

Arthur Kerst

Two-phase flows: examples

• I: coal and gas-fired power stations

Two-phase flows

- Fundamental tools in many industrial applications and natural processes
- Far more challenging than single phase flow
- Accurately modelling the interface and demanding volume conservation

level-set method

Goal of project

Goal: develop a level-set method that...

- conserves volume
- has a continuous description of the interface
- tracks interface accurately
- is able to handle unstructured triangular meshes

$$\begin{split} \phi(\mathbf{x},t) &\coloneqq \text{level-set field} \\ \phi(\mathbf{x},0) &= \text{signed-distance function} \end{split}$$

TUDelft

Advection: transport of a substance by flow

6

Advection: transport of a substance by flow

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = 0$$

level-set field ϕ

- Advantage
 - Continuous interface

- Disadvantage
 - Not volume conserving

Volume-of-fluid method

- Advantage
 - Volume conservation

- Disadvantage
 - Discontinuous interface

Level-set method vs. volume-of-fluid method

volume-conserving V

continuous 🗸

Improvements to the level-set method

- Hybrid methods
- Volume correction methods

Interface-correction level-set (ICLS) method

- Velocity field from gradient of level-set field
- Scaling based on volume loss/gain
- Advection with correction-velocity

ICLS method uses a speed function

uniform speed function

Developed method in this thesis

- Volume-of-fluid-based local interface-correction levelset method (VOF-LICLS)
- Uses correction-velocity
- Combination with volume-of-fluid (VOF) method
- Aims to restore volume locally

Dual mesh construction

TUDelft

 The rate of change in volume must correspond to the total flux of the fluid out of the boundary of the region.

ICLS: global volume conservation

ÚDelft

$$\int_{\Gamma} \mathbf{n} \cdot \mathbf{u}_c \, \mathrm{d}\Gamma = \frac{\delta V_{\text{total}}}{\delta t}$$

Velocity is pointed inward or outward

TUDelft

$$\int_{\Gamma_i} \mathbf{n} \cdot \mathbf{u}_c \,\mathrm{d}\Gamma = \frac{\delta V_i}{\delta t}$$

$$\implies (\mathbf{u}_c)_i = \dots$$

Advection with correction-velocity

- Zalesak's disk
- Rotating flow

Interface position

Global volume

TUDelft

Local volume errors

ÍUDelft

- Circle
- Reverse-vortex flow

• Interface position

Global volume

ŤUDelft

Local volume errors

TUDelft

Developed method in this thesis

- Volume-of-fluid-based local interface-correction levelset method (VOF-LICLS)
- Uses correction-velocity
- Combination with volume-of-fluid (VOF) method
- Aims to restore volume locally and globally

Conclusion: goal of project

Goal: develop a level-set method that...

- conserves volume
- has a continuous description of the interface
- tracks interface accurately
- is able to handle unstructured triangular meshes

Conclusion

- Same global volume conservation as ICLS
- Better local volume conservation than ICLS
- In general, more accurate interface position than ICLS

Open problems

• Emergence of peaks

End of presentation

Arthur Kerst

Properties

Iterative procedure (circa 10 iterations)

local volume conservation

• Extra step after local volume correction

