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Chapter 1

Introduction

This report describes the literature study as part of my Master thesis project. The
aim of this study is to describe the present development of QuickFlow, a solver for
the stationary shallow water equations, and inventorise possible methods to im-
prove the software. Furthermore a plan is developed to improve the convergence
of QuickFlow during the second part of this project.

1.1 Background

Watermanagement is very important in a densely populated country with many
rivers like the Netherlands. Maintainance and improvement of dykes, riverbeds
etc. needs constant attention. In the design of these dykes and riverbeds software
is used to predict the water flow and levels.

Rijkswaterstaat is a dutch governemental institute that is engaged in such
projects. VORtech Computing developes software that is used to do the necessary
computations. This project is conducted at VORtech, which is an engineering
and software company with a lot of mathematical expertise.

WAQUA is a software package that has been developed by Rijkswaterstaat
and other companies to predict flows of rivers, seas and oceans. WAQUA uses
the two dimensional shallow water equations to compute the flow velocity and
water level and its development over time very accurately. One of the major
drawbacks of WAQUA is the large amount of time it takes to find a solution.
This is especially disadvantageous when one only wants to know the stationary
solution and is not interested in very accurate time dependent results.

For this purpose QuickFlow was developed. QuickFlow is a program that
is intended to solve the shallow water equations for application to rivers in the
Netherlands. Its purpose is to quickly find the new steady state solution after an
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6 CHAPTER 1. INTRODUCTION

intervention like rising a dyke or a change in the level or structure of the bottom.
QuickFlow is tightly linked to WAQUA. QuickFlow is based on WAQUA,

and needs some input from it, but it has the advantage that it finds a solution
much quicker than WAQUA. Towards the end of the design process the proposed
changes still need evaluation by WAQUA.

At this moment QuickFlow can find solutions that look pretty much like
the WAQUA-solution for relatively easy problems, such as a small part of a
river with a simple geometry. There are some problems, however, with more
complex geometries, especially when parts of the river bed become dry. This
report investigates these problems.

1.2 Contents of this report

In the first part of this report the mathematical background of QuickFlow and,
where necessary, the background of WAQUA is described. In Chapter 2 the
mathematical model of the river flow is described. In Chapter 3 the space dis-
cretization is discussed, as well as the boundary conditions (Section 3.5). In
Chapter 4 we discuss the solution methods that are used by WAQUA, and the
ones that are used by QuickFlow. These chapters focus on the situation in Quick-
Flow, which sometimes differs from the situation in WAQUA. Where neccessary
we make a remark on the differences between WAQUA and QuickFlow.

In the last part of this report we focus on how this project should be continued.
Chapter 5 describes three test problems that will be used in the next phase of
this project. Chapter 6 discusses the possible improvements of QuickFlow and
gives an outline of how these improvements can be implemented.

In Appendix A the relation between QuickFlow and WAQUA is described in
more detail.



Chapter 2

Shallow water equations

In this chapter we will describe the problem at hand. The shallow water equations
in general describe the flow of a fluid, not necessarily water, where the thickness of
a fluid layer is small compared to some horizontal length scale. In this project the
flow in a river is described by the shallow water equations. They can be applied
because the typical vertical scales (e.g. the water depth) are much smaller then
any horizontal typical scale (e.g. the width of the river).

Hereafter the Reynolds equations for the statistical average of a turbulent
flow are derived from the Navier Stokes equations. After several conditions these
equations are integrated and we find the 2-dimensional shallow water equations.

Furthermore, the derivation of the 2D shallow water equations is described in
more detail, the theory is taken from [1, Chapter 2]. The shallow water equations
are applied to a part of a river. Figure 2.1 shows the coordinate system and the
bottom and surface boundaries.

7



8 CHAPTER 2. SHALLOW WATER EQUATIONS
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Figure 2.1: The coordinate system and the surface and bottom boundaries.

2.1 From Navier-Stokes to Reynolds equations

The shallow water equations can be derived from the incompressible Navier Stokes
equations. These equations are given by:

∂
∂t

(ρu) + ∂
∂x

(ρu2) + ∂
∂y

(ρuv) + ∂
∂z

(ρuw) − ρfv +
∂p
∂x

−
(

∂τxx
∂x

+
∂τxy

∂y
+ ∂τxz

∂z

)

= 0,

∂
∂t

(ρv) + ∂
∂x

(ρuv) + ∂
∂y

(ρv2) + ∂
∂z

(ρvw) + ρfu +
∂p
∂y

−
(

∂τyx

∂x
+

∂τyy

∂y
+

∂τyz

∂z

)

= 0,

∂
∂t

(ρw) + ∂
∂x

(ρuw) + ∂
∂y

(ρvw) + ∂
∂z

(ρw2) +
∂p
∂z

+ ρg

−
(

∂τzx
∂x

+
∂τzy

∂y
+ ∂τzz

∂z

)

= 0,







(2.1)

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0. (2.2)

Viscous stresses

In the momentum conservation equations (2.1) τij represent the viscous stresses,
which can be expressed in terms of the fluid deformation rate:

τij

ρ
= ν

(
∂ui

∂xj
+

∂uj

∂xi

)

, with ν the viscosity. (2.3)
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Density

In general the density ρ depends on the pressure p, the temperature and the
salinity. The density depends on the location (x, y, z) only indirectly via the
pressure, temperature and salinity. In our problem the temperature and salinity
are taken constant in space and time. We consider an incompressible fluid (water)
which means that the density ρ does not depend on the pressure p. Furthermore,
since the density does not vary in time, the first term of the continuity equation
(2.2) (also called mass conservation equation) is zero. There is only one term
left where density variations are important: the gravity term in the z-momentum
equation of (2.1). This is called the Boussinesq approximation. Summarizing we
take the density ρ = ρ0 a constant reference density except in the gravity term
ρg.

Coriolis force

The terms ρfu and ρfv deal with the Coriolis force. This force is due to the
rotation of the earth and only has little influence on the flow in a relatively small
system like a river. Nonetheless it is implemented because the implementation
is easy and does not bring much cost. The Coriolis parameter f is computed as
follows:

f = 2|Ω| sin φ, (2.4)

with Ω the angular speed of the rotation of the earth,

and φ the geographic latitude.

Splitting of velocity

In our application, one is only interested in large scale features, therefore we do
not want to take into account the small scale structures (e.g. turbulence) as such.
In section 2.1 we incorporate the turbulence in the eddy viscosity. We suppose
we can split each velocity in some sort of ’mean’ and a ’random’ variation:

u = U + u′,

v = V + v′,

w = W + w′.

(2.5)

From now on we will only consider the ’mean’ velocities U , V , and W and
neglect the random variations u′, v′ and w′, except for the case discussed below
(advection terms and Reynolds stresses).
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Advection terms and Reynolds stresses

If we apply the splitting (2.5) on the advection terms Reynolds stresses will occur.
This is discussed for the cross advection term ∂

∂y (uv). Applying the splitting on

this cross advection term and on the viscous term
∂τxy

∂x we find:

∂

∂x
(uv) =

∂

∂x
(UV ) +

∂

∂x
(Uv′) +

∂

∂x
(u′V )

︸ ︷︷ ︸

can be neglected

+
∂

∂x
(u′v′)

≈ ∂

∂x
(UV ) +

∂

∂x
(u′v′), (2.6)

∂τxy

∂x
= ρν

∂

∂x

(
∂u

∂y
+

∂v

∂x

)

= ρν
∂

∂x

(∂U

∂y
+

∂V

∂x
+

∂u′

∂y
+

∂v′

∂x
︸ ︷︷ ︸

can be neglected

)

= ρν
∂

∂x

(
∂U

∂y
+

∂V

∂x

)

. (2.7)

The terms ∂
∂x(Uv′) + ∂

∂x(u′V ) can be neglected because U and v′ are uncor-
related, as well as V and u′. We will take an integral over these terms when we
apply the finite volume method discussed in Chapter 3. This integral will reduce
to zero. A similar reasoning holds for ∂u′

∂y + ∂v′

∂x , which will reduce to zero as well
when we apply the finite volume method.

Combining (2.6) and (2.7) we find:

ρ
∂

∂x
(uv) − ∂τxy

∂x
≈ ρ

(
∂

∂x
(UV ) +

∂

∂x
(u′v′) − ν

∂

∂x

(
∂U

∂y
+

∂V

∂x

))

= ρ
∂

∂x
(UV ) + ρ

∂

∂x

(

ν

(
∂U

∂y
+

∂V

∂x

)

+ (u′v′)

)

. (2.8)

In general we can write:

ρ
∂

∂xi
(uiuj) −

∂τij

∂xi
≈ ρ

∂

∂xi
(UiUj) + ρ

∂

∂xi

(

ν

(
∂Ui

∂xj
+

∂Uj

∂xi

)

+ (u′
iu

′
j)

)

(2.9)

The terms u′
iu

′
j are called Reynolds stresses. These stresses are due to the

turbulence of the flow. Therefore we substitute the viscosity ν with the effective
turbulent or eddy viscosity νt:

τij ≈ νt

(
∂Ui

∂xj
+

∂Uj

∂xi

)

. (2.10)



2.2. FROM REYNOLDS TO 3D SHALLOW WATER EQUATIONS 11

We use this eddy viscosity νt because we have a small scale turbulence, which
can not be implemented in the model as such. Therefore we replace the turbu-
lence by a fictituous diffusion term, the eddy viscosity. In general it depends
quadratically on the step sizes ∆x, ∆y and ∆z. Here the eddy viscosity is taken
to be constant.

Reynolds equations

We apply the Boussinesq approximation, substitute the splitting of (2.5) in the
momentum conservation equations (2.1) and the continuity equation (2.2) and we
use the eddy viscosity as discussed above. We now find the Reynolds equations
for the statistical average of a turbulent flow:

ρ0
∂
∂t

(U) + ρ0
∂
∂x

(U2) + ρ0
∂
∂y

(UV ) + ρ0
∂
∂z

(UW ) − ρ0fV +
∂p
∂x

−
(

∂τxx
∂x

+
∂τxy

∂y
+ ∂τxz

∂z

)

= 0,

ρ0
∂
∂t

(V ) + ρ0
∂
∂x

(UV ) + ρ0
∂
∂y

(V 2) + ρ0
∂
∂z

(V W ) + ρ0fU +
∂p
∂y

−
(

∂τyx

∂x
+

∂τyy

∂y
+

∂τyz

∂z

)

= 0,

ρ0
∂
∂t

(W ) + ρ0
∂
∂x

(UW ) + ρ0
∂
∂y

(V W ) + ρ0
∂
∂z

(W 2) +
∂p
∂z

+ ρg

−
(

∂τzx
∂x

+
∂τzy

∂y
+ ∂τzz

∂z

)

= 0,

∂
∂x

(U) + ∂
∂y

(V ) + ∂
∂z

(W ) = 0,

(2.11)

with τij as in (2.10).

2.2 From Reynolds to 3D shallow water equations

2.2.1 Surface and bottom boundary conditions

The equations derived above have to be complemented with boundary conditions.
In this section the boundary conditions at the free water surface and at the solid
bottom will be discussed. Other boundary conditions will be discussed in Section
3.5.
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Figure 2.2: A schematic cross sectional view of the kinematic boundary conditions
for the surface and bottom: a water particle can not cross the bottom or the
surface.

Kinematic boundary conditions

The kinematic boundary conditions prescribe that water particles can not cross
the solid bottom nor the free water surface. For the bottom the normal velocity
component must vanish. Since the free surface might be moving, the normal
velocity of the fluid should equal the normal velocity of the surface. See also
Figure 2.2.

u∂d
∂x

+ v∂d
∂y

− w = 0 for z = −d, at the bottom,

∂ζ
∂t

+ u
∂ζ
∂x

+ v
∂ζ
∂y

− w = 0 for z = ζ, at the free surface.
(2.12)

Dynamic boundary conditions

We have dynamic boundary conditions for the forces that act at the bottom and
surface boundaries. For the bottom we have the no slip condition.

For the free surface we assume continuity of stresses: the stress just below
the surface is equal to the stress just above it. This gives a condition on the
pressure and on the shear stress. This shear stress is usually a result of the wind
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over a sloping surface. This wind stress factor is neglected in QuickFlow (but it
is implemented in WAQUA).

The resulting boundary conditions (neglecting the wind stress) are:

u = v = 0 for z = −d, at the bottom,

p = patm for z = ζ, at the free surface.
(2.13)

2.2.2 Hydrostatic pressure distribution

There are several length scales involved in the shallow water equations, they
include water depth as a vertical scale and river width as a horizontal scale.
Whenever the ratio of a typical vertical length L̂ to a typical horizontal length
Ĥ is smaller than about 0.05 the shallow water equations can be applied, see [1,
section 2.3]. Furthermore we indicate the typical horizontal velocity Û .

Scale and dimensional analysis (for details see [1, Section 2.3]) leads to three
dimensionless numbers:

Ret = ÛĤ
νt

Reynolds number (viscosity),

Ro = Û
fL̂

Rossby number (Coriolis),

Fr = Û√

gĤ
Froude number (wave velocity).

(2.14)

For our application (Dutch rivers) we can use the following values:

Û ≈ 1 m/s,

Ĥ ≈ 20 m,

L̂ ≈ 500 m,

νt ≈ 0.5 m2/s,

f ≈ 1 × 10−4 s−1,

g ≈ 9.8 m/s2.

(2.15)

We now find the following dimensionless numbers with their respective mean-
ing:

Ret ≈ 40 > 1 viscosity is small but can not be neglected,

Ro ≈ 20 > 1 Coriolis force is of minor importance,

Fr ≈ 0.07 ¿ 1 wave velocity is much higher than water velocity1.

(2.16)
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Note that in the Reynolds number we include the turbulence in the viscosity
(eddy viscosity), as we discussed in Section 2.1. If we do not include the turbu-
lence and we use the viscosity of water ν = 10−3 we find:

Re =
ÛĤ

ν
≈ 2 × 104. (2.17)

This indicates that the flow is indeed turbulent: the Reynolds number is much
higher than 2000.

Further analysis leads to the conclusion that all terms are small relative to the
gravitational acceleration g and only the pressure gradient remains to balance it.
Therefore we can apply the hydrostatic pressure gradient (for further details on
this derivation see [1, Section 2.3-2.4]):

∂p

∂z
= −ρ0g. (2.18)

This hydrostatic pressure distribution together with the boundary condition
p = patm from (2.13) gives:

p(x, y, z, t) =

∫ ζ(x,y,z,t)

z
ρ0g dz + patm

= ρ0g(ζ(x, y, z, t) − z) + patm ⇒
∂p
∂x

= ρ0g
∂ζ
∂x

and

∂p
∂y

= ρ0g
∂ζ
∂y

.
(2.19)

1Because of the small Froude number we call the flow subcritical. This can be compared to

subsonic velocity in gass dynamics: a velocity lower than the speed of sound.
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3D Shallow water equations

Now we can write down the 3D shallow water equations: the horizontal mo-
mentum equations together with the continuity equation from (2.11):

∂
∂t

(U) + ∂
∂x

(U2) + ∂
∂y

(UV ) + ∂
∂z

(UW ) − fV + g
∂ζ
∂x

− 1
ρ0

(

∂τxx
∂x

+
∂τxy

∂y
+ ∂τxz

∂z

)

= 0,

∂
∂t

(V ) + ∂
∂x

(UV ) + ∂
∂y

(V 2) + ∂
∂z

(V W ) + fU + g
∂ζ
∂y

− 1
ρ0

(
∂τyx

∂x
+

∂τyy

∂y
+

∂τyz

∂z

)

= 0,

∂
∂x

(U) + ∂
∂y

(V ) + ∂
∂z

(W ) = 0,

(2.20)

with τij as in (2.10).

2.3 From 3D to 2D

Until now we have discussed the 3 dimensional case. We want to simplify the
problem to a 2 dimensional one. Therefore we integrate the 3D shallow water
equations (2.20) over depth H = d + ζ.

We have to integrate the stresses over the depth. The depth integrated stresses
can be modeled in many ways: the influence of many factors can be either im-
plemented or neglected. In QuickFlow we chose to implement the bottom stress
τbottom and the viscosity. The bottom stress is split into two terms: τbottom,x

in the x-direction and τbottom,y in the y-direction. Furthermore, the 3D eddy
viscosity νt is replaced by an horizontal 2D equivalent νH.

More details on this derivation can be found in [1, Section 2.5]. The 2D
shallow water equations can now be written as follows:
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∂
∂t

(HU) + ∂
∂x

(HU2) + ∂
∂y

(HUV ) − fHV + gH
∂ζ
∂x

+
τbottom,x

ρ0

−HνH

(

∂2U
∂x2 + ∂2U

∂y2

)

= 0,

∂
∂t

(HV ) + ∂
∂x

(HUV ) + ∂
∂y

(HV 2) + fHU + gH
∂ζ
∂y

+
τbottom,y

ρ0

−HνH

(

∂2V
∂x2 + ∂2V

∂y2

)

= 0,

∂ζ
∂t

+ ∂
∂x

(HU) + ∂
∂y

(HV ) = 0.

(2.21)

Here the viscosity term is not conservative. Therefore we can not really call
this the conservative form. However, a non-conservative form of the momentum
equations can be obtained by substitution of the continuity equation in the mo-
mentum equations in (2.21). Hereby we also use:

∂

∂t
(HU) +

∂

∂x
(HU2) +

∂

∂y
(HUV )

chain rule
=

U
∂

∂t
ζ + H

∂

∂t
U + U

∂

∂x
(HU) + HU

∂

∂x
U + U

∂

∂y
(HV ) + HV

∂

∂y
U

(2.21), continuity
=

H

(
∂

∂t
U + U

∂

∂x
U + V

∂

∂y
U

)

. (2.22)

This results in a non-conservative form of the 2D shallow water equations:

∂U
∂t

+ U ∂U
∂x

+ V ∂U
∂y

− fV + g
∂ζ
∂x

− τbottom,x

ρ0H
− νH

(

∂2U
∂x2 + ∂2U

∂y2

)

= 0,

∂V
∂t

+ U ∂V
∂x

+ V ∂V
∂y

+ fU + g
∂ζ
∂y

− τbottom,y

ρ0H
− νH

(

∂2V
∂x2 + ∂2V

∂y2

)

= 0,

∂ζ
∂t

+ ∂H
∂x

U + H ∂U
∂x

+ ∂H
∂y

V + H ∂V
∂y

= 0.

(2.23)

2.4 From Cartesian to curvilinear coordinates

Until now we have used Cartesian coordinates. In WAQUA and QuickFlow an
orthogonal curvilinear grid is used. One of the major advantages is that curvi-
linear gridlines can follow bending boundaries more smoothly. By demanding
orthogonality we reduce the computational work compared to a nonorthogonal
curvilinear grid.
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The theory below is taken from [2, Section 2.4].
The transformation is defined as follows:

x = X(ξ, η),

y = Y (ξ, η).
(2.24)

We have the following transformation coefficients:

gξξ =
(

∂x
∂ξ

)2
+
(

∂y
∂ξ

)2
,

gηη =
(

∂x
∂η

)2
+
(

∂y
∂η

)2
.

(2.25)

The actual generation of the grid is not done within WAQUA or QuickFlow.
Therefore it is not discussed here. In [2, Section 2.4] some more details are given
and references to relevant documentation can be found.

Now we can write the 2D shallow water equations (2.23) in orthogonal curvi-
linear coordinates:

∂
∂t

(U) + U√
gξξ

∂U
∂ξ

+ V√
gηη

∂U
∂η

+ UV√
g∗

∂
√

gξξ

∂η
− V 2√

g∗

∂
√

gηη

∂ξ

−fV +
g√
gξξ

∂ζ
∂ξ

+
τbottom,ξ

ρ0H
− νH√

gξξ

∂F 1

∂ξ
+ νH√

gηη

∂F 2

∂η
= 0,

∂
∂t

(V ) + U√
gξξ

∂V
∂ξ

+ V√
gηη

∂V
∂η

+ UV√
g∗

∂
√

gηη

∂ξ
− U2√

g∗

∂
√

gξξ

∂η

+fU +
g√
gηη

∂ζ
∂η

+
τbottom,η

ρ0H
− νH√

gηη

∂F 1

∂η
− νH√

gξξ

∂F 2

∂ξ
= 0,

∂ζ
∂t

+ 1√
g∗

∂
∂ξ

(HU
√

gηη) + 1√
g∗

∂
∂η

(HV
√

gξξ) = 0,

(2.26)

with F 1 = 1√
g∗

(
∂
∂ξ

(
U
√

gηη

)
+ ∂

∂η

(
V
√

gξξ

))

,

F 2 = 1√
g∗

(
∂
∂ξ

(
V
√

gηη

)
− ∂

∂η

(
U
√

gξξ

))

,

and g∗ = ∂x
∂ξ

∂y
∂η

− ∂y
∂ξ

∂x
∂η

,

the determinant of the Jacobian of the transformation.

(2.27)

In the next chapters we discuss the spatial and time discretization. For sim-
plicity we will not use this curvilinear transformation, instead Cartesian coordi-
nates, like in (2.23), are used. The discretization for a curvilinear grid is almost
the same, only some extra cross terms appear.



Chapter 3

Spatial discretization

In this chapter we describe the numerical discretization of the 2D shallow water
equations in non-conservative form (2.23).

The discretization below is mostly taken from the Technical Documentation
of WAQUA [2, Chapter 4 and 6]. In general QuickFlow uses the same spatial
discretization as WAQUA. WAQUA, however, has some advanced options that
can be switched on and off by the user. In such situations the option which is
most suitable for steady state simulations is used.

The spatial discretization we describe in this chapter will be used in the next
chapter on the Alternating Direction Implicit (ADI) method. Some knowledge
of the ADI method is needed to understand the spatial discretization.

The ADI method is used for time discretization. The ADI method splits every
timestep into two stages. In both stages the equations are solved. In the first
stage some terms are taken implicitly while the other terms are taken explicitly.
In the second stage this is the other way around. In this chapter we discuss this
combination of implicit and explicit discretization.

3.1 Spatial grid

In Figure 3.1 the computational grid is shown. This grid is also known as the
Arakawa-C grid.

Note that the grid is staggered: the velocities U and V , depth d and water
level ζ are located at different gridpoints. We use a staggered grid for numerical
stability.

To prevent indices like (m + 1/2, n), (m, n + 1/2) and (m + 1/2, n + 1/2), we

18
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m

n

depth point

water level point

U -velocity point

V -velocity point

staggered grid with
identical (m, n) index

one computational cell

Figure 3.1: The computational grid (also known as the Arakawa-C grid).
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only use integer-numbered indices:

Um+1/2,n → Um,n,

Vm,n+1/2 → Vm,n,

dm+1/2,n+1/2 → dm,n.

(3.1)

Below we discuss the discretization on a Cartesian grid. If we have an ortho-
gonal curvilinear grid, the discretization has to be adjusted.

3.2 Methods for spatial discretization

In WAQUA and QuickFlow both finite difference methods and finite volume
methods are used for spatial discretization. Hereafter we will discuss which
method is used for which terms. First the methods are discussed in general.

A finite difference method is used for the momentum equations. On a curvi-
linear grid it would be very difficult to achieve conservation of momentum, even
with the finite volume method. Therefore, we use the finite difference method,
which is easier to implement. In [3], a method is described to achieve conservation
of mass, momentum and energy, using finite differences. However, this method
is not implemented in WAQUA or in QuickFlow.

Several finite difference schemes are used for the terms in the momentum
equations. We use central difference and upwind methods. The advantage of
the central difference method is the second order accuracy (this accuracy can be
checked using Taylor expansion). However numerical oscillations (wiggles) may
occur near steep gradients. A first order upwind method is unconditionally wiggle
free, but introduces a truncation error in the form of a second-order artificial
viscosity term, which smoothens the computed solution. Third order upwinding
is not free from wiggles but introduces fourth-order artificial viscosity ∂4U

∂y4 . (This

can be checked using Taylor expansion.) This artificial viscosity supresses any
wiggles without smoothing the solution too much.

A finite volume method is used for the continuity equation. This is because
conservation of mass is very important here and can easily be achieved with the
finite volume method.

A more detailed argumentation for the choice of methods used in WAQUA
can be found in [4, Chapter 1].

The stencils for the spatial discretizations are shown in Appendix B.
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3.3 Discretizetion of momentum equations

In this section we derive the spatial discretization of the U-momentum equation
from (2.23):

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
− fV + g

∂ζ

∂x
− τbottom,x

ρ0H
− νH

(
∂2U

∂x2
+

∂2U

∂y2

)

= 0 (3.2)

The spatial discretization of the V-momentum equation follows in a similar
way.

3.3.1 Discretization of advection term

On the advection term U ∂U
∂x a central difference operator is applied. On a uniform

grid this leads to:

U
∂U

∂x

∣
∣
∣
∣
m,n

≈ Um,n
Um+1,n − Um−1,n

2∆x
(3.3)

3.3.2 Discretization of cross advection term

The cross advection term V ∂U
∂y is approximated by the Cyclic method. This is

a splitting of a third order upwind finite difference scheme for the first order
derivative into two second order consistent discretizations. They are succesively
used in the stages of the ADI scheme which will be discussed in more detail in 4.

Before continuing with the Cyclic method we interpolate the V -velocity. Be-
cause the V -velocity gridpoints do not overlap the U -velocity gridpoints the V -
velocity is approximated by an arithmetic average of the four surrounding V -
velocity points V̄ . In an interior point this leads to:

Vm,n = V̄m,n

≈ Vm+1,n + Vm,n+1 + Vm−1,n + Vm,n−1

4
. (3.4)

The cross advection term is now discretized by third order upwinding:

V
∂U

∂y

∣
∣
∣
∣
m,n

≈







V̄m,n
Um,n+2 + 4Um,n+1 + 18Um,n − 28Um.n−1 + 5Um,n−2

24∆y if Vm,n ≥ 0,

V̄m,n
−5Um,n+2 + 28Um,n+1 − 18Um,n − 4Um.n−1 − Um,n−2

24∆y if Vm,n < 0.

(3.5)

This discretization is split into two second-order discretizations:
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V
∂U

∂y

∣
∣
∣
∣

ex

m,n

≈ V̄m,n
Um,n+2 + 4Um,n+1 − 4Um,n−1 − Um,n−2

12∆y
, (3.6)

V
∂U

∂y

∣
∣
∣
∣

im

m,n

≈







V̄m,n
3Um,n − 4Um,n−1 + Um,n−2

2∆y if Vm,n ≥ 0,

V̄m,n
−Um,n+2 + 4Um,n+1 − 3Um,n

2∆y if Vm,n < 0.

(3.7)

(3.6) is explicit and is used in the first stage of the ADI-method (see Section
4.1.1), (3.7) is implicit and is used in the second stage of the ADI-method.

Note that the ’average’ of the explicit discretization (3.6) and the implicit
discretization (3.7) is the third order upwind discretization (3.5):

1

2

(

V
∂U

∂y

∣
∣
∣
∣

ex

m,n

+ V
∂U

∂y

∣
∣
∣
∣

im

m,n

)

= V
∂U

∂y

∣
∣
∣
∣
m,n

. (3.8)

3.3.3 Discretization of pressure gradients

The 2D pressure gradient is discretized with a central difference scheme:

g
∂ζ

∂x

∣
∣
∣
∣
m,n

≈ g
ζm+1,n − ζm,n

∆x
. (3.9)

3.3.4 Discretization of horizontal viscous terms

The horizontal viscous term νH

(
∂2U
∂x2 + ∂2U

∂y2

)

is discretized with the central dif-

ference method.
Therefore we first need an approximation of ∂2U

∂x2 :

∂2U

∂x2

∣
∣
∣
∣
m,n

≈ 1

∆x

(

∂U

∂x

∣
∣
∣
∣
m+1/2,n

− ∂U

∂x

∣
∣
∣
∣
m−1/2,n

)

≈ 1

∆x

(
Um+1,n − Um,n

∆x
− Um,n − Um−1,n

∆x

)

=
Um+1,n − 2Um,n + Um−1,n

∆x2 . (3.10)

Similarly we find

∂2U

∂y2

∣
∣
∣
∣
m,n

≈ Um,n+1 − 2Um,n + Um,n−1

∆y2
. (3.11)
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Now we find the discretization of the horizontal viscous term

νH

(
∂2U

∂x2
+

∂2U

∂y2

)∣
∣
∣
∣
m,n

≈ νH

( Um+1,n − 2Um,n + Um−1,n

∆x2

+
Um,n+1 − 2Um,n + Um,n−1

∆y2

)
. (3.12)

3.3.5 Discretization of the Coriolis force term

The V -velocity in the Coriolis force term fV is approximated by an arithmetic
average of the four surrounding V -velocity points, see (3.4).

3.3.6 Discretization of the bottom friction term

The bottom friction term
τbottom,x

ρ0H is approximated using the Chézy coefficient
C2D This is an emperical coefficient and can be determined in several ways:

C2D =







Chézy coefficient (m1/2/s), no conversion necessary,

Chézy,
6
√

H
n , with n the Manning coefficient,

Manning,

1810 log
(

max
(

12H
ks

, 1.0129
))

, with ks the Nikuradse roughness length,

White-Colebrook.

(3.13)

In [2, Section 6.2] and in [5, Section 3.4.2.4-3.4.2.6] more detailed descriptions
of the approximation of the bottom friction by the Chézy coefficient are given.

In WAQUA the user can define which approximation for the bottom friction
he wants to use. The resulting Chézy coefficient differs over the spatial domain.
The user furthermore defines how often (e.g. every 1 or every 10 minutes) should
be recomputed. The Chézy coefficient that was used in the last WAQUA-iteration
is subsequently read by QuickFlow and used in its computations.

Using this coeficient, the stress in U -velocity direction due to bottom friction
can be expressed as follows:

τbottom,x =
gρ0U |U|
C2

2D,x

, (3.14)

with |U| =
√

U2 + V 2 the magnitude of the horizontal velocity.
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This leads to the following approximation of the bottom friction:

τbottom,x

ρ0H

∣
∣
∣
∣
m,n

=
gU |U|
HC2

2D,x

∣
∣
∣
∣
∣
m,n

≈
gUm,n

√

U2
m,n + V̄ 2

m,n

Hm,nC2
2D,x

(3.15)

Here the arithmetic average of the V -velocity V̄ is approximated in the same
way as in the cross advectional term, see (3.4).

3.4 Discretization of the continuity equation

We want to discretize the continuity equation of the 2D shallow water equations
(2.23):

∂ζ

∂t
+

∂

∂x
(HU) +

∂

∂y
(HV ) = 0. (3.16)

We will use the finite volume method for the discretization of this equation.
Note that this discretization is equal to the discretization that would be found
with the finite difference method, though if a non-uniform grid (like the ortho-
gonal curvilinear grid discussed in Section 2.4) would be used, the discretizetions
would be different.

We apply the finite volume method on the continuity equation (3.16), with a
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uniform Cartesian grid:

∫

Ω

(
∂ζ
∂t

+ ∂
∂x

(HU) + ∂
∂y

(HV )
)

dΩ = 0,

Gauss’ divergence theorem ⇒
∫

Ω

(
∂ζ
∂t

)

dΩ +
∫

Γ

(

HU

HV

)

· n dΓ = 0,

midpointrule ⇒
∆x∆y

∂ζm,n

∂t
+ ∆y(HU)m,n − ∆y(HU)m−1,n

+∆x(HV )m,n − ∆x(HV )m,n−1 = 0,

⇒
∂ζm,n

∂t
+

(HU)m,n − (HU)m−1,n

∆x
+

(HV )m,n − (HV )m,n−1

∆y
= 0, (3.17)

with Ω the computational cell (integration area),

Γ the boundary of Ω and n the outward normal of Γ.

The total water depth H = d + ζ needs to be determined at the U - and
V -velocity points. The depth d is determined by the arithmetic average of the
depth at the cell corners, similarly to the approximation of V̄ in (3.4). The water
level ζ for the total depth in a U -velocity point HU can be determined in two
ways:

ζav
m,n ≈ 0.5(ζm,n + ζm+1,n) or, (3.18)

ζup
m,n ≈







ζm,n if Um,n > 0

ζm+1,n if Um,n < 0

max(ζm,n, ζm+1,n) if Um,n = 0

(3.19)

In (3.18) the depth is approximated by averaging over the velocity points, in
(3.19) it is approximated by taking the water level in the upwind direction.

The latter approach for ζ is a little more complicated but it is physically
more realistic and performs better around low water in shallow areas in the
neighbourhood of a deep channel or at high water near a summer dyke. In
WAQUA there is some check which prescribes which approach should be used.
QuickFlow uses this same check.
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boundary

Figure 3.2: Boundary normal to U -velocity direction.

This results in the following discretization for HU :

(HU )avm,n ≈ dm,n−1 + dm,n

2
+

ζm,n + ζm+1,n

2
or, (3.20)

(HU )up
m,n ≈







dm,n−1 + dm,n
2 + ζm,n if Um,n > 0,

dm,n−1 + dm,n
2 + ζm+1,n if Um,n < 0,

dm,n−1 + dm,n
2 + max(ζm,n, ζm+1,n) if Um,n = 0.

(3.21)

Both approximations for HU use the same stencil, which is shown in Figure
B.9. For the V-velocity we use the same approach.

3.5 Lateral boundary conditions

In this section lateral boundary conditions are discussed. We already discussed
the bottom and surface boundary conditions in Section 2.2.1. The lateral bound-
ary conditions deal with the boundaries of the 2D-approximation, i.e. inflow and
outflow boundaries and the shores and banks of a river. The theory in this section
is mostly taken from [2, Section 6.3 - 6.5].

In the following the boundary is taken parallel to the V -velocity direction
and normal to the U -velocity direction. The index of a boundary point is taken
(mf , n), see Figure 3.2.

In general if a value is unknown because of the boundary, we will set it to
zero. Therefore the order of discretization near a boundary usually is lower than
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the discretization of an interior point. This means the solution might be less
accurate. However it is found that this does not greatly influence the accuracy
at the interior points [4, Section 4.3 - 4.4].

Lateral boundaries can be split into closed boundaries between water and land
(Section 3.5.1) and non-physical open boundaries (Sections 3.5.2-3.5.8). Further-
more, we have moving boundaries: water-land boundaries for which the location
depends on the water level (Section 3.5.9).

3.5.1 Closed boundaries

A closed boundary is located between water and land, it is for example a shore
or quay. If the boundary is normal to the U -velocity direction the boundary
conditions for this boundary are:

Umf ,n = 0 no flow through boundary,

νH
∂V
∂x

∣
∣
∣
mf ,n

= 0 free slip along the boundary,

∂ζ
∂x

∣
∣
∣
mf ,n

= 0
water level at land is set equal to water level at boundary,

needed for well-posed problem.

(3.22)

In (mf , n), U is prescribed and the V -velocity point is outside the domain.
For the water level we find:

ζmf+1,n − ζmf ,n

∆x
= 0 ⇒

ζmf ,n = ζmf+1,n. (3.23)

this is used in the pressure gradient and bottom friction terms and in the conti-
nuity equation.

We have to solve the U -momentum equation, the V -momentum equation and
the continuity equation in (mf + 1, n).

Some terms in the shallow water equations need to be adapted if we want to
solve these equations on (mf +1, n). These adaptations are discussed below. For
all other terms the discretization is straightforward, as described in Section 3.3
and 3.4.
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U-momentum: Advection term

Near the boundary the discretization of the advection term (3.3) needs to be
adapted. We will use upwind discretization now instead of central discretization.

U
∂U

∂x

∣
∣
∣
∣
mf+1,n

≈







Umf+1,n
Umf+2,n − Umf+1,n

∆x if Umf+1,n ≤ 0,

0 if Umf+1,n > 0.
(3.24)

V -momentum: Cross advection term

The discretizetion of the cross advection term U ∂V
∂x involves many gridpoints,

as can be seen in Figures B.4 and B.5. If one or more of these gridpoints is
on or outside the boundary, equation (3.5) and thus equation (3.6) and/or (3.7)
should be adjusted for this situation. The computational stencil is then reduced
by lowering the order of discretization.

For the cross advection term in the V -momentum equation we find:

U
∂V

∂x

∣
∣
∣
∣
mf+1,n

= Ūmf+1,n

Vmf+2,n − Vmf ,n

2∆x
. (3.25)

V -momentum: Viscous term

In the discretization of ∂2V
∂x2 in the viscous term first order derivaties are set to

zero if they refer to points outside the boundary:

∂2V

∂x2

∣
∣
∣
∣
mf+1,n

≈ 1

∆x









∂V

∂x

∣
∣
∣
∣
mf+1 1

2
,n

− ∂V

∂x

∣
∣
∣
∣
mf+ 1

2
,n

︸ ︷︷ ︸

=0









≈ 1

(∆x)2
(
Vmf+2,n − Vmf+1,n

)
. (3.26)

Note that we do not need to adapt the discretization of the viscous term
∂2U
∂x2

∣
∣
∣
mf+1,n

in the U -momentum equation, because all points in (3.10) are on the

boundary or inside the domain.

3.5.2 Open boundaries

The next sections deal with boundary conditions at open boundaries. These
water-water boundaries are artificial and exist only in the mathematical model.



3.5. LATERAL BOUNDARY CONDITIONS 29

In general open boundaries can be located upstream or downstream the river.
We can apply numerous boundary conditions. Here we only discuss:

• water level boundary,

• velocity boundary,

• discharge boundary,

• QH-boundary (relation between discharge (Q) and depth (H)), and

• Riemann invariant boundary.

These boundary conditions are the driving forces of the system.

Furthermore, we can apply a reflection coefficient on water level and on ve-
locity boundaries. The reflection coefficient ensures that waves do not reflect at
the boundary but disappear from the domain. This will be discussed in Section
3.5.8.

We consider the situation in Figure 3.2, with the boundary normal to the
U -velocity direction.

3.5.3 Water level boundary

A water level boundary is usually applied downstream, especially in situations
where tide plays a role (i.e. close to the sea). Here we prescribe the water level:

ζ = Fζ(t). (3.27)

We further need:

νH
∂V
∂x

∣
∣
∣
mf ,n

= 0 free slip along the boundary,

Vmf ,n = 0 only needed at inflow boundary.
(3.28)

We want to solve the U -momentum equation, and the continuity equation in
(mf , n) and (mf + 1, n) Some terms in the shallow water equations need to be
adapted if we want to solve these equations on (mf , n) and (mf + 1, n). These
adaptations are discussed below. For all other terms the discretization is straight-
forward, as described in Section 3.3 and 3.4.



30 CHAPTER 3. SPATIAL DISCRETIZATION

Advection term

In the U -momentum equation the discretization of the advection term (3.3) needs
to be adjusted. We use upwind discretization instead of central:

U
∂U

∂x

∣
∣
∣
∣
mf ,n

≈







Umf ,n
Umf+1,n − Umf ,n

∆x if Umf ,n ≤ 0,

0 if Umf ,n > 0,
(3.29)

U
∂U

∂x

∣
∣
∣
∣
mf+1,n

≈







Umf+1,n
Umf+2,n − Umf+1,n

∆x if Umf+1,n ≤ 0,

Umf+1,n
Umf+1,n − Umf ,n

∆x if Umf+1,n > 0.
(3.30)

Pressure gradient in U momentum equation

The pressure gradient is neglected:

g
∂ζ

∂x

∣
∣
∣
∣
mf ,n

≈ 0. (3.31)

Viscous terms

The horizontal viscous terms are simplified by neglecting the second derivatives
with respect to x: ∂2U

∂x2 and ∂2V
∂x2 :

∂2U
∂x2 + ∂2U

∂y2

∣
∣
∣
∣
mf ,n

≈ ∂2U
∂y2

∣
∣
∣
∣
mf ,n

≈ 1
∆y2 (Umf ,n+1 − 2Umf ,n + Umf ,n−1),

∂2V
∂x2 + ∂2V

∂y2

∣
∣
∣
∣
mf ,n

≈ ∂2V
∂y2

∣
∣
∣
∣
mf ,n

≈ 1
∆y2 (Vmf ,n+1 − 2Vmf ,n + Vmf ,n−1).

(3.32)

3.5.4 QH-boundary

A QH-boundary is usually applied downstream. A discharge is prescribed and
related to a water level. The relation between water level and discharge is deter-
mined empirically and can be taken from a table.

In fact we apply a water level boundary indirectly:

Q = FQ(t)
table⇒ ζ (3.33)
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The water level boundary condition that we find in this way is treated as
described in Section 3.5.3.

3.5.5 Velocity boundary

A velocity boundary is not often used in practice. It can be applied for example
when models are nested. E.g. when we know the velocities in a certain model
from simulations, we can use these velocities as boundary conditions if we want
to do a new simulation on a smaller part of this model. If the boundary is normal
to the U -velocity direction we prescribe the U -velocity:

U = FU (t) (3.34)

We further prescribe:

νH
∂V
∂x

∣
∣
∣
mf ,n

= 0 free slip along the boundary,

ζmf ,n = ζmf+1,n needed for well-posedness,

Vmf ,n = 0 only needed at inflow boundary.

(3.35)

Furthermore, we can apply a reflection coefficient which is discussed in Section
3.5.8.

We want to solve the U - and V -momentum equation, and the continuity
equations in (mf + 1, n), Vmf ,n. Some terms in the shallow water equations need
to be adapted if we want to solve these equations on (mf , n) and (mf + 1, n).
These adaptations are discussed below. For all other terms the discretization is
straightforward, as described in Section 3.3 and 3.4.

Advection term in U-momentum

The discretization of the advection term of the U -momentum equation (3.3) near
the boundary is replaced by the upwind approximation given by (3.30).

Viscous term in U-momentum

In the discretization of the viscous term (3.10) at the boundary we need ∂U
∂x

∣
∣
mf−

1

2
,n

.

Since it is not available this term is set to zero, just as in(3.26) and thus:

∂2U

∂x2

∣
∣
∣
∣
mf ,n

≈ 1

(∆x)2
(Umf+1,n − Umf ,n) (3.36)
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3.5.6 Discharge boundary

A discharge boundary is usually applied upstream. The discharge (or transport
rate) Q is prescribed for the opening.

Q = FQ(t), (3.37)

with for every grid cell Q = H∆yU,

The distribution of the discharge is then computed and relates the total dis-
charge to the velocity. The distribution can be implemented in 2 ways:

• linear distribution over sections of the opening, the discharge is prescribed
for the end points of the section (see Figure 3.3); or

• distribution over the opening where the total water depth and the bottom
friction are taken into account (see Figure 3.4).

This last case is also called a ’distributed discharge opening’. The lower the
total water depth and the higher the bottom friction, the less the discharge over
a certain grid cell.

The implementation of this boundary condition is easy for the continuity
equation:

(HU)mf ,n(t) =
FQ(t)

∆y
. (3.38)

In the momentum equations we have two unknowns (velocity and water level).
Therefore we take the total water depth from the previous step:

Umf ,n(t +
1

2
∆t) =

FQ(t + 1
2∆t)

Hmf ,n(t)∆y
. (3.39)

3.5.7 Riemann invariant boundary

At a Riemann invariant boundary a certain combination of the water level and the
velocity is prescribed. This boundary is only applied in special cases for example
to study the resonance of waves in a harbor. A Riemann invariant boundary
condition can only be applied when ζ is small compared to the depth d: |ζ|

d ¿ 1.
For a boundary normal to the U -velocity we have:

FR =







U + ζ
√

g
d at left boundary,

U − ζ
√

g
d at right boundary.

(3.40)
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Figure 3.3: Discharge Q linearly distributed over opening.
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Figure 3.4: Discharge Q depends on total water depth and on bottom friction.
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3.5.8 Reflection coefficient

A reflection coefficient is applied to prevent reflection of waves at open boundaries.
It is an artefact used in the modelling, and prevents non-physical oscillations.
This oscillations are very common in the first time period after the initial solution.
The bottom friction and viscosity will ensure some damping, but usually this
would take too long. Therefore, a term consisting of the time derivative of the
Riemann invariant multiplied by the reflection coefficient α can be added to a
water level or velocity boundary condition to reduce the spin up time of a model:

Fζ(t) = ζ + α ∂
∂t

{ (
U + 2

√
gH
)

at left boundary,
(
U − 2

√
gH
)

at right boundary,

FU (t) = U + α ∂
∂t

{ (
U + 2

√
gH
)

at left boundary,
(
U − 2

√
gH
)

at right boundary.

(3.41)

The reflection coefficient α is chosen small enough to damp short oscillations.
More details on the reflection coefficient can be found in [2, Section 6.3].

This method is implemented in WAQUA, in QuickFlow we do not use such
methods to reduce oscillations.

3.5.9 Drying and flooding

The location of a moving boundary can shift due to drying and flooding. The
location depends on the water level, see also Figure 3.5. The movement of the
front is in the same direction as the flow:

Ufront = U · n (3.42)

with U =

(

U

V

)

This is illustrated in Figure 3.7.

The theory below is taken from [2, Section 8.1].

In Figure 3.6 the discretized bottom is shown. Now, if the water is very
shallow, the influence of the bottom is relatively large and the horizontal velocity
will be small. Therefore, we define a treshold value δ and describe the drying and
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flooding procedure:

drying: Umf ,n = 0 if HU
mf ,n ≤ 1

2δ,

Vmf ,n = 0 if HV
mf ,n ≤ 1

2δ,

flooding: Umf ,n 6= 0 if HU
mf ,n ≤ δ,

Vmf ,n 6= 0 if HV
mf ,n ≤ δ,

(3.43)

with HU
m,n the total depth at the U -point (m, n), see (3.20) and (3.21),

and HV
m,n the total depth at the V -point (m, n).

Note that drying only takes place when the water level is below half of the
treshold value. It will become wet again only when the water level is above the
treshold value δ. This way we prevent too fast successive drying and flooding, so
called ’flip-flop’.

This method basically comes down to placing and removing of ’screens’ when-
ever necessary. By ’placing a screen’ we mean that in the model we place a ’wall’
or a ’screen’ in such a way that the water can not flow in a certain direction. If we
place a screen in the U -velocity direction the V -velocity is set to zero. ’Screens’
can also be used to assure that at the open boundaries the velocity is normal to
the boundary, see Figure 3.8.

This method is easy to implement and the procedure described above to
prevent ’flip-flopping’ reduces some instabilities. Still it can be instable, especially
when δ is chosen small. In [2, Section 8.2] and in [5, Section 3.6.2] more advanced
methods are described to prevent instabilities. These methods can be used in
WAQUA.

In QuickFlow the placing and removing of screens is implemented approxi-
mately. It is assumed that this has not much influence on the solution because we
are only interested in the stationary case. Furthermore, we expect the solution
to be less accurate in these areas anyhow.

An alternative possible approach to simulate drying and flooding of tidal
flats has been designed by VORtech. The shallow water equations have a lot in
common with the compressible Navier-Stokes equations. Therefore methods that
were developed for free surfaces in the Navier-Stokes equations can be applied on
tidal flats in the shallow water equations. This resulted in a method based on
artificial porosity. We do not need to use screens with this approach, which is
one of its major advantages. This method is (shortly) described in [6].
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Chapter 4

Solution methods

After discretization in space and implementation of the boundary conditions, the
system of equations is solved using an iterative method. QuickFlow is intended
to find the stationary solution, still we use time stepping and a method based on
ADI is implemented. We will first introduce the ADI method and explain how it
is used in WAQUA. Afterwards we will discuss the time iteration methods used
in QuickFlow.

It is important to understand the time iteration in both WAQUA as in Quick-
Flow because it appears to be one of the major causes for differences, between
the two.

4.1 Solution Methods in WAQUA

4.1.1 ADI

For time-discretization the Alternating Direction Implicit (ADI)-method is used.
This method was first introduced for the shallow water equations in 1967 by
Leendertse [7]. The theory below is mostly taken from [2, Chapter 5 and 7].

The ADI-method splits every time step into two stages. In both stages the
equations are solved. In the first stage some terms are taken implicitly while
the other terms are taken explicitly. In the second stage this is the other way
around. Which terms are taken implicitly and which explicitly depends on the
application.

This method is used because it is a good combination of an implicit and an
explicit method. A completely explicit method would only be stable for a very
small time step. On the other hand, an implicit method would use too much
computer time and memory, which was particularly important in the early days
of WAQUA in the 1970’s.

38
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The ADI-method is based on the Crank-Nicholson method for solving the
linear matrix vector equation du

dt = Pu:

ul+1 − ul

∆t
=

1

2
Pul +

1

2
Pul+1. (4.1)

The ADI-method can be written as:

ul+1/2 − ul

∆t = 1
2P1u

l+1/2 + 1
2P2u

l stage 1,

ul+1 − ul+1/2

∆t = 1
2P1u

l+1/2 + 1
2P2u

l+1 stage 2,

(4.2)

with u =







U

V

ζ







and functions A1 and A2.

In this application P1 contains all derivatives in the x-direction, P2 contains
the derivatives in the y-direction. Furthermore P1 + P2 = P.

The equations for the ADI method (4.2) can also be written as:

du
dt

= A1

(
ul,ul+1/2

)
stage 1,

du
dt

= A2

(
ul+1/2,ul+1

)
stage 2.

(4.3)

In Section 4.1.2 we will discuss how A1 and A2 look like for the shallow water
equations.

With u(t) = ul, u(t + 1
2∆t) = ul+1/2 and u(t + ∆t) = ul+1 we can also write

for the first stage:

u

(

t +
1

2
∆t

)

= u (t) +
1

2
∆tA1

(

u (t) ,u

(

t +
1

2
∆t

))

. (4.4)

For the equations in the second stage we can similarly write:

u (t + ∆t) = u

(

t +
1

2
∆t

)

+
1

2
∆tA2

(

u

(

t +
1

2
∆t

)

,u (t + ∆t)

)

. (4.5)

By substituting (4.4) in (4.5) we find one equation for the ADI method:

u (t + ∆t) = u (t) + 1
2∆t

[

A1

(
u (t) ,u

(
t + 1

2∆t
))

+ A2

(
u
(
t + 1

2∆t
)
,u (t + ∆t)

) ]

.
(4.6)
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step ∆t.

If we now let ∆t → 0 then

u
(
t + 1

2∆t
)

→ u (t) , and

u (t + ∆t) → u
(
t + 1

2∆t
)
, and thus

u (t + ∆t) → u (t) .

(4.7)

Note that in practice the time step can never be equal to zero. Therefore we
will always find two coupled stationary solutions, one for the primary (integer
valued) time steps (p) and one for the half time steps (h):

u∗
p = u∗(t) = u∗(t + ∆t),

u∗
h = u∗(t − 1

2∆t) = u∗(t + 1
2∆t).

(4.8)

These solutions are not necessarily close to each other:
∣
∣u∗

p − u∗
h

∣
∣ might be large,

especially for large time steps ∆t. This subject is illustrated in Figure 4.1.
Consider the stationary solution for the primary time steps u∗

p. If we now
take a very small time step (∆t → 0) then the stationary solution for the half
time step u∗

h → u∗
p.
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This way we find the stationary solution in WAQUA u∗W with:

du∗W

dt
=

1

2

(
A1

(
u∗W,u∗W

)
+ A2

(
u∗W,u∗W

))
. (4.9)

WAQUA does not store the solution from the half time steps, therefore we
will find u∗W = u∗

p and we do not know how far this solution is away from the

solution in the half time steps, in other words:
∣
∣u∗W − u∗

h

∣
∣ is unknown.

4.1.2 ADI applied to the shallow water equations

We can now apply the ADI method to the shallow water equations (2.23) with
its discretization described in Chapter 3. This is described in more detail in [2,
Chapter 5]. In the first stage of the ADI method we solve the following equations,
in this order:
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V l+1/2 − V l

1
2∆t

+ Ū l ∂

∂x
V l+1/2 + V l ∂

∂y
V l+1/2

+νH

(
∂2

∂x2 V l+1/2 +
∂2

∂y2 V l+1/2

)

− gV l+1/2

√

(Ū l)2 + (V l)2

H̄ lC2
2D,y

+g
∂

∂y
ζ l + fŪ l = 0, (4.10)

⇒ V l+1/2,

U l+1/2 − U l

1
2∆t

+ U l+1/2 ∂
∂x

U l + V̄ l+1/2 ∂
∂y

U l

+νH

(

∂2

∂x2 U l + ∂2

∂y2 U l

)

− gU l+1/2

√

(U l)2 + (V̄ l)2

H̄ lC2
2D,x

+g ∂
∂x

ζ l+1/2 − fV̄ l+1/2 = 0,

ζ l+1/2 − ζ l

1
2∆t

+ ∂
∂x

(
H l+1/2Ū l+1/2

)
+ ∂

∂y

(
H lV̄ l

)
= 0,







(4.11)

⇒ U l+1/2, ζ l+1/2.

In the second stage the following equations are solved in this order:

U l+1 − U l+1/2

1
2∆t

+ U l+1/2 ∂

∂x
U l+1 + V̄ l+1/2 ∂

∂y
U l+1

+νH

(
∂2

∂x2 U l+1 +
∂2

∂y2 U l+1

)

− gU l+1

√

(U l+1/2)2 + (V̄ l+1/2)2

H̄ l+1/2C2
2D,x

+g
∂

∂x
ζ l+1/2 − fV̄ l+1/2 = 0, (4.12)

⇒ U l+1,

V l+1 − V l+1/2

1
2∆t

+ Ū l+1 ∂
∂x

V l+1/2 + V l+1 ∂
∂y

V l+1/2

+νH

(

∂2

∂x2 V l+1/2 + ∂2

∂y2 V l+1/2

)

− gV l+1

√

(Ū l+1/2)2 + (V l+1/2)2

H̄ l+1/2C2
2D,y

+g ∂
∂y

ζ l+1 + fŪ l+1 = 0,

ζ l+1 − ζ l+1/2

1
2∆t

+ ∂
∂x

(
H l+1/2Ū l+1/2

)
+ ∂

∂y

(
H l+1V̄ l+1

)
= 0,







(4.13)

⇒ V l+1, ζ l+1.
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Now we can define A1 and A2 from (4.3). We can write for the first stage:

A1







U l, U l+1/2

V l, V l+1/2

ζ l, ζ l+1/2







=







a1 b1 c1

0 b2 0

0 0 0













U l+1/2

V l+1/2

ζ l+1/2







+







d1

d2

d3







+







0

f2(V
l+1/2)

f3(U
l+1/2, ζ l+1/2)







(4.14)

with:

a1 =
∂U l

∂x
− g

√

(U l)2 + (V̄ l)2

H̄ lC2
2D,x

b1 =
∂U l

∂y
− f

c1 = g
∂

∂x

d1 = νH

(
∂2

∂x2 U l +
∂2

∂y2 U l

)

b2 = Ū l ∂

∂x
+ V l ∂

∂y
− g

√

(Ū l)2 + (V l)2

H̄ lC2
2D,y

d2 = g
∂ζ l

∂y
+ fŪ l

f2(V
l+1/2) = νH

(
∂2

∂x2 V l+1/2 +
∂2

∂y2 V l+1/2

)

d3 =
∂

∂y
(H lŪ l)

f3(U
l+1/2, ζ l+1/2) =

∂

∂x
(H l+1/2Ū l+1/2)

A2 can be defined similarly. Note that A1 consists of a linear and a nonlinear
part. The submatrices a1, b1, c1 and b2 are pentadiagonal matrices, as we will
show in the next section.

Solving nonlinear equations

Below we describe how to solve the U -momentum equations in the second stage
(4.12) and the U -momentum equation in combination with the continuity equa-
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Figure 4.2: Stencil for time discretization of U -momentum equation in the second
stage of ADI method.

tion from the first stage (4.11). The solutions of the V -momentum and continuity
equations (4.10) and (4.13) can be obtained using similar techniques.

We start with the discretization of the U -momentum equation in second stage
of ADI method (4.12). The stencil is shown in Figure 4.2. We can not solve this
equation directly, we will use ’sweeps’. The first sweep p = 1 is in the dominant
V -direction. The dominant V -direction is determined by:

dominant V -direction =

{

y-direction if
∑

m,n V
l+1/2
m,n ≥ 0,

−(y-direction) if
∑

m,n V
l+1/2
m,n < 0.

(4.15)

The next sweep is in the other direction, then again in the dominant V -direction,
etc. Usually 2 sweeps are enough, but this can be adjusted by the user. If the
V -direction for gridpoint (m, n) is the sweep direction, U l+1

m,n−1 and U l+1
m,n−2 can

be used. If the V -direction is not the sweep direction U p−1
m,n+1 and Up−1

m,n+2 from
the previous sweep have to be used. This results in tridiagonal matrix equation
for each n in each sweep:

am−1,nUm−1,n + bm,nUm,n + cm+1,nUm+1,n = dm,n (4.16)

with am,n, bm,n, cm,n, dm,n constants.

In the first stage of the ADI-method the U -momentum and the continuity
equations (4.11) are solved simultaneously. In Figures 4.3 and 4.4 the stencils are
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∣
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Figure 4.4: Stencil for time discretization of continuity equation in the first stage
of ADI method.
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shown. The equations can not be solved in a straightforward way. Therefore we
first use the U -momentum equation to express U in ζ:

am,nζm,n + bm,nUm,n + cm+1,nζm+1,n = dm,n ⇒
Um,n = Um,n(ζm,n, ζm+1,n), (4.17)

with am,n, bm,n, cm,n, dm,n constants.

Now this U can be substituted in the continuity equation. This results in a
tridiagonal matrix equation for each n in each sweep:

em−1,nζm−1,n + fm,nζm,n + gm+1,nζm+1,n = hm,n (4.18)

with em−1,n, fm,n, gm+1,n, hm,n constants.

After solving (4.18) for ζ the velocities U can be obtained by back substition
of ζ in (4.17).

The tridiagonal matrix equations (4.16) and (4.18) can be solved using Thomas’
algorithm. This algorithm is discussed in Appendix C. It follows there that we
have the restriction:

max

(

∆t|U l
m,n|

∆x
,
∆t|V l

m,n|
∆y

)

≤ 4, ∀m, n. (4.19)

4.2 Solution methods in QuickFlow

QuickFlow only computes the stationary solution of the shallow water equations.
Therefore it is not neccesary to do all the time steps as accurately as in WAQUA.
Still time stepping is used. The initial solution is taken from WAQUA and is
assumed to be stationary. First we use QuickFlow to check if this solution is
indeed stationary. Then an adjustment is made to, for example, the bottom.
QuickFlow now computes the new stationary solution by taking time steps until
a stationary solution is found. In this section we will focus on how QuickFlow
finds a stationary solution.

Remember from Section 4.1.1 that we can find an approximation of the sta-
tionary solution in WAQUA u∗W by solving equation (4.9):

du∗W

dt
=

1

2

(
A1

(
u∗W,u∗W

)
+ A2

(
u∗W,u∗W

))
, (4.20)

with A1 and A2 as in (4.14).
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4.2.1 Euler Backward

WAQUA uses the ADI-method to solve (4.20). In QuickFlow we solve this equa-
tion with the Euler Backward method.

In general dx
dt = f(t, x(t)) is approximated with Euler Backward as follows:

dx

dt
≈ x(t) − x(t − ∆t)

∆t
, ⇒

xl+1 = xl + ∆tf(tl+1, xl+1). (4.21)

We now apply Euler Backward (4.21) on the differential equation (4.20):

un+1 = un + 1
2∆t

[

A1

(
un+1,un+1

)

+ A2

(
un+1,un+1

) ]

,
(4.22)

with u0 = u∗W the initial solution.

We can also write this as:

1
2∆tM(un+1 − un) + A(un+1) = b, (4.23)

with mass matrix M the identity matrix, with somes ones (referring to equations
without time derivative) replaced by zeros, function A(un+1) = −(A1(u

n+1,un+1)+
A2(u

n+1,un+1)), and right hand side vector b known from boundary conditions
and previous steps.

With u(t) = un and u(t + ∆t) = un+1 we can write (4.23) also as:

1

2
∆tM(u(t + ∆t) − u(t)) + A(u(t + ∆t)) = b. (4.24)

Stop criterium outer iteration

We need to set a stop criterium for the Euler Backward method.
For the stationary solution u∗Q of (4.23) we have:

A(u∗Q) = b. (4.25)

We compute the residual Router in the n-th time step using the 2-norm:

Rn
outer = ‖A(un) − b‖2 . (4.26)

If this residual is small enough the iteration is complete and we have approx-
imated the stationary solution close enough. This stopping criterium is set at:
Rn

outer < 10−7.



48 CHAPTER 4. SOLUTION METHODS

Note that there is a close relation between the initial residual and the dif-
ference, in the 2-norm, between the initial and the stationary solution. We will
make this clear for the linear case Ax = b with stationary solution x∗.

Rn = ‖Axn − b‖
= ‖Axn − Ax∗‖
≤ ‖A‖ ‖xn − x∗‖ . (4.27)

If we take n = 0, we consider the initial residual R0 and the difference between
the initial and the stationary solution x0 − x∗. We find:

R0 ≤ ‖A‖
∥
∥x0 − x∗

∥
∥ ⇒

R0

‖A‖ ≤
∥
∥x0 − x∗

∥
∥ . (4.28)

So, this gives an indication of how far the initial solution is, at least, from the
stationary solution.

Time step

We solve the nonlinear equation (4.24) using Newton’s method with line search
(see Section 4.2.2). Note that the Euler Backward method is stable even for large
time steps. However, Newton’s method performs better if we take small time
steps. Therefore we adjust the time step ∆t every outer iteration. If Newton’s
method needs only a few (inner) iterations, this is an indication that we can
take a larger time step. If it needs a lot of iterations or if the residual does not
decrease, then the time step should be taken smaller. We apply the following
criterium:

∆tn+1 =







2∆tn if K ≤ 2 and Rn
outer ≤ 1.01Rn−1

outer

∆tn if 2 < K < 5 and Rn
outer ≤ 1.01Rn−1

outer

1
2∆tn if K < 5 and Rn

outer > 1.01Rn−1
outer

1
2∆tn if 5 ≤ K < 7
1
4∆tn if K ≥ 7

(4.29)

with K the number of Newton iterations to find un,

and Rn
outer the residual of the n-th outer iteration as defined in (4.26).

4.2.2 Newton’s method with line search

We will solve equation (4.23) using Newton’s method, also known as the Newton
Raphson method. In general Newton’s method approximates the solution of
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F(x) = 0 by:

xk+1 = xk −
(

F′(xk)
)−1

F(xk), (4.30)

with x0 the initial iterate, and F′ the Jacobian:

F′(x) =







∂F1(x)
∂x1

· · · ∂F1(x)
∂xn

...
. . .

...
∂Fn(x)

∂x1
· · · ∂Fn(x)

∂xn







. (4.31)

Note that we need to compute the Jacobian F′(x) and its inverse in every
iteration step. In practice we do not compute (F′(x))−1 explicitely. Instead we
first find a vector s that satisfies F′(xk)s = −F(xk). We will compute s using
the Matlab routine s=F’\F. Then we compute the new approximation using the
line search algorithm described below.

We apply Newton’s method on the nonlinear equation (4.23). So we are
actually solving:

F(x) =
1

2
∆tM(un+1 − un) + A(un+1) − b = 0, (4.32)

with x = un+1.

In order to simplify notation we will use within this inner iteration un = x0,
iteration index k. So Newton’s method will give us the following sequence: un =
x0,x1,x2, ....

Line searches

In QuickFlow we do not use Newton’s method exactly as described above in (4.30).
We combine it with a line search. This means that we do not necessarily take a

complete Newton step sk =
(
F′(xk)

)−1
F(xk). The line search method instead

adjusts the length of the step in this descent direction s. Therefore we minimize
over α

φ(α) = F
(

xk − αsk
)

. (4.33)

This minimization problem would be to complex to solve exactly. Therefore
we start with α0 = 1 (complete Newton step) and we do an iteration process:
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step 0. αi = α0

1. αi+1 = 1
2αi

2. if φ(αi+1) < φ(αi)

i := i + 1

return to step 1.

3. α = αi

We use the resulting α to compute the solution in the next iteration:

xk+1 = xk − αsk (4.34)

with sk =
(

F′(xk)
)−1

F(xk).

One of the major advantages of line search methods is that the convergence
is global.

Stop criterium inner iteration

The inner iterations of Newton’s method with line search also need a stopping
criterium.

We are looking for an approximation of the solution of (4.23). Every k-th
iteration of Newton’s method we compute the residual:

Rk
inner =

∥
∥
∥M(xk − x0) + A(xk) − b

∥
∥
∥

2
. (4.35)

For the stopping criterium we use the relative residual:

Rk
inner

R0
inner

< 0.01. (4.36)



Chapter 5

Test problems

In this section we will describe the test problems for the next phase of this project.
During the coming months we will look at these test problems more closely in
order to find out where and why problems in solving the shallow water equations
occur. Furthermore, we will try to adjust the solution methods to find a more
accurate solution and/or to achieve a faster convergence.

We will consider three test problems. One is theoretical, the other two are
models of river parts in the Netherlands. They are chosen such that we can start
with an easy problem. Afterwards we convert to a real life problem with little
difficulties in geometry and boundary conditions. Finally, we consider a more
complex real life problem.

Some typical characteristics of models are shown in Table 5.1.

5.1 Theoretical test problem

The first test problem is theoretical: it consists of a fictitious straight canal. We
will refer to this problem as the ’Chézy gutter’, named after the french hydraulic
engineer Antoine de Chézy (1718-1798). It has been developed to test software
and is ready to use. The grid of this model is Cartesian, there is a similar test
problem with curvilinear grid.

The stationary solution as it is calcutated by WAQUA and by QuickFlow at
this moment is shown in Figures 5.1 and 5.2. Near the closed boundaries the
velocities computed by QuickFlow are much larger that the velocities computed
by WAQUA. In Figure 5.3 the residuals of the WAQUA-solution as they are
computed by QuickFlow are shown. Note that there are large residuals near the
open boundaries.
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Table 5.1: Characteristics of test problems.

Chézy Lek Randwijk

Geometry

length × width (km) 0.75×0.33 ±4.5×0.5 ±24×0.5

length × width (number of water level points
= number of cells +1)

26×12 43×35 288×27

gridsize (m×m) 30×30 ±100×15 ±85×20

number of weirs 0 156 2326

depth under reference plane (d (m)) 6,..,-6 10,..,-15

total depth (H (m)) 4,..,4.5

eddy viscosity (m2/s) 1 0.5 0.5

Boundary conditions

bottom: Manning coefficient (n) 0.0316

bottom: Nikuradse roughness length (ks)
(mostly around 0.2) (needed for White-
Colebrook)

0,..,4 0,..,40

treshold value drying procedure (m) 0.3 0.01 0.01

inflow: discharge boundary (FQ (m/s2)) -3,..,-400 -100,..,-200

inflow: velocity boundary (FU (m/s)) 2.93

outflow: water level boundary (Fζ (m)) 0.45 4.35 10.85

WAQUA input

initial water level (ζ (m)) 0.75 4.5 14.5

reflection coefficient (α) at inflow boundary 100 100 100

reflection coefficient (α) at outflow boundary 0 100 100

time step (minutes) 0.5 0.5 0.2

time domain (minutes) 120 1440 2000
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5.2 Real test problems

The other two test problems correspond to real parts of rivers in the Netherlands.
Their location is shown in Figure 5.4.

5.2.1 Lek

We consider a part of the river ’Lek’ as shown in Figure 5.5. The stationary
solution as it is calcutated by QuickFlow at this moment is shown in Figure 5.7.

The situation here is simple: there is no flooding and drying and the boundary
conditions on the closed boundaries are easy to implement. Furthermore, there
are no branches, splittings or sharp curves and only a few weirs. However, we find
a relatively large difference between the solutions of QuickFlow and of WAQUA
in the first three grid cells from the outflow boundary. The differences are shown
in Figure 5.8, the residuals are shown in Figure 5.6. The differences are only
in the order of a few promille of the calculated velocities. Since the differences
are much smaller in other areas, this indicates that something does go wrong
in the computations in this area. Note that in Figure 5.6 the residuals in the
continuity equation are much smaller than in the momentum equations. In the
momentum equations large residuals can be seen in the first 3 grid cells from the
left boundary.

5.2.2 Randwijk

We consider a part of the Rhine river just south of the city Wageningen, as shown
in Figure 5.9. The model of this part is called after the nearby town ’Randwijk’.
The stationary solution as it is calcutated by QuickFlow at this moment is shown
in Figure 5.11.

The situation is more complex than in the Lek model. The geometry is more
complex, there are a lot of weirs and some parts can dry and flood. Several of
these complexities can be observed in the more detailed picture of Figure 5.10.

Until recently the solution we found in QuickFlow did not converge. We have
found that it does converge if we use an other initial solution, which is probably
closer to the stationary solution. Still we find differences in the solutions from
WAQUA and from QuickFlow, as is shown in Figure 5.12.



54 CHAPTER 5. TEST PROBLEMS

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0

0.1

0.2

0.3

0.4

0.5

X−coordinate [km]

Y
−

co
or

di
na

te
 [k

m
]

Solution by WAQUA

[m
]

0.2

0.4

0.6

0.8

1

1.2

PSfrag replacements

Figure 5.1: Chézy gutter, stationary solution computed by WAQUA.
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Figure 5.2: Chézy gutter, stationary solution computed by QuickFlow.
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Figure 5.3: Chézy gutter, residuals of the WAQUA-solution, computed by Quick-
Flow.
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Lek
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Figure 5.4: Overview of part of the Netherlands with some main rivers. River
parts that are used as test model ar indicated.
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Figure 5.5: Satellite picture of the river part that is modelled in the Lek model
and its surroundings.
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Figure 5.6: Lek, upper plot: residuals of continuity equation, center plot: residu-
als of U -momentum equations, lower plot: residuals of V -momentum equations.
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Figure 5.7: Lek, stationary solution computed by QuickFlow.
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Figure 5.8: Lek, difference in water level computed by WAQUA and stationary
solution computed by QuickFlow.
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Figure 5.9: Satellite picture of the river part that is modelled in the Randwijk
model and its surroundings.
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Figure 5.10: Detail of the river part modelled in the Randwijk model.
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Figure 5.11: Randwijk, stationary solution computed by QuickFlow.
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Figure 5.12: Randwijk, difference in water level computed by WAQUA and sta-
tionary solution computed by QuickFlow.



Chapter 6

Research goals and plan

6.1 Goal

In the next phase of this project we will try to improve QuickFlow. We want
QuickFlow to compute a stationary solution for the shallow water equations ap-
plied on the Dutch rivers. Furthermore the solution should be accurate and the
convergence fast.

We will restrict ourselves to the test problems given in Chapter 5. For these
test problems we will compare the accuracy of the QuickFlow results with the
results given by WAQUA. QuickFlow has several tools to visualize residuals and
differences between solutions. We will use these tools, and whenever necessary,
make more tools to visualize and/or measure how good a result is.

First we will focus on QuickFlow to compute a stationary solution for the
same situation as in WAQUA, i.e., without any adjustments to the bottom or
any other conditions. Secondly we will study the results if these adjustments are
made. We expect that QuickFlow will give good results if a small adjustment is
made, but the results will be worse for bigger adjustments. We will study how
’big’ an adjustment can be. For example if a one meter deep hole of 20 by 20
meters will be digged in the bottom, we expect QuickFlow to give an accurate
result within limited time. The convergence will be slower if this hole will be ten
or hundred times wider and deeper.

A similar approach will be used for the initial conditions. We will first focus
on problems for which the initial condition from WAQUA is rather stationary.
This will be checked by computing the residuals. Later we will focus on situations
where the residual of the initial condition is larger.

Note that it would be beyond the scope of this study to compare our simu-
lation results with the physical reality. Therefore, we assume the results from
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WAQUA to be realistic, which is a valid assumption in the cases under consider-
ation.

6.2 Possible improvements

We have several suggestions to improve the performance of QuickFlow. In arbi-
trary order:

• apply (critical) damping boundary conditions to open boundaries;

• use an alternative method for time iteration which is not completely implicit
like Euler Backward but implicit only for ’appropriate’ terms;

• use an other iteration algorithm, which is less time consuming than the
standard Newton’s method;

• adaptive time stepping;

• adjust the shallow water equations with a ’pseudo water level’ such that it
is better capable of handling drying and flooding.

We will discuss these options in more detail below. In the Section 6.3 we will
discuss how to determine which of these improvements will have priority.

6.2.1 Boundary conditions for open boundaries

At this moment the boundary conditions for the open boundaries are taken ’hard’
as in Sections 3.5.3-3.5.4. This will introduce nonphysical reflections of waves
at these boundaries. It takes time for these waves to leave the system. The
system would more quickly stabilize if these reflections were reduced. This can
be achieved by applying a reflection coefficient as described in Section 3.5.8 or
by so called Sommerfeld boundary conditions, see [8].

Other interesting sources for this topic are [9, page 226], [10, page 161], [11]
and [12, Sections 7.3.1 and 21.8.5].

6.2.2 Time iteration method

At this moment we use Euler Backward and Newton’s method to do the time
iteration in QuickFlow, as described in Section 4.2. The Euler Backward method
is completely implicit. We can have a better performance if we consider well
which terms we should take implicit and which explicit.
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As an example we consider the advection equation:

ut + u
∂u

∂x
︸︷︷︸

= 1

2

∂u2

∂x

= 0. (6.1)

We assume u > 0 and use upwind discretization in space. We apply Euler
Backward:

un+1 = un + ∆tA(un+1), (6.2)

with A(un+1
m ) = un+1

m

un+1
m − un+1

m−1
∆x .

Newton’s method now gives:

un+1
k+1 = un+1

k −
((

un+1
k − un

k − ∆tA(un+1
k )

)′
)−1 (

un+1
k − un

k − ∆tA(un+1
k )

)

= un+1
k − (F(u)′)−1F(u) (6.3)

with F(u) = un+1
k − un

k − ∆tA(un+1
k )

It has been found1 that we can find a more accurate result in fewer time steps.
We therefore only take the point under consideration implicitly, the rest is taken
explicitly. This leads to an semi-explicit method with an approximation of the
function A:

A(un+1) = un+1
m

un+1
m − un

m−1
∆x = B(un+1,un+1)

≈ un
mun+1

m − un
mun

m−1
∆x = B(un,un+1)

(6.4)

We can implement this semi-explicit method in 2 ways: either in the Euler
Backward iteration or in the Newton iteration, which are explained in the next
paragraphs.

Semi-explicit time step

If we apply the above described method on the Euler Backward iteration we
compute the next iteration as follows:

un+1 = un + ∆tB(un,un+1),

un+1
k+1 = un+1

k − (G(u)′)−1G(u), (6.5)

with G(u) = un+1
k − un

k − ∆tB(un
k ,un+1

k ).

1We have discussed this informally with G.S. Stelling, a professor in fluid mechanics at the

University of Technology Delft.



6.2. POSSIBLE IMPROVEMENTS 63

Note that the Euler Backward steps are adjusted, but we take complete
Newton steps.

Semi-explicit Newton

For the other implementation we take incomplete Newton steps, but we do not
change the Euler Backward step:

un+1 = un + ∆tB(un+1,un+1) = un + ∆tA(un+1),

un+1
k+1 = un+1

k − (G′(u))−1G(u),

with G(u) = un+1
k − un

k − ∆tA(un+1
k ).

(6.6)

This latter method (6.6) has not been studied yet. We revert our discussion
to the method in (6.5). The upper equation of (6.5) can also be written as:

un+1
m − un

m

∆t
+

un
mun+1

m − un
mun

m−1

∆x
= 0. (6.7)

This discretization results in a matrix which has a oblique stencil and which
is more diagonally dominant. This might be the reason why this ’trick’ works so
well, but it has not been thoroughly studied.

It has been found that this method performs well if it is applied to the advec-
tion term in the momentum equations. We do not know whether we can apply
it to other terms and what the results would be.

In [13] and [14] semi-implicit schemes for three dimensional shallow water flow
are presented. [15] presents for the shallow water equations multilevel schemes
(time scheme adapted for spatial scales) and multistep schemes (time scheme
adapted for operator under consideration).

6.2.3 Iteration algorithm

When we choose to apply an iteration algorithm, we need to consider its char-
acteristics. One of the most important characteristics is the rate of convergence,
see also [16, Section 4.1].

Suppose we want to solve F(x) = 0, with x∗ the exact solution. The numerical
method is linearly converging in some norm ‖ · ‖ if:

lim
n→∞

‖xn+1 − x∗‖
‖xn − x∗‖ = µ, for some µ ∈ (0, 1). (6.8)

The numerical method is superlinearly converging in some norm ‖ · ‖ if µ = 0
in (6.8).
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The method is superlinearly converging with order q in some norm ‖ · ‖ if:

lim
n→∞

‖xn+1 − x∗‖
‖xn − x∗‖q

= µ, for some µ ∈ (0, 1). (6.9)

In particular if q = 2 in (6.9) we say that the method converges quadratically.

The convergence of Newton’s method is at least quadratic, for a proof see [16,
Section 5.1]. Drawbacks of Newton’s method are the costs for the determination
of the Jacobian F′ and of its LU-decompostion. This LU-decomposition is used
to compute an s such that F′s = −F.

Broyden’s method handles this drawbacks. This method is a quasi-Newton
method. In a quasi-Newton we do not compute the Jacobian every Newton
iteration. We only update the approximation of the Jacobian. If B ≈ F′ we can
find the next iterate:

xk+1 = xk − (Bk)−1F(xk), (6.10)

with B0 ≈ F′(x0) such that s, with F′s = −F,

can easily be determined.

This initial approximation of the Jacobian is called a preconditioner.

The quasi Newton method is determined by the way it updates the approxi-
mation of the Jacobian. In Broyden’s method the approximation to the Jacobian
is computed as follows:

Bk+1 = Bk +

(
F(xk+1) − F(xk) − Bky

)
yT

yTy

= Bk +

(
F(xk+1)

)
yT

yTy
, (6.11)

with y = xk+1 − xk.

Broyden’s method is locally superlinearly convergent but it uses a lot of computer
storage. More details on Broyden’s method can be found in [16, Chapter 7].
Broyden’s method as it is described here is well suited for dense matrices. If we
want to apply Broyden’s method in QuickFlow we will, however, need a variant
for sparse matrices.

An other way to improve the Newton algorithm in QuickFlow is to use a
Krylov method, see for example [16, Chapter 2 and 3]. We expect, however, that
this will not result in a substantial improvement as long as most other problems
have not been solved.
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6.2.4 Adaptive time stepping

Space dependent time step

Some sections of the rivers that we consider are more complicated than others.
For example the flow in sections that can flood and dry is difficult to compute.
In order to save computing time we can take large time steps in relatively easy
regions, and in other, more complex regions we can take a small time step.

One way to find an appropriate time step is to determine a suitable CFL-
number ν ≡

∣
∣u∆t

∆x

∣
∣ (compare with (4.19)) and adjust the timestep in every grid

cell.

However this would take a lot of computer time and therefore it might be
better to divide the domain in regions and determine different time steps for
every region. We can also consider changing this time step every iteration or
only after some number of iterations.

In [17] a local time stepping procedure is described which allows variation of
the time step in both space and time. In [18] a method is described for steady
flow simulations. These articles originated from aerospace related studies, [19]
describes a method for space and time step adaptation in general hyperbolic
partial differential equations.

Adjustment of time step for continuity equation

Furthermore we might improve the performance by taking the time step larger
for the continuity equation than for the momentum equations. Consider the
continuity equation in one dimension:

∂ζ

∂t
+

∂

∂x
(Hu) = 0. (6.12)

If we take a time step ∆t → ∞ we will find a divergence free discharge field:

∂

∂x
(Hu) = 0. (6.13)

If we now try to solve the system of equations with the momentum and
continuity equations we will only find solutions with a divergence free discharge
field. In the stationary solution the discharge field is divergence free as well. By
limiting the solution space in this way we hope to find the stationary solution
easier.
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6.2.5 Pseudo water level

The last suggestion to improve the performance of QuickFlow is to implement a
pseudo water level. This way the shallow water equations are adapted and the
model will better handle drying and flooding. Implementation would take a lot
of adjustments and is not within reach for this project.

6.3 Plan

In the next phase of this project we will implement some of the suggestions for
improvement described in Section 6.2. But, we will start with an other adapta-
tion. The functions A1 and A2 as introduced in Chapter 4 both only depend
on u(t + ∆t), see (4.22). Therefore they can be combined into one function
A (u(t + ∆t)). This will make the program easier to overview, but not necessar-
ily to perform better. We will implement this first because it will make other
adjustments easier.

Next, we will study which of the above described adaptations will substantially
improve QuickFlow’s perfomance. We can use several techniques to find out which
adaptation should be made first. For example we will look where large residuals
in the initial solution occur and where the solution by QuickFlow differs a lot
from the solution by WAQUA.

We will start looking for difficulties that occur in the easiest test problems,
e.g. the Chézy gutter, with a small initial residual. Later we can expand our
view to the other test problems and to problems with a larger initial residual and
to problems with adapted bottom.

Part of the numerical problems may be caused by programming errors. For
example we have seen a large residual near the open boundaries in the Chézy
gutter and in the Lek model. A programming error might well be the cause. One
of our first actions will be to analyse the cause for the large residual and fix the
problem.

We will also have to take into account the machine precision. The WAQUA
software only computes in single precision. While QuickFlow is programmed in
Matlab and computes in double precision.



Chapter 7

Conclusion

In this report, we have discussed how river flows can be modelled by the shallow
water equations together with appropriate boundary conditions. The numerical
discretization in space that is used by WAQUA and QuickFlow is discussed. We
have seen that major differences between WAQUA and QuickFlow occur in the
methods to compute the stationary solution that were discussed in Chapter 4.
WAQUA uses the ADI-method, which gives a good result for accurate computa-
tion of time dependent solutions. It is, however, not well suited for computing a
stationary solution. The solution methods used by WAQUA have been adapted
for use by QuickFlow. QuickFlow uses Euler Backward for the time steps. The
resulting equations are linearized and solved using Newton’s method with line
search.

Now that we know the most important characteristics of WAQUA and Quick-
Flow, we will start to improve the convergence of QuickFlow. In the previous
chapter we have discussed the most important possible methods:

• reduce oscillations by applying damping boundary conditions;

• use a semi-explicit time scheme;

• use a more efficient iteration algorithm; and

• adaptive time stepping.

First we will study the possibilities to implement these improvements in more
detail. Subsequantly we will implement the chosen improvements and test them
using the test problems described in Chapter 5.

Our goal is to improve QuickFlow in such a way that it can find the stationary
solution for all test problems within a reasonable time.
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Below a time schedule for the rest of this project is shown.

Action duration
(weeks)

start end

Analyze and solve problems in
Chézy gutter

6 2 January 9 February

Analyze and solve problems in
Lek model

6 12 February 30 March 1

Analyze and solve problems in
Randwijk model

6 2 April 11 May

Finish report & extra time 5 14 May 15 June

Make, prepare and give pre-
sentation

2 18 June 30 June

1Including 1 week vacation.
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Notation

A1,2 function in first (second) ADI stage

C2D (2D) Chézy coefficient m1/2/s

C2D,x,y (2D) Chézy coefficient in x(y)-direction m1/2/s

d water depth below some horizontal plane m

Fζ,U,V,Q,R boundary value for water level (U -velocity, V -
velocity, discharge or QH, Riemann invariant)
boundary

f Coriolis parameter s−1

Fr Froude number

g acceleration due to gravity m/s2

Ĥ typical vertical length m

H = d + ζ total water depth m

HU,V total depth at U(V )-velocity point m

L̂ typical horizontal length m

l time iteration indicator

m grid index in x(ξ)-direction

mf grid index in x(ξ)-direction at boundary

n grid index in y(η)-direction

p pressure kg/m/s2

patm atmospheric pressure kg/m/s2

Q discharge (2-dimensional) m2/s

Re Reynolds number

Ret Reynolds number with turbulence included

Ro Rossby number
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Txx,yy,xy lateral (or Reynold’s) stresses kg/m/s2

t time coordinate s

∆t time step s

Û typical velocity in any horizontal direction m/s

U, V, W averaged velocity in x(y, z)-direction m/s

averaged velocity in ξ(η)-direction m/s

Ū , V̄ arithmetic average of surrounding U(V )-velocity
points

m/s

|U| =
√

U2 + V 2 magnitude of velocity m/s

u, v, w velocity in x(y, z)-direction m/s

velocity in ξ(η)-direction m/s

u′, v′, w′ random variation on velocity in x(y, z)-direction m/s

u solution vector (U, V, ζ)

u∗W ,u∗Q stationary solution found with WAQUA (Quick-
Flow)

x, y, z Cartesian coordinates m

∆x, ∆y grid distance in x(y)- direction m

α reflection coefficient for open boundaries

δ treshold value for drying and flooding m

ξ, η coordinates of orthogonal curvilinear grid

ζ water level above some horizontal plane m

ν viscosity m2/s

νt eddy viscosity m2/s

νH horizontal eddy viscosity m2/s

ρ density kg/m3

ρ0 constant reference density kg/m3

τ shear stress kg/m/s2

τbottom,x,y,ξ,η shear stress at bottom (in x(y, ξ, η)-direction) kg/m/s2

τi,j viscous stresses



Appendix A

Relation WAQUA and

QuickFlow

In Figure A.1 the processes in WAQUA and its relation with QuickFlow is shown.
The input for WAQUA consists for example of GIS (Geographic Information
System) maps, the grid (which is generated by an other program), measurement
data (for example the relation between water level and discharge at a certain
location), and model parameters (for example the bottom roughness at a certain
location).

This input is stored in the siminp-file for one specific model. This is an ASCII-
file. Waqpre uses the data from the siminp-file for preprocessing. It prepares and
puts ready the data that will be used later by waqpro. For example, when we
use time dependent boundary conditions, it computes and stores the boundary
conditions for every time step.

The output of waqpre is stored in the SDS-file. This data is used by waqpro.
Waqpro discretizes the equations on the given grid and computes the velocities
and water levels for the demanded time interval. After every time step it writes
its solution in the SDS-file and uses it in the next time step.

Whenever necessary postprocessing software can be used to make the WAQUA
solution in the SDS-file visible in a plot.

QuickFlow uses the data from the SDS-file as well. In Figure A.2 the processes
in QuickFlow are shown. QuickFlow takes the solution of the last time step from
the SDS-file. It is assumed that this is the stationary solution. However, in
practice it is only an approximation of the stationary solution and QuickFlow
first determines whether this solution is ’good enough’. Therefore, QuickFlow
computes the initial residual and computes the stationary solution. In the ideal
case QuickFlow would find exactly the same stationary solution as WAQUA and
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the residual would be zero. In practice this will rarely be the case and the results
are postprocessed for comparison. The residual and the difference between the
approximate stationary solution from WAQUA and the stationary solution from
QuickFlow are plotted. At this moment the user has to inspect these results
visually and decide whether he can use the approximate stationary from WAQUA
as initial solution for further computations.

QuickFlow was designed to compute new stationary solutions after adjust-
ments to the bottom and boundaries. These simulations can start now. The
user provides QuickFlow with information on the adjustments by way of a GUI
(Graphical User Interface). QuickFlow computes the new stationary solution af-
ter these adjustments. Again the results are postprocessed and made visible for
the user in a plot.

In practical situations the end user would try different adjustments and in-
spect the results. Then he chooses which adjustment(s) give(s) the desired velo-
cities and water levels. He can check this results with WAQUA, which is supposed
to give a more accurate result. Moreover, WAQUA is able to compute time de-
pendent solutions, where QuickFlow only gives the stationary solution.
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model: grid,
timesteps, boundary & 
initial conditions, etc.

(stationary) solution
computes computes new

stationary solution
(& postprocessing)

QuickFlow

postprocessing
makes solution
visible (plots)

SDS−file

’solution’

input

measurement data,
model parameters,

etc.

GIS, grid generator,

waqpre

preprocessing

waqpro

siminp−file

PSfrag replacements

Figure A.1: Scheme of the relation between WAQUA and QuickFlow.
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Figure A.2: Scheme of the processes in QuickFlow.
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Stencils for spatial

discretization

PSfrag replacements

under consideration

involved in discretization

involved in discretization if V < 0

involved in discretization if V ≥ 0

Figure B.1: Legenda for stencils below: Figure B.2-B.10.
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PSfrag replacements

Figure B.2: Points involved in the discretization of the advection term U ∂U
∂x .

PSfrag replacements

Figure B.3: Points involved in the discretization of V̄ .



78 APPENDIX B. STENCILS FOR SPATIAL DISCRETIZATION

PSfrag replacements

Figure B.4: Points involved in the discretization of the explicit part of the cross
advection term V ∂U

∂y .

PSfrag replacements

Figure B.5: Points involved in the discretization of the implicit part of the cross
advection term V ∂U

∂y .
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PSfrag replacements

Figure B.6: Points involved in the discretization of the pressure gradient ∂ζ
∂x .

PSfrag replacements

Figure B.7: Points involved in the discretization of the horizontal viscous term

νH

(
∂2U
∂x2 + ∂2U

∂y2

)

.
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PSfrag replacements

Figure B.8: Points involved in the discretization of the bottom friction term
τbottom,x.

PSfrag replacements

Figure B.9: Points involved in the approximation of HU in the discretization of
the continuity equation.
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PSfrag replacements

Figure B.10: Points involved in the approximation of (HU)x in the discretization
of the continuity equation.



Appendix C

Thomas’ algorithm

Systems like Ax = d can be solved using the Thomas’ algorithm (also known as
tridigonal matrix algorithm) if A is tridiagonal:

A =










b1 c1 ∅
a2 b2

. . .

. . .
. . . ck−1

∅ ak bk










. (C.1)

The theory below is taken from [2, Section 7.4].

The tridiagonal system is reduced to a bidiagonal system:










1 γ1 ∅
. . .

. . .

. . . γk−1

∅ 1










= δ, (C.2)

with γ1 = c1
b1

,

γi = ci
bi − aiγi−1

for i = 2, 3, .., k, ,

δ1 = d1
b1

,

δi =
di − aiδi−1
bi − aiγi−1

for i = 2, 3, .., k.

(C.3)
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Now the solution of Ax = d can be obtained by backward substitition:

xk = δk,

xi = δi − γixi+1 for i = k − 1, k − 2, .., 1.
(C.4)

In this method rounding off errors might amplify. This is prevented if the
matrix A is diagonal dominant:

|bi| > |ai| + |ci| for i = 1, 2, .., k. (C.5)

For the systems solved in WAQUA and QuickFlow this leads to the restriction:

max

(

∆t|U l
m,n|

∆x
,
∆t|V l

m,n|
∆y

)

≤ 4. (C.6)



Bibliography

[1] C.B. Vreughdenhil. Numerical Merhods for Shallow-Water Flow. Kluwer
Academic Publishers, Dordrecht, 1994.

[2] WL|Delft Hydraulics, Delft. Technical documentation WAQUA, April 2005.
Version 1.2.

[3] B. van ’t Hof, A.E.B. Veldman, and E.A.H. Vollebregt. MoMEC discretiza-
tions; applied to shallow water simulations on curvilinear grids. Memo,
VORtech Computing, August 2005. Not yet published.

[4] G.S. Stelling. On the construction of computational methods for shallow
water flow problems. Rijkswaterstaat Communications 35, Rijkswaterstaat,
The Hague, 1984. Also appeared as PhD thesis at University of Technology
Delft, 1983.

[5] MX.Systems / Ministry of Transport, Public Works and Water Manage-
ment; Directorate-General for Public Works and Water Management, Ri-
jswijk. User’s guide WAQUA; technical information, November 2005. Ver-
sion 10.41.

[6] B. van ’t Hof. Artificial porosity; drying and flooding without screens. Pow-
erPoint presentation, 2005.

[7] J.J. Leendertse. Aspects of a computational model for long-period water-wave

propagation. PhD thesis, University of Technology Delft, 1967.

[8] R. Vichnevetsky and E.C. Pariser. High order numerical sommerfeld bound-
ary conditions: theory and experiments. Computers and mathematics with

applications, 11(1-3):67–78, 1985.

[9] J.A. Battjes. Vloeistofmechanica; collegehandleiding CTme2100. Technische
Universiteit Delft; Faculteit Civiele Techniek en Geowetenschappen; Sectie
Vloeistofmechanica, March 2000.

84



BIBLIOGRAPHY 85

[10] J.A. Battjes. Stroming in waterlopen; collegehandleiding CTwa3310. Tech-
nische Universiteit Delft; Faculteit Civiele Techniek en Geowetenschappen;
Sectie Vloeistofmechanica, January 2000.

[11] J. van Kester, G. Stelling, A. Bijlsma, and T van der Kaaij. Syllabus Rand-

voorwaarden WAQUA en TRIWAQ, January 2001.

[12] R.J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge
texts in Applied Mathematics. Cambridge University Press, Cambridge,
2002.

[13] V. Casulli and E. Cattani. Stability, accuracy and efficiency of a semi-
implicit method for three-dimensional shallow water flow. Computers and

mathematics with applications, 27(4):99–112, 1994.

[14] V. Casulli and P. Zanolli. Semi-implicit numerical modeling of nonhydro-
static free-surface flows for environmental problems. Mathematical and Com-

puter Modelling, 36:1131–1149, 2002.

[15] T. Dubois, F. Jauberteau, R.M. Teman, and J. Tribbia. Multilevel schemes
for the shallow water equations. Journal of computational physics, 207:660–
694, 2005.

[16] Kelley. Iterative Methods for Linear and Nonlinear Equations. Number 16 in
Frontiers in Applied Mathematics. Society for Industrial and Applied Math-
ematics, Philadelphia, 1995.

[17] S. Chang, Y. WU, V Yang, and X. Wang. Local time-stepping procedures
for the space-time conservation element and solution element method. In-

ternational Journal of Computational Fluid Dynamics, 19(5):359–380, 2005.

[18] T. Imamura, K. Suzuki, T. Nakamura, and M. Yoshida. Acceleration of
steady-state lattice boltzmann simulations on non-uniform mesh using local
time step methos. Journal of Computational Physics, 202:645–663, 2005.
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