

Iterative solution methods for the simulation of flow in industrial glass furnaces

Eline Jonkers

Delft University of Technology

TNO Science and Industry

・ロ・・聞・・聞・・聞・ 回・ ひゃう

TU Delft & TNO Science and Industry

Eline Jonkers

Outline

Introduction

Iterative methods

Deflation

Eline Jonkers

Experiments and results

Conclusions and recommendations

▶ < @ ▶ < E ▶ < E ▶ E → ⊙ へ(TU Delft & TNO Science and Industry

Industrial glass furnace

ingredients

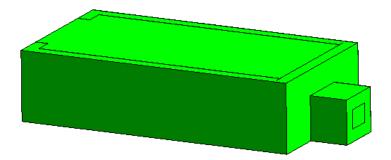
<ロ><(□)<(□)<(□)<(□)<(□)<(□)<(□)<(0)</p>

TU Delft & TNO Science and Industry

Eline Jonkers

Mathematical simulation of flows

Why simulate?


- Physical experiments costly and time-consuming
- Certain physical quantities hard to measure

X-stream:

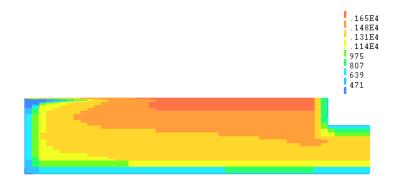
- CFD simulation package for glass industry
- Developed at TNO Science and Industry
- Lots of models available: combustion, turbulence, radiation, stirring, etc.

Eline Jonkers

Geometry of a glass furnace

TU Delft & TNO Science and Industry

Eline Jonkers

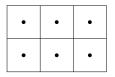

Simulation of velocities in a glass furnace

TU Delft & TNO Science and Industry

Eline Jonkers

Simulation of temperature in a glass furnace

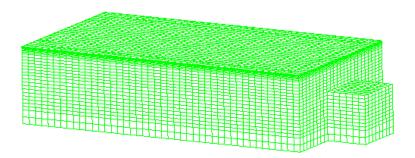
・ロ・・聞・・ヨ・・ヨ・ つへぐ


TU Delft & TNO Science and Industry

Eline Jonkers

Deflation

Solving mathematical flow model


- Partial differential equations arise from model
- Impossible to solve directly
- Transformation to finite number of difference equations
- Solve system of equations with iterative solution method

TU Delft & TNO Science and Industry

Eline Jonkers

Grid of a glass furnace

TU Delft & TNO Science and Industry

Eline Jonkers

Goal of the Master's project

Goal: improve X-stream algorithms

Focus: iterative solution methods combined with deflation

TU Delft & TNO Science and Industry

Eline Jonkers

Purpose of deflation

System to be solved: $A\mathbf{x} = \mathbf{b}$

Condition number $\kappa(A) = \frac{\lambda_{max}(A)}{\lambda_{min}(A)}$ (A SPD)

Smaller condition number \longrightarrow faster convergence.

Deflation removes smallest eigenvalues A.

Eline Jonkers

TU Delft & TNO Science and Industry

- E - - E -

Basic idea of deflation

System to be solved: $A\mathbf{x} = \mathbf{b}$

$$P = I - AZ(Z^{T}AZ)^{-1}Z^{T}$$
$$Q = I - Z(Z^{T}AZ)^{-1}Z^{T}A \quad (PA = AQ)$$

$$\mathbf{x} = (I - Q)\mathbf{x} + Q\mathbf{x}$$

Calculation of **x**:

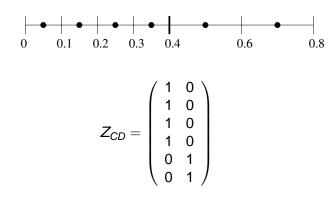
$$(I-Q)\mathbf{x} = Z(Z^TAZ)^{-1}Z^TA\mathbf{x} = Z(Z^TAZ)^{-1}Z^T\mathbf{b}$$

- Solve $PA\tilde{\mathbf{x}} = P\mathbf{b}$ for $\tilde{\mathbf{x}}$
- Premultiply result with Q

TU Delft & TNO Science and Industry

Eline Jonkers

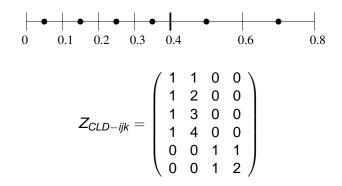
Choice of Z


Choice of Z important for convergence.

Possibilities:

- Constant deflation (CD)
- Constant linear deflation based on grid numbering (CLD-ijk)
- Constant linear deflation based on grid coordinates (CLD-cartesian)

Eline Jonkers


Constant deflation (CD)

Eline Jonkers

TU Delft & TNO Science and Industry


Constant linear deflation based on grid numbering (CLD-ijk)

Eline Jonkers

TU Delft & TNO Science and Industry

Constant linear deflation based on grid coordinates (CLD-cartesian)

Eline Jonkers

TU Delft & TNO Science and Industry

Experiments MATLAB

$$\frac{d^2\varphi}{dx^2} = x \sin x, \quad \varphi(0) = \varphi(\pi) = 0$$

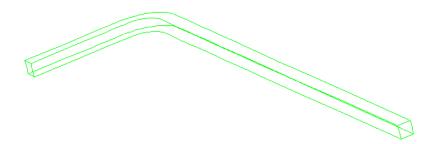
Deflated GCR with 3 subdomains:

Eline Jonkers

TU Delft & TNO Science and Industry

Experiments X-stream

Input:

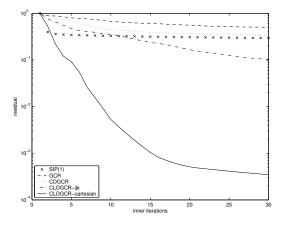

- number of inner iterations
- iterative method: SIP or GCR with CD, CLD-ijk or CLD-cartesian

Output:

- residuals
- number of outer iterations
- wall-clock time

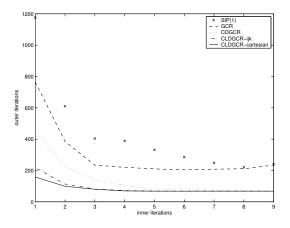
Note that the number of outer iterations and the wall-clock time depend on the residuals.

Test case channel



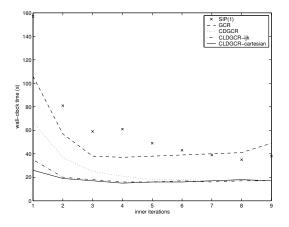
▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - つへで

TU Delft & TNO Science and Industry


Eline Jonkers

Residuals channel

Eline Jonkers


Number of outer iterations channel

Eline Jonkers

TU Delft & TNO Science and Industry

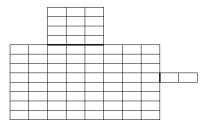
Wall-clock times channel

Eline Jonkers

TU Delft & TNO Science and Industry

Results wall-clock times channel test case

inner it.	SIP(1) GCR	SIP(1) CDGCR	SIP(1) CLDGCR-ijk	SIP(1) CLDGCR-cart
1	1.5	2.3	4.5	6.0
2	1.4	2.2	4.1	4.3
6	1.1	2.4	2.5	2.7
9	0.8	2.2	2.2	2.2


Using optimal number of inner iterations for each method:

SIP(1)	SIP(1)	SIP(1)	SIP(1)
GCR	CDGCR	CLDGCR-ijk	CLDGCR-cart
0.9	2	2.1	2.3

Eline Jonkers

TU Delft & TNO Science and Industry

Subdomain partitioning

$$E = Z^T A Z$$

600 subdomains:

- E_{CD} 600 × 600-matrix
- E_{CLD} 2400 \times 2400-matrix

Eline Jonkers

 Image: A mathematical stress
 Image: A mathematical stress
 Image: A mathematical stress

 TU Delft & TNO Science and Industry

Conclusions

- GCR performs better with deflation
- Constant linear deflation performs better than constant deflation
- CLD-cartesian performs better than CLD-ijk
- More subdomains means less iterations
- Drawback of CLD: not suitable for large number of subdomains

Recommendations

Further research subdomain partitioning:

- How to decrease number of subdomains
- Implement a suitable sparse solver for unstructured matrices

Eline Jonkers

Questions?

・ロ・・聞・・聞・・聞・ ののの

TU Delft & TNO Science and Industry

Eline Jonkers