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Background: software

WAQUA QuickFlow
- since 1970’s - - since 2006 -

• slow convergence
• time-dependent

solution
• not well suited for

stationary solution

• fast convergence
• only stationary

solution
• uses WAQUA output

as initial solution
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Goal & content

• How does QuickFlow work?
• Shallow water equations
• Spatial discretization
• Time iteration methods
• Test problems

• Improvements to QuickFlow
• Planning
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2D Shallow water equations

Navier Stokes equations ⇒ Reynolds equations
⇒ 2D Shallow water equations:

∂U
∂t

+ U ∂U
∂x

+ V ∂U
∂y

− fV + g
∂ζ
∂x

−
τbottom,x
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(

∂2U
∂x2

+
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∂y2

)

= 0

∂V
∂t
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∂ζ
∂y

−
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ρ0H
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(
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∂y2

)
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∂ζ
∂t
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∂HU
∂x

+
∂HV
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= 0

⇒ Shallow water equations on curvilinear grid
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Spatial discretization: grid

PSfrag replacements
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Spatial discretization: methods

Momentum equations:

• Third order upwind: U ∂V
∂x

and V ∂U
∂y

• Central difference

Continuity equations:
• Finite volume
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Spatial discretization: boundaries

PSfrag replacements

water level
boundary

discharge or
velocity

boundary

closed
free slip
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Spatial discretization: moving boundary

PSfrag replacements
boundary

H
surface

bottom

H ≤ δ ⇒ U = 0
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Time iteration: WAQUA - ADI

stage 1: V -momentum explicit
du
dt

= A1(u
l,ul+1/2)

stage 2: U -momentum & continuity explicit
du
dt

= A2(u
l+1/2,ul+1)

Stationary:
du
dt

= 1

2
[A1(u,u) + A2(u,u)] ≡ A(u)
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Time iteration: Euler Backward

du

dt
= A(u) ⇒

u
n+1 − u

n

∆t
= A(un+1) ⇒

∆t M (un+1
− u

n) + A(un+1) − b = 0

Advantages:
• easy implementation
• unconditionally stable
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Time iteration: Newtons method

F(x) ≡ ∆tM(un+1
− u

n) + A(un+1) − b = 0

x
k+1 = x

k
− α

(

F
′(xk)

)−1
F(xk)

Advantages:
• easy implementation
• global convergence (line search)
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Test problem: Chézy
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• Rectangular gutter

• 25 × 11 grid cells

• inflow:
velocity boundary

• outflow:
water level boundary
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Test problems: real

Lek Randwijk
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Test problem: Lek
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• Relatively easy

• 42 × 34 grid cells

• inflow:
discharge boundary

• outflow:
water level boundary
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Test problem: Randwijk
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• Relatively complex

• 287 × 26 grid cells

• inflow:
discharge boundary

• outflow:
water level boundary
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Improvements: damping BC’s

’hard’ open boundaries ⇒

nonphysical reflection of waves
⇒ long ’run-up’ time

Remedie:
damping boundary conditions
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Improvements: semi-explicit time

Example: advection equation
∂u
∂t

= u∂u
∂x

Euler Backward & upwind
un+1

m − un
m

∆t
= un+1

m
un+1

m − un
m−1

∆x

Alternative
un+1

m − un
m

∆t
= un

m
un+1

m − un
m−1

∆x

Implementation in Euler Backward or in Newton
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Improvements: quasi-Newton

Approximate Jacobian F′(x0) ≈ Bk

x
k+1 = x

k
−
(

Bk
)−1

F
(

x
k
)

Advantages:
• reduce costs for computing F′

• reduce costs for LU-decomposition of F′

• possibly faster convergence (depends on
method)



January 22, 2007 20
 

VORtech
Computing Delft University of Technology

Improvements: adaptive time stepping

complicated area
→ small time step

or large time step for continuity equation:

ζ l+1 − ζ l

∆t
+

∂

∂x
(Hu) = 0

∆t → ∞ ⇒
∂

∂x
(Hu) = 0
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Plan

• Resolve large errors near open boundaries
• Inventorise & solve problems

• Chézy
• Lek
• Randwijk
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Conclusion

• Software: WAQUA & QuickFlow
• Modelling river flow: Shallow water equations
• Spatial discretization
• Time iteration: ADI, Euler Backward, Newton
• Improvements:

• Damping boundary conditions
• Semi-explicit time iteration
• Quasi-Newton
• Adaptive time stepping
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Questions?
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