (A∗A+λF∗F)−1A∗y. (2.16)

Unfortunately it is extremely computationally demanding to use the previous equation to find x by inverting
A∗A + λF∗F. In fact, if X is a n ×m image, for what we have observed in Section 2.1, A∗A + λF∗F will be a
nm×nm matrix. So if X is a HR image, then the previous matrix becomes very large.

2.3.2 Total Variation Regularization

Another possible regularization is the Total Variation (TV) regularization, which leads to the following mini-
mization problem

min
x

1
2
‖y −Ax‖22 +

1
2
λ‖Fx‖1. (2.17)

Here F is a first-order difference matrix defined such that

‖Fx‖1 =
n∑
k=1

m∑
l=2

∣∣∣Xl,k −Xl−1,k ∣∣∣+ m∑
l=1

n∑
k=2

∣∣∣Xl,k −Xl,k−1∣∣∣ . (2.18)

Similarly to the Tikhonov case, this choice of F penalizes jumps between neighbouring pixels, even though
not as harshly. Indeed, in the minimization problem 2.14, the l2-norm makes the regularisation term grow
quadratically with the difference in value between neighbouring pixels, while in 2.17 the penalization grows
linearly, due to the l1-norm.
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3 Solution Methods

In the following section we will present some solution methods for the standard SRR problem. The main
sources for this section are [6, 18].

3.1 Krylov-Subspace Iterative Methods for Tikhonov Regularization

As we have seen in the previous section, it is not feasible to directly compute x as in 2.16 when dealing with
high resolution images. Nevertheless, it is still possible to solve 2.15 by using iterative solvers, and in particular
Krylov-subspace iterative solvers. From [18] we have the following definition

Definition 3.1. Given a matrix A ∈ Rn×n and a vector r0 ∈ Rn, the space Kk(A;r0) defined as

Kk(A;r0) = span
{
r0,Ar0, . . . ,A

i−1r0
}
. (3.1)

is called the Krylov-space of dimension k corresponding to matrix A and initial residual r0.

If we now consider a basic iterative method for a system Au = f which follows the recursion

uk+1 = uk + (f −Auk) = uk + rk

we can observe how
uk ∈ u0 + span

{
r0,Ar0, . . . , (A)k−1 r0

}
.

Therefore a uk calculated by a basic iterative method is an element of u0 +Kk
(
A;r0

)
.

The Conjugate Gradient (CG) method is an iterative method developed by Hestenes and Stiefel [10]. It is
suitable for solving linear systems in the form Au = f , where A is a square HPD matrix.

In the following sections we will describe the CG and some of its variations. We will follow [18] and make
the assumptions that M = I , and u0 = 0 so r0 = f . These assumptions are not necessary for the CG method
itself, but are useful to facilitate the formulas.

3.1.1 Generalization of the Problem

In Section 2.3.1 we have considered minimization problem 2.14

min
x

1
2
‖y −Ax‖22 +

1
2
λ‖Fx‖22.

As carefully explained in [6], this is a special form of the following problem

min
x

1
2
‖y −Ax‖2C−1 +

1
2
λ‖x‖2R, (3.2)

where R = F∗F and C is the covariance matrix of the noise. Similarly to what we have seen before, the
optimality condition for 3.2 is

(A∗C−1A+λR)x = A∗C−1y (3.3)

We can now observe that 3.2 can be formulated as a constrained optimisation problem

min
r,x

1
2
‖r‖2C +

1
2
λ‖x‖2R

subject to r = C−1(y −Ax)
(3.4)
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Indeed,
‖r‖2C = r ∗Cr = (y −Ax)∗C−1(y −Ax) = ‖y −Ax‖2C−1

If we now use the technique of lagrangian multipliers on 3.4, we find

r = C−1(y −Ax), λRx = A∗r, (3.5)

which if λR is invertible yields

x =
1
λ
R−1A∗r,

(1
λ
AR−1A∗ +C

)
r = y (3.6)

If we now define z :=
1
λ
r, we can extend the result to the case λ = 0 and have

(AR−1A∗ +λC)z = y, x = R−1A∗z (3.7)

From the equivalence between 3.2 and 3.4 follows the one between 3.3 and 3.7.

3.1.2 Standard CG

CG is an iterative solver which finds a solution to the following minimization problem∥∥∥u−uk∥∥∥
A
= min

y∈Kk(A;r0)
‖u− y‖A (3.8)

Thus the method builds a sequence of improving approximate solution vectors u0,u1, . . . and eventually it finds
uk in the Krylov subspace Kk(A; r0) such that (u−uk)∗A(u−uk) is minimized (i.e. in the A-norm).
At each step, the residual is computed as

sk = f −Auk . (3.9)

Concerning the rate of convergence of the CG method, from [18] we have the following theorem

Theorem 3.1. The iterates uk obtained from the CG algorithm satisfy the following inequality:

‖u−uk‖A ≤ 2

√κ2(A)− 1√
κ2(A) + 1

k ‖u−u0‖A , (3.10)

where κ2(A) is the condition number of the matrix A in the 2-norm.

Hence, a smaller condition number implies a faster convergence. In Algorithm 1 the complete standard
CG is shown.

14



Algorithm 1 Standard CG

Require: A ∈ Cn×n, u0 ∈ Cn, f ∈ Cn
Ensure: Approximate solution uk such that ‖f −Auk‖ ≤ TOL

1: procedure CG(A,f ) . Solve Au = f
2: Initialize: s0 = f −Au0; p0 = s0; γ0 = s∗0s0; k = 0;
3: while

√
γk > TOL and k < kmax do

4: ξk = p∗kApk
5: αk =

γk
ξk

6: uk+1 = uk +αkpk
7: sk+1 = sk −αkApk
8: γk+1 = s∗k+1sk+1
9: βk =

γk+1
γk

10: pk+1 = sk+1 + βkpk
11: k = k +1
12: end while
13: end procedure

3.1.3 CGLS

When dealing with a systemAu = f whereA is not hermitian positive definite, or not even square, it is possible
to use a variant of the CG method to solve the system, namely the CGLS. This variant of the CG is obtained
by applying the standard CG to the system of normal equations A∗Au = A∗f . Indeed, even if A is not, A∗A is
HPD and the CG can be applied. As for the standard CG, the CGLS minimizes the 2−norm of the residual at
every iteration. In fact

‖ek‖A∗A = ‖u−uk‖A∗A = (u−uk)∗A∗A (u−uk) = (f −Auk)∗ (f −Auk) = ‖sk‖22 (3.11)

So the error is minimized in the A∗A-norm, while the residual in the 2−norm.
In order to enhance the stability of the algorithm, it is possible to make some modifications [6]. Indeed, if we
want to include Tikhonov regularization and solve minimization problem 3.2, we want to apply the CG to 3.3
instead of the standard normal equations. So in the general form Au = f we substitute A with A∗C−1A+λR,
u by x and f by A∗C−1y. From 3.4 we define

rk := C
−1(y −Axk)

and we can introduce a recursion for the residual

sk+1 = A
∗C−1y − (A∗C−1A+λR)xk+1 = A

∗C−1(y −Axk+1)−λRxk+1
= A∗rk+1 −λRxk+1

(3.12)

The full algorithm for solving 3.3 is shown in Algorithm 2.
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Algorithm 2 CGLS

Require: A ∈ Cm×n, C ∈ Cm×m, R ∈ Cn×n, x0 ∈ Cn, y ∈ Cm, λ ∈ R≥0
Ensure: Approximate solution xk such that ‖A∗rk −λRxk‖ ≤ TOL

1: procedure CGLS(A,y) . Solve Ax = y
2: Initialize: r0 = C−1(y −Ax0); s0 = A∗r0 −λRx0; p0 = s0; q0 = Ap0 ;γ0 = s∗0s0; k = 0;
3: while

√
γk > TOL and k < kmax do

4: ξk = q∗kC
−1qk +λp∗kRpk

5: αk =
γk
ξk

6: xk+1 = xk +αkpk
7: Rxk+1 = Rxk +αkRpk
8: rk+1 = rk −αkC−1qk
9: sk+1 = A∗rk+1 −λRxk+1

10: γk+1 = s∗k+1sk+1
11: βk =

γk+1
γk

12: pk+1 = sk+1 + βkpk
13: qk+1 = Apk+1
14: k = k +1
15: end while
16: end procedure

3.1.4 CGNE

CGLS is not the only variant of the conjugate gradient. The Conjugate Gradient Normal Error (CGNE) denotes
the CG applied to the system AA∗z = y, where we set x = A∗z.
An interesting fact to notice about CGNE is that, unlike CGLS, the error ek is minimized in the 2-norm. In fact,

‖x − xk‖2AA∗ = (A (z − zk))∗ (A (z − zk)) = (x − xk)∗ (x − xk) = ‖ek‖22 (3.13)

This method is a natural choice when dealing with underdetermined problems, which is quite often the
case when talking about SRR, since it is not always possible to have access to enough data. The reason lies
in the fact that for an underdeterminate problem AA∗ has a lower dimension than A∗A. Algorithm shows the
complete pseudo-code for CGNE.
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Algorithm 3 CGNE

Require: A ∈ Cm×n, C ∈ Cm×m, R ∈ Cn×n, x0 ∈ Cn, y ∈ Cm, λ ∈ R≥0
Ensure: Approximate solution xk such that

∥∥∥y −Axk −Crk∥∥∥ ≤ TOL
1: procedure CGNE(A,y) . Solve Ax = y
2: if λ > 0 then

3: x0 =
1
λ
R−1A∗r0

4: else
5: x0 = 0; r0 = 0
6: end if
7: Initialize: s0 = y −Ax0 −Cr0; p0 = s0; q0 = A∗p0 ;γ0 = s∗0s0; k = 0;
8: while

√
γk > TOL and k < kmax do

9: ξk = q∗kR
−1qk +λp∗kCpk

10: αk =
γk
ξk

11: xk+1 = xk +αkR−1qk
12: rk+1 = rk +λαkpk
13: sk+1 = sk −αk(AR−1qk +λCpk)
14: γk+1 = s∗k+1sk+1
15: βk =

γk+1
γk

16: pk+1 = sk+1 + βkpk
17: qk+1 = A∗pk+1
18: k = k +1
19: end while
20: end procedure

3.2 Methods of Total Variation

In the previous sections we presented methods to solve 3.3, thus finding the optimal solution for minimization
problem 3.2 with Tikhonov regularization. Nevertheless, in section 2.3.2 we talked about another kind of
regularization, Total Variation.
When dealing with this kind of regularization, it’s not possible to directly apply CG or its variants due to the
presence of the l1-penalty. ADMM (Alternating Directions Method of Multipliers) is a possible method to solve
minimization problem 2.17, which we recall being

min
x

1
2
‖y −Ax‖22 +

1
2
λ‖Fx‖1.

In [5] ADMM is explained. First, the objective function is split into two functions

h(x) :=
1
2
‖y −Ax‖22, g(Fx) :=

λ
2
‖Fx‖1,

so that the minimization problem can be written as

min
x,v

h(x) + g(v)

subject to Fx = v.
(3.14)

The idea behind this method is to approximately perform the optimization of (x,v) in two steps using alternat-
ing minimization of x and v. Despite not giving exactly the same result as 2.17 would give, it should converge
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to the same solution and much easier to obtain. Indeed, the functions h(x) and g(v) are straightforward to
minimize individually.

18



4 Dataset

On the 28th of January 2020 some measurements were performed at LUMC using a pear (and some other fruit
and vegetables) as phantom. In Figure 2 of section 1.1 a few samples were already shown, where we can see
how the pear is shifted in the z direction of 1.7 cm.

The data acquired have a resolution of 64 × 64 × 32 in the x, y and z directions respectively. We have
isotropic voxels in the xy plane (2× 2 mm), and anisotropic voxels in the xz and yz planes (2× 4 mm). The
coarser resolution in the z direction helped reducing the scanning times, which is 2 times less than if we had
already acquired the data with voxels of 2× 2× 2 mm.

Unfortunately, the shift between the different samples was too big to be able to apply SRR (which we
remind, requires sub-pixel shifts), which led to new measurements carried out on the 27th of February 2020.
The first results in section 5 were obtained on these data.

Again, a pear and an apple were imaged with isotropic voxels in the xy plane (2×2 mm), and anisotropic
voxels in the xz and yz planes (2× 8 mm). The resolution is 64× 64× 16 pixels. Shifts of 2 mm were made,
thus we obtained 4 measurements shifted of 1/4 of a pixel one from the other (sub-pixel shifts). Furthermore,
a 2×2×2 mm3 sample was acquired, in order to compare the SRR result with it. In this literature review we
will only consider the scans of the apple, leaving the other data for future experiments. Table 1 groups some
data concerning the various measurements. In Appendix A further details about the acquisition parameters
for one of the LR samples.

Table 1: MRI measurements performed at LUMC on 28-01 and 27-02-2020.

Date Object Voxel size Resolution FOV read Shifts N. of scans

28-01-20 Pear 2× 2× 4 mm3 64× 64× 32 128 0,17,34,51,68,85 mm 6

28-01-20 Pointy pepper 2× 2× 4 mm3 64× 64× 32 128 0,17,34,51,68,85 mm 6

27-02-20 Pear 2× 2× 2 mm3 64× 64× 64 128 0 mm 1

27-02-20 Pear 2× 2× 8 mm3 64× 64× 16 128 0,2,4,6 mm 4

27-02-20 Apple 2× 2× 2 mm3 64× 64× 64 128 0 mm 1

27-02-20 Apple 2× 2× 8 mm3 64× 64× 16 128 0,2,4,6 mm 4

(a) xy plane (b) yz plane (c) xz plane

Figure 5: HR apple scan. Position 0.

19



(a) xy plane (b) yz plane (c) xz plane

Figure 6: LR apple scan. Position 0 (0 mm shift).

(a) xy plane (b) yz plane (c) xz plane

Figure 7: LR apple scan. Position 1 (2 mm shift).

(a) xy plane (b) yz plane (c) xz plane

Figure 8: LR apple scan. Position 2 (4 mm shift).
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(a) xy plane (b) yz plane (c) xz plane

Figure 9: LR apple scan. Position 3 (6 mm shift).

5 Initial Results

In this section some preliminary results on both the Shepp-Logan phantom and real data are shown.

5.1 Observation Model

Firstly, we implemented the observation model. The three matrices D, B and Gk in system 2.2 where built.
A shift to the right in the x-direction was chosen as geometric deformation in both cases. Since we are

dealing with gray-scale images, every pixel is identified by a unique value, which normalized is between 0 and
1. When shifting, it is clear that part of the image will go beyond the borders, and on the left we will have
pixels missing. Therefore the images were padded with zeros. That is coherent with the type of data that we
are considering, since in MRI scans the background is black (i.e. pixel value 0) and the central part is the one
generally containing the information.

Having a shift of a in the right direction, we can decompose it into integer and decimal part:

a = bac+ adec. (5.1)

When the image is shifted of a fraction of the pixel length, there will be an overlap between the pixel them-
selves. Given a pixel (i, j) of image X, its new value will be a weighted average of the value of the neighboring
pixels on their left and right. Calling X̃ the shifted image, we have

X̃i,j = (1− adec)Xi,j−bac + adecXi,j−bac−1 (5.2)

The down-sampling was implemented by doing an averaging of neighboring pixels. Having a HR image of
size L1N1 ×L2N2, where L1 and L2 are the down-sampling factors in the y and x direction respectively, then
the down-sampled image is obtained by averaging over L1L2 pixels. In our case, since we only had a shift in
the x-direction, down-sampling was implemented in 1D only, so L2 = 1, L1 = L.

Finally, the blurring was modeled through the PSF. As already mentioned in Section 2.1, the PSF describes
the blurring of one pixel over its surrounding pixels. The function was modeled as a zero-mean Gaussian with
standard deviation σ , as suggested by most articles including [17]. Similarly to the down-sampling operator,
also the blurring was modeled in one direction only. This led to a PSF array p, where pi is given by

pi =
1

√
2πσ2

e
− i2

2σ2 (5.3)
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Figure 10: Down-sampling by averaging when L1 = L2 = 2. Source [14].

In order to obtain the blurred image X, p is convoluted with the image X as described in [9]. The convo-
lution is performed by rotating p of 180

◦
, then placing it on top of the image horizontally so that the central

element in P overlaps with element Xi,j . Finally, the corresponding components are multiplied and the results
are summed, resulting in Xi,j .

An important thing to notice is that when placing p over X, some of the values of the PSF array could not
match with any value in X and go beyond the borders of the image. That is why it is necessary to include
boundary conditions in our discussion. We chose the so-called "Zero Boundary Conditions", hence the image
was padded with zeros. Putting the image X into lexicographic form x as in 2.2, the blurring matrix B was
built so that Bx would result in the blurred image. Below an example of how to obtain the matrix B when X
is a 2× 3 matrix and p has length 5.

p =


p1
p2
p3
p4
p5

 , X =
[
x1 x3 x5
x2 x4 x6

]
, x =



x1
x2
x3
x4
x5
x6


.



x1
x2
x3
x4
x5
x6


=



p3 p2 p1
p3 p2 p1

p4 p3 p2
p4 p3 p2

p5 p4 p3
p5 p4 p3

︸                              ︷︷                              ︸
B



x1
x2
x3
x4
x5
x6


(5.4)

5.2 Phantom

For testing purposes, a 256×256 Shepp-Logan phantom was used as HR image (see Figure 11). Four LR images
were created, by shifting, blurring and down-sampling the HR version. The first was created by blurring and
down-sampling, but no shifting. The other three images had shifts in the x-direction of 0.25,0.5 and 0.75
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pixels with respect to the first. Note that in order to create a LR image which is shifted of a from the original
image, the HR image needs to be shifted of ā = aL, where L is the down-sampling factor. This way, the LR
image resulting from the down-sampling will be shifted of exactly a.

Figure 11: HR Shepp-Logan phantom. 256× 256.

The down-sampling factor was chosen as L = 4, and the standard deviation for the blurring σ = 2. The
final LR images are then 256× 64. The process is illustrated in Figure 12.
The four LR images were then transformed into vectors by lexicographical ordering and stacked, leading to

the vector y of 2.4. The matrices D,B and Gk where multiplied and stacked, resulting in A. y and A have
dimensions respectively 65536×1 and 65536×65536. In fact L∗256∗64 = 65536, just like 256∗256 = 65536.

Firstly, we decided to compare the result of the Python built-in solver for least-squares with sparse matrices
with the result of the CGLS without regularization. The default tolerance for the scipy.sparse.
linalg.lsqr function is 10−8, and it took ∼ 30 sec. to reach that tolerance. Due to the availability of the
original HR image, we were able to compare the reconstructed images not only visually, but also through the
relative error between the reconstructed image xr and the original image x. For the built-in solver, the relative
error in the l1-norm was 0.025. It took the CGLS a tolerance of 10−10, 3702 iterations and ∼ 59 sec. to reach
the same relative error. The resulting images are shown in Figure 13). It is clear that they are qualitatively
comparable from a visual point of view. We notice no significant difference and the results are highly satisfac-
tory.

Table 2: l1 and l2-norm of the relative error between x and xr for CGLS.

λ 10−20 10−15 10−7 10−5

l1 0.031 0.036 0.159 0.244

l2 0.023 0.025 0.065 0.117
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(a) (b)

(c) (d)

Figure 12: From (a) to (d), image is shifted of 3 = 4 ∗ 0.75 pixels, blurred and down-sampled.

Afterwards, we wanted to analyze the results for the CGLS with a second-order difference matrix with
Neumann boundary conditions as he regularization matrix R. The same number of maximum iterations was
used, and the same tolerance of 10−10.
Figure 14 shows four reconstructions for different values of λ, and Table 2 contains the relative errors.
The CGLS performs well for λ = 10−20,10−15, giving visually good results, as well as quite low relative errors.
The features of the HR image are clearly recognizable and the images are very similar to the ones in 13. In
Figure 14c we see how the image starts getting blurrier and in 14d we see the smoothing due to the higher
regularization parameter.

In this particular case we obtain better results by not regularizing or by using a very low λ (which actually
does not yield any regularization). The edges in the resulting images are much sharper in these cases. This
was to be expected, since the original image is not smooth, and regularizing means imposing a certain level
of smoothness on the image.
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(a) (b)

Figure 13: (a) scipy.sparse.linalg.lsqr vs (b) non-regularized CGLS. Relative error in l1-norm: 0.025.

(a) (b)

(c) (d)

Figure 14: From (a) to (d), phantom reconstructions for different values of λ: 10−20,10−1510−7,10−5.

5.3 Real Data

After experimenting with the Shepp-Logan phantom, the next step was using real data. The set of apple scans
described in Section 4 was used. SRR was applied in the yz plane. We have four LR images of size 64 × 16.
Hence, we have again a down-sampling factor L = 4 in the x-direction. The final matrix A is 4096× 4096, y
is a 4096× 1 vector, just like the unknown x.
We took the same steps as in the previous section, by first comparing the non-regularized CGLS with the built-
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in Python solver, and then analyzing the results for the regularized CGLS. Because of the availability of a HR
scan (2 × 2 × 2 voxels), we could compare it with the reconstructed images and again, set our parameter λ
accordingly.

(a) (b)

Figure 15: (a) scipy.sparse.linalg.lsqr vs (b) non-regularized CGLS. Relative error in l1-norm: ∼ 12191.

(a) (b)

(c) (d)

Figure 16: From (a) to (d), apple reconstructions for different values of λ: 10−20,10−6,10−5,10−4.
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We can clearly see from Figure 15 that, unlike the results we had for the phantom, in this situation the
absence of a regularization results in both the algorithms not being able to reconstruct the image. This is also
confirmed by the relative error, being ∼ 12191 in both cases. In Table 3 the relative errors are shown, and we
can notice a steep decrease in the values when going from 16a to 16b. Furthermore, we notice how the values
keep decreasing as the image gets smoother. Image 16d though results too smooth and blurred after a visual
assessment, and the shape of the yz plane of the apple in more recognizable in 16c. However, the colors of
16d (i.e. the pixel values) resembles the ones of Figure 5 slightly more, having less noise in the central row
and a subject with softer color transitions. We deem then that this could be the reason for a lower score for
the last image. We conclude that a value of λ between 10−6 and 10−5 could be a good trade-off.

Overall, we have shown that regularization is certainly needed, hence CGLS outperforms the built-in
Python solver. Image 16c represents a huge improvement with respect to the LR images of Section 4.

There is, of course, room for improvement, as for instance using a more rigorous criterion when choosing
λ and work on the registration. Indeed, the shifts between samples are assumed to be of a certain length, but
we are aware that it is an approximation. The estimation of motion information is referred to as registration
[14]. This is also certainly a reason for the relative error not being as low as it would b expected. Indeed, the
HR image that we are taking into consideration is probably not exactly aligned with the reconstructed image,
resulting in a higher error.

Table 3: l1 and l2-norm of the relative error between x and xr for CGLS.

λ 10−20 10−6 10−5 10−4

l1 12239.943 2.876 2.790 2.718

l2 10222.370 3.090 3.075 3.023
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6 Research Questions

This literature review is part of a thesis research project which aims to give an answer to the following ques-
tions:

1. Main question: Can SRR yield comparable results to images directly acquired in high resolution?

2. Is SRR in the frequency domain a valid approach, and how does it compare to the spatial domain
techniques?

3. Is it possible to obtain comparable or better results than standard techniques when using a Deep Learning
approach?

4. Which of these approaches yields the best results on real data?

Along the way of answering those questions, several steps have to be made. We will now list a few ideas for
each of the research questions, numerated accordingly.

1. Initial results have already been given in Section 5, but there are still several aspects that can be improved
and more methods to implement.

A standard Gaussian kernel has been implemented, but a proper modeling of the Point Spread Function
(PSF) is missing at the moment. Furthermore, it is unclear at the moment how to determine the param-
eters for the kernel, such as the length and the value of the standard deviation, when dealing with real
data.

The L-curve method or other rigorous ways to determine the value of the regularization parameter λ
are yet to be implemented.

Registration should be implemented, and would probably result in a great improvement in the quality
of the images.

The only solver implemented at the moment is CGLS, which solves the minimization problem for Tikhonov
regularization. The next step is to implement CGNE, as well as a solver for Total Variation regularization.

2. Frequency domain approach is described in [14, 20]. Although is it theoretically intuitive, it has been
discarded in favor of spatial domain methods due to some relevant limitations. The observation model
is indeed restricted to only global translational motion and Linear Space Invariant (LSI) blur.

Nevertheless, since we are conducting this research under these very hypotheses, we are interested in
exploring the possibilities of the frequency domain approach in comparison to spatial domain techniques.

3. In 2014 a deep learning method for SRR was first presented [7]. Since then, these techniques have
been greatly explored. We are interested in implementing selected deep learning techniques and draw
a comparison with the previously mentioned standard ones.

4. In order to evaluate the methods a visual analysis was made. Furthermore, when possible the l1 and
l2-norms of the error between HR image and reconstructed image where compared and analyzed as
well. Other Image Quality Assessment (IQA) tools might be used.

Note that the previous side research questions and the steps to pursue them might be subject to modifica-
tions along the way, in order to serve the main question in the best possible way.
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A Measurements 27-02

Acquisition parameter for one sample (LR apple).

90Amplitude = -28
180Amplitude = -22
accumulate = "yes"
acqTime = 3.2
autoPhase = "no"
b1Freq = 2.14882d
bandwidth = 20
dataDirectory = "C:\Users\Low Field\Desktop\20200227 - Super resolution"
dwellTime = 50.0
echoTime = 20e3
etLength = 32
experiment = "TSE3D_V2_1"
expName = "TSE3D_v2.1"
expNr = 16
filter = "no"
filterType = "none"
flatFilter = "yes"
FOVphase1 = 128
FOVphase2 = 128
FOVread = 128
gradCorr = 480
incExpNr = "yes"
kTraject = "In-out"
nPhase1 = 64
nPhase2 = 16
nrPnts = 64
nrScans = 1
plane = "yz"
position = [48,143]
pulseLength = 100
repTime = 2e3
rxGain = 31
rxPhase = 0
saveData = "true"
timeMag = "yes"
usePhaseCycle = "yes"
windowSize = "large"
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