
Mathematical
modelling of
burn injuries

Thesis report

E.D. Kleimann

Mathematical
modelling of
burn injuries

Thesis report
by

E.D. Kleimann
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Tuesday October 30, 2018 at 2:00 PM.

Program: Applied Mathematics
Specialization: Computational Science and Engineering
Student number: 4231791

Project duration: February 5, 2018 – October 30, 2018
Thesis committee: Dr. ir. F. J. Vermolen, TU Delft, supervisor

Dr. ir. J. M. Tang, VORtech, supervisor
Drs. ing. E. K. van Es, VORtech, supervisor
Dr. H. M. Schuttelaars, TU Delft

Abstract

Burn injuries can lead to serious complications that have a large influence on someone’s quality of life. In
order to help patients, we need to gain insight into the wound healing process and in the development of
complications that come with serious burn injuries. The final goal would be to prevent or at least reduce
these complications. With a mathematical model, we simulate the time-evolution of the skin after a burn in-
jury. The objective is to be able to quantify the impact of (patient-specific) parameters on the evolution of the
skin properties. In this thesis, a cell-based model for the cell migration during wound healing is presented.
Two types of cells, macrophages and fibroblasts, migrate by incentives of the strain energy density and con-
centration fields. Two concentration fields are implemented in the model: Platelet Derived Growth Factor
(PDGF) and Transforming Growth Factor β (TGF-β). PDGF is a chemical that occurs in the wound bed and
TGF-β is secreted by the macrophages. The processes such as cell division and death are modelled through
stochastic processes. In this way, the data-consuming cell history does not have to be taken into account.
The computational work of the corresponding simulations increases rapidly for larger numbers of cells. This
holds in particular for the part that computes the strain energy density for every cell pair. This is tackled
by employing the Graphics Processing Unit (GPU) for the largest bottlenecks. The CUDA framework is used
to program the GPU, where certain parts of the computations can be run in parallel to make the computa-
tions more efficient. The GPU implementations are described in this report, alongside with the improved
computation times. For a 2D simulation of one day, the speed-up in computation time from the CPU to the
GPU implementation was a factor 58. To assess the accuracy of the computation of the concentration fields,
Richardson’s Extrapolation is used to estimate the order of the error. More research is required on this part
to achieve reasonable outcomes for the order. Moreover, an alternate approach for determining the TGF-β
field by Green’s function was studied. The computational work for this method increased rapidly and was
therefore unfit to be implemented in the model. Lastly, the influences of parameters on the model outcomes
were investigated. Monte Carlo simulations are needed for the interpretation of the stochastic model. The
influence of the time step and choice of normalization of the gradients were investigated. For the tested sce-
narios, the hypothesis that they behave similarly was not rejected. The single-precision implementation of
the model did not lead to an overall speed-up. Especially, the increase in computation time of the solver for
the concentration fields is unexpected. Using the GPU for efficiently modelling cell migration seems a good
idea. The current model can be used as a basis for more sophisticated models in the future.

iii

Preface

This thesis report marks the end of my Master’s Program in Applied Mathematics. It is the last requirement
to complete in order to obtain my Master’s degree in the specialization of Computational Science and Engi-
neering. Over the last nine months, I have worked on the subject of mathematical modelling of burn injuries.
The main challenge in my thesis was to investigate the possibilities that GPU computing offers to speed up
the wound healing model. The research was conducted in cooperation with VORtech, a company that sup-
ports developers and users of computational software. Their expertise lies in numerical modeling, scientific
software development, applied mathematics and data science. For this project, especially their expertise on
the subject of GPU computing was very valuable.

During this project, I have learned a lot about wound healing and about the mathematical models behind it.
Moreover, I learned a lot about programming in C++ and CUDA. I would like to thank my supervisors for their
constant support during this project. First of all, I would like to express my gratitude to my TU Delft supervi-
sor, Fred Vermolen. Your enthusiasm for the research on wound healing is very contagious and by the endless
amount of research ideas, you managed to keep me motivated during the whole project. Thanks for all the
cups of coffee and reminding me that when something does not work as expected, it is the more interesting.
Secondly, thanks to my supervisors from VORtech, Eli van Es and Jok Tang. Every time I encountered some
problem, you were always willing to brainstorm with me about possible explanations and solutions. Espe-
cially the advice on how to debug a certain problem from time to time has been very helpful! I am also very
grateful for the opportunity to conduct this research at VORtech. I found the ambiance at VORtech inspiring
and open, which made working there very pleasant. Thanks to all the colleagues for showing interest in my
work.

My thesis committee consists of the aforementioned supervisors and Henk Schuttelaars, a member of the
Mathematical Physics group at TU Delft. I would like to thank Henk Schuttelaars for his willingness to be
part of my graduation committee. Last but not least, I would like to thank my family and friends for always
having supported me during my studies. And finally, I wish everyone interested in this thesis, much pleasure
in reading my report.

E.D. Kleimann
Delft, October 2018

v

Contents

1 Introduction 1
1.1 Wound healing model. 1
1.2 Thesis outline . 2

2 Skin tissue 5
2.1 Cell biology . 5
2.2 The human skin and wound healing . 6

3 Cell dynamics 9
3.1 Cell migration. 9
3.2 Experiments . 9
3.3 Initialization of the model. 11

4 Mathematical model 13
4.1 Constant cell shape model . 13

4.1.1 Strain energy density, mechanical energy and random walk 13
4.2 Proliferation and Apoptosis . 14
4.3 Finite elements implementation for concentration . 15

4.3.1 Concentration field descriptions . 16
4.3.2 Concentration gradient at cell centers . 17

5 Modelling on realistic scale 19
5.1 Combining two models . 19
5.2 Input data. 20
5.3 Fibroblast density . 22
5.4 Macrophages entry . 23
5.5 Domain boundaries. 24

6 GPU computing 25
6.1 High performance computing . 25
6.2 GPUs . 25

6.2.1 CUDA and OpenCL . 25
6.2.2 Programming on the GPU . 26

6.3 GPU specifics for this project . 27
6.4 Tracking performance. 27
6.5 Speed-up and scalability . 28

7 Programming of wound healingmodel 31
7.1 From MATLAB to C++ . 31

7.1.1 Interpretation of results . 31
7.1.2 Comparison of simulation time . 32

7.2 Description of mmobi. 35
7.2.1 C++ particularities . 35
7.2.2 Random numbers . 36
7.2.3 Python API . 36

7.3 GPU usage for speed up. 37
7.3.1 Strain energy density and mechanical energy . 37
7.3.2 Finite Element computations . 37
7.3.3 Final optimizations . 38

vii

viii Contents

8 Wound healing quantification 39
8.1 Measuring wound healing . 39

8.1.1 Polygonal estimation. 40
8.2 Assessment of wound quantifiers . 40
8.3 Comparing simulations . 41

9 Simulation results 43
9.1 Wound healing dynamics . 43
9.2 Computational work load . 46
9.3 Comparison of CPU and GPU program . 47

10 Accuracy of concentration fields 49
10.1 Richardson’s Extrapolation for estimating the error order . 49

10.1.1 Precise refinement factor . 49
10.1.2 Limitations. 50

10.2 Approximate solution with Green’s functions . 52
10.2.1 Computation with numerical approximation . 53
10.2.2 Results . 53

11 Analysis model behavior 57
11.1 Timing GPU communication . 57

11.1.1 Reducing data transfer . 57
11.1.2 Transfer time in relation to simulation size. 58

11.2 Varying the time step . 59
11.3 Single versus double precision simulation . 61
11.4 Parameter variation of gradient scaling . 61

12 Conclusion 63
13 Futurework 67

13.1 Extensions of current model . 67
13.2 Efficiency considerations . 67
13.3 Accuracy considerations . 68
13.4 On the practical side . 69
13.5 Open questions . 69

A Finite ElementMethod derivations 71
A.1 Platelet Derived Growth Factor . 71
A.2 Transforming Growth Factor β . 72

B Richardson’s Extrapolation 74
B.1 Results order estimation . 74

Bibliography 75

1
Introduction

Wound healing is a complex biological process with many components. It is an important research area as
there are still complications occurring which we like to prevent, or at least reduce. Burn injuries can result
in complications such as contractions and hypertrophic scars. These complications have a radical impact
on someone’s quality of life. In the first place, hypertrophic scars and contractions cause aesthetic problems.
Furthermore, contractions can lead to reduced mobility. If the skin contracts strongly on an important area,
this is very problematic. A burn injury in the neck, for example, can cause contraction that makes it impossi-
ble for someone to lift his or her head.

Ideally, complications are prevented from becoming chronic problems. The pathways that lead to these com-
plications are unknown, and furthermore it seems difficult to influence the material properties of scar tissue
[21]. Scar tissue has different properties than uninjured tissue. The contractions occur by pulling forces from
fibroblasts and myofibroblasts. This process depends on the apoptosis (programmed cell death) rate of my-
ofibroblasts and the secretion rate of collagen molecules. Hypertrophic scars are caused by a disruption of
the restoration process. In this case the apoptosis rate is lower than usual. Research indicates that epithelial
tension, topography and stiffness are influencing how the skin behaves [10].

Mathematical modelling is a useful tool for untangling the complexity of the wound healing process. The in-
teractions can be investigated for specific parameters and then essential components can be discovered. We
need to find out more about the mechanical properties of the skin to know which factors are of importance.
With more insight into the wound healing process, we should be able to develop medicine and treatments
to prevent complications. With a model, different treatments can be tested and the best option to prevent
complications can be predicted.

The required computational work that is involved with large-scale simulations should be taken into consider-
ation. The work for detailed simulations in which individual cells are tracked, increases rapidly when scaling
up the domain or timescale. Moreover, performing the same stochastic simulation multiple times in order to
predict the outcome, is a costly operation. In scientific computing, the use of the GPU (Graphics Processing
Unit) to speed up computations is becoming more and more popular. With the arrival of new hardware and
software (for example, the CUDA framework), using the GPU in programming became an accessible option.

1.1. Wound healing model
There are many possibilities to model the wound healing of burn injuries. In this thesis a cell-based model
has been chosen. The cells are discrete entities, whereas the concentrations are continuous entities over the
domain. Moreover, the equations for migration used in this modelling project have stochastic components
and therefore the results have to be interpreted statistically. The final model can roughly be divided into three
main components:

1. A particle model, which can be composed of different types of cells. The cell migration computation is
based on the strain energy densities, chemical gradients and forces in the medium.

1

2 1. Introduction

2. A chemical field, by means of a Finite Element solution for the different chemical fields. This includes
both the secretion and diffusion of chemicals. The equations used in this part are of the form

∂c

∂t
−D∆c = ∑

j∈S(t)

γ jδ(x −x j (t)),

where c is the concentration, D a diffusion coefficient and γ j a coefficient for the amount of secreted
chemical. The right hand side represents the secretion of a chemical by a certain cell j in the set of cells
S(t), which is modelled by the Dirac Delta function δ(x). Another possibility is to have a chemical field
as result of the wound, as in Section 4.3. The different molecules and growth factors are described in
[21], which will be used as a basis for the chemical composition of the domain.

3. A mechanical field, to incorporate the forces that (myo)fibroblasts exercise on their environment. This
will allow us to model the contraction of the wound. The equations to be implemented have the form

−∇·σ= F

F = ∑
j∈S(t)

∫
Γ j

F (x ′
j)δ(x −x ′

j)n(x ′
j)dΓ

≈ ∑
j∈S(t)

n∑
k=1

F j kδ(x −x j k)n j k∆Γ j k for limn →∞

whereσ is the stress tensor and F the cell forces. If we simplify the cell boundary to be n straight edges,

then the cell force can be approximated by a finite sum over point forces on these line segments.

In this project, the first two components of the previously mentioned list (hence no forces) have been dealt
with. For these parts, we have attempted to speed up computations to attain an efficient code. The struc-
ture of the final program is a combination of different programming languages, as for the usage of the GPU
an implementation in C or C++ is necessary. The interface is made in C as this makes it compatible with
other languages (MATLAB, Python, Fortran, etc.). The cell migration algorithm is written in C++ and this part
contains most of the total program. The GPU is used in certain parts to speed up the computations. A user
program is made in Python, as this is available freely and an easy environment for most users. In this Python
program, the user can change the input parameters for the program and display the results of the simulation.

1.2. Thesis outline
The model that has been made during this project needs to be extended with more features, such as the me-
chanical field, in order to be able to realistically model the wound healing. However, in order to successfully
make a model as described above, we need efficient and accurate methods. In this thesis project, the goal
was to find an efficient way to deal with computations of large cell colonies. The opportunities that GPU
computing offers are therefore an important part of this research.

During the literature study, some research questions were posed to use as a guideline for the remaining thesis
work [20]. The main research question is:

‘How can a cell-based model that simulates the wound healing process be made as efficient as possible?’

Additionally, five sub-questions were drawn up:

1. Which parts of the cell migration program are suitable to be run on the GPU?

2. How accurate is the approach that uses the Finite Element Method to find the concentration on the
nodes and subsequently maps this to the cell centers to find the gradient? Which alternatives can be
used to improve the accuracy if necessary?

3. Can the model be run in single precision and obtain comparable results for when this is done in double
precision?

4. What can be said about the numerical stability and the maximal time step?

1.2. Thesis outline 3

5. What is the limit in terms of the number of cells and domain size for the program to be able to perform
Monte Carlo simulations?

The research questions will be addressed at various chapters in this report. Most questions (2, 3 and 4) will be
addressed in the Chapters 10 and 11. The computational work is investigated for various scenarios through-
out the report, therefore questions 1 and 5 are not addressed in a specific section.

The structure of this thesis is as follows. Before going into detail about the mathematical model, some inter-
esting concepts about the biological processes are discussed. In Chapter 2, firstly the cell dynamics in general
are discussed and in the second part, we go into more detail about the processes that occur during wound
healing. Subsequently, we zoom in on the processes on cell level in Chapter 3. Moreover, the results of some
experiments are summarized and some simplifying assumptions for the cell-based model are described.

In Chapter 4, the mathematical framework of the wound healing model is given. This framework includes the
computation of the strain energy densities, mechanical energy, the random walk and the concentration fields.
Furthermore, the processes of cell death and division are described. After the mathematical description, the
scaling of different methods and connection with input data is made in Chapter 5. Thereafter, additional im-
plementations to the framework in Chapter 4 are described.

Subsequently, the options for speeding up computations are discussed. In particular, information about GPU
computing with CUDA is given in Chapter 6. Different features of GPU computing are discussed and an anal-
ysis of the computational work for the MATLAB model from the literature study [20] is given. In Chapter 7,
a description of the model from a programming view is given. The MATLAB model is compared statistically
with the C++ model and the effect of using the GPU on different parts is measured. All the implementations
to reach a more efficient program (often by using the GPU) are written down in the last section of Chapter 7.

Next, the wound quantifiers are defined in Chapter 8, in order to keep track of the wound healing progress
and to be able to compare simulations with each other. In order to do the comparison for different scenarios,
we introduce Kolmogorov-Smirnov Two-Sample Test in the third section. In Chapter 9, the results of the sim-
ulation are shown. This involves the behavior of the wound quantifiers over time and an investigation of the
computational work. Additionally, the CPU and GPU implementations are compared with each other.

Finally, the results of analyzing the model are given in Chapter 10 and 11. In Chapter 10, the error estima-
tion with Richardson’s extrapolation is performed for the PDGF field and an alternative computation of the
TGF-β field is studied by using the Green’s function approximation. Thereafter, it is investigated which part
of the GPU computation consists of the communication between the CPU and the GPU. Lastly, we com-
pare scenarios with different time steps, precision and choice of gradient normalization with the help of the
Kolmogorov-Smirnov Two-Sample Test. The report is concluded with a conclusion of the findings in this
project and suggestions for future work.

2
Skin tissue

In this chapter some biology concepts that are relevant for the modelling of biological processes on cell level
are described. In [1] the main concepts of extracellular control of cell division, cell growth and apoptosis, that
is programmed cell death, are discussed. Interesting points are summarized in the first section. In the second
section the process of wound healing is reviewed, as this is related to the topic of this research. References
[21] and [10] are used in this section.

2.1. Cell biology
Cells of multicellular organisms do not simply divide if there are sufficient amounts of nutrients (unlike uni-
cellular organisms). Neither do cells grow (in mass) without some signal. The signal molecules that regulate
cell size and cell number are generally either secreted proteins, proteins bound to the cell surface or com-
ponents of the extracellular matrix (ECM). Factors that promote cellular growth can be divided into three
groups:

1. Mitogens: stimulate cell division by suppressing mechanisms that block progress through the cell cycle.

2. Growth factors: stimulate cell growth (increase in mass) by promoting the increase of proteins.

3. Survival factors: stimulate survival by suppressing apoptosis.

The cell population can only grow to some maximum. For example, cells cultured in a dish only divide until
the surface is filled. Cells need signals from other cells (survival factor), in order to not undergo apoptosis.
This regulates cells to live where they are necessary. Furthermore, it is thought that not only contact inhibi-
tion causes the limit, but mainly the capacity of a cell to locally take up the mitogens and growth factors and
not leaving enough for its neighbors.

There are over 50 proteins known to act as mitogens. For example epidermal growth factor (EGF). Many
mitogens have other actions as well. Transforming growth factor-β (TGF-β) can simulate and inhibit cell
proliferation at different locations. TGF-β can inhibit growth by blocking the cell cycle progress or stimulat-
ing apoptosis. Organisms seem to sense the size of their body parts and let cells die according to this (hence
not according to a specific number of cells).

Cells have intracellular mechanisms that limit cell proliferation. With cell proliferation, we mean the process
where a cell divides in two. After a limited number of divisions, they will permanently go to a non-dividing
state. The best-understood intracellular mechanism that limits cell proliferation occurs in human fibroblasts.
They undergo about 25–50 population doublings when cultured in a standard mitogenic medium. Telomeric
DNA is synthesized by the enzyme telomerase (which is a different process than for what happens with the
rest of the genome). The telomeres become shorter with every division, until this damage activates a cell ar-
rest. Lack of telomerase in most body cells prevents excessive cell proliferation. This is probably a key issue
in the aging of animals and humans. Unfortunately, cancer cells can produce telomeric DNA autonomously.

5

6 2. Skin tissue

During blood clotting, platelets are triggered to release platelet derived growth factors (PDGF). PDGF is a
mitogen that causes fibroblasts to proliferate. This happens when the fibroblasts are exposed to serum, but
not when exposed to plasma. PDGF is probably an important chemical in the wound healing process.

2.2. The human skin and wound healing
Skin tissue of humans can roughly be divided into three parts: the epidermis (usual thickness around 0.1
mm), the dermis (thickness between 0.5 and 5 mm) and the hypodermis. The epidermis is the top layer and
the hypodermis is located under the dermis (see Figure 2.1). The basement membrane is located between
the epidermis and dermis. Cells in contact with this membrane continually divide during the lifetime of an
organism, so that a protecting barrier is created [10]. This enables the skin to cope with many (harmful)
factors in its environment. Per location in the skin, the structure of the skin differs to optimize for some
functionality (minimize heat loss, optimize sensitivity, etc.)

Figure 2.1: Structure of the skin, with its three main layers: the epidermis, the dermis and hypodermis from [29].

Keratinocytes are the most common cells in the epidermis. Their primary function is to protect against pos-
sible damages from the environment (for example: pathogens, UV, water loss) by producing a barrier. The
keratinocytes also secrete various signaling molecules to stimulate maintenance processes. One of those
processes is the initiation of the inflammatory response after dermal wounding. The keratinocytes differen-
tiate into corneocytes during the ascend toward the top layer of the skin. Eventually, these cells lose their
cohesion and separate from the surface, after which new cells will take their place.

The dermis does not contain cells for the largest part, but has many different cell types otherwise. The most
important non-cellular components that maintain the integrity of the dermis are the basement membrane,
the fibers and the extrafibrillar matrix components. Together they form the extracellular matrix (ECM). The
most common cells in the dermis are the fibroblasts. They secrete precursors, partially differentiated cells
that are used for other components in the dermis, signaling molecules, and more importantly they break
down the fibrin cloth and secrete new extracellular matrix. Furthermore, fibroblasts exert contractile forces.
Fibroblasts can differentiate, for example to myofibroblasts, which exert even stronger contractile forces [2].

The natural wound healing process (without intervention and in absence of complications) can be divided
into four stages:

1. Hemostasis
The first process is to stop the bleeding of a wound (in case of cuts). Blood vessels around injured
vessels contract to reduce blood loss. Nearby specific blood elements, platelets, stick to each other

2.2. The human skin and wound healing 7

and to the injured parts. The platelets also cause reactions such that the protein fibrin forms bundles
attached to the platelets. This temporary structure allows for the healing of the area. In this healing
process, plasmin molecules are slowly created, which after some time break the structure down.

2. Inflammation
The contraction of the blood vessels stops quickly again and the walls of the vessels become more per-
meable. This phase starts when plasma leaks and types of leukocytes (white blood cells) migrate from
the intravascular space to the extravascular space. There are many different types of leukocytes. One
important type of leukocytes is the macrophage. Macrophages are cells that clear up relatively big sub-
stances such as pathogens, chemicals and debris. Next to their clearing task, the macrophages initiate
other immune reactions. Initially there are more M1 macrophages, these cells help to remove bacte-
ria. Later, the M2 macrophages are dominating, which clean up the debris and stimulate angiogene-
sis. Angiogenesis is the formation of new blood vessels from pre-existing ones. Additionally, signaling
molecules are secreted, which is important for the completion of the immune response.

3. Proliferation
Quickly after the start of the inflammatory phase, this phase starts as well. In this phase, different
processes take place: re-epithelialization (restoring the epidermis), angiogenesis, fibroplasia (restoring
presence of fibroblasts and producing a new ECM) and wound contraction. Wound contraction en-
sures (a large) reduction of the injured area, without creating new tissue. In the context of cutaneous
wounds in less favorable hygienic circumstances, this contraction is an essential evolutionary defense
mechanism. However, in the wake of burn injuries under clean circumstances, this mechanism causes
permanent skin deformation and permanent stresses in the skin tissue, which can lead to mobility re-
duction of patients. Wounds can reduce 40 to 80% in size as a consequence of wound contraction.
The contraction commences approximately after a week and lasts several weeks (longer than the re-
epithelialization) [42].

4. Maturation / remodeling
This phase starts shortly after the start of the previous phase, but takes place much longer (more than a
year). The ECM is remodeled: the amounts of molecules are changing and the collagen molecules are
adjusted in the way they are aligned and interconnected. The result is a grid of collagen bundles that
is aligned more parallel to the surface than is the case for undamaged tissue. Eventually, the density of
several cell types, in particular of (myo)fibroblasts, decreases in the scar tissue.

Fibroblasts migrate as a result of the chemokine gradient and collagen orientation and deposit collagen along
their trails. Fibroblasts differentiate into myofibroblasts as a result of increasing stress and changes in the
ECM. Myofibroblasts come into action after fibroblasts stop migrating and stick to each other and the wound
edges. They link to ECM molecules (fibronectin and collagen) and pull on these molecules when contract-
ing. The contraction caused by myofibroblasts is much higher than the contraction that was caused by the
fibroblasts at the earliest stages.

Scarred skin tissue is different from undamaged skin. There is absence of hair follicles and sweat glands and
scarred skin tissue has a longitudinal structure (opposed to a more ‘basket weave’ pattern normally). Scars
can occur depending on the wound size and in case of tissue contraction hypertrophic scars may occur. Hy-
pertrophic scars can be caused by a lack of apoptosis of myofibroblasts, this results in an excessive production
of extracellular matrix protein. The mechanical behavior of soft tissues depends highly on concentration and
structure of its constituents, such as collagen and elastin. Fibers have preferred directions and therefore the
tissue behaves anisotropically (has direction dependent behavior).

In case of severe wounding, the main issue is to cover up the injured area to prevent dehydration and in-
fections. This is ideally done by another part of the patients own skin. A donor or a suitable other dressing
(technologies involving synthetic, human or animal matrix proteins) can be used otherwise. Skin ulcers (area
where skin dies and becomes loose) can occur with patients that have diseases or syndromes that affect the
micro-circulation (diabetes for example). Very few drugs have proven to be useful enough to be applied into
practice. Epidermal growth factor (stimulated division and migration of keratinocytes in vitro) was thought
to have much potential, however, it did not turn out to be successful.

3
Cell dynamics

Different small scale processes can have a joint effect on a higher scale, which makes it difficult to unravel
the structure of the cell dynamics during wound healing. Before starting to describe a model for the general
wound healing processes from Chapter 2, the small scale interactions are important to know about, in order
to build up the model from this. The most important factors that influence cell movement are presented in
this chapter.

3.1. Cell migration
Despite the fact that cells in natural environments live and migrate in three-dimensional tissues, we consider
experiments where cells migrate over a planar, two-dimensional elastic substrate. The experimental condi-
tions that we model are investigated in many in vitro studies, that are studies on a laboratory scale, such as
in [30]. A living cell exerts an upward force on its substrate. This is the traction force (F) and the influence of
this is felt by other cells in the environment. The cells interact by migrating towards each other as the result
of detecting mechanical signals. Cells that are in mechanical contact, are pushed away from each other (hard
impingement). This field with distortions decides how cells move and can be expressed by the strain energy
density [37]. For dead cells, the traction force is zero. The traction force is dependent on the phenotype (phys-
ical appearance), so we take it constant for all cells of a certain phenotype.

Cell migration can depend on many different properties of the substrate. First of all, there are the chemical
properties. Chemotaxis is the migration depending on the gradient of concentration, where it can also de-
pend on the cellular adhesion (haptotaxis). Migration caused by mechanical influences are tensotaxis, which
entails migration depending on the gradient of strain, and durotaxis, which is migration depending on the
gradient in stiffness. Furthermore, migration can depend on electrical cues and light activation. Finally, the
extracellular matrix contains unpredictable irregularities and cells also contain unpredictable mobility, which
results in random walk.

3.2. Experiments
The easiest way to find out more about specific dynamics is by doing experiments in vitro. Many groups
carry out experiments in vitro and these experiments are considered as a model for the in vivo, that is clini-
cal, processes. Although the results from in vitro experiments cannot always be linked one-to-one to in vivo
processes, these experiments provide very valuable insights for understanding clinical processes. In general
the in vitro experiments help estimating certain rate parameters as cell migration speed or division rates and
can be used to examine the impact of isolated parameters and sub-processes on other processes. In general
it is easier to validate mathematical models to in vitro experiments than to in vivo experiments. The findings
described in this section have been observed in vitro.

Experiments are usually performed for a mono-layer of cells on a chosen substrate. Scrape wounding, a
technique where a mono-layer of cells is disturbed, exists in many different forms [3]. If for example a rotating
silicone tip is used, we get circular wounds as in Figure 3.1. The wound size can then be measured more easily.

9

10 3. Cell dynamics

Another more sterile approach is having a removable fence in a cell culture that prevent cells to enter a certain
area.

Figure 3.1: Wounding YAMC cells (conditionally immortalized mouse colon epithelial cell) with rotating silicone tip initially (A) and after
8 hours (B) in the presence of 10 ng/ml EGF [3].

In [12] it is found that isolated cells can have a near spherical shape and move randomly through a medium.
In multicellular aggregates, their shape resembles a polyhedron and its two-dimensional projection resem-
bles a polygonal shape. When cells divide, it is assumed this happens at the location where the largest force
was directed to. A cell population was found to grow exponentially for a small time scale and later on propor-
tionally to t n with n around 2 or 3 (tumor cells grow faster). The latter behavior can be seen as a saturation
stage. In practice, a sufficient amount of cell death needs to happen to have actual saturation.

Similar results are found in [8], where cells also move randomly and are (near) spherical after division. Fur-
thermore, it is stated that during mitosis, the shape resembles a dumbbell. For proliferation the glucose
amount should be above a certain level, while for apoptosis this should be below a certain level. An increase
of motility causes an increase of the growth rate.

In [3] it is described how cells around a wound change their appearance to be flatter and broader. Their move-
ment towards a chemical gradient or empty space can be described by change from leading to trailing edge.
The phenomena may be more accurately described by a change in phenotype. Furthermore, cell migration
has a positive relation with adhesion to the substrate.

The stiffness of the substrate influences the extent of a cell’s response to the traction forces of neighboring
cells [30]. It is found that cells exert more force on stiffer substrates, but that disturbances do not reach very
far. On softer substrates, this is the other way around. Observations for two cells are as follows: On soft sub-
strates (500 Pa) the cells touch and remain that way. On intermediate substrates (2500 and 5500 Pa), the cells
tend to contact, separate and retouch repeatedly. They do not move significantly far away from each other,
unless there is a third cell. On stiff substrates (33000 Pa) the cells touch and migrate away. The research shows
that endothelial cells prefer to remain in contact at tissue-like stiffness, but migrate away on stiffer ones.

In [10] it is described that the elastic modulus of the skin greatly varies with respect to the location, the state
of underlying muscle and the shear forces during contact with objects. A stiffer substrate makes cells spread
out more and promotes cell division [10]. A study on epithelial cells found that cell migration is more rapid
on stiffer substrates. This would indicate quicker wound healing. Another study found that during wound
healing, the wound becomes stiffer. This could be a mechanism to ensure wound coverage, without being
dependent on a stiff location.

Experiments [42] on porcine skin (similar to human skin) led to believe that central granulation tissue (new
connective tissue and microscopic blood vessels that form on the surfaces of a wound during the healing pro-
cess) is not responsible for contraction. Neither are the edges pushed in by processes occurring in peripheral
tissue nor is a purse string mechanism responsible. The researchers believe that the contraction is caused by
fibroblasts.

In wound healing, many types of growth factors act as chemokines for fibroblasts: TGF-β, PDGF (platelet
derived growth factor) and FGF (fibroblast growth factor), etc. Cells that generate the force are located in the

3.3. Initialization of the model 11

wound margins. A rim of densely packed fibroblasts pull the dermal edges inward, while fibroblasts inside the
wound cause a more normal arrangement of collagen. Fibroblasts cause two forces: an isometric contractile
force (fibroblasts contract and pull surrounding towards itself) and a traction force. The traction force pulls
the environment in the direction of the migration.

The ECM is modelled anisotropically in [42]. With collagen orientation, the wound granulation tissue grows
into fiber-reinforced anisotropic soft tissue. Furthermore, the fiber direction is inhomogeneous. Collagen
responds to the mechanical field, in a way that will align them with the tension lines.

Mechanical stress is found to have a significant influence [12], [8], [10]. It influences the growth of cells. For
realistic ranges of cell volume compressions, the specific representation of cell shape has negligible effects
on the outcome of the model.

3.3. Initialization of the model
The model needs parameters as input, for example the elastic modulus, the cell mobility rate and cell-substrate
adhesion. The possibilities of collecting information on parameters are constantly improving, but specific in-
formation remains hard to obtain.

Cells behave like viscoelastic bodies, or even isotropic bodies on small time scales. Different models can be
chosen for the simulation of cell dynamics. There is a choice between lattice-based models and off-lattice
models. For off-lattice models the cells can be chosen to have the form of a quasi-spherical particle, a de-
formable ellipsoid or a Voronoi polygon. Simulations according to this approach are limited to numbers
around 106 cells [12].

To model cell dynamics, we need some simplifying assumptions. In [12] it was found that on scales larger
than 10 times the cell diameter, some simplifications do not alter the qualitative behavior of the system. The
specific representation of cells, the orientation of division and the exact shape of interaction force do not
influence the system too much. Furthermore, cell migration and growth can be modelled by a Monte Carlo
approach, instead of taking the entire cell history into account.

In some modelling scenarios, the apoptosis rate does not influence the resulting number of the cell popula-
tion. For example, when simulating tumor growth, every cell that dies is almost immediately replaced by a
new cell as space is the limiting factor.

4
Mathematical model

Different types of models can be chosen for the modelling of biological processes. The actual implementation
varies for specific processes, however, in general we can divide the models into space-free level, compartment
level, cellular based and tissue level models. Within the cellular based models, a distinction is made between
changing cell shape and constant cell shape models [36]. In this chapter, an overview will be given of the
chosen mathematical model, including the specific equations for the occurring processes.

4.1. Constant cell shape model
In this research a cell-based model is chosen. This means that throughout the simulation a cell is tracked.
The advantage of this modelling approach is that it can easily be adjusted to the set-up of a specific experi-
ment. In vitro experiments can then give precise information on the correctness of the model. In the models
a probabilistic approach is used to simulate cell dynamics. In contrast to the biological concept, the history
regarding a cell is not known in the model and therefore it is not possible to determine the cell differentiation
and divisions in cells exactly.

Furthermore, the constant cell shape model will be used in this research. This approach is computationally
less expensive than the form with cell deformation and can therefore be applied on a larger scale. The two
main assumptions in this model dictate that the geometry of the cells is fixed and that this geometry depends
on the phenotype. In the 2D model hemi-spherical cells (the projection on the substrate is assumed circular)
will be used and in 3D spherical cells.

4.1.1. Strain energy density, mechanical energy and random walk
The strain energy density is a main component for calculating the cell migration. The advantage of this quan-
tity is its additivity. For circular projections onto the substrate, the strain energy density M 0

i is defined as

M 0
i = 1

2
σε= F 2

i

2Es (xi)π2R4 , where Fi =
{

Fi , if viable,

0 , if dead or proliferating [4].

Here, σ is the stress, ε the strain, Es is the elasticity modulus of the substrate and R is the radius of the cell.
The cell traction force is displayed as Fi , this force exists because the cell is ‘pulling’ on its environment (the
substrate in the current case).
The strain density from a cell is weaker further away from the cell. In [37] it is found that this can be approx-
imated by exponential decay. The strain density at x resulting from a cell located at xi then depends on the
distance as

Mi (x) = M 0
i exp

{
−λi

‖x −xi‖
R

}
.

Here, λi = Es (xi)
E i

c
is the ratio between the elasticity modulus of the substrate and the elasticity modulus of the

cell, which represents a factor determining the attenuation of the signal.

13

14 4. Mathematical model

Summing over all densities that influence a single cell, gives the strain energy density on a cell located at xi :

M(xi) = M 0
i +

∑
j 6=i

M 0
j exp

{
−λ j

‖xi −x j ‖
R

}
. (4.1)

As cells can be influenced by different cells at different locations, the direction of the final movement ẑi is
calculated. The M j ’s operate as weighing factors.

zi =
∑
j 6=i

M j (xi)
x j −xi

‖x j −xi‖
and then ẑi = zi

‖zi‖
after normalization [4].

Combining the above components with a time step, gives the displacement

d Xi (t) = κi M(xi)ẑi d t , (4.2)

where κi is a parameter that can be adjusted for different types of cells. It is defined as κi = γi R3

µF̂ 2 Fi . Here, γi

is the mobility of the cell (depending on the cell viability) and µ is the resistance parameter of the substrate
friction. Note that κi becomes zero when the cell is not viable.

It is not plausible that cells from any arbitrary distance can sense each other. Therefore a parameter ε is
set that indicates the minimal strain energy density needed to detect a cell [30]. Thus the criterion Mi (x) =
M 0

i exp{−λi
‖x−xi ‖

R } ≥ ε should be satisfied. Reference [30] suggests that a distance d = 29.5µ m represents
the maximal distance between which two cells can sense each other’s strain field. Filling this d in for the Mi

formula, allows us to find an ε. This value is then used for all the cell relations, to either allow the cells to
detect each other or to set the energy contribution to zero.

To prevent cells from being able to move through each other, an opposed energy is created when cells collide.
This energy needs to be subtracted from the energy density relation Mi from the two cells in question. The
magnitude of the energy depends on the overlap h of the particles and is zero otherwise. Hence h is defined

as h = max(2R −‖xi − x j ‖,0). The collision energy will be given by M i j = 4
15

p
2

p
REc h(5/2)

πR3 , as was stated in [4]

and [37].

As we adjust the value of Mi (x) directly after computing the strain energy density, the potential change of
direction is already included in the direction vector ẑi . Hence, the absolute value has to be taken when cal-
culating the energy between two cells and to be added up afterwards, to prevent cancellation of forces. Cells
also move randomly to a small extent. This is simulated by adding a term based on a Wiener process to the
displacement [4]. Equation 4.2 is extended to

d Xi (t) = κi M(xi)ẑi d t +
p

2DdW (t), (4.3)

where D is the cell diffusivity parameter and dW (t) is a Wiener process based on the normal distribution with
mean 0 and variance d t .

4.2. Proliferation and Apoptosis
Next, the proliferation and apoptosis of cells are incorporated in the model. In order to potentially do this, a
cell should have enough space to divide or be under enough force to die. Furthermore, we require a cell to be
mature enough to perform these actions. The existence time of a cell is used as a prerequisite:

Existence time τ should satisfy:

{
τ≥ 300s for proliferation,

τ≥ 300s for apoptosis.

If these requirements are fulfilled, the decision of these processes are modelled as a (memoryless) exponential
distribution. Let pi be the probability rate, that is probability per unit of time, for cell proliferation pd or
apoptosis pa . The probability for proliferation or apoptosis during an interval (t , t +∆t) is then given by

P (t < τ< t +∆t) =
∫ t+∆t

t
pi exp{−pi (s − t)} d s , pi ∈ {pd , pa}, (4.4)

= [−exp{−pi (s − t)}]t+∆t
t ,

= 1−exp{−pi∆t }.

4.3. Finite elements implementation for concentration 15

To determine if a cell will divide or die, we pick the stochastic variable ξ out of a uniform distribution on [0,1].
The process will take place if 0 ≤ ξ≤ 1−exp{−pi∆t } is satisfied.

For the modelling of the process of apoptosis and proliferation, we make the following choices. First, the
variables are computed as before, thereafter it is checked if the requirements for proliferation or apoptosis
are satisfied. With a random number from the uniform distribution it is decided if this action should take
place. If so, this cell goes into the respective process, while the other cells move as determined before.

When a cell dies, the cell starts to shrink and its cell membrane becomes more permeable. When the con-
tents of the cell that just died, diffuses through the extracellular space, other processes might be initiated.
The endothelial cells (which can be seen as the spine of the blood vessel) grow towards this location. This
is an important process in the process of tumor growth. In our simulations, the cell immediately disappears
when it dies and hence it is immediately removed from the cell list.

When a cell divides, it first grows and then splits into two. In the simulation, this will happen in one time step.
The cell splits into two, so that the cell center of the daughter cell is located on the boundary of the other cell.
On which side the new cell comes will be determined randomly in the model.
We consider a cell that met the requirements for division. Let (x, y) be the location that would occur normally
after incorporating the displacement via Equation (4.3). The division results in two cells, cd1 and cd2, that will
be allocated as below:

θ ∼ U[0,2π] ⇒ cd1 =
{

xcd1 = R
2 cos(θ)+x

ycd1 = R
2 sin(θ)+ y

cd2 =
{

xcd2 = R
2 cos(θ+π)+x

ycd2 = R
2 sin(θ+π)+ y

Figure 4.1: Example of allocation of cells after division, the blue cells are the new cells based on the location of the initial cell (red).

4.3. Finite elements implementation for concentration
The model is further extended with the influence on concentrations in the substrate. The displacement de-
pends on the gradient of this concentration:

d Xi (t) = κi M(xi)ẑi d t +
p

2DdW (t)+ sc∇c(t , xi)d t , (4.5)

where c is a function determining the concentration depending on t and x and sc is the chemotactic sen-
sitivity. If sc > 0 then one speaks of positive chemotaxis, in which a cell is stimulated to move towards the
gradient of a chemical. Whereas sc < 0 corresponds to negative chemotaxis, in which a cell moves away from
a gradient of a chemical. Negative chemotaxis is important in the migration away from toxic agents.

The general form of transport-reaction equations are:

∂c

∂t
−∇· J = f (t , x,c) + initial and boundary conditions,

where J is the flux term and f (t , x,c) the reactive term.

16 4. Mathematical model

In our model, two concentration fields are used: Platelet Derived Growth Factor (PDGF) and Transforming
Growth Factor β (TGF-β) [21]. The system for PDGF is given by:

∂cP
∂t −DcP∆cP = 0 , t > 0 , x ∈Ω,

DcP
∂cP
∂n +κcP = 0 , t > 0 , x ∈ ∂Ω,

cP (0, x) = f (x),

(4.6)

where f (x) is the initial concentration field (described in Section 4.3.1) and the system for TGF-β by:
∂cβ
∂t −Dcβ∆cβ = κcβ

∑M
t=1δ(x −x t

M) , t > 0 , x ∈Ω,

Dcβ
∂cβ
∂n +κcβ = 0 , t > 0 , x ∈ ∂Ω,

cβ(x, t) = 0.

(4.7)

The Finite Element Method is used to compute the solutions in the domain. The derivations of the Galerkin
equations for these systems are given in Appendix A. The systems that need to be solved have the form M dc

d t +
Sc = f . This system is solved with the Euler-Backward method. By setting R(t ,c) = dc

d t , we can write

cn+1 = cn +∆tR(t n+1,cn+1),

cn+1 = cn +∆t M−1(f n+1 −Scn+1),

(M +∆tS)cn+1 = Mcn +∆t f n+1.

Solving this system gives the solution of the concentration at time t n+1.

4.3.1. Concentration field descriptions
The concentration TGF-β is assumed to be zero over the whole domain, as there are no macrophages initially.
The concentration field of PDGF is initially set by the formula: cP (0,X) =ω(X)cω [21], where

ω(X) = 1

16

(
1+ tanh

(
s1 −X

ψ

))
∗

(
1+ tanh

(
s1 +X

ψ

))
∗

(
1+ tanh

(
s2 −Y

ψ

))
∗

(
1+ tanh

(
s2 +Y

ψ

))
,

s1 = length vertical part of wound,

s2 = length horizontal part of wound,

and ψ= s2

10
.

ψ is a factor to tune the transition at the wound boundary, as this is zero outside the wound and goes up
to cω, the chosen maximum amount of PDGF, in the wound area. The hyperbolic tangent functions in ω(X)
provide a smooth transition between the wound and the undamaged area. As this transition is quite sharp,
this would locally cause a very large concentration gradient. To prevent unrealistic displacement of the cells
in reaction to this gradient, the displacement of cells is not directly correlated with the gradient anymore. The
displacement caused by chemotaxis is set to

d xconc = vcell

(∇c

‖∇c‖2

)
d t , for

(
∂c

∂x

)2

and

(
∂c

∂y

)2

large enough. (4.8)

By ‘large enough’ in Equation 4.8, we mean that the gradients should be non-zero and furthermore, not be
rounded to zero when they are squared. The precise value of the smallest number that can be used without
problems depends on the precision that is used in the program. Whenever the gradient in both directions is
zero, we need to make adjustments to this formula in order to prevent undefined behavior by division by zero,
thus a small, non-zero constant is added to the denominator. To prevent problems when the norm becomes
zero, we use an alternate approximation than used in Equation 4.8. In this case we approximate the norm as

‖∇c‖2 ≈
p

2 max

(∣∣∣∣ ∂c

∂x

∣∣∣∣ ,

∣∣∣∣ ∂c

∂y

∣∣∣∣) . (4.9)

In the last term, we are not squaring the derivative anymore and thus prevent the norm from becoming zero.

4.3. Finite elements implementation for concentration 17

The speed of the fibroblasts and macrophages depends on the portion of receptors, r , that are bound to
molecules as follows [21]:

v i
cel l = ν∗S(r i)∗ (1−S(r i)), where S(r) = 1

2

(
1+ sin

(
(r − 1

2
)π

))
. (4.10)

Figure 4.2: Functions S(r) and S(r)∗ (1−S(r)).

The cells attain their maximum speed when half of the receptors are bound, as can be seen in Figure 4.2.
Furthermore, the speed is zero when no receptors are bound, which is the case for new cells. The portion of
bound receptors for macrophages, r i

mp and fibroblasts, r i
f , changes over time as

dr i
mp

d t
=−γu

mp r i
mp +γb

mp cP (X, t)
(
1− r i

mp

)
, (4.11)

dr i
f

d t
=−γu

f r i
f +γb

f cβ(X, t)
(
1− r i

f

)
, (4.12)

where γu and γb are the unbinding and binding rates respectively [21]. These are the rates for the PDGF
molecules in the case of macrophages and the rates for TGF-β molecules for the fibroblasts.

4.3.2. Concentration gradient at cell centers
Solving the systems of PDGF and TGF-β gives us the concentrations on the grid vertices of the Finite Element
mesh. For the displacement of the cells (see Equation 4.5), the concentration gradient is required at specific
locations, namely at the cell centers.

The concentration gradient is constant over an element, as we are using linear basis functions. For the con-
centration on a location x in a triangle with vertices p1, p2, p3 we can write

c(t , x) = ∑
l∈{p1,p2,p3}

c(t , xl)φl (x),

∇c(t , x) = ∑
l∈{p1,p2,p3}

c(t , xl)∇φl (x) = ∑
l∈{p1,p2,p3}

c(t , xl)

[
βl

γl

]
.

For the Finite Element algorithm we need to know in which triangle a specific cell is located. Finding the
three nearest nodes, does not naturally lead to the right triangle or even a triangle that exists in the mesh.
Therefore, within the program it is checked whether a triangular element contains a cell.

Let p be a n × 2 dimensional vector containing all x and y locations of the cells. Furthermore, consider a
triangle T with vertices {(p1x , p1y), (p2x , p2y), (p3x , p3y)}. These points are ordered counter-clockwise (as is
done automatically while making a Finite Element mesh). Define

∆= p2x p3y −p2y p3x +p1y (p3x −p2x)+p1x (p2y −p3y),

scheck = 1

∆

[
p1y p3x −p1x p3y + (p3y −p1y)p(i ,1)+ (p1x −p3x)p(i ,2)

]
,

and tcheck = 1

∆

[
p1x p2y −p1y p2x + (p1y −p2y)p(i ,1)+ (p2x −p1x)p(i ,2)

]
.

18 4. Mathematical model

Here ∆ is twice the signed area of T . A point
(
p(i ,1), p(i ,2)

)
is located in T if (scheck > 0) , (tcheck > 0) , (1−

scheck − tcheck) are all true. This test is based on the barycentric coordinate system, where scheck, tcheck and
(1− scheck − tcheck) are the barycentric coordinates [19].

5
Modelling on realistic scale

The model made during this thesis project follows the general structure of the wound healing model de-
scribed in [21]. The most radical change is the addition of the strain energy densities in the model, which
occur in other cell migration models as well [42]. In the first section, it is described how the strain energy
densities are incorporated, such that it fits with the rest of the wound healing model. In the second section
an overview of the parameters and their values is given. Finally, in Sections 5.3, 5.4 and 5.5 some implemen-
tations added to the mathematical model from Chapter 4 are described.

5.1. Combining two models
During the literature study [20], the influence of the strain energy densities was incorporated into the dis-
placement formula as follows:

d Xi (t) = κi M(xi)ẑi d t , (5.1)

where κi is a parameter that can be adjusted for different types of cells. It is defined as κi = γi R3

µFi
for viable

cells and is zero otherwise. Here, γi is the mobility of the cell (depending on the cell viability) and µ is the
resistance parameter of the substrate friction.

When adopting the parameters of both models, the strain energy density had a dominating influence in the
model. The displacement caused by strain energies was about seven times larger than the displacement
caused by chemotaxis, which had a limited response by the implementation of cell speed (Equation 4.10). In
order to match with the structure from [21], the magnitude of the displacement due to strain energy densities
will be adjusted to depend on the cell speed as described in Equation 4.10 as well. In the case of fibroblasts,
this speed depends on the number of receptors that is bound to TGF-β and thus very dependent on the avail-
able concentration of this molecule. The attraction of cells by the strain energy densities and the repulsion of
cells by mechanical force, should however also work in absence of any concentration of TGF-β.

The coefficient that determines the magnitude of the displacement by chemotaxis is v i
f = ν∗S(r i)∗(1−S(r i)),

with ri the portion of receptors bound to molecules, as was stated in Equation 4.10. Given this, the coefficient
for the energy is chosen to be v i

E = 1
2 v i

f +ν∗0.1. Similarly to the magnitude coefficient for chemotaxis, we want

to multiply the speed by a unit length vector that dictates the direction of the displacement. The displacement
obtained from Equation 5.1 is therefore divided by the constants κi and M0 before multiplying it by v i

E . In the
case all neighboring cells are outside the maximal detectable range, there will be no strain energy density or
mechanical energy contributions and then M = M0. In other cases, M will be larger, which will lead to more
displacement during that iteration.

When at first, there are no macrophages, the concentration TGF-β will be zero and thus v i
f = 0. The speed

will be constant initially, then will increase during the entry of macrophages and finally will decrease again
when the macrophage population depletes.

19

20 5. Modelling on realistic scale

5.2. Input data
In this section, the parameters used in the simulations are described. Most parameters are adopted from
[21] and converted to standard units. However, with the influences of the other model with strain energy
densities, some parameters are not suitable for this model. In Table 5.1 all parameters are listed and special
cases (labeled with *) are described in more detail in this section. Parameters with ‘E’ in the reference list were
estimated in this thesis.

Parameter Symbol Value Dimension Standard dimension Ref
Cell radius R 2 µm 2 ·10−6 m [9]
Substrate Elasticity Es 5 kPa 5 ·103 kg/(m·s2) [9]
Cell Elasticity Ec 0.5 kPa 5 ·102 kg/(m·s2) [9]
Cell Force F 10 ·102 kg·µm/min2 2.78 ·10−7 kg·m/ s2 [4]
Maximal detectable range ε 29.5 µm 29.5 ·10−6 m [30]
Cell Mobility coefficient β 1 min−1 0.0167 s−1 [4]
Friction coefficient µ 0.2 − 0.2 [4]
Diffusion rate PDGF Dcp 0.00288 cm2/day 3.33 ·10−12 m2/s [26]
Max. initial PDGF cw 10 ng/mL 10−5 kg/m3 [26]
Diffusion rate TGF-β Dcβ 0.0254 cm2/day 2.94 ·10−11 m2/s [26]
Rate molecule leave domain κ 1 1/mm 103 m−1 [21]
Constant for speed fibroblasts ν 2.5 ·10−1 mm/h 6.94 ·10−8 m/s [21]
Constant for speed macrophages νm 0.5 ·10−1 mm/h 1.388 ·10−8 m/s E
Constant for mp entry βMΦ 5.2075 m2/(kg·s) 5.2075 ·104 m2/ (kg·s) E
Minimal conc for mp entry βl

MΦ 3.33 ·10−9 kg/m3 3.33 ·10−9 kg/m3 E
Receptor binding rate PDGF γb

m 5 ·1011 mm3/(g·h) 1.39 ·102 m3/(kg·s) [21]
Receptor unbinding rate PDGF γu

m 1 1/h 1
3600 s−1 [21]

Receptor binding rate TGF-β γb
f 5 ·1011 mm3/(g·h) 1.39 ·102 m3/(kg·s) [21]

Receptor unbinding rate TGF-β γu
f 1 1/h 1

3600 s−1 [21]

Fibroblast diffusion DN 10−15 m2/s 10−15 m2/s E*
Macrophages diffusion DMΦ 10−15 m2/s 10−15 m2/s E*
Death rate fibroblasts dN 3.739 ·106 s 3.739 ·106 s [28]
Death macrophages constant dMΦ 7.2 ·1012 mm3/g 7.2 ·106 m3/kg [21]
Magnitude TGF-β secretion κcβ 2.5 ·10−14 g / (mm3·h) 2.082 ·10−19 kg /s E*

Table 5.1: Parameters for fibroblasts, macrophages and the concentration fields in the wound healing model. Parameters with reference
E were estimated in this study and parameters labeled with * are explained in more detail in Section 5.2 .

The TGF-β concentration originates from the molecules that the macrophages secrete. The location where
this happens is modelled with a Dirac Delta distribution. The parameter that determines the magnitude of
the TGF-β secretion is κcβ = 2.5 · 10−14 g /(mm3·h) in [21]. The area dependency is not convenient to use

with this distribution and therefore we take a secretion rate per time unit. Converting 2.5 ·10−14 g/(mm3·h)
to standard units gives 6.94 ·10−21 kg/(m3· s). We set the secretion per second to 2.082 ·10−19 kg/s.

We want to have a relatively large random motility coefficient, as is prescribed by the parameters DN and
DMΦ in [21], where the values are set to 9.25 ·10−14 m2/s. The problem is however that this will lead to the
stability criterion being violated, that is the displacement of a cell is larger than half the cell radius. For now
DN = DMΦ are set to 10−15 m2/s, while the allowed time step in the stability check is set two times larger than
as was described in the literature study [20].

From [28] we find that the death rate dN is approximated by 3.739 · 106 s. Hence, the death probability
rate of fibroblasts is set to d f = 1

dN
= 2.674 · 10−7 s−1. The proliferation rate of fibroblasts is chosen to be

p f = 2.5∗d f = 6.68 · 10−7. The death rate for macrophages depends on the concentration of PDGF at the
location of the cell, such that the death rate is set to dMΦcP (x)dN for a macrophage at location x. The prob-
ability rate is one divided by the death rate. The probability rates are used in the exponential distribution
(Equation 4.4) to compute the probabilities of a cell undergoing proliferation or apoptosis.

5.2. Input data 21

The aforementioned parameters for apoptosis and proliferation are for the case that the cell is in absence
of impingement with surrounding cells, in other words, the mechanical energy for that cell is zero. It seems
natural that the probabilities on cell death and division are dependent on the current state of the cell. In
[21] it is for example assumed that a cells needs a minimal distance of 4 times the cell radius with any other
cell in order to proliferate. In the case that a cell has a lot of freedom of movement, it can easier proliferate,
while the opposite is true for a cell that is compressed by surrounding cells. Therefore, it is assumed that the
mechanical force has a positive relation with respect to the apoptosis probability and a negative relation with
respect to the proliferation probability.

From [4] we adopt a similar principle for determining the parameters that influence the dependency of the
proliferation and apoptosis probabilities on the mechanical energy. Instead of looking at values of ‖M‖, the
values of the mechanical energy are considered. The values of ‖Mmech‖ are plotted in Figure 5.1 for simple
scenarios. One cell is surrounded by 1 to 6 cells which all have a certain identical overlap with the middle cell.
The limiting value for a cell being able to divide is chosen to be the magnitude of ‖Mmech‖ for the case that
four cells overlap around 1/4 of the radius. Furthermore, we assume that the case where two cells have an
overlap of 1

4 R can be seen as an equilibrium between the probabilities rates for cell division and death.

Figure 5.1: Mechanical energy in relation to a certain identical overlap of
1 to 6 surrounding cells.

Overlap Mechanical Energy

1 cell × 1
4 R 0.9378 Pa

2 cells × 1
4 R 1.876 Pa

3 cells × 1
4 R 2.813 Pa

4 cells × 1
4 R 3.751 Pa

5 cells × 1
4 R 4.689 Pa

6 cells × 1
4 R 5.627 Pa

1 cell × 1
2 R 5.305 Pa

2 cells × 1
2 R 10.61 Pa

3 cells × 1
2 R 15.92 Pa

Table 5.2: Mechanical Energy for some numbers of cells
with identical overlap of a 1

4 or 1
2 of the cell radius.

The proliferation probability for fibroblasts is assumed to be 2.5 times the apoptosis probability of fibroblasts,
in absence of mechanical energy. With the values found from Figure 5.1, we can find the probability rate
depending on the mechanical energy. In this simulation there is no proliferation of macrophages, solely the
entry from the intravascular space to the extravascular space.
The probability rates per second are

pd = max(p f −1.78 ·10−7 ∗Mmech,0), for fibroblasts, (5.2)

pa = d f +3.56 ·10−8 ∗Mmech, for fibroblasts, (5.3)

and pa = 1

dMΦ(cP (x)+10−9)dN
+3.56 ·10−8 ∗Mmech for macrophages. (5.4)

The actual probabilities are then given by P (t < τ < t +∆t) = 1− exp{−pi∆t } , ∈ {pd , pa}. The probabilities
are visually displayed in Figure 5.2. The death rate for macrophages varies with the concentration of PDGF,
therefore a few possible relationships are plotted in the Figure 5.2.

As the death rate of the macrophages depends on the concentration PDGF, this will mimic their influence
during the wound healing process. Initially, the concentration PDGF is high, which will cause a low death rate
during this period. After a while, the PDGF will decrease until no more macrophages are entering from the
intravascular space. Moreover, the death rate will increase, what will result in depletion of the macrophages
in the domain eventually. In Equation 5.4 the influence of the concentration is the factor (cP (x)+10−9), where
the value 10−9 prevents the apoptosis probability rate from becoming too large when the concentration PDGF
goes to zero.

22 5. Modelling on realistic scale

Figure 5.2: Visual representation of the probabilities for proliferation of fibroblasts and apoptosis of fibroblasts and macrophages.

5.3. Fibroblast density
In order to make a good initial scenario, an estimate for the fibroblast density in undamaged tissue is needed.
Moreover, this ‘normal’ density can be used to quantify in which part of the tissue the fibroblast density is
restored. In [25] an image analysis method for counting fibroblasts was investigated. Here it was found that
the number of fibroblasts ranged from 2100 to 4100 per mm3 of undamaged tissue. Furthermore, it was found
that in samples of hypertrophic scars the fibroblast density could in some locations reach more than double
the amount of fibroblasts found in other parts.

In the case of proliferative scarring, that is overhealing, the fibroblast density overshoots the normal density,
due to a failing apoptosis rate. Normally, fibroblasts reach the wound during the second or third day and have
a maximum population between the seventh and fourteenth day [13]. The increase of fibroblasts is initially
caused by migration from surrounding undamaged tissue and later from proliferation of fibroblasts.

For the initial set-up of the scenario, we want to set a normal fibroblast density in the undamaged area and
have no fibroblasts in the wound area. The domain in the model is only in 2D, therefore it is difficult to deter-
mine a normal density as most experiments state a density expressed in mm3 or mL. The initial density is set
to 109 fibroblasts per m2. To make an initial setting, we determine the x and y coordinates of the fibroblasts
with two random numbers, where the ones that fall in the wound region are being left out. This procedure is
repeated until we have reached the predefined density of fibroblasts in the undamaged area.

As described in Section 2.1, the amount of cells is limited by different influences from the environment. It
depends on the modelling scenario, which limiting factor is important in the model. For very dense popula-
tions, as can be the case for tumor growth, the space in the domain is the limiting factor. In a normal scenario,
without the extra stimuli for the proliferation of cells that occurs for tumor growth, the cell growth halts be-
fore space becomes a problem. The dependency of the proliferation and apoptosis on the mechanical energy
does not limit the population growth as would be expected in normal scenarios. For modelling the limiting
factor of nutrients, the magnitude of the strain energy density per cell (without mechanical energies) is taken
as a measure for the compactness of its neighborhood.

A reference value of the energy density is defined as Mr e f = 4M0 exp(−2.5λ). This value is based on the strain
energy that occurs for a cell that has four cells in its neighborhood, which are located around the cell with half
a radius space in between. This means the distance between the cell centers becomes two times the radius
plus the half radius in between. The strain energy density becomes M = M0 +4M0 exp(−2.5λ) according to
Equation 4.1. We disregard the first term M0, as this is included in the strain energy density for all cells.
For every cell, the fraction G = M−M0

Mr e f
is computed and used to influence the proliferation of fibroblasts. We

distinguish between two scenarios, one where the concentration of TGF-β is sufficiently present and one
where this is not the case. When more TGF-β is present in the domain, this gives an incentive to fibroblasts

5.4. Macrophages entry 23

to fill up the gap that is created by the wound, in this case the proliferation of fibroblasts should not be halted
based on the amount of other cells in the neighborhood. However, if the concentration of TGF-β is (almost)
zero, then the proliferation will be halted whenever the fraction G > 1.

5.4. Macrophages entry

The macrophages will enter via the wound boundary during the inflammatory phase, when plasma leaks
from the extravascular space. In the model, the macrophages will enter the domain as long as the concen-
tration PDGF exceeds a certain threshold value βl

mp [21]. Initially the concentration PDGF will be high in the
wound and thus this criterion will be satisfied. After a while, the PDGF molecules will have diffused through
the domain, such that the concentration does not exceed the threshold anymore.

The entry of macrophages is modelled via the description in Algorithm 1. A domain with size [2 · w,2 ·h]
of which the center is located at (0,0) is considered. The probability that macrophage will enter the wound
is dependent on the concentration PDGF. We determine an estimate of the average PDGF on the wound
interface, c̄p , and use this value to find the number of macrophages that will enter per iteration. The estimate
of the concentration PDGF is based on eight points along the wound boundary, as displayed in Figure 5.3. In
these eight points, the concentration of PDGF is computed and subsequently, linear interpolation is used to
determine the average along the wound boundary.

Algorithm 1: Macrophages entry

Parameters: ξ∼ U[0,1], w , h
1 x = [−w

2 ,−w
2 ,0, w

2 , w
2 , w

2 ,0,−w
2]

2 y = [0, h
2 , h

2 , h
2 ,0,−h

2 ,−h
2 ,−h

2]

3 d = [h
2 , w

2 , w
2 , h

2 , h
2 , w

2 , w
2 , h

2]
4 for i ← 0 to 7 do
5 cp [i] = findcp (x(i), y(i)) // function that maps the concentration to (x(i), y(i))

6 cp [8] = cp [0]
7 for i ← 0 to 7 do

8 c̄p+= cp [i]+cp [i+1]
2 ∗d [i]

9 c̄p = c̄p /(2∗w +2∗h)

10 if c̄p >βl
mp then

11 Nmp = getPoisson(βmp ∗ c̄p ∗ (2∗w +2∗h)∗d t)
12 for i ← 0 to Nmp do
13 z = ξ∗ (2∗w +2∗h)
14 // place macrophage on wound boundary based on value of z.
15 mp_push() // function to move cells to a location with enough space.

The number of macrophages that enters the domain is determined by a Poisson distribution with mean
βmp ∗ c̄p ∗ (2∗w +2∗h)∗d t . Basically, this mean consists of a coefficient tuning the entry probability times
the total concentration along the wound times the time step. If the lower threshold criterion is satisfied (line
10 of Algorithm 1), then we find the number of macrophages from a Poisson distribution. Finally the location
of the added macrophages is determined randomly along the wound interface.

After obtaining a random value for the location of the macrophage, it is checked if placement in this location
will not cause any problems. If there is contact with other cells, the macrophage will be displaced in the
direction is determined by magnitude of the mechanical energy. This procedure is repeated until the minimal
overlap with any other cell is greater than R or if the maximum of 10 repetitions is reached. In this way, the
excessive displacement of the macrophage in the subsequent iteration due to a high mechanical energy is
prevented.

24 5. Modelling on realistic scale

Figure 5.3: Schematic view of points used for determining the average concentration PDGF along the wound boundary, which is dis-
played as the rectangle with corners p1, p3, p5, p7.

5.5. Domain boundaries
Only the cells in a small part of the dermal layer are considered during the simulations. At the boundaries,
Robin boundary conditions are imposed. The mathematical formulation of this is stated in Section 4.3. With
a constant rate factor κ the concentrations PDGF and TGF-β leave the domain. This boundary condition
assumes that concentrations can flow into an adjacent area and allows us to model only the area of interest,
the wounded area, instead of the whole skin.

During the literature study [20], this domain was modelled as a closed region where cells were not able to
move out. A more realistic approach would model a part of the domain, while allowing interaction with the
surrounding parts of the dermal layer. Furthermore, the walls sometimes led to problems for the cell inter-
actions [20]. This happened when cell division took place at the corners for crowded domains. Furthermore,
with the extension of the model a larger time step is used, such that the random walk is allowed to be larger
and can result in cells that have a displacement that crosses the boundary of the closed region.

To allow the interactions with adjacent regions, the wall forces are removed from the model. For every cell
that leaves the domain over the horizontal boundary, a new cell will enter on the other horizontal boundary at
a random location. A similar procedure will be applied for the cells leaving over a vertical boundary. Consider
a domain with size [2 ·w,2 ·h] of which the center is located at (0,0). Given a cell that has left the domain and
has location (xc , yc), then the new cell will be located via procedure as described in Algorithm 2.

Algorithm 2: Cells boundary crossing

Parameters: ξ∼ U[0,1]
1 if (|xc | > w) then
2 if (xc > w) then xc = xc −2 ·w
3 else xc = xc +2 ·w
4 yc =−h +ξ ·2 ·h

5 else if (|yc | > h) then
6 xc =−w +ξ ·2 ·w
7 if (yc > h) then yc = yc −2 ·h
8 else yc = yc +2 ·h

As is stated in pseudocode of Algorithm 2, the cell that leaves the domain will be overwritten with the new
cell that enters. All properties (for example, the life span) of the old cell are transferred to the new cell.

Future extensions of this concept could include the extra inflow of cells as response on the wounding. Addi-
tionally, one could think of implementing the entry and outflow of cells over the whole domain, as we place
the modelled domain in a 3D setting [21].

6
GPU computing

More and more applications, such as large data amounts or systems, require large computational power. In
a biology setting, there are models for which this is important as well. Classic sequential computers can
be classified as the SISD (single instruction, single data) type. If multiple processors can be controlled, we
get the SIMD (single instruction, multiple data) type. Most computers, however, have the MIMD (multiple
instruction, multiple data) type. Often, a mix of the types can occur within a computer. In this chapter, the
possibilities, in particular by using the GPU, to make a more efficient code are investigated. Furthermore, the
speed-up between the MATLAB and C++ program is shown in Section 6.5.

6.1. High performance computing
High-performance computing can be used without adjusting much in the CPU code. For example, there ex-
ists OpenMP, which is software that helps to express shared memory parallelism. A sequential program can
be taken and some parts, such as loops, can be parallelized. This approach is called the fork/join model and
can be easily applied without needing to rewrite much in the sequential code. It is therefore widely used, but
also has some considerable drawbacks. GPUs can often obtain better performance [27].

It is worth noting that an alternative parallelization of Agent-Based Models by means of grid computing, that
is using the resources of multiple computers, would not scale well: the running time could not be reduced
below a fixed threshold [27]. This is caused by memory bandwidth restrictions, by which the time that is
needed per data item to move it to another location (to another processor) is meant.

6.2. GPUs
General-purpose GPUs (GPGPUs) are designed to execute similar instructions for different data inputs (SIMD
processor), so called data-parallelization. A GPU has a fixed number of processors, called streaming multi-
processors (SM). Every one of those streaming multiprocessors exists of eight scalar processors.
Every thread executes on a scalar processor. A number of threads are bundled together in blocks. The blocks
are parts of the grid. When issuing a task, the SM receives a number of blocks. The threads in this block are
split up in pieces: warps. As sometimes they cannot all be executed simultaneously, they are executed per
one or multiple warps.

6.2.1. CUDA and OpenCL
There are several software frameworks that can be used to program on the GPUs. CUDA (Compute Unified
Device Architecture) is the leading software for proprietary GPUs and can operate on Nvidia’s GPUs. Alterna-
tively OpenCL can be used, which is the leading open source software. The large advantage of OpenCL is that
it is hardware-independent. The execution and memory hierarchy models are similar to CUDA. Differently
from CUDA, the kernel compilation phase is performed at run-time. CUDA appeared to be more efficient
in reducing register usage, which affects the number of concurrently executed threads. Further, the kernel
launch cost is around 9 times larger than CUDA (only important for kernels with short execution time) [27].

25

26 6. GPU computing

CUDA seems to be the most often used option in academia, for example in [5], [27], [34], [35]. However
sometimes it is mentioned that OpenCL could have been suitable as well. While the improvement from the
CPU to GPU is a significant number of times faster, the improvement from OpenCL to CUDA is reported to
be a small percentage. In [24] it is described that OpenCL takes more programming effort than CUDA, but
the performance and energy consumption were depending on the tested application.
In [11] an extensive comparison is made between OpenCL and CUDA, both on NVIDIA’s GPUs. Their main
conclusion was that CUDA performs 30% better than OpenCL at most of their applications, due to an unfair
comparison. An example they give is that OpenCL avoids features, such as texture memory, for portability.
After removing the use of texture memory in CUDA, the performance was comparable. The compiler has
influence on the amount and type of operations that are executed, this caused differences between OpenCL
and CUDA as well. They show that equal performance can be obtained by changing the code appropriately,
such that the comparison is fair. Furthermore, CUDA and OpenCL are operate quite similar, so translation
from one to the other should be doable. There are some differences in the terminology of which the main
ones are stated in Table 6.1.

CUDA terminology OpenCL terminology
Global memory Global memory
Constant memory Constant memory
Shared memory Local memory
Local memory Private memory
Thread Work-item
Thread - block Work-group

Table 6.1: Comparison of CUDA and OpenCL terminology from [11].

The program should be useful for users without specific knowledge of the GPU. While OpenCL has the ad-
vantage of being operable on multiple GPUs, tuning of the algorithm is necessary in order to obtain good
performance. Having a CUDA program only being applicable on NVIDIA’s GPUs, lowers the need for adjust-
ing the code (adapting to the NVIDIA version might improve performance, but the code should work fine
without adjusting as well).

6.2.2. Programming on the GPU
The programmer has the responsibility to decide how many threads are given per block and how many blocks
will be used in the grid. An important factor to consider while making this distribution is the memory on the
GPU. There are different memories, given below and ordered from fast to slow access (for CUDA).

• Registers - Exclusively accessible to threads

• Shared memory - Exclusively accessible to all threads in a block

• Texture memory - Read-only for the streaming multiprocessor

• Global memory

In a scenario where very fast access is required, we want to use registers only. Using many blocks can result in
large numbers of parallel operations, so that there is not enough register space to put all the outputs. Instead,
we can decide to use only a limited number of blocks and make sure every block has enough registers.

Dynamics on cell level seem suitable for GPU programming, as many of the computations have to be done
for each cell. Furthermore, each cell needs to address nearby cells to check if they collide or else to find the
strain energy density. CPUs work more according to task-parallelization, where different tasks are executed
at the same time. A CPU code can therefore not simply be taken over to be used on a GPU. It has a different
architecture and set of functionalities and accordingly the code needs to be rewritten before usage. Tasks that
are very short, process little data or are different from each other will not perform much better using a GPU
[7].

Serial code is executed on the host (CPU), while parallel code is executed on the device (GPU). Kernels oper-
ate with the memory on the device. It is therefore necessary to send data and allocate this on the device. After

6.3. GPU specifics for this project 27

the computations, data needs to be send back to the host. The data transfer is a synchronous operation, this
means that the transfer will only take place if all CUDA operations started previously have ended [18]. There
are also asynchronous operations. For example, when a kernel is launched on the GPU, the CPU continues
in the meantime with the code on the next lines. Ideally, the computational work is divided among the CPU
and GPU in such a way, that the waiting times for either CPU or GPU are small.

IEEE754 is the technical standard for computations with floating point numbers. It assures that when doing
computations, the number is rounded to the nearest floating point. NVIDIA GPUs have the implementation
to do fused multiply-addition [40]. This is faster and more accurate than multiplying first and doing addition
after, as prescribed by the IEEE754 standard.

6.3. GPU specifics for this project
In order to tune the performance of a program using a GPU, we need to be aware of the type of GPU that
is used. The compute capability is a number that gives an indication of what kind of features are possible.
The GPU used in this project has compute capability 6.1. For certain parts in the model, a minimal compute
capability is required. An example is the 64-bit floating-point version of atomicAdd(), which is only supported
by devices of compute capability 6.x and higher. In the Table 6.2 specific information about the GPU used in
this thesis is given.

Device name: GeForce GTX 1080
Compute capability – Major.minor: 6.1
Memory Clock Rate (KHz): 5505000
Memory Bus Width (bits): 256
Peak Memory Bandwidth (GB/s): 352.320000

Total global memory: 8114 MByte
Shared Memory per block: 48 kByte
Registers per block: 65536

Number of multiprocessors: 20
Warp size: 32
Max blocks per Multiprocessor: 32
Max Threads per Multiprocessor: 2048

Max threads per block: 1024
Max threads dimension: 1024 x 1024 x 64
Max grid size : 2147483647 x 65535 x65535

Mapped memory Possible
Concurrent data transfers Possible
Concurrent kernel execution Possible

Table 6.2: CUDA device information.

The threads are scheduled per warp, which consists of 32 threads. Therefore, the chosen block size should
always be a multiple of 32. The occupancy is the number of treads used on the multiprocessor relative to the
maximal amount. With a maximum of 32 blocks per multiprocessor, we need at least 2048

32 = 64 threads per
block to reach full occupancy. The choices 128 and 256 threads per block could work as well. In this case, the
numbers of blocks that can be used is just lower, namely 16 and 8 respectively, while the occupancy remains
100%.

6.4. Tracking performance
To optimize performance, it is important to investigate which tools are available to measure this. Accord-
ing to [18], there are two options. First of all, there are the CPU Timers. In C++, we can for example use
the clock() function or the high_resolution_clock::now() function from the chrono package. To mea-

28 6. GPU computing

sure the performance of some kernel execution on the GPU, we can set t1 = someCPUTimer() before the
kernel launch and t2 = someCPUTimer() after. As kernel launches are asynchronous, it is necessary to put
cudaDeviceSynchronize() after the kernel launch. The CPU is forced to wait and the kernel execution time
is measured, instead of the kernel launch time. The disadvantage of cudaDeviceSynchronize(), is that the
progress is stalled.

The second option is to use CUDA events. These timers are a more lightweight alternative to the CPU timers.
Two CUDA events need to be created:
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
Before and after the kernel lauch, we put cudaEventRecord(start) and cudaEventRecord(stop), respec-
tively. At the end of the code, we need to make sure that the event has finished (cudaEventSynchronize(stop)).
The elapsed time can be found with the commandcudaEventElapsedTime(&milliseconds, start, stop);
Furthermore, the profiler option can be used to look into more detail of the computation times. Within this
profiler, a more specific part of the computing time of the kernel launch is given.

6.5. Speed-up and scalability
Although GPU computing is a powerful tool, it is good to be aware of the limits of the speed up as well. De-
pending on how the problem scales and on which parts can be parallelized, we can make an estimate of the
expected speed up. According to [38], a fair comparison can be made if we consider the fastest sequential
program on a sequential machine and compare this with the fastest parallel program on p parallel proces-
sors. There are two models, Amdahl’s law and Gustafson’s law, that express the effect of parallel computing.

Consider a simplified process where all computations are executed with the same speed. The speed-up is
computed as the fraction between the time a serial program would take ts , divided by the time a parallel im-
plementation would take tp . The amount of available parallel processors is p.

Amdahl’s law [38]: In this model, the part of computations that can be done in parallel remains constant as
the problem becomes larger. Let f be the fraction of operations that can be parallelized. The speed-up is

S = ts

tp
= ts

ts
p f + (1− f)ts

= 1
1
p f + (1− f)

< 1

1− f
.

The problem is not scalable, as the extra speed-up gained decreases with the total number of processors. The
fraction S → 1

1− f when p →∞, where the speed-up does not depend on the number of processors anymore.
For a number of parallel processors, every extra processor results in less speed-up than the previous extra
processor did.

Gustafson’s law [38]: In this model, the part of computations that can be done in parallel scales with increas-
ing problem size. Now the fraction g that can be done in parallel is a fraction of the wall clock time. The
speed-up is

S = ts

tp
= (1− g)tp + g ptp

tp
= 1− g + g p.

Computations following this model are scalable. The speed-up increases with a fixed amount with every extra
processor, independently of the total number of processors.

To achieve a large speed-up, all possibilities of parallelization should be utilized. The amount of serial work
is actually the limiting factor for the speed-up. Let X be the fraction of serial work that can be parallelized.
Then the speed-up is S = ts

tp
= ts

(1−X)ts+Y < 1
1−X , where Y is the total work done in parallel. Even if this work Y

becomes negligibly small by using many parallel processors, the speed-up can never be larger than 1
1−X . For

example, in a case where 90% can be done in parallel, the speed-up is limited by a factor of 10.

As the MATLAB code made during the literature study [20] was written mainly to research the model interac-
tions, it can be assumed that it was not the fastest possible sequential program. However, it can still give an

6.5. Speed-up and scalability 29

indication of the speed up. It was seen that the amount of work in the part where the strain energy densities
where computed increased on longer simulations. This indicates that the work that can be parallelized in-
creases as well. In Figure 6.1 the computation work is split up in the strain energy density part and the Finite
Element part for a wound healing simulation of 8000 iterations with a time step of 0.09 seconds. The Finite El-
ement computations increase barely with the number of cells in comparison to the strain energy density part.
The part of cell migration without the concentration fields does increase greatly with more cells. The work
in the FEM part has approximately the same amount of work for different numbers of cells. Therefore, it is
not scalable according to Amdahl’s law. The cell migration depends on the cell number and has an increasing
percentage of the total work.

Figure 6.1: Computational work in MATLAB split up in the strain energy density part (cell migration without concentration influences)
and the FEM element computations.

After converting the program to C++, the times of computation decreased greatly. Furthermore, since the
matrices in the system do not change during the iterations, they have to be build only once. Removing the
work for all the other loops sped up the work in the Finite Element part. The work for the strain energy
density and the Finite Element program are closer to each other now (see Figure 6.2). For both parts, there is
a strong dependency on the number of cells. For the strain energy density, this increases more than linear and
will quickly become a problem for larger problem sizes. The modelling scenario is scalable as described by
Gustafson’s law, because the work increases with the problem size. Moreover, the speed of the Finite Element
program depends on the chosen grid: if the number of nodes in the mesh is chosen larger, this will require
more computational power as well.

Figure 6.2: Computational work in C++ split up in the strain energy density part (cell migration without concentration influences) and
the FEM element computations, where the stiffness and mass matrix are only computed in the first iteration. The domain size is [-50
µm, 50 µm] x [-40 µm, 40 µm].

7
Programming of wound healing model

In the development of the code for a model that uses the GPU and has possibilities to visualize the results,
many sub-steps had to be taken. This chapter gives an overview of the choices made during the programming
of the model. First of all, a C++ program had to be created, that could model the same as the previous MATLAB
code [20]. In order to check for bugs, the implementation of the GPU was omitted initially. In Section 7.1.1,
the results from MATLAB and C++ are compared and seem to be qualitatively the same, as far as we can
conclude that based on stochastic data. Thereafter, the model was not further extended in MATLAB, but only
in C++. In the C++ code, there are two implementations. One implementation is a CPU program and the
other one uses the GPU in certain parts to speed up computations.

7.1. From MATLAB to C++
After the construction of a model in MATLAB during the literature study [20], a similar model was made in
C++. As some pieces of code were rewritten and direct conversion from MATLAB to C++ was not possible
for some parts, the results were compared in order to make sure it was simulating the same process. The cell
dynamics depend on stochastic processes, therefore we need to compare the results statistically, as described
in Section 7.1.1.

7.1.1. Interpretation of results
Consider a family X j of independent identically distributed (iid) stochastic variables. The central limit theo-
rem gives us

p
n(Xg −µ) ∼ N (0,σ2), where n is the sample size, Xg the sample average, µ the expected value

and σ the standard deviation. With this information, the Monte Carlo error can be predicted.
We can construct confidence intervals, based on a certain number of simulations. If we have a sample size n
with data Xi , then we can define:

the sample mean X̄ =
∑

Xi

n
,

the sample standard deviation sx =
√∑

(Xi − X̄)2

n −1
.

Suppose that we are interested in estimating the mean µx of our output variable x. The sample mean can be
used as an (unbiased) estimator, however, we are interested in the variability of this estimate. The variability is
quantified by the variance of the error X̄ −µx . As the data Xi are independent, random samples, the variance
of the sum of these samples is the sum of the variances, thus we obtain

Var(X̄ −µx) = Var

(
1

n

n∑
i=1

Xi

)
= 1

n2 nσ2
x = σ2

x

n
, see [41]. (7.1)

We use the sample variance s2
x as an estimator for σ2

x . The Monte Carlo error is the square root of Equation
7.1, thus becomes sxp

n
. The error decreases with a factor

p
n when increasing the number of Monte Carlo

simulations [41].

31

32 7. Programming of wound healing model

For a chosen confidence interval of 100(1−α)% (usually 90, 95 or 99 %), the corresponding Z -value can be

found for the number 1− α
2 . The desired confidence interval is

[
X̄ −Z1−α/2

σp
n

, X̄ +Z1−α/2
σp
n

]
.

Two confidence intervals that overlap, are not necessarily an indication for the two processes to be signifi-
cantly similar. However, if two confidence intervals do not overlap, this indicates that the two processes are
significantly different.

In Figure 7.1 eight MATLAB simulations and fifteen C++ simulations are displayed. The model includes a
concentration field and was run for 4000 iterations with a time step of 0.09 seconds. The confidence intervals
overlap for these data sets. Furthermore, it is not possible to distinguish the MATLAB runs from the C++ runs
without the color indication. It seems therefore plausible that they are simulating processes according to the
same underlying dynamics.

Figure 7.1: Different simulations in C++ (colored) and MATLAB (black) tracked over time in one figure.

7.1.2. Comparison of simulation time
The program as described in the literature study [20] has been implemented in both MATLAB and C++, of
which some example iterations are displayed in the previous section. To perform the wound healing simula-
tion for 4000 iterations MATLAB needs about 3.5 hours to complete the computations. In the C++ program,
this takes only about three minutes. This is approximately 70 times faster than the MATLAB program.

Of course, the comparison is not entirely fair. The MATLAB program was a first program to investigate the be-
havior and was not very sophisticated in terms of efficiency. When making the C++ program, the knowledge
about the model was used to write a more efficient code. The simulation time of C++ mentioned above is the
run-time only. On the other hand, MATLAB uses grid division to speed up computation, while C++ simply
checks all interactions with all other cells.

The C++ code uses different libraries to model the wound healing. For the Finite Element computations (in
particular building sparse matrices and solving the system) the library Eigen is used [15]. To generate the
initial mesh, the Triangle software is used [33]. The Standard Library vector is used whenever possible, as
this is easy to use and optimized to work very well.

Another measure that speeds up the C++ code is that the mass and stiffness matrix are computed only in the
first iteration, as they are constant in this problem. Furthermore, the system Ax = b is solved by a Sparse
supernodal LU factorization. This happens in two steps: compute() and solve(). During the compute() step,
the matrix A = M +S ∗d t is factorized. This factorization also only needs to be done in the first iteration, as
M , S and d t will not change. The right-hand side will change, thus the solve() step needs to be executed every
iteration.

For a domain of size 200 x 160 µm, the effect of the GPU is graphically shown in the Figures 7.2-7.4. The base
scenario is the code that is optimized as described above (only computing part of FEM once), which runs

7.1. From MATLAB to C++ 33

solely on the CPU. In this scenario, shown in Figure 7.2, we can see a strong dependency of the computational
work on the number of cells. During the literature study, the exponential behavior of the computational
work in relation to the number of cells indicated to become problematic. Therefore, the use of the GPU was
proposed as a measure to make the program more efficient.

Figure 7.2: Elapsed time per iteration for a domain of 200 x 160 µm, with a time step of 0.09 s and run for 10,000 iterations performed on
the CPU.

In Figure 7.3 the increase of the computational work is reduced by using the GPU to parallelize the compu-
tations of the strain energy densities. The computation time for the Finite Element part is the same as in the
base scenario (Figure 7.2). The elapsed time per iteration for the strain energy densities keeps on increasing
with the number of cells, but this change is much smaller than before. The Finite Element computations are
now the bottleneck with respect to efficiency. Within this part, the mapping of the concentration gradient to
the cells was parallelized. In Figure 7.4 the improved elapsed times can be seen for the FEM part. The elapsed
times for the cell energy densities are the same with respect to the previous scenario. It is noteworthy that
the dependency on the number of cells is almost removed for this domain. This is caused by the fact that the
computation of the right-hand side vector and solving the FEM system depend on the concentration mesh,
hence does not depend on the number of cells. The actual computation of the concentration gradient does
naturally depend on the cells. Shifting this part to the GPU, however, prevents the large increase with the
number of cells.

Figure 7.3: Elapsed time per iteration for a domain of 200 x 160 µm, with a time step of 0.09 s and run for 10,000 iterations where the
computations of the strain energy densities is performed on the GPU.

34 7. Programming of wound healing model

With the current usage of the GPU, we see in Figure 7.4 that the strain energy density computations depend
a bit more on the number of cells than the FEM computations. If the domain is extended (while keeping the
same coarseness of the grid), the iteration time spend in the cell energy density part might become larger
than the time in the FEM part.

Figure 7.4: Elapsed time per iteration for a domain of 200 x 160 µm, with a time step of 0.09 s and run for 10,000 iterations, where the
strain energy densities and the concentration gradient mapping are computed on the GPU.

To investigate the behavior of the computational work in relation with the number of cells, we consider dif-
ferent domain sizes. For all simulations 10,000 iterations with a time step d t = 0.09 sec are run and the initial
lifespan of the cells is determined by a uniform random distribution between [0,600] sec. In the Table 7.1
some runs are displayed to indicate the differences between using the CPU only and using the GPU on the
strain energy densities computations or the concentration mappings or both. Apart from the total simulation
time and the average time per iteration, the range of the number of cells that occur during the iteration are
given as well.

Domain dimensions GPU usage Total time Average time Range of cell counts
100 x 80 µm None 2.68 min 0.0160 s 300 - 650
100 x 80 µm Only cell part 1.58 min 0.0095 s 300 - 650
100 x 80 µm Cell and FEM 1.14 min 0.0068 s 300 - 650

200 x 160 µm None 31.73 min 0.1904 s 1,300 - 2,700
200 x 160 µm Only cell part 12.4 min 0.0744 s 1,300 - 2,700
200 x 160 µm Cell and FEM 3.84 min 0.0231 s 1,300 - 2,700
400 x 320 µm Only cell part 142.3 min 0.854 s 5,000 - 11,000
400 x 320 µm Cell and FEM 19.09 min 0.1146 s 5,000 - 11,000
600 x 480 µm Cell and FEM 63.31 min 0.3799 s 12,000 - 23,000
800 x 640 µm Cell and FEM 153.28 min 0.9197 s 20,000 - 39,000

Table 7.1: Overview of wound healing simulations for different domain sizes, all simulations with 10,000 iterations and a time step of
0.09s.

On the smaller domains, 100 x 80 µm and 200 x 160 µm, the FEM part occupies a much larger part of the
computation time (more than 70%). On the somewhat larger domain, 400 x 320 µm, it can be seen that the
cell energy density computations start to increase with significant jumps, such that percentage of the com-
putation work of the FEM part decreases towards 55%. Finally, for the 600 x 480 µm domain, the cell energy
density computations become more expensive than the FEM computations (with more than 20,000 cells). For
the modelling scenarios investigated here (as was described in the literature report [20]), it is assumed that
the initial domain is very dense. Furthermore, proliferation will only halt if the mechanical energy between
cells becomes too large. If a lower density of cells is assumed, then the ratio between the work of the strain
energy densities and the FEM will change such that the FEM computations are dominating again.

7.2. Description of mmobi 35

7.2. Description of mmobi
For the choice of program, the efficiency was a key factor for the model, but the user-friendliness was also
kept in mind. The wound healing model is made as a C++ program with a Python API, that can be executed
as a library. The library has been given the name mmobi, which is an acronym for Mathematical Modelling
of Burn Injuries.

After reproducing the same basic model behavior in C++, the model was extended with a second type of
cell, the macrophages, and two other concentration fields, PDGF and TGF-β. The modelling dynamics also
changed by setting the parameters and implementing extra features as described in Chapter 5. In Figure 7.5 a
schematic overview is given of the most important functionalities of the core of the wound healing program.
The main function, runIteration, computes the displacement of all the cells every time step. Before the first
iteration however, the work of constructing an initial setting of the domain is done. This involves the place-
ment of cells and the determination of their state. Moreover, the Finite Element mesh is constructed and the
initial concentrations and constant parts are computed.

Figure 7.5: Schematic overview of the main components of the runIteration function.

Apart from this, there are many other small help functions that are used within the important functions men-
tioned here. Additionally, there are many functions that for example can be used to measure the elapsed time
in a specific part of the code, to access members from other classes or to print information.

7.2.1. C++ particularities
Two parts that could not easily be implemented with standard C++ libraries only were the generation of the
Finite Element Mesh and the solving of linear systems. The concentration field is found by solving a linear
system that is built up during the Finite Element computations. The linear algebra library Eigen [15] is used
in this part of the code. With this library, the matrices can be built up as sparse matrices and different direct
and iterative solvers can be chosen from.

A triangular grid is used in combination with Finite Element methods, to compute the concentrations PDGF
and TGF-β over time. The generation of this mesh is done by the Triangle mesh generator [33]. In the doc-
umentation of this software, it is explained that the mesh created with conforming Delaunay triangulation
is suitable for Finite Element analysis. A Delaunay triangulation assures that within the circumcircle (cir-
cle that passes through all three vertices) of any triangle, no other vertex is located. Moreover, the angles of
the triangles are made in such a way that it is never smaller than twenty-five degrees [33]. The advantage of
using a mesh generator that makes an unstructured grid, is that the errors that occur have different directions.

Different options for the mesh generation can be chosen. In the simulations we use the following switches:

• -q : Makes sure the mesh triangles have no angles smaller than 20 degrees. A number can be added
after ‘q’ to have a different criterion on the angle.

• -a : To fill in the maximum triangle area, it is put to 10−11 m2 as default.

36 7. Programming of wound healing model

• -e : To have the mesh generator give a list with edges back.

• -z : To set items counting from zero (instead of one).

For most of the MATLAB simulations during the literature study [20], a mesh with 4448 triangles was used for
a domain of size 100 x 80 µm.

7.2.2. Random numbers
There are two types of random number generators: PRNGs and TRNGs, which are pseudo and true random
generators, respectively. The advantage of the PRNG, is that it is fast, however it is deterministic and has a
period (sufficiently long for most problems). The TRNG on the other hand is more expensive from a compu-
tational point of view, but is non-deterministic and does not have a period [16]. Often, we are dealing with
pseudo-randomness numbers. This will lead to the same sequence of random numbers every time the pro-
gram is executed. For debugging purposes, this can be a desired option. In order to randomize the generation
of random numbers, we need to give a ‘seed’ as input. For example, we can read the CPU time at a certain
moment and use the value as a seed.

The uniform distribution in C++ can be declared with the line: uniform_real_distribution<double> dist (0.0,1.0).
Then, the function call operator () will return the next random number in the distribution. Without usages
of a different seed, the output will be the same. A non-deterministic uniform random number generator in
C++ is std::random_device. The random number can be used as a seed for the uniform distribution. The
std::random_device can be used as a seed for the Mersenne Twister. This is the most widely used PRNG, it is
used as default PRNG by MATLAB, Python and the CUDA library among others. In order for this to work, it is
required that the CPU can offer the support for this.

On the GPU, the Curand library is used to generate random numbers. These random numbers are used to
determine if a cell dies or divides. As it is supposedly faster to generate many numbers at once, the amount
of random numbers generated each iteration is two times the number of cells. Not all random numbers are
needed, because if the division criterion is satisfied, the death criterion is skipped. Similarly, both checks are
redundant for the case that a cell has a life span shorter than 300 seconds.

Seeding the C++ random generators happens by std::random_device() while calling the program from Python.
This is also the default setting for C++, but within the C++ code it can be easily changed by giving a specific
seed to the scenario_builder. In this way, scenarios can be repeated when executing the CPU scenario (the
Curand library used in the GPU program has a build-in seeding).

7.2.3. Python API
After constructing a model with all the mathematical functionalities, a user interface was made. This was
done in Python in order to be able to easily construct the modelling scenario and visualize the results of the
simulation. From within the Python and C++ code, it is not possible to access each other’s parts directly. To
make this possible a C program is put in place to convert function calls and queries to variables. This C-
wrapper links the C++ program to the Python program, in order to have an information transfer between the
C++ and Python program.

The Python interface starts with a part where a basic scenario can be constructed (time step, number of iter-
ations, domain size). Per scenario parameter, a value can be chosen or the user can refrain from this. In the
latter case, a default parameter is set. In C++ these parameters can similarly be chosen or left to default by
usage of the Scenario_builder class. In both Python and C++, the user can choose to perform all computation
on the CPU or to use the GPU for the parts that have a GPU implementation. The default option would be to
use the GPU, as this is much faster. Moreover, the computations on the GPU are done in double precision,
just as on the CPU.

Furthermore, some Python tests were implemented. The tests can be executed by running the command
nosetests (where the -s switch is needed to show all output). Within this test environment, we can quickly
check if the requirements are satisfied for the current settings. For example, the sizes of the arrays should
correspond to the number of cells and the stability criterion should be satisfied.

7.3. GPU usage for speed up 37

7.3. GPU usage for speed up
For the largest bottlenecks in the CPU code, alternative implementations using the GPU were made. The
CPUscenario and GPUscenario class are derived classes from the base class Scenario. This means that they
share the same fundamental basis, with most of the member variables and general member functions. The
specific functions for the CPU and GPU are then overwritten in their own class and additional members can
be added.

7.3.1. Strain energy density and mechanical energy

For every cell the same computations are performed in order to find the displacement. This advocates for
a parallelization of the computations. The part that is performed on the GPU involves the influences of the
strain energy density and collisions with other cells. This part is relatively easy to parallelize, as the computa-
tion for a cell does only depend on information of the previous iteration. The cell locations and the lifespan
of the cell are send to the GPU, and after the computation the displacement, the updated state and lifespans
are send back to the CPU. The decisions of cells undergoing proliferation and apoptosis are also performed
on the GPU. These decisions are then stored in the state vector. On the GPU, we cannot use the random gen-
erator from the CPU. Pseudo random numbers are therefore generated by the Curand library. These numbers
are double precision numbers from the uniform distribution that can be generated on the GPU.

7.3.2. Finite Element computations

After using the GPU to do the cell strain energy density computations efficiently, the FEM computations are
the limiting factor. This part can be divided into three parts: the building, the solving and the mapping parts.
The building and solving parts have more or less constant computation time during the simulations, while
the mapping computations increase with the number of cells.

In the end, two parts of the Finite Element computations were speeded up by using the GPU. This implemen-
tation was more difficult than for the cell migration described in section 7.3.1. In principle, the Eigen library
should be able to work with CUDA implementations. However, the latest version of CUDA is not compatible
with the latest version of Eigen, which we both use in this project. The Eigen library is only used in the FEM
class, however this class is part of the Scenario class. In order to use the GPU on certain parts, we need to
make these parts as separate files and load those into the Scenario class. Moreover, in the usage of the Eigen
library, special vectors and matrices are used. With the standard library vector in C++, it is easy to convert
information to arrays, such that the GPU can work with it. For the Eigen members, we need to use a mapping
function. Besides that, the matrices need to be converted to a one-dimensional array.

The largest part of the work during the mapping is performed in the trianglecheck function. This function
performs the computations as described in Section 4.3.2. With a structured grid, it would be relatively easy
to determine the division of cells over the elements in the grid. With the used unstructured grid however, we
need to check per cell if it is located in a certain triangle. This is a time-consuming operation, as we loop
through the whole cell list and check for every cell if it is located in the current triangle. In a sequential pro-
gram, we could think of more efficient variations, such as leaving out cells that where located in a previously
checked triangle. To speed up the computations using the GPU, the loop over all elements stays in place and
the outer loop, over all the triangular elements, is parallelized.

Finally, the computation of the right-hand side vector of the system for the computation of the concentration
TGF-β, as was given by Equation 4.7, was performed on the GPU as well. Again, the most time-consuming
part here is the trianglecheck function. This time the function is used to check if a macrophage is located
in a certain triangle. The influences of the macrophages are stored in the right-hand side vector, however,
as multiple triangles can have a contribution to the same node, we need to be careful doing additions in
parallel. The atomic functions make sure that only one thread can read and write at a certain location. In
the case of AtomicAdd(), it is guaranteed to be able to read the value stored in the vector, add a value to it
and store the new value back in memory, without interference of any other threads. Many of the additions to
the element vector are zero, as there are no macrophages, and thus no secretion of TGF-β in those elements.
Before initiating the AtomicAdd() function, it is therefore checked if the additions are non-zero.

38 7. Programming of wound healing model

7.3.3. Final optimizations
To reach an even more efficient code, some changes are made to achieve more speed-up. First of all are the
computations involving the tPA concentration field (which were used in the literature study [20]) were made
non-active. Secondly, all dynamic arrays from the Eigen library were replaced by fixed sizes ones, if possible.
This sets the number of nodes per element to three and the number of nodes for a boundary element to two.
Furthermore, the contents of elmat and elmatbnd are stored differently. It is made sure that all the inner
loops in the FEM part iterate over the fast (first) index. Eigen is column major by default, therefore we prefer
to loop through the first index, instead of the second.

Within the Eigen library, we need to choose our own matrix solver. There are some direct solvers to choose
from, as well as iterative solvers. Furthermore, it is possible to use wrappers in order to have an external solver.
For small systems, most direct solvers perform quite well. However, for larger systems (more than 1,000,000
unknowns) the solving time becomes a bottleneck. Iterative solvers are usually the better choice when the
system reaches a certain large size, however, this is not an issue for this specific model yet. Although, the
iterative solvers cope better with limited memory than the direct solvers, the latter is much faster for now.
The Sparse supernodal LU solver is chosen for this project. After conversion of the model to 3D, the iterative
solvers will probably become a better choice.

The mesh does not change during the simulation and quantities like the element area and the basis functions
per element can therefore be computed once and used for the rest of the simulation. This already causes
speed-up by removing unnecessary work. In order make this worthwhile on especially the GPU, the mesh
information is located on the device once, instead of sending it to the device every kernel invocation. The
speed-up of locating this information on the device is discussed in more detail in Section 11.1.1.

8
Wound healing quantification

In order to be able to assess the dynamics of the wound healing simulation, it is convenient to have some mea-
sure that gives information about this process. Furthermore, some quantity is needed to be able to compare
different simulations to each other. In this chapter, different quantities for these purposes are introduced.
In Section 8.3, the two-sample Kolmogorov-Smirnov test is described, which uses the wound quantifiers to
compare different simulations.

8.1. Measuring wound healing
In [6] several methods are described to quantify the wound healing rate. Most wound healing quantities use
the area of the wound over time, either the absolute value or relatively to the initial wound area.
The absolute wound size is just the wound area in m2 over time. The relative wound is defined as W =
At−At=0

At=0
, where At indicates the area of the wound in m2 at time t . The wound healing measurement of these

quantities is very dependent on the size and form of the wound. In [6] the disadvantage of the incomparability
of wounds with different sizes is overcome by including the wound perimeter in the wound healing rate as
well. The wound margin advance is defined as

di = Ai − A0
1
2 (p0 +pi)

, with Ai the wound area and pi the wound perimeter at time i .

The main point that remains is to choose a method to measure the wound area and perimeter. In practice
the maximal diameter of the wound is measured (ai), and after this the diameter perpendicular to this one is
measured (bi). Subsequently, the required quantities are approximated by an ellipse. Hence, the wound area
and perimeter are

Ai = π

4
ai bi , (8.1)

pi =π
(

3

4
(ai +bi)− 1

2

√
ai bi

)
[6]. (8.2)

A more convenient measure, regarding the parameters in the model, is to use the fibroblast density. A defini-
tion could be the restoration of normal fibroblast density: R f = ρwound

ρnor mal
, where ρ is the density of fibroblasts,

thus the number of fibroblasts per m2. The normal density ρnor mal has the value that was used to initialize
the amount of fibroblasts in the uninjured area.

Another measure that is easy to keep track of is the relative wound density (RWD). This involves the total
number of cells and their distribution over the wound and the undamaged part. This quantity can be used to
measure cell migration [14]. It is defined as

%RWD(t) = wt −w0

ct −w0
×100, (8.3)

where wt and ct are the cell densities in the wounded and undamaged area respectively at time t .

39

40 8. Wound healing quantification

8.1.1. Polygonal estimation
As the grid used in the model is rectangular, a circular or elliptic approximation of the wound might not be
very accurate. Especially in the initial phase of the migration into the wound, the cell gap will have a more
rectangular shape. The shape is therefore approximated by a polygon, which allows us to cover the corners of
the domain better than would be possible with an elliptic approach.

The domain is divided into twelve segments, where the sizes are based on a 30 degree angle. The middle of the
domain, the (0,0) point, is taken as the origin. The first segment is located right below the origin. The twelve
segments have their mean at the angles −π

2 ,−π
3 ,−π

6 ,0, π6 , π3 , π2 , 2π
3 , 5π

6 ,π,− 5π
6 ,− 2π

3 . Within the 30 degrees seg-
ments, the distance from the cell that is closest to the origin is written down. In case there are no cells in the
segment, the maximal distance from the origin to the wound boundary within that segment is taken.

Per segment, two quantities are computed in order to approximate the wound gap and the wound perimeter.
The area in between two segments is computed as the triangle area for a triangle with a 30 degrees angle (C)
and the two connecting sides (a,b) with length from the origin to the location of the closest cell.

Area triangle = 1

2
a b sin(C), as follows from the SAS-rule for triangles.

The wound gap is found by summing up the results of the twelve computations. The perimeter of the wound
is found by adding up the third sides that make the triangles with a and b complete. It can be found by solving
for c in the law of cosines:

c2 = a2 +b2 −2 a b cos(C).

In order to compare this method with the elliptic approximation, a simple approximation based on Equa-
tions 8.1 and 8.2 is done as well. With the minimal distances computed for the polygon estimation, we can
find wound diameters in six directions. As 30 degree angles were taken, we can find three pairs of orthogonal
wound diameters. With these pairs, three elliptic wound areas and perimeters are computed. The largest
wound area and perimeter are taken as final approximation for the elliptic approach.

While doing these computations, all cells are located in their segments and thus after this procedure the
number of fibroblasts in the wound and outside the wound are known as well. This allows us to compute the
restoration factor of fibroblasts R f and the relative wound density (RWD) as described in Section 8.1 with a
very small amount of extra computations.

8.2. Assessment of wound quantifiers
The approximations for the area and perimeter overshoot the actual value a bit on purpose, such that it is the
maximal value that can occur for the approximation method of the wound. With this choice the approximated
area can only shrink when a fibroblast enters the wound. The overshoot for the polygonal approach is less
drastic than it is for the elliptic approach, as can be seen in Table 8.1.

Wound area Wound perimeter
Exact value 0.8 mm2 3.6 mm

Polygonal approximation 0.9279 mm2 3.7418 mm
Elliptic approximation 1.1379 mm2 3.7924 mm

Table 8.1: The actual wound area and perimeter at t = 0 in comparison with the estimated values for the polygonal and elliptic approach.

In order to check the applicability of the wound quantifiers described in the previous Section 8.1, a test sce-
nario is run. This scenario simulated the initial four days of wound healing, thus existed of 57600 iterations
with a time step of 6 seconds. The domain size was [2000 µm x 1600 µm] and the wound is located in the mid-
dle of the domain with dimensions [1000 µm x 800 µm]. Every 10 iterations, the wound healing quantifiers
are computed and plotted.

As in the current model, contraction of the wound is not implemented, there cannot be said much about the
actual closure of the wound. During these simulations, the wound boundary will have no displacement. The
current implementation models the pathways of the fibroblasts. Therefore, the wound area and perimeter

8.3. Comparing simulations 41

are now tracking the entry of the fibroblasts in the wound and the part of the wound bed that they occupy.

Two wound quantities are based on the approximated wound area and perimeter. In Figure 8.1 these quanti-
ties are displayed for both the elliptic approximations and the polygonal approximations. In the left figure it
is visible that the elliptic approach has larger deviations between different iterations, especially in the initial
period. This is caused by the fact that the area is based on the diameter in two directions only, where for the
polygonal approach it is based on six directions. If a cell moves from one segment to another, this makes a
larger difference for the elliptic approximation, than it would for the polygonal approximation. Furthermore,
the initial wound shape is rectangular, which is easier to approximate with a polygon than an ellipse.

Figure 8.1: Polygonal and elliptic measurement of the relative wound area and the wound margin advance.

The right figure of 8.1, gives more diverging results for the two approaches. This is mainly caused by the fact
that the wound margin advance is a ratio depending on the initial wound area and perimeter approxima-
tions. For the case that the wound is completely closed, thus the wound area and perimeter are zero, then the
wound margin advance are 0.496 mm and 0.600 mm for the polygonal and elliptic approach, respectively. In
the figure, we see that the lowest points of both approximations go towards these values. The behavior of the
approaches are similar, however scaled differently. Again, the polygonal approach seems to have a somewhat
smoother course than the elliptic approach.

After the wound area reached zero, the relative wound and wound margin advance are not very informa-
tive anymore. Therefore, the quantifiers that describe the fibroblast density over time are useful as well.
The restoration of the fibroblast density and the relative wound density can be tracked over a longer period.
Moreover, these quantifiers give information about the global rate of healing, in addition to the specific infor-
mation about the wound lay-out. The slope of the RWD graph gives information about the migration between
the undamaged area and the wound. Thus this gives a visualization of the incentives of the macrophages to
migrate towards the wound bed. The restoration of fibroblasts gives an overview of how far the process to-
wards a normal fibroblast density is.

Based on the findings described in this section, we decide that the polygonal approach of the relative wound
and wound margin advance is a better choice than the elliptic approximation. This quantity is informative
until the moment that the wound area reaches zero. Both restoration of fibroblasts and the relative wound
density will be used as quantifiers to reflect the global state of the wound healing process.

8.3. Comparing simulations
The quantities that measure the wound healing will be used as the main components to compare between
simulations. Different cases that can be investigated are the following:

1. Simulations in double precision versus single precision.

42 8. Wound healing quantification

2. Simulations with varying time step.

3. Simulations with varying grid size for the finite element computations.

4. Checking the influence of a certain parameter.

By investigating the items 1, 2 and 3, the fastest method can be chosen while still having the same qualitative
results as for a more accurate and computationally more expensive method. The fourth item can be investi-
gated to gain more insight into the mathematical model. For example, to find out which parameter variations
have a small or large impact on the outcome of the model.

Given two or more scenarios that will be investigated, a few time instants t1, . . . , tn will be chosen. Then for a
large number of simulations, the wound healing quantifiers will be noted at ti . With these results, a wound
healing distribution can be made for every time instant. The distributions can be made for all the different
scenarios. We would like to find out if two (or more) scenarios behave similarly. This can be done by perform-
ing a Kolmogorov-Smirnov test on the data samples from the scenarios. It allows us to test if two data sets
belong to the same, continuous probability density function or to different ones. Moreover, this test is non-
parametric, which means that no assumptions are needed regarding the distribution of the variables and the
error between the actual density and the samples [43].

Given two sample distributions fn1 and fn2 and their underlying distributions f1 and f2, we can define

the null hypothesis H0 := f1(x) = f2(x)

and the alternate hypothesis H1 := f1(x) 6= f2(x).

First, the cumulative distributions, Fn1 and Fn2 , are made. Subsequently, we need to find the maximum
vertical distance between these cumulative density functions. This is defined by the quantity D , where

D = max
x

|Fn1 (x)−Fn2 (x)|.

The test statistic D is compared with a critical value, based on the chosen confidence level and the number of
samples, in order to either reject or accept the null hypothesis [43]. The critical values for different confidence
levelsα are given in Table 8.2, on the condition that both sample sizes are larger than 15. Based on the sample
sizes, it is defined that s(n) =p

(n1 +n2)/n1n2. With s(n) computed and a chosen confidence level, the value
of Dcrit can be computed from the Table 8.2. Finally, the null hypothesis H0 is rejected if D > Dcrit and is
accepted otherwise.

α Dcr i t /s(n)
0.10 1.22
0.05 1.36
0.01 1.63

0.005 1.73
0.001 1.95

Table 8.2: Critical values and confidence levels for K-S Two-Sample Test [43].

9
Simulation results

In this chapter the results of our baseline scenario will be discussed. This scenario is small enough to perform
multiple runs within reasonable time and large enough to have a nice wound healing response. It consists of
a domain with dimensions [-1mm, 1 mm] × [-0.8mm, 0.8 mm] and uses a time step of six seconds. For the
mesh generation the maximum area constraint for the triangles is set to 10−11 m2. For solving the systems
of the concentration fields, the Sparse supernodal LU solver is used. The initial fibroblast density was set to
109 fibroblasts per m2 and their initial lifespan was set by a uniform distribution between 0 and 600 seconds.
The density was used to place the initial fibroblasts in the undamaged area. This density corresponds to an
initialization of 2400 fibroblasts in the domain. In the first section, the modelling results will be described.
In the second section, the computational work will be discussed. In the third section, a comparison is made
between the CPU and GPU program in C++.

9.1. Wound healing dynamics
In Figure 9.1 several snapshots at consecutive times of the simulation are given. Initially there is only PDGF
in the wound bed, which diffuses over time through the domain until the concentration diminishes to a small
amount that is not visible on the fixed scale anymore. The concentration TGF-β increases during the period
of time where macrophages enter the wound and secrete TGF-β.

Figure 9.1: Overview of concentration fields PDGF and TGF-β and the cells in the domain. The blue cells are fibroblasts and the red cells
are macrophages.

The macrophages (the red cells) are diffusing toward the center of the domain and by secreting TGF-β, they
guide the fibroblasts (the blue cells) towards the center as well. This is visible in the snapshot of the second
day. At certain locations the TGF-β concentration is a bit higher than in the surrounding tissue, although this

43

44 9. Simulation results

is not visible for the concentration scale in Figure 9.1. This is where the fibroblasts eventually group, as is
the case around the sixth day. Hereafter, the fibroblasts will diffuse over the domain and some will undergo
apoptosis at overcrowded areas.

The ingress into the wound site of macrophages starts quickly as can be seen in the third graph of Figure 9.2
and stagnates after a day. At that point the concentration PDGF has decreased below the threshold that allows
macrophages to enter the wound. The macrophages keep on migrating towards the center of the wound, in
the direction of the gradient of PDGF. The apoptosis rate of the macrophages increases with the decreasing
concentration of PDGF and with no proliferation or entry of new cells, the population will finally deplete (as
is the case at day six). Meanwhile, the fibroblast population keeps proliferating as there is enough space left to
fill. The limit of available nutrients is not a problem in the domain yet, thus by the proliferation of fibroblasts
the population increases steadily, as can be seen in the second graph of Figure 9.2.

Figure 9.2: Growth of the total cell population, fibroblasts and macrophages over time.

The time evolution of the populations is not a very informative indicator for the wound healing. The healing
status is easier to derive via the created wound quantifiers. First of all, we have the absolute wound area over
time in Figure 9.3. The overall behavior of the wound area is decreasing over time, however, some increases in
wound area occur due to the approximation we perform, as was described in Section 8.1.1. At the point where
the wound is almost closed, the gained wound area is smaller as the gap becomes smaller as well. After four
days, the fibroblasts are spread out over the complete injured area. However, the fibroblasts group at locations
where the TGF-β concentration is highest, which might leave some small areas in the wound without any
fibroblasts. This leads to small increases in wound area as is seen around the fourth, fifth and sixth day. After
the first 4 days, this quantity becomes approximately zero and does not give us useful information about the
wound healing anymore.

Figure 9.3: The absolute wound area over time.

In Figure 9.4, there are four more wound quantifiers displayed. The relative wound density in Figure 9.4a
gives the same information as the absolute wound area. However, as it is scaled it is easier to compare to
wounds that do not have the same size. The wound margin advance (Figure 9.4b) indicates a steady shrinking
rate of the wound during the first days. After 2 days, the wound margin advance becomes smaller and more
fluctuating. The wound margin advance depends on the approximated area as well as on the approximated
wound perimeter and therefore, is very dependent on the specific locations of the fibroblasts.

9.1. Wound healing dynamics 45

Figure 9.4: Overview of quantifiers of the wound healing process.

Initially, the area decreases as many fibroblast from the surrounding undamaged tissue migrate into the
wound. Subsequently, the fibroblasts will be driven by the gradient of TGF-β once being secreted by the
macrophages. The relative wound density, as was defined in Equation 8.3, demonstrates the effect of the
gradient of TGF-β on the migration rate of the fibroblasts (Figure 9.4d). The steep increase in the graph
corresponds with the high concentration of TGF-β during the period between the second and fourth day.
Thereafter, the relative wound density does still increase as proliferation of fibroblasts occurs without the re-
striction of needing to have enough space.

The restoration of the fibroblasts (Figure 9.4c) indicates the progression towards a ‘normal’ amount of fibrob-
lasts. The normal amount is defined as the amount that corresponds to density that was set for the initializa-
tion of the fibroblasts. After 10 days, the density has reached a level that is larger than the assumed amount
of fibroblasts for normal scenarios. After the large initial increase, the growth stagnates. This is caused by the
fact that the TGF-β concentration has decreased, such that the proliferation is halted in case of overcrowding.
Furthermore, the fibroblasts that originate from surrounding tissue have for some part already migrated and
therewith the density is lower in the undamaged region, as can be seen from Figure 9.5. At the seventh day,
the density over the whole domain reaches the ‘normal’ density of 109 fibroblasts per m2 and subsequently
overshoots this value.

Figure 9.5: Overview of the fibroblast density over a time of 16 days in the wound, the undamaged area and total domain.

46 9. Simulation results

After the wound healing response, the domain should go back towards a normal state eventually. On a longer
simulation of 16 days, it is visible that the decrease of fibroblasts starts around the ninth day (Figure 9.6).
With a high concentration of TGF-β, the apoptosis is suppressed and proliferation is allowed regardless of
the available space. At some point, apoptosis is not suppressed anymore, although cells can still undergo
proliferation. This happens when the growth curve becomes flat and population does not either grow or
shrink much. When the concentration TGF-β decreases even more, proliferation is halted due to limiting
space. The migration of fibroblasts from the wound area back to the undamaged area will not occur very
fast. The speed of movement of fibroblasts depends on the receptors bound to TGF-β molecules according
to Equations (4.10). Hence, the speed keeps on decreasing on the longer run.

Figure 9.6: Growth of the total cell population, fibroblasts and macrophages over time.

9.2. Computational work load
Before going into detail about the computational work, the used hardware is stated for reproducibility. The
Intel® Core™ i5-7400 CPU is used, with 8 GB of memory. The used GPU is the GeForce GTX 1080, which
has a total global memory of 8114 MB. The gcc 5.4.0 compiler is used, where the optimization flags ‘-O3’ and
‘-march=skylake’ are enabled for the simulations in this chapter.

During the simulation of the baseline scenario, different parts of the program were timed. The different
timed parts are displayed in Figure 9.7. The strain energy densities are computed on the GPU and occupy a
small part of the total iteration time. This part of the computations last between 0.007 and 0.011 seconds per
iteration, which is less than 1/20 of the time that the Finite Element computations occupy. There are three
jumps where the computational works suddenly increases. This can possibly be caused by needing extra
memory space that is slower to access. If more actions are performed in an iteration, such as computation of
the wound quantifiers, the iteration time increases somewhat as well.

Figure 9.7: Division of work load in different part of the wound healing simulation.

The Finite Element computations are divided into three parts: the building of the system, the solver part and
the mapping of the concentrations to the cells. Both the mapping and building part use the GPU to speed up

9.3. Comparison of CPU and GPU program 47

computations. The solver part is the slowest part in this set-up, although this will presumably change for a
larger number of cells or for a less fine mesh. The solver part only depends on the number of nodes in the
chosen mesh. Therefore, the computational work is constant for a non-varying mesh during the simulation.

The linear increase of the work load with the number of cells for most parts is also visible in Figure 9.8. The
dependency of the computational work load is clearly related to the number of cells, which follows from the
similarity of the shapes of the two right figures with the left figure displaying the cell growth. Only in the initial
period the computation times are higher. This is caused by doing a lot of extra work at the start and storing
the outcomes, such that it speeds up the rest of the iterations.

Figure 9.8: Cell growth (left) and computational work in two parts over time.

Finally, the scalability of the model is checked. An increase in the domain size, leads to an increase in the
required computational power, as there are more cells and more nodes in the Finite Element mesh. For all
scenarios, 2000 iterations are run with a time step of 6 seconds. The mesh area constraint was set to 5 ·10−11

m2 and a direct solver is used for the FEM system. In Table 9.1 the increase in work is given in relation to the
smallest domain. For the three smallest domains, the computation times are quite reasonable. Furthermore,
the factor of increase in computation time is smaller than the increase in domain area.

The turning point is the 2.5 x 2 mm domain, where the computation factor is larger than the domain increase.
For scenarios of this size or larger, the mapping part becomes the largest bottleneck. This is caused by the
increase of triangles on the one hand and on the increase of cells on the other hand. We parallelize over the
triangles, however, the work per triangle (as was described in Section 4.3.2) increases with the number of
cells.

Domain size Initial cells Vertices Triangles Computation time Factor area Factor time
0.5 x 0.4 mm 150 3199 6239 0.11 min 1 x 1 x
1.0 x 0.8 mm 600 12,544 24764 0.31 min 4 x 2.8 x
2.0 x 1.6 mm 2400 50,069 99473 1.58 min 16 x 15 x
2.5 x 2.0 mm 3750 78,043 155224 5.07 min 25 x 27 x
3.0 x 2.4 mm 5400 112,383 223785 3.01 min 36 x 50 x
4.0 x 3.2 mm 9600 199,370 397423 14.57 min 64 x 132 x
5.0 x 4.0 mm 15000 311,379 621029 33.03 min 100x 300 x

Table 9.1: Computation timings for different domain sizes for a simulation of 2000 iterations with a time step of six seconds and a
maximal triangle area of 5 ·10−11 m2.

In order to make a ten-day simulation, we need 144,000 iterations for a time step of six seconds. Doing this for
the domain with size 2 x 1.6 mm takes already two hours. For the domain with size 4 x 3.2 mm this increases
to 18 hours. With the goal of Monte Carlo simulations in mind, the maximal feasible domain size is around 4
x 3.2 mm with the current resources.

9.3. Comparison of CPU and GPU program
We consider some simulations consisting of 5,000 iterations with a time step of 6 seconds. The maximal mesh
area is set to 10−10 m2, which leads to the construction of a mesh with 25,148 vertices and 49,821 triangles.

48 9. Simulation results

The length of this run is chosen to be quite short, as the CPU scenario already takes more than an hour to
complete. The long run-time is the reason that in this analysis only a few CPU runs are performed.

We apply the methods as described in Section 7.1.1 for data obtained from the CPU and GPU implementa-
tions of the model. For both the data sets, we can make an estimate of the mean at every time point. For
this mean, we can then estimate the Monte Carlo Error. This error indicates the variability of the mean. For
increasing sample size, the error will also decrease. The means and the corresponding confidence intervals
are plotted in Figure 9.9, along with the data of both simulations. The 95% confidence interval for the CPU
scenario (displayed as the black lines), is quite wide, as it is only based on 12 CPU runs. The confidence
interval for the GPU scenario (displayed as the blue lines) is much smaller as it depends on 50 runs. The
confidence intervals overlap at every time point. Therefore, the hypothesis that the two implementations
simulate similar behavior is not rejected.

Figure 9.9: Different runs of the GPU and CPU program with 5,000 iterations and time step of 6 seconds. There are 50 GPU runs and 12
CPU runs. The 95% confidence interval for the mean of the set of GPU runs is given in blue and for the set of CPU runs in black.

The difference in run-time between the CPU and GPU implementation is very apparent. For 10,000 iterations
with a time step of six seconds and a maximal mesh area of 5 ·10−11 m2, the CPU program lasts about 7.15
hours, while the GPU program needs less than 8 minutes. In Figure 9.10 the computational work for a CPU
simulation of one day in different parts is displayed. Towards the end of the simulation, the time spent in
computing the strain energy densities (SED) is about 0.13 seconds and the time spent in performing the
Finite Element computations is about 2.54 seconds. For a simulation of one day on the GPU with the same
Finite Element mesh, the elapsed times per iteration are 0.0065 seconds and 0.039 seconds respectively. This
means that the SED is computed 20 times faster and the FEM part is computed about 65 times faster in the
GPU implementation. The over-all gained efficiency of the GPU is a bit more than 58 times faster, as the FEM
computation accounts for the largest portion of the overall work. Whereas in the CPU implementation the
solving of the concentration systems is relatively fast, this changes to be one of the bottlenecks as the other
parts use the GPU for speed-up.

Figure 9.10: Computational work of the strain energy density computations and different parts of the Finite Element computations in
the CPU program.

10
Accuracy of concentration fields

In this chapter the concentration fields are studied in more detail. In the first section, we have attempted to
estimate the accuracy of the PDGF field by Richardson’s Extrapolation. However, different methods did not
lead to feasible results. In the second section, an alternate approximation of the TGF-β field by means of
Green’s function solutions is studied.

10.1. Richardson’s Extrapolation for estimating the error order
In order to be able to say something about the order of the errors being made during the computation of the
concentration fields, Richardson’s Extrapolation is used. Suppose the correct value is M and the approxima-
tion we make is Q(h), where h indicates the grid size. Then the error is E(h) = M −Q(h). For a small enough
grid size, this error can be approximated as E(h) = cp hp , where p is the order of the error and cp a non-zero
constant. The order of the error can be estimated by computing three approximations of the solution for grid
sizes h, h

2 and h
4 . With the formula

Q(h/2)−Q(h)

Q(h/4)−Q(h/2)
= 2p , (10.1)

we can find the estimated order p [39].
In order to compare the approximations of the concentration field, the L2-norm is computed for three differ-
ent meshes. The L2-norm is a function norm and is defined as

‖c‖L2(Ω) =
[∫
Ω

c2dΩ

]1/2

.

The function c2 is approximated per triangle element and added up afterwards as follows:

[∫
Ω

c2dΩ

]1/2

=
[

Ntri∑
k=1

∫
ek

c2dΩ

]1/2

≈
[

Ntri∑
k=1

(
|∆ek |

6

3∑
p=1

c(xp)2

)]1/2

. (10.2)

For the Richardson Error estimation, we want to halve the grid size. This is a straightforward measure to
do in one- or two-dimensional rectangular grids. For a triangular unstructured mesh it is not clear how this
mesh should be refined. We could think of halving the length of the sides of the triangle, although another
option would be to halve the triangle area. The latter is implemented in the triangle software, where an input
parameter is the maximal allowed area. Within the triangle software, we can refine an input mesh. This
means that the nodes of the previous mesh will be present in the refined mesh and extra nodes will be added
in order to comply with the maximal area constraint.

10.1.1. Precise refinement factor
Previously, it was assumed that by halving the area constraint for a triangular element, a refinement factor of

two can be used. In [23] an alternate definition for the refinement ratio is used. Here r = hg−1

hg
, where hg is

finer than hg−1 and h =
√

A
N , the square root of the ratio between the total area and the number of elements.

49

50 10. Accuracy of concentration fields

In order to be safe with regard to the refinement factor, we consider the case where the two refinement ratios
are not equal. Three grids are considered with respectively h1, h2, h3, where h1 > h2 > h3. For sufficiently
small h, the error M −Q(h) is approximated by cp hp , with cp 6= 0, p ∈N. We can write for the three grids:

M −Q(h1) = cp (h1)p , (10.3a)

M −Q(h2) = cp (h2)p , (10.3b)

M −Q(h3) = cp (h3)p . (10.3c)

And after subtracting (10.3b) from (10.3a) and (10.3c) from (10.3b), we obtain the equations

Q(h2)−Q(h1) = cp ((h1)p − (h2)p) = cp (h2)p (r p
12 −1), (10.4a)

Q(h3)−Q(h2) = cp ((h2)p − (h3)p) = cp (h3)p (r p
23 −1). (10.4b)

Here, the ratios are defined as r12 = h1
h2

and r23 = h2
h3

. Division of Equation (10.4a) by (10.4b) gives the equation

Q(h2)−Q(h1)

Q(h3)−Q(h2)
=

(
h2

h3

)p (r p
12 −1)

(r p
23 −1)

= (r23)p (r p
12 −1)

(r p
23 −1)

,

that needs to be solved for the order p.

This equation can be solved by the iterative Newton-Raphson method. We define

f (p) = (r p
23 −1)

Q(h2)−Q(h1)

Q(h3)−Q(h2)
− (r23r12)p + r23

and want to find the zero of this equation by iteratively solving pn = pn−1 − f (pn−1)
f ′(pn−1) . Alternatively, other root-

finding algorithms, such as Halley’s method can be used.

10.1.2. Limitations
In practice, the estimation of the order with Richardson’s Extrapolation does not always give reasonable re-
sults. There can be several causes for this; higher-order derivatives do not need to exist, mistakes can be made
in the code or the final result is a combination of multiple approximations that remove the direct relation with
the estimated order p [39]. Furthermore, the mesh refinement needs to be systematic, which means that two
conditions, uniform and consistent refinement, need to be complied with [31]. Uniform refinement means
that the rate of refinement should be the same over the whole domain, and consistent refinement means that
the mesh quality must improve or stay constant with refinement. Mesh quality involves things like cell skew-
ness and aspect ratio.

With the mesh generator, an unstructured grid is generated. It is not possible to enforce some criteria such
that the grid surely improves on all points. Even with the precise refinement factor of the grid, the approxima-
tion of the error does not give reasonable results. Therefore, a simple structured triangular grid (as displayed
in Figures 10.1 and 10.2) is used to find the estimated order of the error.

Figure 10.1: Base grid, with grid size h. Figure 10.2: After one refinement, with grid size h
2 .

10.1. Richardson’s Extrapolation for estimating the error order 51

During every iteration, some approximation errors are made. This error depends on both the grid size h and
the time step ∆t . In the process of making these quantities smaller and smaller, the error will converge to
zero as well. For sufficiently small h and ∆t , higher order dependencies do not have much influence on the
total error. For the backward Euler method, the total error would then depend quadratically on the grid size
and linearly on the time step. When halving the grid size, the time step needs to be divided by four to prevent
the time integration errors to dominate the total error.

The procedure to find the estimated order starts with choosing the coarsest grid and the corresponding time
step. The grid size h and time step∆t will be chosen such that D∆t

h2 ≤ 1
2 is satisfied. The diffusion coefficient of

PDGF, DcP , is 3.33·10−12 m2/s and with an initial grid size of 2·10−5 m, the time step should be smaller than 60
seconds. As the initial setting of the PDGF field has a quite sharp transition from high to zero concentration,
we need to run the simulation long enough in order to let the concentration diffuse through the medium. The
simulations will have a total length of one hour to assure this. In Table 10.1 the estimated L2-norms are given
for three different grid sizes.

h ∆t m Q(h)
32 ·10−7 0.9375 3840 1.04096e-09
16 ·10−7 0.234375 15360 3.89459e-09
8 ·10−7 0.05859375 61440 6.57464e-09

Table 10.1: One hour simulations for estimating the order of the error by halving the grid size h.

With the formula (10.1), we get Q(h/2)−Q(h)
Q(h/4)−Q(h/2) = 1.064767. That would result in an order p = 0.091 which does

not seem to be a correct outcome. However, the most precise computation is already approaching the limit
of memory. Therefore, halving the grid size again is not possible. Alternatively, we attempt to find a solution
between h = 16 ·10−7 and h = 8 ·10−7. The refinement factor for the grid size then becomes

p
2 and for the

time step it becomes two. We reuse the results from Table 10.1 and add an extra simulation. We need to solve
Q(h2)−Q(h1)
Q(h3)−Q(h2) = (

p
2)p , for the results displayed in Table 10.2. This gives us the estimated order p = 2.3.

h # triangles ∆t m Q(h)
16 ·10−7 624000 0.234375 15360 3.89459e-09p
2 ·8 ·10−7 1248562 0.1171875 30720 5.74212e-09
8 ·10−7 2498000 0.05859375 61440 6.57464e-09

Table 10.2: One hour simulations for estimating the order of the error by reducing the grid size h with factor
p

2.

In the procedure of making a structured mesh, the number of triangles is determined by rounding up the
value of the domain length or width divided by the grid size h. This means that the displayed grid size in
Table 10.2 is not the actual used grid size and furthermore, the grid size can differ in the x and y direction.
We investigate if applying the method as described in Section 10.1.1 gives different results for the order. The
total domain area is 8 ·10−7 m2, thus the following grid sizes are obtained:

h1 =
√

8 ·10−7

624000
, h2 =

√
8 ·10−7

1248562
and h3 =

√
8 ·10−7

2498000
.

The refinements factors become r12 = 1.41453 and r23 = 1.41446, which are both fairly close to
p

2 ≈ 1.4142.
Solving with the Newton-Raphson method, gives an order of p = 2.2983, whereas taking the refinement factor
constant gave an order of p = 2.3001. This difference is not significant, hence as long as the refinements are
approximately the same, using a constant refinement factor suffices.

Repeating the Richardson Estimation with the L2-norm gives different and unrealistic results again. Specific
information about the estimations are stated in Appendix B. Next to the L2-norm approximation, we have
attempted to look at specific locations in the middle of the domain and perform Richardson’s Error estimation
on this. This did not lead to convincing results either and therefore, we can draw no conclusions about the
accuracy. What the problem is for approximating the error is not clear and needs to be studied further (see
Chapter 13).

52 10. Accuracy of concentration fields

10.2. Approximate solution with Green’s functions
The reaction-transport equations have the general form ∂c

∂t +D∇2c =Q(t , x), where D is the diffusion coeffi-
cient and Q(t , x) a source term. In the case of the PDGF concentration field, the source is zero, whereas for
the TGF-β concentration field there are multiple sources depending on the number of macrophages.

We use the derivations for the heat equation for the diffusion of the concentrations from [17]. The solution
for the concentration can be expressed in terms of Green’s function G(x, t ;x0, s) as

c(x, t) =
∫ t

0

Ï
G(x, t ;x0, s)Q(x0, s) d 2x0 d s +

Ï
G(x, t ;x0,0)c(x0,0) d 2x0 (10.5)

+D
∫ t

0

∮
[G(x, t ;x0, s)∇x0c − c(x0,s)∇x0G(x, t ;x0, s)] ·n dS0 d s,

where Q represents a source and the last line takes the boundary conditions into account.

First, we consider an infinite space, with no boundaries and no sources. Setting these quantities to zero,
simplifies the above Equation (10.5) to c(x, t) =Î

G(x, t ;x0,0)c(x0,0) d 2x0. For this case the Green’s function
can be derived by analyzing it with the Fourier transform, which gives us a general solution for dimension
n = 1,2,3:

G(x, t ;x0, t0) =
[

1

4πD(t − s)

] n
2

e−|x−x0|2/4D(t−t0) [17].

Insertion of this Green’s function in Equation 10.5, allows us to find a solution for a problem with sources.
This function is valid on an infinite space, however, the domain is bounded in the wound healing model. If
the time difference t − t0 is very small in relation to the domain length divided by the diffusion parameter, the
solution can be approximated by the infinite space solution. This solution is valid in regions far away from

the boundary, if the condition L2

D(t−t0) À 1 is satisfied.

The used domain length is usually around a millimeter and the diffusion speed is of the order 10−12. The
condition in this case becomes (t − s) ¿ 106, which should be all right for a few time steps of 6 seconds. The
approximations (for locations far from the boundary) that will be used are therefore:

c(x, t) =
∫ t

0

Ï
1

4πD(t − s)
e−|x−x0|2/4D(t−s)Q(x0, s) d 2x0 d s +

Ï
1

4πDt
e−|x−x0|2/4Dt c(x0,0) d 2x0.

For symmetric domains (which is the case for our model), the method of images can be used to construct a
solution on a finite domain that satisfies the boundary conditions [22]. The main idea of this method is to
create non-existent point sources outside the domain in order to comply with the boundary conditions.

We are interested in the approximation for the TGF-β field. The initial concentration is zero, thus the second
integral vanishes. The sources are caused by the macrophages and have the form:

Q(x, s) =
M∑

m=1
Qm(x, s) =

M∑
m=1

κcβδ(x−xm),

where M is the number of macrophages and Qm is the concentration that results from the secretion of one
macrophage. By summing up the secretion of all individual macrophages, we obtain an approximation for
the concentration field over the domain. The integration over area disappears with the Dirac Delta function,
as it is only non-zero at the location of the macrophage, thus only the integration of time needs to be taken
care of. The concentration field is then described by

c(x, t) =
∫ t

0

Ï
1

4πD(t − s)
e−|x−x0|2/4D(t−s)Q(x0, s) d 2x0 d s, (10.6)

=
M∑

m=1

∫ t

0

κcβ

4πD(t − s)
e−|x−xm|2/4D(t−s) d s, (10.7)

where xm is the location of a macrophage.

10.2. Approximate solution with Green’s functions 53

10.2.1. Computation with numerical approximation
In contrast to the computation of the TGF-β field by the Finite Element Method, we can now compute the
concentration directly on a desired location x.
Define the integrand as

f c
m(s) =

κcβ

4πD(t − s)
e−|x−xm|2/4D(t−s) (10.8)

where the current time t , the location x and the macrophage location xm have known constant values. Then,
the concentration at time t and location x will be given by

I =
M∑

m=1

∫ t

0
f (s)d s =

M∑
m=1

(∫ d t

0
f (s) d s +

∫ 2d t

d t
f (s) d s + . . . +

∫ t

t−d t
f (s) d s

)
.

After the second equality sign the integral is split in sub-integrals with the length of the chosen time step d t .
For the approximation of the integral of fm(s) the trapezoidal rule [39] will be applied, this rule is defined by∫ tR

tL

f (t)d t ≈ tR − tL

2

(
f (xL)− f (xR)

)
.

Applying this rule for every sub-integral leads to

I ≈
M∑

m=1

d t

2

T∑
k=1

(
fm(tk−1)+ fm(tk)

)
,

on a time interval [tstart, tend] with tstart = t0 < t1 < ·· · < tT = tend .

For the chemotaxis of the fibroblasts, the gradient of TGF-β is required. Equation 10.6 can be differentiated
to x or y to obtain the gradients in the x and y directions respectively. The gradient for the concentration
becomes

∇c(x, t) =−
M∑

m=1

∫ t

0

κcβ

4πD(t − s)
e−|x−xm|2/4D(t−s) 2

4D(t − s)

[
x −xm

y − ym

]
d s.

This integral will be approximated numerically, as was the case for the computation of the concentration.
Now, the integrands that need to be approximated are

f x
m(s) =

−κcβ

8πD2(t − s)2 e−|x−xm|2/4D(t−s) (x −xm), (10.9)

and

f y
m(s) =

−κcβ

8πD2(t − s)2 e−|x−xm|2/4D(t−s) (y − ym). (10.10)

During the simulations, we need to keep track of the locations of the macrophages and the times these
macrophages were at those locations. This information needs to be stored in the memory and is used to
compute the concentration or gradient at a certain time and place for all the subsequent iterations.

Two vectors are used to memorize the locations, one for the x-coordinates and one for the y-coordinates.
The third vector saves the time stamp of a macrophage being at that location. Every iteration, the locations
of the moved macrophages and the newly entered macrophages are appended to the vectors.
In order to find the concentration or gradient at time t , we need to loop through all locations and integrate
fm as described in Equation 10.8, 10.9 or 10.10 from the time stamp saved in the vector to the current time t .

10.2.2. Results
The approximation of the concentration and gradient for TGF-β with Green’s functions seems to give similar
results as for the previous method of solving the Finite Element system. That is, the cell dynamics based on
the concentration gradient seem to work similarly. For both methods, different assumptions are made, thus
the approximations can differ as a result of this.

A straightforward implementation, as described in the previous section, is not very feasible in terms of com-
putation time. In Figure 10.3 only the first 500 iterations are run (with a time step of 6 seconds). Here the com-
putation time is already becoming large. At first, the computation time is zero as there are no macrophages.

54 10. Accuracy of concentration fields

In this simulation, two macrophages entered the domain, which happened at iterations 68 and 366. At
every time iteration, the number of integrals that need to be approximated increases with the number of
macrophages present in the domain. The quadratic fit seems to be a good indication of the growth of work.
Therefore, a very large time per iteration can be expected on longer time scales.

Figure 10.3: The elapsed time per iteration spent for the computation of the concentration gradient of TGF-β by using Green’s function
approximation.

It seems that this method is not very efficient, especially for simulations consisting of many small time steps.
However, in order to make a fair comparison with the Finite Element approximation, the GPU is deployed
for the computations of this part as well. The GPU program computes the gradient of TGF-β in a given cell
center by parallelizing over the cell locations list. Although this speeds up the program, per cell location the
amount of work that is left takes a long time. This increases as long as there are macrophages present in the
domain.

In Figure 10.4 the work performed during the approximation with Green’s Functions by using the GPU is dis-
played. In this specific simulation, macrophages were created at iterations 99 and 486. We cannot compare
this simulation exactly with the one displayed in Figure 10.3, as the macrophages were created at different
moments. The more macrophages and the earlier they enter, the more work will need to be performed within
this frame of 500 iterations. In both simulations, we deal with two macrophages entering during the simula-
tion. However, they enter at later moments in the GPU simulation.

Figure 10.4: The elapsed time per iteration spent for the computation of the concentration gradient of TGF-β by using Green’s function
approximation with usage of the GPU.

From the two figures, we can conclude that the GPU improves the computation time of the Green’s function
approximation. The downside is that we are still dealing with rapidly increasing computational work with
increasing cell counts. For the simulation in Figure 10.4 the behavior is again increasing quadratically. The

10.2. Approximate solution with Green’s functions 55

simulation results discussed in Chapter 9 use the Finite Element method to find the concentrations. Solv-
ing the systems for both PDGF and TGF-β and mapping the solutions in order to find the gradient takes less
than 0.25 seconds. For this approach the elapsed time per iteration already reaches 1.4 seconds per iteration.
Therefore, we conclude that the Green’s function method is not performing well with respect to computa-
tional work for the current set-up of the model.

11
Analysis model behavior

This chapter consists of the results of analyzing some specific parts of the model. In the first section, the
communication times that are necessary for the GPU usage are measured. Thereafter, the impact of changing
certain settings in the model is studied. The Kolmogorov–Smirnov test is performed for the time step, the
precision and the choice of a normalization parameter in the model.

11.1. Timing GPU communication
The usage of the GPU speeds up our basic CPU code as is described in Section 7.1.2. However, with three
separate GPU kernels every iteration, there is a lot of communication necessary between the CPU and the
GPU. In this section, the part that is copying data back and forth to the GPU and the part that the GPU is
actually working are timed. These timings are done by using std::chrono::high_resolution_clock and
cudaDeviceSynchronize(), which are described in Section 6.4. This allows us to time the communication
part and GPU work, although the simulations are slower, as the progress is stalled until the GPU computa-
tions are completely done.

The communication with the GPU can be divided into two parts: the latency and the bandwidth. The latency
involves everything that needs to happen before the actual data transfer takes place. The bandwidth is the
time involved with copying something to the device. We can describe this by the formula for communication
time T =α+βn, where α is the latency, β the bandwidth and n the size of the data transfer [38].

Analyzing the latency and bandwidth provides insight into what speed-up would still be possible, if we could
omit the data transfer multiple times per iteration, or even simulate the whole scenario on the GPU. Ideally,
the GPU is working a more significant part of the time, than is used by transferring data between the CPU and
GPU.

11.1.1. Reducing data transfer
We divide the timings into three different parts: the displacement computations based on the strain energy
densities, the computation of the mapping and the computation of the right-hand side vector for the system
of TGF-β.
For cell energy density we need some previously generated data. In the function, we need the cell list, the
lifespans, a list with random numbers, the concentration PDGF in the cell centers and the parameter list. The
displacement vector, the states of the cells and the updated lifespan are send back. For the mapping, we need
a lot of information from the CPU. As this function maps the concentrations to the cells, we need the values
of the concentrations and their gradients, the coordinates of the cells and the mesh specifics. After compu-
tation on the GPU, the values with the concentrations and gradients in the cell centers are sent back. For
the generation of the element vector, we mainly need to find the locations of the macrophages in the mesh.
Therefore, the list with macrophages is sent, together with the mesh specifics. The resulting right-hand side
vector fb is sent back.

57

58 11. Analysis model behavior

Putting the parameter list, with values as in Section 5.2 and scenario specific input data, on the GPU is rela-
tively easy, as these are all constants. To send over the specifics of the mesh, such as the coordinates of the
nodes, we are dealing with arrays. This involves more work, as we need to allocate the arrays on the device
and save the pointers to these locations. However, when the transfer times were investigated for the program
where only the parameter list is allocated on the device, it became clear that the memory transfer of the mesh
information takes up a considerable part, as is shown in Table 11.1.

For all the timed simulations in this section, the area constraint for the Finite Element Mesh is set to 10−11

and a time step of six seconds is used. In the Table 11.1 it is shown that for the Generate element vector part,
almost the complete computation time is spent copying data to and from the device.

Part Transfer GPU computation Percentage transfer
Strain energy densities 0.0002998 s 0.003837 s 7.25 %

Mapping kernel 0.02129 s 0.04704 s 31.16 %
Generate element vector 0.02107 s 0.0004415 s 97.95 %

Table 11.1: Percentages of transfer times from the total simulation with 2,000 iterations (given values are average of two runs).

After implementing the class that stores all constant mesh information and sending this to the GPU only once,
the transfer times decrease considerably. For the same number of iterations and domain, the transfer time is
about 20 times faster for the mapping kernel and about 29 times faster for the generate element vector part.
The work conducted on the GPU increases slightly, as the access of the arrays is done via the object that stores
the locations of the arrays. The total time for the mapping kernel is only 1.3 times faster, as the transfer part
was not the major work. On the contrary, the transfer for the generate element vector part covered almost the
total time and therefore improved to a 20 times faster total time. The specific times can be seen in the next
subsection, for the 2,000 iterations scenario on a 1.0 mm x 0.8 mm domain.

11.1.2. Transfer time in relation to simulation size
Both the transfer time and the computation time on the GPU will increase with the increasing number of
cells. This makes sense, as with more cells, more data needs to be copied and more computations need to
be performed. On the other hand, the latency will have less impact in comparison to the bandwidth and the
computation on the GPU.

In the tables below, three simulations are compared with each other for each of the GPU parts separately. In
Table 11.2 the timings for computing the strain energy densities and in Table 11.3 the timings for mapping the
concentrations are given. For these two kernels, the average transfer time and computation time are found by
dividing the sum of the timings during the whole simulation by the number of iterations. For the generation
of the element vector of the TGF-β system (Table 11.4), the vector is only non-zero if there are macrophages
present. In the iterations where no macrophages are present, no computations will be performed in this part.
Therefore, only the iterations where the GPU is actually used are taken into account.

Domain size iterations Transfer GPU computation Ratio
1 mm x 0.8 mm 2,000 0.0002746 s 0.0043407 s 1 : 15.8
1 mm x 0.8 mm 10,000 0.000272 s 0.004460 s 1 : 16.4

1.2 mm x 0.96 mm 2,000 0.0002761 s 0.005173 s 1 : 18.7

Table 11.2: Timings of the data transfer in relation to the GPU computation time for the GPU part that computes cell migration based on
the strain energy densities.

Domain size iterations Transfer GPU computation Ratio
1 mm x 0.8 mm 2,000 0.0009412 s 0.05318 s 1 : 56.5
1 mm x 0.8 mm 10,000 0.0009345 s 0.05477 s 1 : 58.6

1.2 mm x 0.96 mm 2,000 0.001174 s 0.09030 s 1 : 76.9

Table 11.3: Timings of the data transfer in relation to the GPU computation time for the GPU part that maps the concentration from the
nodes to the cell centers, in order to obtain the concentration and its gradient in these locations.

11.2. Varying the time step 59

In Table 11.2 it can be seen that the relative amount of work on the GPU increases with longer iterations and
larger domains. The ratio improvement is not very large, as both the bandwidth and GPU time will increase,
however the increase in GPU time is larger. For the mapping kernel (Table 11.3) the same effect is seen while
prolonging the iteration time. For the 1.2mm x 0.96 mm domain the ratio improves quite a lot. This behavior
is explained by the fact that the number of triangles in the mesh increases and that a check of which cells
are located in it is performed for every triangle. The GPU computations increase for a larger mesh, while
there is no extra data transfer involved, because the mesh specifics were transferred once at the start of the
simulation.

Domain size iterations Transfer GPU computation Ratio
1 mm x 0.8 mm 2,000 0.00066024 s 0.0003916 s 1 : 0.59
1 mm x 0.8 mm 10,000 0.0006581 s 0.001100 s 1 : 1.67

1.2 mm x 0.96 mm 2,000 0.0009070 s 0.0004186 s 1 : 0.46

Table 11.4: Timings of the data transfer in relation to the GPU computation time for the GPU part that computes the right-hand side
vector of the TFG-β system.

The generation of the element vector involves a rather small amount of work. Small changes in the scenario
have therefore a relatively large effect. Especially when the amount of macrophages is small, there is not much
that needs to be computed. Therefore, the ratio is not very good for the short simulations (2,000 iterations)
where the number of macrophages is generally below ten. The timings of the three scenarios are displayed in
Table 11.4. With the mesh specifics being stored on the device once, the main copying involves a zero vector
fb to the device and the updated vector fb back. This vector has the length of the number of nodes in the FEM
mesh and causes the increase of the transfer time in the larger domain.

11.2. Varying the time step
The time step is of large influence on the performance of the computation time. One iteration takes less
than half a second, however, in order to simulate a day, 28,800 iterations are needed with a time step of three
seconds. When choosing the time step small enough, the collisions between cells are modelled explicitly.
Cells that come into contact will exert repelling forces and move away from each other. In this case, cells
cannot move through each other in an iteration.
The criterion that was imposed during the literature study [20] was:

||d Xi (t)|| = ‖vi‖∆t ≤ R

2
∀i ⇒ ∆t ≤ R

2max‖vi‖
. (11.1)

This criterion will guarantee, that the displacement is never larger than half the radius. However, it might be
possible to have a less strict criterion. This will allow cells to have a larger displacement and even move partly
through each other (which corresponds to moving over each other in biology), as long as this does not cause
any problems. After computation of the displacement, new repelling forces will be computed to find the dis-
placement in the subsequent iteration. The only check that needs to be implemented is one that checks if no
unrealistic displacement (multiple cell radius lengths for example) takes place.

Since we are not specifically interested in the small scale behavior of the model, it might be possible to use a
larger time step. The important point is that this results in similar dynamics of the wound healing. We per-
form an analysis on two time steps: a scenario with a time step of three seconds and one with six seconds.
With a time step of three seconds, we generally comply with the criterion (11.1). For a time step of six seconds,
this is not the case and therefore we allow the displacement to be twice as large as in Equation 11.1.

Since our model contains several stochastic processes, the impact of the time step needs a statistical as-
sessment. In Figures 11.1 and 11.2, the distributions of the simulations with time steps of three seconds (in
orange) and six seconds (in blue) are displayed for the absolute wound area and the density of fibroblasts in
the wound. In these figures, the histograms en the kernel density estimates are plotted. The y-axis is scaled
to obtain an area of one, thus does not give important information. In the distributions, we see some dif-
ferences, although these do not seem to be very large or to have structural behavior. The largest difference
between the distributions occurs at day two for the fibroblast density (first graph of Figure 11.2). Further in
the simulations, at days four and six, there is much more agreement between the distributions.

60 11. Analysis model behavior

Figure 11.1: Distributions of the absolute wound area measured at day 2, 4 and 6. It consists of 28 simulations with time step of 6 seconds
(in blue) and 21 simulations with a time step of 3 seconds (in orange).

Figure 11.2: Distributions of the fibroblast density measured at day 2, 4 and 6. It consists of 28 simulations with time step of 6 seconds
(in blue) and 21 simulations with a time step of 3 seconds (in orange).

A more precise comparison is made by using the Kolmogorov–Smirnov Two-Sample test. In Table 11.5 the
results are displayed for some of the wound quantifiers. The K-S statistic D gives the maximal vertical distance
between the two cumulative distributions, as was defined in Section 8.3. For two sample distributions fn1 and
fn2 and their underlying distributions f1 and f2, the null hypothesis is that f1(x) = f2(x). We want to reject the
null hypothesis if the statistic D is large. From the p-value, we can derive the level of confidence for which we
will reject the null hypothesis.
We choose a confidence interval of 95%. For this level of confidence, the null hypothesis is not rejected for
any of the wound quantifiers. The largest value of D occurs at day two for the quantifier that measures the
fibroblasts in the wound. Here the null hypothesis would have been rejected for a confidence level of 90%,
although we do not for a level of 95% or higher. Based on these results, we do not reject the hypothesis that
the underlying probability densities are different. It can further be investigated how the behavior is for even
larger time steps.

Wound quantifier Time K-S statistic p-value
Wound margin advance Day 2 0.250 0.387
Wound margin advance Day 4 0.131 0.978
Wound margin advance Day 6 0.262 0.331
Relative wound density Day 2 0.333 0.109
Relative wound density Day 4 0.155 0.913
Relative wound density Day 6 0.167 0.861

Fibroblasts in wound Day 2 0.369 0.0568
Fibroblasts in wound Day 4 0.2028 0.658
Fibroblasts in wound Day 6 0.190 0.730
Absolute wound area Day 2 0.262 0.331
Absolute wound area Day 4 0.262 0.331
Absolute wound area Day 6 0.238 0.449

Table 11.5: Results of the Kolmogorov–Smirnov Two-Sample test for scenarios with a time step three (21 samples) and six seconds (28
samples).

11.3. Single versus double precision simulation 61

11.3. Single versus double precision simulation
In the code of the model, all variable types that are real numbers are defined as ‘real_t’. This allows us to eas-
ily set this type to either ‘float’ or ‘double’ and run the simulations in single or double precision respectively.
The expectation is that the model runs faster in single precision. Most parts of the wound healing model
are indeed computed faster or equally fast in single precision compared to how this was in double precision.
Moreover, less memory is required for storing all numbers in single precision.

The exception is the part where the FEM systems are solved. The division of work is given in Figure 11.3 for a
simulation in single precision. For a comparable simulation in double precision, the timings for the building
and mapping parts are comparable. The solving part is below 0.02 seconds in double precision. Hence,
in single precision this part performs about four times slower. The strain energy density computations on
the other hand are faster in single precision, although the difference is not very large. The double precision
implementation takes about 0.008 seconds to compute the strain energy densities.

Figure 11.3: Division of work for a single precision simulation with 20,000 iterations, a time step of 6 seconds and a domain of size 2mm
x 1.6mm

While trying out other iterative solvers, BiCGstab and CGleastsquare, we observe wrong results for the con-
centration field. Apparently, the entries of the matrix are so small that the iterative solvers give a vector with
zeros as a valid result. Multiplying both the matrix A and the right-hand side vector b with a factor 109 seems
to give more reasonable results for solving the system Ac = b.

The direct solver might take longer in single precision, as rounding errors make the system more difficult to
solve. For the Bi Conjugate Gradient stabilized solver, where the system is multiplied by 109 first, there is a
speed-up (about 1.5 times faster) of the solving time when performing this in single precision. We can guess
a concentration that should be close to the solution or use the zero vector as start solution. Starting with the
concentration from the previous iteration results in a faster solving time, as we need fewer iterations to find a
solution.

Probably, some problems are occurring, which were not occurring for the double precision implementation.
The exact problem has not been identified yet. Therefore, no further comparison is made between the wound
quantifiers of both models. In single precision, small values are rounded to zero faster than in double pre-
cision. This might be a possible cause for the different behavior in single precision. As the parameters are
expressed in standard units, many parameters have very small values. Converting the parameters to different
units that lead to larger values might help (see Chapter 13).

11.4. Parameter variation of gradient scaling
For the computation of the displacement caused by chemotaxis, as in Equation 4.8, special care had to be

taken to prevent division by zero. It was chosen that the norm was approximated as ‖∇c‖2 ≈
p

2 max
(∣∣∣ ∂c
∂x

∣∣∣ ,
∣∣∣ ∂c
∂y

∣∣∣)
are rounded to zero due to precision. If the gradients are zero, then the displacement was set to zero as well.
We will call this method the base approach.

62 11. Analysis model behavior

Another option would be adding a small value ε to the denominator to prevent division by zero [21]. For now,
we will call this option the ε-approach. The displacement caused by chemotaxis then becomes

d xconc = vcell

(∇c

‖∇c‖2 +ε
)

d t , with ε a small constant .

The value of ε should not be chosen too small, as then the displacement can become excessively large. In

the case that either
(
∂c
∂x

)
or

(
∂c
∂x

)
or both are non-zero and ‖∇c‖2 becomes zero, we still want to guarantee that∣∣∇c

ε

∣∣≤ 1. The minimal value of the gradient to satisfy this is
p

1.17549 ·10−38. This value is based on single pre-
cision, as the smallest positive number in C++ is std::numeric_limits<float>::min() = 1.17549 ·10−38.
We set ε= 10−18 to comply with criterion

∣∣∇c
ε

∣∣≤ 1. The advantage of this definition of the displacement is that
we use it for all cells regardless of the value of the concentration gradient. On the other hand, we add ε to the
denominator every computation, in contrast to only adjusting the displacement definition for problematic
cases.

The Kolmogorov–Smirnov Two-Sample test is used to compare the two cases described in this section. Again,
we have the null hypothesis that the underlying distributions of the two cases are the same and the alternate
hypothesis that they are different. The results are displayed in Table 11.6. The sample size for the base ap-
proach was 35 and the sample size for the ε-approach was 25. For a confidence level of 95% we do not reject
the hypothesis that the two approaches simulate results according to the same underlying densities. The sen-
sitivity of the parameter ε is apparently not very large. Hence, we can choose one of the two methods without
changing the outcomes significantly.

Wound quantifier Time K-S statistic p-value
Wound margin advance Day 2 0.171 0.744
Wound margin advance Day 4 0.154 0.848
Wound margin advance Day 6 0.206 0.518
Relative wound density Day 2 0.12 0.977
Relative wound density Day 4 0.160 0.815
Relative wound density Day 6 0.269 0.206

Fibroblasts in wound Day 2 0.12 0.977
Fibroblasts in wound Day 4 0.160 0.815
Fibroblasts in wound Day 6 0.269 0.206
Absolute wound area Day 2 0.171 0.744
Absolute wound area Day 4 0.194 0.592
Absolute wound area Day 6 0.206 0.518

Table 11.6: Results of the Kolmogorov–Smirnov Two-Sample test for two different approaches of computing the displacement caused by
chemotaxis. The sample size of the base approach is 35 and the sample size of the ε-approach is 25.

12
Conclusion

During this thesis project, a cell-based model is made to simulate the healing of burn injuries. In order to cope
with the large work load that is involved with this, the GPU is used to attain an efficient program. Previous
research (described in Chapter 3) indicated that simplifying assumptions can be done. The most important
assumption is that the cell interactions can be modelled statistically, instead of taking the full cell history into
account. Furthermore, specific representations of the cells and implementations of the some processes are
not important for the qualitative behavior of the model on larger scales. The chosen cell-based approach in
this research models the cells as discrete entities that can be tracked during the simulation. The concentra-
tions in the domain, PDGF and TGF-β, are continuous entities.

In this project, we have combined two models to form a basis for the modelling of the wound healing. This
model includes the influence of the strain energy densities and chemotaxis. There are two types of cells:
fibroblasts and macrophages. Their displacement is composed of a component based on the strain energy
density, a component based on the chemical decomposition of the domain and a random component. More-
over, a mechanical energy occurs by collision of cells as well. Proliferation and apoptosis are modelled by an
exponential distribution. The concentration PDGF is present in the wound bed initially and TGF-β is secreted
by macrophages. In every iteration, the concentrations are computed by the Finite Element Method and the
gradients are found by mapping the concentrations to the cell centers.

A straightforward implementation of the model in MATLAB has shown a rapidly increasing work load for the
computation of the strain energy densities for an increasing number of cells. Converting the MATLAB code to
C++ has already given a considerable speed-up. However, the work load for the computation of the strain en-
ergy density still increased more than linearly with the number of cells. For more efficiency, the GPU has been
employed on the largest bottlenecks. By performing the strain energy density computation and the mapping
on the GPU for a domain with size 200 µm by 160 µm, there was a speed-up of a factor 2.35. On a four times
larger domain, the speed-up already increases to a factor 8.3 times faster.

For the interpretations of the simulated results, we can run multiple simulations and subsequently compute
confidence intervals based on the sample mean and standard deviation. To gain more insight into the wound
healing process, we have introduced several wound healing quantifiers. With these quantifiers, we can have
an overview of the wound area or amount of fibroblasts in different regions over time. The wound perimeter
and area are approximated by a polygon, which turned out to be more suitable than the elliptic approach.
The Kolmogorov-Smirnov two-sample tests are used to compare different scenarios. It is a non-parametric
method to test if two scenarios have the same underlying density or a different one.

The model developed in this project simulates the fibroblast entry in the wound. This happens by incentives
of the TGF-β concentration field that the macrophages secrete. The macrophages enter the domain when the
concentration PDGF is high enough and will survive in the domain as long as this concentration is available
sufficiently. During the simulation, the cell population grows steadily to fill up the damaged area. Where nor-
mally the cell growth would halt due to the restriction of space, it continues in the presence of TGF-β. After
the depletion of the macrophages, the concentration TGF-β diminishes and fibroblasts undergo apoptosis in

63

64 12. Conclusion

the overcrowded areas.

The final implementation with the GPU is more than 58 times faster than the CPU implementation, for a sim-
ulation of one day with a time step of six seconds on a domain of size 2 mm by 1.6 mm. Here the GPU is used
for the strain energy density computations, the concentration mappings and the computation of the right-
hand side vector of the TGF-β system. The mesh is constant in this scenario, which allows us to store this
information only once on the device. The largest speed-up occurs in the part of the Finite Element concen-
trations. The three aforementioned parts were very suitable to be parallelized as the individual cell computa-
tions are independent of each other. In other words, all information needed for the computation is available
beforehand. Employment of the GPU causes significant speed-up, although with the high number of itera-
tions the run-time is still quite large.

For larger domain sizes, the computational work load increases rapidly, as the computation times depends
on the cell count and number of nodes in the Finite Element Mesh. For a domain with size 4 mm x 3.2 mm, a
ten-day simulation increases to have a simulation time of 18 hours. With the goal of Monte Carlo simulations
in mind, the domain size cannot increase much further. More efficiency measures need to be considered in
order to reach a sufficiently fast model. The slowest part now is the solving of the concentration fields. Af-
ter finding a suitable implementation for this part on the GPU, we could consider transferring to a complete
program on the GPU.

In order to assess the accuracy of the concentration fields, it was attempted to estimate the order with Richard-
son’s Extrapolation. The L2-norm was computed for meshes with different grid sizes after a simulated time
of one hour. The order estimation was attempted on both an unstructured grid as well as a structured grid,
however, neither gave reasonable results. Even the estimation of the order by looking at specific locations
did not give good results. The memory capacity on the used machine limits more precise computations. It
remains unclear why the approximations do not work.

We have investigated an alternate method for computing the TGF-β field. The field is found by using Green’s
functions for the concentration. In order to approximate this, we sum up all sources that were exerted by
macrophages. This needs to be done for all macrophages and for all past iterations during the lifetime of the
macrophages. The field seemed to be comparable with the field obtained by the Finite Element approach.
However, the computational work increases very rapidly. Even by speeding up computations on the GPU,
this method did not turn out to be feasible in terms of computational work.

By having three separate kernels that communicate with the GPU, we are transferring data three times as well.
For relatively small tasks, the communication can take more computational effort than the actual computa-
tions on the GPU. Before transferring the mesh information to the device only once, the GPU implementation
of generating the right-hand side vector of the TGF-β system consisted of communication for almost 97%.
The communication times are a significant part of the implementations for the right-hand side vector and to
a lesser extent of the strain energy density computation. On the other hand, the work in these parts occupies
only a small fraction of the total work load. As other parts in the program take more time, the communication
times are not problematic for the current model.

With a strict criterion that does not allow cells to move more than half of their radius, the maximal time step is
about three seconds. For a time step of six seconds, we allow the maximal displacement to be twice as large.
By the Kolmogorov-Smirnov test, the scenarios with time steps of three and six seconds are compared. With a
confidence level of 95%, the hypothesis that the underlying densities are the same is accepted and therefore
a time step of six seconds is used.

The real type parameter in the model can be set to doubles or floats, and thus the program can be run in dou-
ble precision or in single precision, respectively. The single precision implementation caused a slowdown of
the program in the part where the concentration systems are solved. A cause for the problems might be that
many values in the matrix and in the model in general are very small and are rounded to zero faster in single
precision. Converting the parameters to different units such that the values become larger can be attempted
to solve these problems. Furthermore, an implementation that runs partially in single precision and partially
in double precision can be considered. Solving the concentration systems can then occur in double preci-

65

sion, while the other parts are run in single precision.

Finally, we have tested the influence of the approach that is chosen to scale the concentration gradients. The
first method normalizes differently if the x-gradient and y-gradient are very small such that it will lead to
division by zero, while the second method always adds a constant to the denominator to prevent division by
zero. By the results of the Kolmogorov-Smirnov test, we conclude that the choice of the specific implementa-
tion of the normalization does not influence the wound healing process.

This research presents a framework that can be used for future testing of an extended model, with respect
to precision and efficiency. The Python user interface makes it easy to run Monte Carlo simulations and
display the results graphically. It is attempted to model the fibroblast migration during wound healing as
realistic as possible. To overcome the mismatch between the model and reality, the parameters can be tuned
according to specific experiments. The challenge is to link experiments to the model, while having different
parameters and model output than measured in the experiments. Whenever more data becomes available,
the model parameters can easily be adjusted. In the next chapter, improvements and ideas for future research
are discussed.

13
Future work

In this chapter some interesting topics for future work will be discussed. Next to possible extensions of the
model in this project, the current implementations will be reviewed and alternate methods will be described.

13.1. Extensions of current model
The final model that has been developed during this project needs to be extended with more features, in
order to be able to realistically model the wound healing. The most important aspect is the addition of the
mechanical field, as was already mentioned in Section 1.1 as one of the three main components. With this
extension, the grid will not be fixed anymore, as it will deform as the result of mechanical influences. This
will allow us to track the wound boundary explicitly.

Another important extension will be the transition from the two-dimensional model to a three-dimensional
model. This will again make the model more realistic and will give results different from the 2D models. The
interactions between cells will also change, many more cells can be in contact in a 3D setting and more cells
can be within the communication range of a certain cell. An advantage of a model in 3D is that it is easier to
link to experiments, as the quantities in experiments are often given as a volume. For example, the fibroblast
density is usually expressed in volume instead of surface and concentrations are often given per milliliter.

In this report, the strain energy density signal is modelled by exponential decay. The most simple, more
realistic choice would be to model the strain energy as Es = 1

2σ : ε , where : denotes the dyadic product. Here

ε≈ 1
2 (∇u+∇uT), under the assumption of infinitesimal strain, with u the displacement vector. From Hooke’s

law, it can then be found that σ = 2µε+λTr(ε)I , where µ and λ are the Lamé constants that are linked to

the Young’s modulus and the Poisson ratio and I is the second-rank identity tensor. The final goal would be

to use morpho-elasticity. This will allow for permanent deformation, which will occur for tissue growth. To
implement this, again different equations from the earlier mentioned ones would have to be used.

13.2. Efficiency considerations
A large part of this thesis is focused on the performance of the model. The use of the GPU improves the
computational work load significantly, although the total computation time remains still large. This is mainly
caused by the fact that for a simulation of ten days, we need 144,000 iterations for a time step of six seconds.
Furthermore, by doing Monte Carlo analysis, we need a lot of repetitions of this simulation. For increasing
problem size and extensions of the model, the work load will only increase and extra measures will have to
be taken to preserve the efficiency.

In a three-dimensional model, we need to re-evaluate the choices made for the current model. Whereas in
the current model a direct solver is the fastest option, this will probably be an iterative solver in 3D (especially
with a non-constant grid). Furthermore, we could consider computing a stress field over the membrane by
using a Finite Element solution for the membrane equation. This would take away the increasing computa-
tional work that is needed for the intracellular communication through the current approach of cell migration

67

68 13. Future work

for larger cell populations.

Another approach to obtain speed-up would be the multiscale fast summation for dipoles [32]. This method
is based on an N-body particle system for which we have to compute pairwise interactions. Instead of the
order O(N 2) that occurs for simply evaluating every pair, this algorithm has an order O(N) complexity. If
there are several particles in a grid, then these are combined to super-particles on a coarser grid. The super-
particles agree with the original particles except for some aggregation error. In order to compute something
at a certain location, we are interpolating and thus having an interpolation error.

In this research, we have used the GPU at three parts of the program, to speed up the computations in that
specific part. For most scenario set-ups (with fine meshes that have a maximal triangle area of 10−11 m2)
the solving of the concentration field systems becomes the bottleneck. The next logical step would therefore
be to implement a GPU version of the solver. Possible methods for this are the Mixed Precision Techniques
for the GPU [38]. With these techniques, some part of an iterative method is performed on the GPU in single
precision and the other part is performed on the CPU in double precision. Hereby, we still guarantee enough
precision, while speeding up computations.

Another part that covers a significant part of the computations are the checks that are performed to deter-
mine if a cell lives in a certain mesh triangle. The straightforward implementation can possibly be improved
by a smarter algorithm. As we are modelling the cell interactions explicitly, the maximal time step is limited
to prevent unrealistic behavior. In order to make the simulation more efficient, we can put more parts of the
program on the GPU. At some point, the transfer times of all separate parts will add up to be a considerable
amount. The next step would then be to compute everything on the GPU to reach sufficient speed-up. In that
case, no communication is needed anymore.

Lastly, if we want to run the program on multiple different platforms, it is possible that the code needs to
be adjusted to run it on the respective platform. In this case, it can be beneficial to reconsider OpenCL, as
it supposed to be better for portability. The transition from CUDA to OpenCL should be doable without too
drastic changes.

13.3. Accuracy considerations
Now the simple implementation as described in Section 4.3 is used to find the gradient. The error estimate
should be O(h). Finding the estimated order of the error by using Richardson’s Extrapolation did not give
convincing results. What the exact problem is by determining this order can be further investigated.
For more accurate approximations of the gradient we can do the following. The gradient can be computed
on the nodes first and with that information determine the gradient in the cell centers.
Let p = ∂c

∂x , then
∫
Ω p φ dΩ = ∫

Ω
∂c
∂x φ dΩ.

Approximate with p(x, y) ≈ pn(x, y) = ∑n
j=1 p j (t)φ j (x) and let φ = φi , where φi = αi +βi x +γi y is a basis

function. It follows that
∑n

j=1 p j
∫
Ωφiφ j dΩ=∑n

j=1 c(t , x j)
∫
Ω

∂φ j

∂x φi dΩ.

In a similar manner, we let q = ∂c
∂y and end up with the equations :

n∑
j=1

q j

∫
Ω
φiφ j dΩ=

n∑
j=1

c(t , x j)
∫
Ω

∂φ j

∂y
φi dΩ.

These systems are of the form

{ ∑n
j=1 Sx

i j p j =∑n
j=1 C x

i j c(t , x j),∑n
j=1 S y

i j p j =∑n
j=1 C y

i j c(t , x j),
, where

Sx
i j = S y

i j =
∫
Ω
φiφ j dΩ= |∆ek |

24
(1+δi j),

C x
i j =

∫
Ω

∂φ j

∂x
φi dΩ= |∆ek |

6
β j ,

C y
i j =

∫
Ω

∂φ j

∂y
φi dΩ= |∆ek |

6
γ j .

13.4. On the practical side 69

After obtaining the gradient of c in all the nodes, we can determine the gradient at the cell centers x by:

∂c

∂x
(t , x) = p(t , x) = ∑

l∈{p1,p2,p3}
p(t , xl)φl (x),

∂c

∂y
(t , x) = q(t , x) = ∑

l∈{p1,p2,p3}
q(t , xl)φl (x).

The disadvantage of this approach is that we need to run a Finite Element program twice, once to find the con-
centration and once to find the concentration gradient. This might be computationally expensive and thus
advocates for another approach, such as the use of mixed finite elements (with Raviart-Thomas elements).

13.4. On the practical side
For doctors it is above all important to know more about the complications caused by burn injuries (wound
contraction and hypertrophic scars). Important results would be the magnitude of stress that occurs during
contraction or the permanent reduction of the skin by contraction. After extension of the model, new wound
quantifiers would need to be defined in order to give this information. In the end, we want to use the model
to test different therapies for a specific burn injury. With Monte Carlo simulations, we can predict which
treatment has the highest probability on recovery without complications.

To reduce the mismatch between the model and the reality, we need more accurate estimates for the pa-
rameters. Specific data is hard to obtain, therefore, we need to perform parameter sensitivity analysis. It
is important to find out which parameters have a large influence on the rate of wound healing. In order to
investigate this matter, we can choose one of the wound quantifiers and plot the behavior over time for dif-
ferent values of a certain parameter. As we are dealing with stochastic processes and with uncertainty in the
input parameters (which are often patient-specific), we need to perform Monte Carlo simulations and use the
estimated mean and confidence interval for comparison. Eventually, we would like to predict the likelihood
that complications such as contractions and hypertrophic scarring occur. Furthermore, correlations between
several input and output variables can be determined.

In this research only one parameter has been tested for its sensitivity, although ideally this is performed for
all important parameters in the model. For some parameters, we can estimate the impact of deviations from
the correct value. For example, the exact value of the maximal detectable range of cells to communicate with
each other does not seem very important. The influences from cells outside this radius do barely contribute
to the total strain energy density of a cell (in the wound healing set-up). Therefore, making the radius a bit
smaller or larger will not have much impact. On the other hand, the parameter that determines the amount
of TGF-β that a macrophage secretes will probably have a lot of impact.

Furthermore, we want to have a basic validation with experiments, in order to tune the parameters in the
model. An experimental set-up can be quite specific and might be hard to translate to the mathematical
model. For example, temperature and medium composition are no input parameters in the model, but are
important during an experiment. More research can be done to find experiments that can be linked to the
model. The other way around, we can consider tuning the model such that it can be linked to experiments as
well.

13.5. Open questions
The computations in single precision did not result in the expected speed-up. For the strain energy parts the
speed-up is only a small fraction, which is less than expected. Furthermore, the solve time of the FEM systems
in the single precision implementation caused unexpected behaviour. The computation time increased with
a factor two instead of being faster. It is interesting to further investigate the cause for this behavior. For
simple test matrices, the SparseLU solver is faster in single precision compared to double precision. It is
possible that the system is not well-defined, such that small perturbations in the right-hand side have a large
effect on the solution. Most entries of the matrix are quite small and this might be the cause of different
results in single precision. A recommendation would be to convert all parameters to a different scale, such
that the values are larger. Now the values are given in the standard units (kilograms, meters and seconds),

70 13. Future work

but it would be better to express the parameters in grams, millimeters and hours. After this, we can again
investigate if running the model in single precision gives reasonable results.

A
Finite Element Method derivations

A.1. Platelet Derived Growth Factor
We consider the following system for Platelet Derived Growth Factor (PDGF):

∂cP
∂t −DcP∆cP = 0 , t > 0 , x ∈Ω

DcP
∂cP
∂n +κcP = 0 , t > 0 , x ∈ ∂Ω,

cP (0, x) = f (x).

It is assumed that there is an absence of sources and the initial concentration is f (x), which was described in
Section 4.3.1. The boundary condition is a homogeneous Robin boundary condition. Therefore, the function
space in which the solution is searched, is a linear space. With this boundary condition, the concentration of
PDGF vanishes far away from the wound.

The weak formulation for (BV P1) :

∂cP
∂t −DcP∆cP = 0 in Ω,

DcP
∂cP
∂n +κcP = 0 , on ∂Ω,

cP (0, x) = f (x) in Ω,
is found in the following steps (by multiplying with the test function φ and integrating over the domain):

∫
Ω
φ
∂cP

∂t
−φDcP∆cP dΩ= 0∫

Ω
φ
∂cP

∂t
dΩ−

∫
Ω

DcP (∇(φ∇cP)−∇φ∇cP)dΩ= 0∫
Ω
φ
∂cP

∂t
dΩ−

∫
∂Ω

DcP (φ
∂cP

∂n
)dΓ+

∫
Ω

DcP ∇φ∇cP dΩ= 0∫
Ω
φ
∂cP

∂t
+DcP ∇φ∇cP dΩ+

∫
∂Ω
φκcP dΓ= 0

This leads to the weak formulation:
(W 1) : Find c1 ∈ L2((0,T), H 1(Ω)) such that

∫
Ωφ

∂cP
∂t + DcP ∇φ∇cP dΩ+ ∫

∂ΩφκcP dΓ = 0 with cP (x, t) = f (x)
holds true ∀φ ∈ H 1(Ω).

Let cP (x, y) ≈ cn(x, y) =∑n
j=1 d j (t)φ j (x) and let φ=φi , where φi =αi +βi x +γi y is a basis function. Filling in

in the weak form gives:

∫
Ω
φi

∂(
∑n

j=1 d j (t)φ j (x))

∂t
+DcP ∇φi∇(

n∑
j=1

d j (t)φ j (x)) dΩ+
∫
∂Ω
κφi

n∑
j=1

d j (t)φ j (x)dΓ= 0.

71

72 A. Finite Element Method derivations

The Galerkin equations become

n∑
j=1

d ′
j (t)

∫
Ω
φiφ j dΩ+

n∑
j=1

d j (t)

[∫
Ω

DcP ∇φi∇φ j dΩ+
∫
∂Ω
κφiφ j dΓ

]
= 0.

This is of the form
∑n

j=1 Mi j d ′
j +

∑n
j=1 Si j d j = 0. Here, Si j is called the stiffness matrix. The separate compo-

nents are calculated and displayed below:

M ek
i j =

∫
ek

φiφ j dΩ= |∆ek |
24

(1+δi j),

Sek
i j =

∫
ek

DcP ∇φi∇φ j dΩ=
∫

ek

DcP (βiβ j +γiγ j) dΩ= |∆ek |
2

DcP (βiβ j +γiγ j),

Sbe
i j =

∫
be
κφiφ j dΓ= κ‖xl1 −xl2‖

6
(1+δi j).

The other terms are zero.

A.2. Transforming Growth Factor β
We consider the following system for Transforming Growth Factor β (TGF-β):

∂cβ
∂t −Dcβ∆cβ = κcβ

∑M
t=1δ(x −x t

M) , t > 0 , x ∈Ω,

Dcβ
∂cβ
∂n +κcβ = 0 , t > 0 , x ∈ ∂Ω,

cβ(x, t) = 0.

The macrophages secrete TGF-β and thus does the source term exist of a summation over their locations. It
is assumed that initially there were no macrophages present and therefore the concentration is set to zero.

The weak formulation for (BV P2) :

∂cβ
∂t −Dcβ∆cβ = κcβ

∑M
t=1δ(x −x t

M) in Ω,

Dcβ
∂cβ
∂n +κcβ = 0 , on ∂Ω,

cβ(x,0) = 0 in Ω,
is found in the following steps (by multiplying with the test function φ and integrating over the domain):

∫
Ω
φ
∂cβ
∂t

−φDcβ∆cβ dΩ=
∫
Ω
φκcβ

M∑
t=1

δ(x −x t
M)dΩ

∫
Ω
φ
∂cβ
∂t

dΩ−
∫
Ω

Dcβ (∇(φ∇cβ)−∇φ∇cβ)dΩ=
∫
Ω
φκcβ

M∑
t=1

δ(x −x t
M)dΩ

∫
Ω
φ
∂cβ
∂t

dΩ−
∫
∂Ω

Dcβ (φ
∂cβ
∂n

)dΓ+
∫
Ω

Dcβ∇φ∇cβdΩ=
∫
Ω
φκcβ

M∑
t=1

δ(x −x t
M)dΩ

∫
Ω
φ
∂cβ
∂t

+Dcβ∇φ∇cβ dΩ+
∫
∂Ω
φκcβdΓ=

∫
Ω
φκcβ

M∑
t=1

δ(x −x t
M)dΩ

This leads to the weak formulation
(W 2) : Find c2 ∈ L2((0,T), H 1(Ω)) such that

∫
Ωφ

∂cβ
∂t +Dcβ∇φ∇cβ dΩ+∫

∂ΩφκcβdΓ= ∫
Ωφκcβ

∑M
t=1δ(x−x t

M)dΩ

with cβ(x, t) = 0 holds true ∀φ ∈ H 1(Ω).

Let cβ(x, y) ≈ cn(x, y) =∑n
j=1 d j (t)φ j (x) and let φ=φi , where φi =αi +βi x +γi y is a basis function. Filling in

in the weak form gives:

∫
Ω
φi

∂(
∑n

j=1 d j (t)φ j (x))

∂t
+Dcβ∇φi∇(

n∑
j=1

d j (t)φ j (x)) dΩ+
∫
∂Ω
κφi

n∑
j=1

d j (t)φ j (x)dΓ=
∫
Ω

M∑
t=1

κcβφiδ(x−x t
M)dΩ.

A.2. Transforming Growth Factor β 73

The Galerkin equations become

n∑
j=1

d ′
j (t)

∫
Ω
φiφ j dΩ+

n∑
j=1

d j (t)

[∫
Ω

Dcβ∇φi∇φ j dΩ+
∫
∂Ω
κφiφ j dΓ

]
=

∫
Ω

M∑
t=1

κcβφi (x t
M)dΩ.

This is of the form
∑n

j=1 Mi j d ′
j +

∑n
j=1 Si j d j = fi . Here, Si j and fi are called the stiffness matrix and vector

respectively. The separate components are calculated and displayed below:

M ek
i j =

∫
ek

φiφ j dΩ= |∆ek |
24

(1+δi j),

Sek
i j =

∫
ek

Dcβ∇φi∇φ j dΩ=
∫

ek

Dcβ (βiβ j +γiγ j) dΩ= |∆ek |
2

Dcβ (βiβ j +γiγ j),

Sbe
i j =

∫
be
κφiφ j dΓ= κ‖xl1 −xl2‖

6
(1+δi j),

f ek
i =

∫
ek

M∑
t=1

κcβφi (x t
M) =

M∑
t=1

κcβφi (x t
M) , i ∈ p1, p2, p3 ⇒ f ek =

∑M

t=1κcβφp1 (x t
M)∑M

t=1κcβφp2 (x t
M)∑M

t=1κcβφp3 (x t
M)

 .

The other terms are zero.

B
Richardson’s Extrapolation

B.1. Results order estimation
Repeating the experiment that was described in Section 10.1.2 with both refinement of factor two and

p
2

gives the results as displayed in Table B.1. Here Q(h) is the approximation of the L2-norm for the respective
grid size h.

h # triangles ∆t m Q(h)
32 ·10−7 78814 0.9375 3840 1.57888·10−9

16 ·10−7 625000 0.234375 15360 8.81684·10−9p
2 ·8 ·10−7 1249976 0.1171875 30720 8.50564·10−9

8 ·10−7 2500000 0.05859375 61440 2.36812·10−9

Table B.1: One hour simulations for estimating the order of the error by reducing the grid size h with factor two and factor
p

2.

Choosing h1 = 32 · 10−7, h2 = 16 · 10−7 and h3 = 8 · 10−7, we obtain Q(h2)−Q(h1)
Q(h3)−Q(h2) = 8.81684·10−9−1.57888·10−9

2.36812·10−9−8.81684·10−9 =
−23.258. Doing the same for refinements with factor

p
2 and thus having h1 = 16 · 10−7, h2 = p

2 · 8 · 10−7

and h3 = 8 ·10−7, we obtain Q(h2)−Q(h1)
Q(h3)−Q(h2) = 8.50564·10−9−8.81684·10−9

2.36812·10−9−8.50564·10−9 = 0.0507.

Both estimations of the order do not give reasonable results for these values. It is also attempted to find
the order by looking at the concentrations at specific locations. Eight locations in the middle of the domain
are chosen, with coordinates as follows: P1 = (2.3·10−6, 1.2·10−6) , P2 = (109·10−6, 2.8·10−6), P3 = (11.3·10−6,
209·10−6), P4 = (-254·10−6, 210·10−6), P5 = (-212·10−6, -134·10−6), P6 = (56.2·10−6, -151·10−6), P7 = (301·10−6,
157·10−6) and P8 = (-182·10−6, 335·10−6).
The results of this are displayed in Table B.2. Again, the estimations of the order give unfeasible solutions, as
is displayed in the last two columns.

P Q(h0) Q(h1) Q(h2) Q(h3) Q(h1)−Q(h0)
Q(h2)−Q(h1)

Q(h2)−Q(h1)
Q(h3)−Q(h2)

1 7.13155131·10−6 7.13207305·10−6 7.13221148·10−6 7.1322245·10−6 3.76898 10.6321
2 6.45256581·10−6 6.45222084·10−6 6.4522938·10−6 6.45232088 ·10−6 -4.72821 2.69424
3 4.15053533·10−6 4.15092668·10−6 4.15096539·10−6 4.15099858·10−6 10.1098 1.16632
4 2.25876871·10−6 2.25853067·10−6 2.25851734·10−6 2.25848878·10−6 17.8575 0.466737
5 3.83937763·10−6 3.83981093·10−6 3.83977142·10−6 3.83978096·10−6 -10.9668 -4.14151
6 5.28696482·10−6 5.28727632·10−6 5.28729514·10−6 5.28732781·10−6 16.5515 0.576064
7 2.19654773·10−6 2.19681688·10−6 2.19689303·10−6 2.19692331·10−6 3.53447 2.51486
8 9.90517531·10−7 9.90548219·10−7 9.90500488·10−7 9.9050111·10−7 -0.642936 -76.7379

Table B.2: One hour simulations for estimating the order of the error by comparing concentrations at specific locations.

74

Bibliography

[1] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. Extracel-
lular Control of Cell Division, Cell Growth, and Apoptosis. 2002. URL https://www.ncbi.nlm.nih.
gov/books/NBK26877/.

[2] P. Bainbridge. Wound healing and the role of fibroblasts. Journal of Wound Care, 22(8):407–412, 2013.
doi: 10.12968/jowc.2013.22.8.407. URL https://doi.org/10.12968/jowc.2013.22.8.407.

[3] D. Brent Polk and Mark R. Frey. Mucosal Restitution and Repair. In Physiology of the Gastrointestinal
Tract. 2012. ISBN 9780123820266. doi: 10.1016/B978-0-12-382026-6.00042-7.

[4] Jiao Chen, Daphne Weihs, and Fred J Vermolen. A model for cell migration in non-isotropic fibrin net-
works with an application to pancreatic tumor islets. Biomechanics and modeling in mechanobiology,
17(2):367–386, 2018.

[5] Steven Cook and Tamar Shinar. Enabling Simulation of High-Dimensional Micro-Macro Biophysical
Models through Hybrid CPU and Multi-GPU Parallelism. 2017.

[6] D. Cukjati, S. Rebersek, and D. Miklavcic. A reliable method of determining wound healing rate. Med.
Biol. Eng. Comput, 39:263–271, 2001.

[7] Lorenzo Dematté and Davide Prandi. GPU computing for systems biology. Briefings in Bioinformatics,
2010. ISSN 14675463. doi: 10.1093/bib/bbq006.

[8] Dirk Drasdo and Stefan Höhme. A single cell based-model of tumor growth in-vitro: monolayers and
speroids. Physical biology, 2(3):133, 2005.

[9] M. Dudaie, D. Weihs, F. J. Vermolen, and A. Gefen. Modeling migration in cell colonies in two and three
dimensional substrates with varying stiffnesses. In Silico Cell and Tissue Science, 2015. ISSN 2196-050X.
doi: 10.1186/s40482-015-0005-9.

[10] Nicholas D. Evans, Richard O. C. Oreffo, Eugene Healy, Philipp J. Thurner, and Yu Hin Man. Epithe-
lial mechanobiology, skin wound healing, and the stem cell niche. 2013. doi: 10.1016/j.jmbbm.2013.
04.023. URL www.elsevier.com/locate/jmbbmwww.sciencedirect.comhttp://dx.doi.org/10.
1016/j.jmbbm.2013.04.023.

[11] Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. A Comprehensive Performance Comparison of
CUDA and OpenCL. In Parallel Processing (ICPP), 2011 International Conference on, pages 216–225,
2011.

[12] J. Galle, G. Aust, G. Schaller, T. Beyer, and D. Drasdo. Individual Cell-Based Models of the Spatial- Tem-
poral Organization of Multicellular Systems—Achievements and Limitations. Cytometry Part A, 69(7):
704–710, 2006.

[13] Alexander Golberg, Marianna Bei, Robert L Sheridan, and Martin L Yarmush. Regeneration and control
of human fibroblast cell density by intermittently delivered pulsed electric fields. Biotechnology and
bioengineering, 110(6):1759–1768, 2013.

[14] Ayman Grada, Marta Otero-Vinas, Francisco Prieto-Castrillo, Zaidal Obagi, and Vincent Falanga. Re-
search techniques made simple: Analysis of collective cell migration using the wound healing assay.
Journal of Investigative Dermatology, 137(2):e11–e16, 2017.

[15] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[16] Mads Haahr. Introduction to randomness and random numbers. Random. org, June, 1999.

75

https://www.ncbi.nlm.nih.gov/books/NBK26877/
https://www.ncbi.nlm.nih.gov/books/NBK26877/
https://doi.org/10.12968/jowc.2013.22.8.407
www.elsevier.com/locate/jmbbm www.sciencedirect.com http://dx.doi.org/10.1016/j.jmbbm.2013.04.023
www.elsevier.com/locate/jmbbm www.sciencedirect.com http://dx.doi.org/10.1016/j.jmbbm.2013.04.023

76 Bibliography

[17] Richard Haberman. Applied partial differential equations with Fourier series and boundary value prob-
lems. Pearson Education Limited, 2014.

[18] Mark Harris. How to Implement Performance Metrics in CUDA C/C++, 2012. URL https://devblogs.
nvidia.com/how-implement-performance-metrics-cuda-cc/.

[19] Cédric Jules. Accurate point in triangle test, 2014. URL http://totologic.blogspot.nl/2014/01/
accurate-point-in-triangle-test.html.

[20] E.D. Kleimann. Literature report: Mathematical modelling of burn injuries. Master’s thesis, TU Delft,
2018.

[21] D.C. Koppenol. Biomedical implications from mathematical models for the simulation of dermal wound
healing. PhD thesis, TU Delft, 2017.

[22] Tara LaForce. PE281 Green’s Functions Course Notes. 2006.

[23] C.H. Marchi, L.K. Araki, A.C. Alves, R. Suero, S.F.T. Gonçalves, and M.A.V. Pinto. Repeated Richardson ex-
trapolation applied to the two-dimensional Laplace equation using triangular and square grids. Applied
Mathematical Modelling, 37(7):4661–4675, 2013.

[24] Suejb Memeti, Lu Li, Sabri Pllana, Joanna Kolodziej, and Christoph Kessler. Benchmarking OpenCL,
OpenACC, OpenMP, and CUDA: programming productivity, performance, and energy consumption. In
Proceedings of the 2017 Workshop on Adaptive Resource Management and Scheduling for Cloud Comput-
ing, pages 1–6, 2017. ISBN 9781450351164.

[25] C.C. Miller, G. Godeau, C. Lebreton-DeCoster, A. Desmouliere, B. Pellat, L. Dubertret, and B. Coulomb.
Validation of a morphometric method for evaluating fibroblast numbers in normal and pathologic tis-
sues. Experimental dermatology, 12(4):403–411, 2003.

[26] Kelly E. Murphy, Cameron L. Hall, Philip K. Maini, Scott W. McCue, and D.L. Sean McElwain. A fibrocon-
tractive mechanochemical model of dermal wound closure incorporating realistic growth factor kinet-
ics. Bulletin of mathematical biology, 74(5):1143–1170, 2012.

[27] Marco S. Nobile, Paolo Cazzaniga, Andrea Tangherloni, and Daniela Besozzi. Graphics processing units
in bioinformatics, computational biology and systems biology. Briefings in Bioinformatics, 2016. ISSN
1467-5463. doi: 10.1093/bib/bbw058.

[28] Luke Olsen, Jonathan A Sherratt, and Philip K Maini. A mechanochemical model for adult dermal wound
contraction and the permanence of the contracted tissue displacement profile. Journal of theoretical
biology, 177(2):113–128, 1995.

[29] OpenStax. Anatomy and Physiology, 2013. URL http://cnx.org/contents/
14fb4ad7-39a1-4eee-ab6e-3ef2482e3e22@8.24.

[30] Cynthia A. Reinhart-King, Micah Dembo, and Daniel A. Hammer. Cell-cell mechanical communication
through compliant substrates. Biophysical Journal, 2008. ISSN 15420086. doi: 10.1529/biophysj.107.
127662.

[31] Christopher Roy. Review of discretization error estimators in scientific computing. In 48th AIAA
Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, page 126, 2010.

[32] Bilha Sandak. Multiscale fast summation of long-range charge and dipolar interactions. Journal of Com-
putational Chemistry, 22(7):717–731, 2001.

[33] Jonathan Richard Shewchuk. Triangle: Engineering a 2D quality mesh generator and Delaunay triangu-
lator. In Applied computational geometry towards geometric engineering, pages 203–222. Springer, 1996.

[34] Y. Song, S. Yang, and J. Lei. ParaCells: A GPU Architecture for Cell-Centered Models in Computational
Biology. IEEE/ACM Transactions on Computational Biology and Bioinformatics, PP(99):1–1, 2018. doi:
10.1109/TCBB.2018.2814570.

https://devblogs.nvidia.com/how-implement-performance-metrics-cuda-cc/
https://devblogs.nvidia.com/how-implement-performance-metrics-cuda-cc/
http://totologic.blogspot.nl/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.nl/2014/01/accurate-point-in-triangle-test.html
http://cnx.org/contents/14fb4ad7-39a1-4eee-ab6e-3ef2482e3e22@8.24
http://cnx.org/contents/14fb4ad7-39a1-4eee-ab6e-3ef2482e3e22@8.24

Bibliography 77

[35] José Juan Tapia and Roshan M. D’Souza. Parallelizing the Cellular Potts Model on graphics processing
units. Computer Physics Communications, 2011. ISSN 00104655. doi: 10.1016/j.cpc.2010.12.011.

[36] F. J. Vermolen. Particle methods to solve modelling problems in wound healing and tumor growth. Com-
putational Particle Mechanics, 2015. ISSN 21964386. doi: 10.1007/s40571-015-0055-6.

[37] F. J. Vermolen and A. Gefen. A semi-stochastic cell-based formalism to model the dynamics of migration
of cells in colonies. Biomechanics and Modeling in Mechanobiology, 2012. ISSN 16177959. doi: 10.1007/
s10237-011-0302-6.

[38] C. Vuik and C.W.J. Lemmens. Programming on the GPU with CUDA (version 6.5). 2015.

[39] C Vuik, F.J. Vermolen, M.B. van Gijzen, and M.J. Vuik. Numerical Methods for Ordinary differential equa-
tions. Delft Academic Press / VSSD, 2016.

[40] Nathan Whitehead and Alex Fit-Florea. Precision and Performance: Floating Point and IEEE 754 Com-
pliance for NVIDIA GPUs. rn (A+ B), 21(1):18749–19424, 2011. URL https://developer.nvidia.com/
sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-Point.pdf.

[41] Karen Willcox and Qiqi Wang. 16.90 Computational Methods in Aerospace Engineering,
2014. URL (MassachusettsInstituteofTechnology:MITOpenCouseWare),http://ocw.mit.
edu(AccessedSeptember6,2018). License: Creative Commons BY-NC-SA.

[42] Le Yang, Tarynn M. Witten, and Ramana M. Pidaparti. A biomechanical model of wound contraction
and scar formation. Journal of Theoretical Biology, 2013. ISSN 00225193. doi: 10.1016/j.jtbi.2013.03.013.

[43] Ian T. Young. Proof without prejudice: use of the Kolmogorov-Smirnov test for the analysis of histograms
from flow systems and other sources. Journal of Histochemistry & Cytochemistry, 25(7):935–941, 1977.

https://developer.nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
https://developer.nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
(Massachusetts Institute of Technology: MIT OpenCouseWare), http://ocw.mit.edu (Accessed September 6, 2018)
(Massachusetts Institute of Technology: MIT OpenCouseWare), http://ocw.mit.edu (Accessed September 6, 2018)

	Introduction
	Wound healing model
	Thesis outline

	Skin tissue
	Cell biology
	The human skin and wound healing

	Cell dynamics
	Cell migration
	Experiments
	Initialization of the model

	Mathematical model
	Constant cell shape model
	Strain energy density, mechanical energy and random walk

	Proliferation and Apoptosis
	Finite elements implementation for concentration
	Concentration field descriptions
	Concentration gradient at cell centers

	Modelling on realistic scale
	Combining two models
	Input data
	Fibroblast density
	Macrophages entry
	Domain boundaries

	GPU computing
	High performance computing
	GPUs
	CUDA and OpenCL
	Programming on the GPU

	GPU specifics for this project
	Tracking performance
	Speed-up and scalability

	Programming of wound healing model
	From MATLAB to C++
	Interpretation of results
	Comparison of simulation time

	Description of mmobi
	C++ particularities
	Random numbers
	Python API

	GPU usage for speed up
	Strain energy density and mechanical energy
	Finite Element computations
	Final optimizations

	Wound healing quantification
	Measuring wound healing
	Polygonal estimation

	Assessment of wound quantifiers
	Comparing simulations

	Simulation results
	Wound healing dynamics
	Computational work load
	Comparison of CPU and GPU program

	Accuracy of concentration fields
	Richardson's Extrapolation for estimating the error order
	Precise refinement factor
	Limitations

	Approximate solution with Green's functions
	Computation with numerical approximation
	Results

	Analysis model behavior
	Timing GPU communication
	Reducing data transfer
	Transfer time in relation to simulation size

	Varying the time step
	Single versus double precision simulation
	Parameter variation of gradient scaling

	Conclusion
	Future work
	Extensions of current model
	Efficiency considerations
	Accuracy considerations
	On the practical side
	Open questions

	Finite Element Method derivations
	Platelet Derived Growth Factor
	Transforming Growth Factor

	Richardson's Extrapolation
	Results order estimation

	Bibliography

