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Abstract

In this work we examined the discretised form of Boltzmaike-transport, i.e. the neutron trans-
port equation and the Boltzmann-Fokker-Plank (BFP) eqnatiith the discontinuous Galerkin
method and polynomial basis functions. In particular wengired an adaptive algorithm, which
bases its decision of where to refine on the adjoint problenm aensitivity analysis. In this way
an accurate detector response should be obtained in arefficanner.

The goal-orietend criterion uses the adjoint solution agasure for importance to the detector
response. This refinement technique is compared to traditimethods, which base refinement
on the change in the solution of a local test refinement, atitetaliscrete ordinates method.

Problems with one spatial and one angular dimension aretogedt the adaptive algorithm.
In previous work the same problems were solved with first opidynomials in the spatial di-
rection and zeroth order polynomials in the angular dicgctiWe saw then that constant patches,
zeroth order polynomials in the angular part of the domainjat not represent the angular flux in
diffusive materials accurately. We furthermore saw thatdhbality of the error estimate with the
global adjoint approximation was reasonable, while with lilcal adjoint approximation it was
poor.

In this work we employed first order polynomials in both thatsd and angular domains.
Linear patches, the first order polynomials in the angulanaia, provide a better approximation
of the angular flux using less unknowns. This can be seen wiraparing both the constant and
linear patches to the discrete ordinates method. Also fhesdie materials are now much easier to
approximate, which has as effect that traditional refindrgames smaller errors than with constant
patches.

The quality of the error estimate with linear patches, haweis poor for almost every test
case. A cause can be found in the approximation of the exgmihadolution that is used in the
estimate. This approximation is done by refining all the entrrmesh uniformly one level. It
appears the space of the deeper level is only slightly latgar the coarser level on which the
forward problem is solved, in the sense that the adjointtewlwn that deeper level does not yield
information not contained in the coarser level. The sofutie propose is to solve the adjoint
problem with higher order basis functions than those of tnevérd problem.

Finally we present some results on the Boltzmann-FokkandX equation discretised with
discontinuous Galerkin. The discrete operator one obiaiusry similar to the discrete transport
operator, with extra bands added within a spatial elememntsolve this system of equations one
could use a Gauss-Seidel iteration, which means one soewetises outdated angular flux values
of neighbours, or Kylov subspace methods, as the matrixabmeis not computed explicitly.
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1 INTRODUCTION

1 Introduction

Nuclear physics is, since the 1940's, part of our daily ljvabeit not conscientiously for most
of us. We use it to produce electricity, for medical treattagin materials science and to build
weapons. Several fields of physics are involved in thesentdogies, for example thermodynam-
ics when heat is produced and all kinds of radiation whiclr@leased by the radioactive atoms. In
this work we will be considering one kind of radiation in pautar; neutral and charged particles
that are produced in radioactive decay.

Let us take a closer look at two of the most widely used tedwies, energy production
in nuclear power plants and medical treatments. The nugeaer plant works very similar
to a power plant that burns fossil fuels, a heat source pesligteam, which drives the electric
generator. Uranium, or another fissile material, is usetbaus of fossil fuels and the ‘burning’
process is a bit different. Certain atoms in the reactor care break apart and in the process
produce different kinds of radiation and heat. The heatéslus vaporize water and some of the
radiation is used to keep the reactor burning. Neutronshereltiving force in this process, they
are absorbed and induce fission in atoms, which in turn pexioew neutrons.

Neutrons travel through the reactor core and will interlapugh collisions and absorption,
with the surrounding material. The neutron transport éqoabr the Boltzmann equation, de-
scribes the behaviour of the neutrons. Being able to sovedutron transport equation efficiently
and accurately means more efficient and safer reactor ceignde

Neutrons, but also charged particles, can be used in met@gments, for example to ir-
radiate and treat a tumour. In such a treatment one wantsniagka the tumour, but not the
surrounding, healthy tissue. Nuclear physics, and moreifigadly the neutron transport equation
or the Boltzmann-Fokker-Plank (BFP) equation, enables usake accurate predictions as to how
a tumour should be treated.

In this work we therefore also investigate the Boltzmankkeo-Planck equation, also known
as the Fokker-Planck equation, which is the transport eémuatith some additional terms. The
transport equation describes the transport of neutraicfest while the BFP equation describes
charged particles. This means the force between particigisating from the charge of the parti-
cles is taken into account.

The BFP equation was first introduces by Andrey Kolmogoro%981, therefore it is some-
times also called the Kolmogorov forward equation. We vall @ the BFP equation, to emphasize
the fact that it is an adaptation of the Boltzmann transpguiagion. There are more uses of this
eguation apart from charged particle transport, as it d@ssthe time evolution of the probability
density function of the velocity of particles in quantum thagics.

One of the focuses of this work was to investigate how the BitRtion can be solved using
the discontinuous Galerkin discretisation method. Weeaethe discretisation and propose a way
of solving the system of equations obtained from that dissation. However, due to unexpected
behaviour of the adjoint solution of the transport equatlmere was a lack of time to implement
the BFP equation in a working code.

Another focus of this work is to develop an adaptive algonitthat solves the transport equa-
tion efficiently. In each iteration the solution of the diffatial equation is obtained and from
that solution a choice is made where the mesh needs to bedefinghis way one keeps the
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computational and memory costs at a minimum, while obtgiainm accurate result.

In many cases one is interested in a set-up with a source tfonsy or other particles, and
a detector, where the quantity of interest is the detecgpaese. Our goal is then to minimize
the error in the detector response with as few as possibleawtks. To achieve this we need a
criterion that will choose where in the mesh the refinememadst efficient, i.e. decreasing the
error maximally by minimal refinement.

Traditional methods of refinement are based on observingtihage in the solution of the
differential equation upon refinement. For example, on@esfiocally and checks the difference
in the solution this produced. Repeating this for each etgroe cell in the mesh one can find
the locations where refinement leads to the largest changhe solution, hopefully reducing the
error efficiently.

In this work we compare a traditional critirion to a refinerneriterion which bases its decision
on the importance of each particular refinement locatiothfedetector response. This importance
is obtained by solving the adjoint problem, which turns @aubé almost the same as the forward
problem. Exactly how the adjoint problem should be dissegtiand used is a matter of discussion.

Both equations have a solution that is seven dimentionah thiree spatial dimensions, two
angular dimensions, energy and time. All these dimensiom®fa different nature, calling for
different discretisation or simulation techniques.

Here, without loss of much generality, we look into a simgtifiversion of these equations. The
problems that we consider are steady-state and have orgyagreup and one spatial dimension.
This means we are left with a two-dimensional problem, with spatial and one angular variable.

The discretisation technique we apply here is the discoatia Galerkin method, which has
been around for almost a century. This method requires tiftesiential equation is solved in its
weak form on a restricted space.

This master thesis is a continuation of a master thesis dothe applied physics department
of the Delft University of Technology. The two projects acelte evaluated separately, but the
results of [4] are necessary for a full understanding of ttesgnt work.

Titled ‘Goal-oriented angular adaptive neutron transpieihg a spherical discontinuous Ga-
lerkin method’, [4] is an investigation into the performaraf a relatively new numerical method.
This method enables us to adaptively solve the transpodtiuin the angular domain, which
means we can more efficiently use our computational poweobtadn more accurate results. The
mathematical description of the method is presented fottttez dimensional case, while numer-
ical results for a one dimensional model are presented. Atesed version of these results is
presented in this chapter, for a full understanding of thekwdone in this thesis see [4].

The first section of this thesis is a summary of the appliedsjasythesis where all relevant
information is briefly discussed. This includes the dissegton of the transport equation with
constant basis functions in the angular part of the domaenyation of the goal-oriented and
traditional error criteria and the results of the implenagion of this discretisation. Since irrelevant
parts are left out the summary does not include all considesmand questions that were discussed
in the physics thesis.

An investigation into the algorithm used with the constaaiiches and later on with the lin-
ear patches is presented in the second section. Both thedneftsolving the equation and of
estimating the error are subjects of investigation in theigisn. Also in this section we show that
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switching the order of discretisation and taking the adjpioblem is not symmetrical, that is, the
adjoint of the discrete forward problem is not the same aslig@etised adjoint problem.

The third and fourth sections are on the implementation eflitear basis functions in the
angular domain, so we are using linear basis functions watise the whole domain. First we
will look at what needs to be altered to the discretisatiorcarfistant patches to handle linear
patches. Also conservation issues are addressed in thisrsekfter the theoretical basis is made
we present the results of the implementation of that metfidds is done with eight test cases,
which can be found in the appendix.

In the fourth section we found that the error estimate thatccbe used as a stopping criterion
is of very poor quality. A cause for this is presented in sgcfive. In the estimate an approxima-
tion of the adjoint solution is needed, which in the testaigh as the solution on a more refined
mesh. It turns out this is probably not an accurate appraxméor the part of the adjoint solution
that does not lie in the restricted Galerkin space. Two wdymproving the approximation are
discussed.

Finally we present in the sixth section and investigatioto ithe Boltzmann-Fokker-Planck
eqguation, which was originally one of the focusses of thiskwd he other focus, linear patches
for the transport equation, would have to be implementetiérB&tFP equation for a good approxi-
mation of the angular flux. Since we ran into the loss of synyriatthe derivation of the adjoint,
the section on the BFP equation is not very elaborate. Howeeedid discretise the equation
and derived in what ways the BFP operator matrix differs ftomtransport operator. From this
structure we also present possible methods of solving ¥istes of equations.

This thesis is based upon a thesis in the field of applied phyed the Delft University of
Technology. This thesis is done in the context of the makesi$ research of the applied math-
ematics curriculum at the same university. It was conduategdle Numerical Analysis group of
the Electrical Engineering, Mathematics and Computerrigeidaculty at that university.






2 NEUTRON TRANSPORT WITH CONSTANT ANGULAR BASIS FUNCTIONS

2 Neutron Transport with Constant Angular Basis Functions

We start with a short introduction of the neutron transpaation, which is the subject of the
physics thesis. Both the physical and mathematical backgr@f the equation will be touched
upon. Discretization of the equation is the subject of the part, where we will both present the
discretized equations as well as go into more detail on wigyntiethod is to be preferred over other
methods. In this section we will find that continuity relaitsoare needed for neutrons crossing a
boundary of elements with a different angular discretoratiThis will be discussed in depth in the
third part. The fourth part is then on the development of tiegsive criterion on which the choice
refinement is based. This criterion is derived in this sectim the final theoretical section we
present an overview of the adaptive algorithm as is useckiotie dimensional problems. Finally,
we present some results of the one dimensional model.

2.1 Introduction to the Transport Equation

In nuclear reactor physics neutrons are very importantesireutrons are necessary for the chain
reaction of fission to continue. In fact, since neutrons cavet through the reactor core and fuel
is fixed, neutrons are the main subject in reactor physic® ridutron transport equation is the
governing equation of free neutrons in the reactor corefoorthat matter, in any geometry or
substance. In certain geometries the transport equatiobeaolved analytically, however for
many real world problems numerical solutions are neededhédrprocess of designing nuclear
reactors or other nuclear facilities accurate approxiomatif the neutron density or neutron flux
are needed to predict for example heat production in the. chi®wv numerical techniques are
still developed, which will result in more accurate reaatesigns. This section contains some
basic remarks on the neutron transport equation, which ezessary for this report. A detailed
description of the properties and derivation of the transpguation can be found in many nuclear
engineering hand books. [6] [3]

Free neutrons are the neutrons that are important to reggleysics. These neutrons can freely
move through the material and take part in reactions withstimeounding material. Common
reactions are collisions (scatter) and absorption. Nasttbat are captured in the nucleus of an
atom are not important to reactor physics, as these neutvidhsot take part in any important
reactions. The neutron transport equation therefore dersithe free neutrons and describes the
rate of reaction as well as the movement (streaming) of theroms. A full derivation of the
transport equation, as well as many applications, can badfau[3]. The most general form of
the transport equation is

1 8¢(r,E,Q,t) = . .
Q.-V E.Q E E.Q.t) =
U(E) ot T ¢(T7 ? ’t) + Ut(r? 7t)¢(rv ) 7t)

o
/ dQ'/ dE'os(r,E' — E, a - Q,t)o(r, E, Q/,t) + s(r, E, Q) (2.1)
A 0

Some of the symbols in this equation are introduced herdlghamomenclature can be found in
the front of the report. The angular fluxis the quantity of interest, it can be interpreted as the
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density of the number of neutrons that israhas an energ¥ and travels in directios2 at time
t. The total cross sectio, and the scattering cross sectiontell us with what rate the reactions
occur.

We will now shortly discuss the physical meaning of each ef tdlrms. The first term on
the left hand side is the change in neutron density over tiffilee next term is the streaming
term of the equation, it follows from applying Gauss’ thearen the expression describing the
neutrons travelling into a control volume. Finally on th& leand side we have the total removal
of neutrons, proportional to the total removal cross sectio The right hand side contains two
terms, the second term is an external source, which can liteaafp specified. Scattering is
described by the first term of the right hand side. This candmsidered a source as neutrons
with other energies and travelling in other directions carstattered into the part of phase space
considered. Therefore the term contains an integral bathalldirections and all energies. Please
note that this general form of the transport equation do¢slescribe fission reactions. Fission
reactions result in an extra source term that has the sammea®the scatter term.

To test the performance of numerical techniques it is noagémecessary to consider the
general transport equation. Some approximations or ditgtions can be made without altering
the behaviour or the complexity of the equation. A numbereake adjustments is used in this
report, which are discussed in this section.

The time dependence is eliminated in most proofs of priecigfhen solving a time dependent
problem one usually approximates a certain state of thdgmroat timet as a steady-state problem.
To solve a time dependent problem a number of steady-statdepns is solved sequentially.
Therefore we can equate the first term of the general trahepaation to zeroﬁ W =
0.

Another common discretization in most solvers is that thergy dependence is discretized
into groups. All neutrons are put into energy ‘bins’ and eresctions are used to determine the
number of neutrons that switch bins or stay in the same bip.dFiving force of switching bins is
scatter, since in scatter reactions neutrons may lose megargy. The simplest case is to consider
just one bin, this effectively eliminates energy dependdnam the problem. This report uses this
one group approach.

The scatter source term is further simplified by consideisotropic scatter only. This means
the angular dependency of the scatter cross seetias neglected. To account for anisotropic
scatter multiple techniques exist, the most common beiegxipansion of the scatter cross section
in spherical harmonics or Legendre polynomials. In thirefhere is no background information
on this.

When applying all these simplifications the transport eignabecomes:

PN N PN A~

Q- Vo(r, Q) +oi(r)o(r, Q) = T 8(r) + s(r,2) (2.2)
where the scalar flug is defined a®(r) = [, _¢(r, Q)d<.

Some properties of the equation are noteworthy, as they glale in the performance of
numeric solvers. First there is the difference between gically thick and thin medium. A thick
medium means the mean free pattof neutrons is small. The mean free path compared to the
size of the domain determines the probability of neutronieaé out of the problem. When the
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domain is much larger than the mean free path the problentisatlp thick. The mean free path
is determined by the inverse of the total cross section,

A= 1 (2.3)
Ot
A thick medium in a small domain can however result in an @pijcthin problem. Conversely a
thin medium, with a large mean free patimay result in optically thin and optically thick medium.
However the size of the domain will be much larger for a thirdimm to make a thick problem.
Besides the thickness of the material, one can also varyatte with which the two most
important reactions, absorption and scatter, occur. Hiis is called the scatter ratig and is

Os
c=—

(2.4)

Ot
The largere the more diffusive the material will be. In diffusive matis the transport equation
can be approximated by the diffusion equation. In the resuitill show that the scatter ratioof
the material influences the performance of numerical method
In this work this equation is mostly studied in its one-dirsienal form and all numerical
results are for this case. To arrive at the one dimensiorrah fee must assume the physical
properties of the material vary only in one direction. In hahatical notation this reads

or(x,y,2) = o(2) (2.5)
Us(wvyvz) = US(Z) (26)
s(zyy,2) = s(z) (2.7

Now the angular fluxy will only vary along thez direction and along the polar angle This can
be shown by considering the flux at two points that are different only in theandy compo-
nents. The physical surroundings of these points is exéotlysame, making them indiscernible,
therefore the flux will be the same. In other words we kngw, y, z, w, §) = ¢(z,w, 8). Further-
more we observe that the fluxalongw, the azimuthal angle, does not change as a result of this
simplification.

We arrive then at the transport equation for one spatial déie® and one angular dimension,

MLE;’“) + 01(2)¢(z, 1) = Z—S (2, n)dS2 + 5(2) (2.8)
z T Jan

From now on, for conventional purposes, we will call thdirections ther direction. Although
there will be thoughts on the three dimensional case in tioikwthe equation we investigate is
the one dimensional transport equation in the form predeatbeve.

2.2 Discretisation of the Transport Equation

To discretise the transport equation some questions halve smswered first. As the goal is to
have a discretisation that can handle refinement in the andamain well we need a discretisation
that allows for this. Furthermore the discretised systeraqufations must be easily solved. Both
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guestions were addressed in the physics thesis and the @saitsrare repeated here. We will start
with the advantages and drawbacks of the methods of disatietn that were considered.

The first method that was discussed is the discrete ordinaésod, which is the most widely
used method to discretise the angular domain of the trahspaoation. It comes down to requiring
the transport equation to hold for a discrete and finite setirgfctions, or values for in one
dimension. The integral of the scalar fldxis then approximated by a quadrature rule. In one
dimension most often the Gauss-Legendre quadrature is asdis provides exact integration of
polynomials up to a certain degree. In three dimensionspgheo&imation is not as good as in one
dimension, since the quadratures for three dimensionsdate larger errors. Note that this only
provides us with a discretisation of the angular domainhtndpatial domain another method has
to be used. In the test cases presented throughout the warclude results of this method, with
linear discontinuous Galerkin in the spatial domain, féerencing purposes.

Then we turned to discontinuous Galerkin, where we have ptioios for the choice of basis
functions. The first is wavelets, which were investigateddose of their hierarchical nature. This
hierarchy can be used for refinement, as wavelets have trestzape on each level, the numerical
computations are the same on each level. However, it turoethe hierarchical structure has a
major drawback. The cost of the wavelet algorithm is largdha wavelets of different levels have
overlapping support. This support results in matrices a@inatlargely filled, so we cannot use any
algorithms that use sparse matrices. For more on the useveletg see [2], [1].

Finally we have the discontinuous Galerkin method with polyial basis functions both in
space and direction. This method can be used in a hieratetiyeand results in a relatively cheap
algorithm. This is the method used in the numerical teste®fliesis. Below the discretisation of
the transport equations using this method is presented.

Several researches have been done on the spatial distoetindth Discontinuous Galerkin
in the field of neutron transport. This report does not foaushe behavior of the spatial part of
the transport equation, but on the angular part. For mora®syatial properties of Discontinuous
Galerkin see [9] [10].

We start the discretisation with stating the transport gqona
Os
E@ (2.9)
where€ is the angular vectog is the angular flux an@ is the scalar flux. For the application
of the discontinuous Galerkin method we first define the sgace which the solution will
lie. This is done by splitting the angular flux in a spatial anmdangular part. The spatial part
¢;(r) will be approximated by first order polynomials in this refpdout can in principle be any
polynomial. Analogously, the angular part will be approaied by zeroth order polynomials
(constant functions) in this report, but can also be othéynmmmials. This can be formulated as
the following sum

Q-Vo+o,0=s5+

E P
o(r. ) ~ 33 depe(r)Gep() (2.10)
e p

whereFE is the number of spatial elements aRds the number of patches in a spatial element, or
on a spatial location. We can now multiply the equation frove left by a test functioi, in our

8
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spaceV,,. Then integrate over the whole angular domain to obtain

/ / Ye(T)Gep(Q) [ (- V +00) D ber pYerGer gy — 5 — Zpldfr=0 (2.11)
v Jar o A

For the scalar fluxd in this equation we can obtain the following expressiongaithe patch
function G is unity on the patch and zero elsewhere.

> = $dd (2.12)

47 u A

_ /4 S 6,Gdf2 (2.13)
T i1
M ’ R

= 3y /4 G, df? (2.14)
— " f i
jM

= Y ¢jArea(G)) (2.15)
j=1

Let from now onAG); denote the area of pateh;. Please note thdt is just an indicator of that
patch,G; is unity on the patch and zero outside the patch. The valugedlux on that patch is in
the parametep;.

Let us now work out the angular integral of Equation 2.11. Vi plug in the expression
for the scalar flux and evaluate the integral over two andudais functions. Since the patches all
have compact support we know that

M
> ¢ / G,G;dY = ¢,AG, (2.16)
j_l 4

The equation can then be written as

[
\%4

A/
Qp . v Z qbe’,p’)/e’ —|— ¢ Z ¢e’,p’ye’] d'r‘ =
e/ e

[
\%

In this equation we have:

Os
At Z Z Ger pYerGer p + sp(r)] dr (2.17)
P

e/
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At 1 A
Q, = Qa 2.18
p AGp AGy ( )
M
o = ) AG;¢; (2.19)
j=1
1 .
sy, = AG, 47ersdQ (2.20)

In the spatial part of the problem we use linear basis funstioSo working out the spatial
integral of Equation 2.17 will result in a matrix equatiom &mch patch. The matrices will be two
by two, since we have two spatial basis functions that haeel@pping support. Before we work
out the integral we first apply the divergence theorem to tieaming term, resulting in

~ / “ ~ /
|0 e 3 e edsV = [ (@93 i v +
/ Ye E [O’t’ye/gbe/ — 2’}/@/@256/ — S (’l")} dV =0 (221)
v = P A P p

In this equationqﬁl;,p is the angular flux at the boundary of a cell. Now we will assigreach
element face its angular flux,is the element indexf is the element face index. To do this we
need to compose the total element boundary out of the indwidlement faces. Each of those
individual faces is a plane or line, in order to be able to aefin outward normal vector. This
gives us the following expression

Nfaces

Ve= > Voy (2.22)
f=1
The flux on in flow boundaries is chosen to be the upwind flux.sTheans we have to make a
distinction between directions as

. A
b ¢e,p if Qp SNy > 0

= ind i A 2.23
¢e,p,f {(bggnwmd inf Q; ) ﬂf <0 ( )

Plugging this into the equation we arrive at a matrix equmtlmat has the final discretized
form. The matrices are square and have the size of the nurbesis functions that are in one
spatial element. The matrix equation that is to be solve@&ah patch on each element is then

Nfaces
g
> QU sdd, ¢+ (UK +oiMe)d, , = ﬁMecbe + Sep (2.24)
f=1
where

10
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[U]el,ez%f = / nffyelfyezd(sv (2.25)

O0Ve ¢
(K] e, = /V (VYer )Ver dV (2.26)
[M],, ., = /V Yer Yea AV (2.27)
Se;p = /'yeisp(r)dv (2.28)

Ve

= / / Ve, Ge, ps(r, Q)dQV (2.29)

e J4m

2.3 Continuity Relations

Two neighbouring elements do not necessarily have the saqudaa distribution of patches. This
is a result of refining in the angular domain, which is not donéormly but rather adaptively.
When such a situation occurs we need interpolation rulesi$are neutron conservation across
this boundary.

There are two cases that can be discerned, (a) neutronsdlérnein a coarse to a fine element
and (b) from a fine to a coarse element. In general neutroreceatson for neutrons crossing a
plane can be formulated as

/ Q. ﬁupwind(bupwind(ﬂ)dﬂ _ Q. ﬁdownwind(bdownwind(ﬂ)dﬂ (2_30)
€. puPwind () ). pdownwind,
[8]. In this equationy“P¥"d is the flux in the upwind element angfo¥™ind js the flux in the
downwind element. Similar notation is used for the outwaotnmal vectorsn.This condition
should be met in all points along the boundary of the two elements, as this insuresragttiof
the neutron current. When the patches on the sphere areanoiisis will result in some simple
continuity relations, they are derived here.

Take two elements A and B and consider the angles such thabnedlow from A to B. Sup-
pose element A has one patch and element B has two patch€s; andG/,, this is illustrated
in Figure 1(a). The continuity relation in Equation 2.30 tenexpressed as follows

~

/ i - Qo (2)d :/ ﬁ-‘qs(fz)de/ i - Qo (2)d2 (2.31)
AG. AG

AGyo

/ At - QpGod) :/ ﬁ-Q¢f1Gf1dQ+/ it QoG radQt  (2.32)
AG. AG AGyo

PN PN

¢>c/ n-Qd = ¢f1/ ﬁ-fzdﬁ+¢f2/ f - Q) (2.33)
AG. AG AGys

Since the union of the support of patcli@s, andG ¢, is equal to the support 6. (Gf1 |J G2 =
G.) we can simplify this to

11
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(a) Coarse to fine (b) Fine to coarse

Figure 1: Two cases of different angular distribution of patches iighbouring elements. To
ensure neutron conservation relations between the disgratches need to be derived.

7 - Qd
Gro

o)

(2.34)

o

ar = ¢f1/ a - QO +
e

¢c/ 'ﬁ
AG.
¢c/ n- dﬁ = ¢f1/ n -
AG. AG;1 UAG
b = g1 (2.36)

by assuming thad;; = ¢ro. Itis natural to assume this, as the two patcbgs and G, are
equally as important. This result is also what one intuljiv@ould expect. Even though the
downwind element B can handle a more accurate solution ofltixe that information is not
available. So the two patchés;; and G, will represent the exact same angular flux as in the
upwind element.

Now suppose we have a refined element C and a coarser elem@nt@we have two patches,
G 1 andGy,, and on element D there is only one pateh This is illustrated in Figure 1(b). We
will use the same continuity condition as for the former cagkich can be found in Equation
2.30. Applying this condition yields

>
o)}
>

d (2.35)

/ f - Qod) = / ﬁ-fwﬁdfn/ 7 - Qb pod2 (2.37)

AG. AGH INer”

¢c/ - QO = ¢f1/ ﬁ-fzdfz+¢f2/ a - QdQ (2.38)
AG. AG AGjo

Note that sincep is constant on a patch we can pull out this variable. Rewgitiiis equation
brings us to the final expression

12
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011 gy, QA+ bp2 [, - 24D
¢ Inc, 7o+ 2

This result can be interpreted as a weighted sum of the dulnesugh the two refined patches
G r1 andGs, which will be clear after rewriting the equation as follows

(2.39)

O [ng,, QX+ Sppn - [rg , QA

. = —— 2.40
¢ ﬁ'fAGc QdQ ( )
~ A/ ~ A/
_ qbflAGfln . Qd + QS{Q/AGan . Qe (2.41)
AG.#h - Q)

The sum of the fluxeg,; and ¢, is weighted by the patch size and component of the aver-
age direction in the outward normal of the element. Please that by Equation 2.18 we have

AGcfllf = AGHQ+AG /. Using these continuity relations we ensure particle comsien.

2.4 Error Estimation and Adaptive Criterion

In this section we explain the different criteria that wesed for determining where to refine
patches. In other words, we must compute how large the baottitih to the error is of each patch,
so we can refine the patches that contribute most. Since wetarested in a good approximation
of the detector response we will start by defining the erroasnes of the detector response, as
well as an alternate measure for the error. This alternatesune is a global error measure.

Thereafter two criteria are formulated, the first being thalgriented method. This is called
the goal-oriented method since it should make the errorard#étector response as small as possi-
ble. The second criterion is called traditional refinemsinie it considers how much the solution
is changed by introducing local refinement. We considerdtiisrion to compare the goal-oriented
refinement with more widely used methods.

2.4.1 Error Definition

The first error measure is that of the detector response, fichamve first have to define the
detector response. Many kinds of detector configuratioagpassible, but only a limited amount
is physically relevant. Only the volumetric detector isdigethis report.

J(¢) = /V A opo(r, )dQrdv (2.42)

In this expression, the cross sectiop determines the rate at which neutrons are being measured.
The dimensions of the detector are contained in this cradfose In regions where the detector
is not present we take the cross section to be zero. Sincetegrate over the whole detector
region without discrimination in angle, neutrons in eactection have the same contribution to
the detector.

With these detector responses we can define an absolutarexesure, which is

13
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Eget = |J7"ef - Jh| (243)

where J,.; is the ‘exact’ detector response argl is the detector response calculated with the
current discrete solution.

When there is a comparison to the exact error in this reportleveot use the exact error. A
reference error is computed using a very fine angular mesthanid taken to be equal to the exact
error. The spatial elements are small, in the sense thap#imbkpart of the problem is converged.
There will not be any spatial component in the error.

The other error measure with which we can compare methotis ibt mean square error of
the scalar flux@. This error is taken node wise, instead of integral wise:

Erms = \/(q)ref - (I)h) ' ((I)ref - q)h) (244)

In this equatior®;, is the vector of scalar fluxes on the nodes of the currentetissolution.®, .. ;
is again the ‘exact’ solution, however, it is now a vector rfitg.

The is a difference in what an accurate solution looks likeoeding to the two norms, es-
pecially in geometries where the source and detector regiomot overlap. Then the absolute
error of the detector response requires the solution in &tectbr to be very accurate, while in
other regions it is not necessarily accurate. However,rtigearror will require a solution that lies
overall close to the exact solution, which may introducergdeaerror in the detector response.

2.4.2 Goal-Oriented Adaptivity
First we will derive the goal-oriented criterion. We starittwan alternate expression for the
transport equation, which is in terms of the operdi@nd the external source

Lp=S (2.45)

The adjoint operator or equation can be derived using innadyzts. An inner product in this
case is an integral over the whole phase space of a produstbdfinctions, or in mathematical
notation

< f.g >:/V ’ f(r, )g(r,Q)dQdv (2.46)

With this notation the adjoint operator can be derived dsvid

< @, Lp >=< ¢*, S > — < L*¢*, ¢ >=< ¢, 8 > (2.47)

whereL is the forward operator anfl* is the adjoint operator. We can chose the right hand side
of the adjoint problem equal to the detector cross sectionthier wordsl.*¢* = op. This leads
to

< L*¢*, ¢ >=<op,p >=< ¢, S >=J (2.48)

whereJ is the detector response. The relatiarnop, ¢ >=< ¢*, S > is known as the duality
relation. The explicit expression for the forward operdidn our case is

14
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First we introduce some sets that are needed for expredsitaison. The domain in phase
space of one element can be written as a set that takes cdre gfpatial part and one that takes
care of the angular part.

e = {rcelementé (2.49)
Q = {Qe4n} (2.50)

We can divide the angular s@tinto two sets, one for in flowing and one for outflowing direct
on an edgé@e.

ot = (e ng >0} (2.51)

Q" = {QeQQ nz <0} (2.52)
Furthermore we need to discern the edges and directionarhapecified by the boundary condi-
tions of the problemBC in the following expression is the abbreviation for bourydeondition,
which can be any of the elements df, D}, upwind and Dirichlet boundary conditions respec-
tively. There is an upwind ‘boundary condition’ as a restilapplying the discontinuous Galerkin

method is that all patches can be solved independentheftiverthe upwind flux can be taken as
a boundary condition for that patch.

Q° = {QeQ|BC=1i} (2.53)

7

oV; = {reode |BC =i} (2.54)
The Galerkin procedure for spatial elements consists ofiptyihg the equation by a test function

Ve p(T, Q) and integrating over the domain. The indiceandp are respectively the element and
the patch index. This results in

— / #Q - Vodrd + / / o™t drdQ) — / / 95 Hyit dp
4 Je 4 Je 47 647T
+ / / (- 1) ™ drdd + / / (2 - 7)ot dr d
Qt Joet Qp J0e " \{0VRUIVp }

= / Sv™drdQ) — / / (Q-n)go™drdQt  (2.55)
4 Je Qp J0e~NdVp

By summing this equation over all elements we can identifylindar form and linear form such
that we can write the discretized transport equation as

B(g,v) =1(v),Yv € V} (2.56)

whereV, is the space of all test functions. An explicit expressianBoand! is given by
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i i A Os in e
B(p,v) = Z{—/47r e(bﬂ Vvdrdﬂ+/ /eattbmtvmtdrdﬂ—/h/egfbv tdrdQy

/ / (bmt int d'f’dﬂ

Qt Joet

+ / / (€2 - A= ™ drdQ (2.57)
- Joe~ \{8VRU8VD}

(v) = Z{ /4 SvintdprdQy — / /8 . mtdrdﬂ} (2.58)
T Je e~ D

We will now introduce patches with constant basis functiofise test function. , is therefore
assumed to be of the form

Ve p(1, ) = ¢ (1) G p(£2) (2.59)

The spatial partp,(r), consists of linear functions. Each patef, ,(€2), has a constant basis
function. The linear form can then be written as:

co M)Geplidr}  (2.60)

Z / AGepSepvitidr — > /

pGQi Oe~ ﬂaVD

wherefQ, p denotes/ AG. Qd2. With this notation no approximation is made, the integoaisr
the directions are exact. Since the patches have a condaist flanction we can write thér
integrals as sums with the size of the patch as weights, sisgarlier.

The bilinear form will become:

B(¢,v) = Z{ - Z/qﬁfl&p - Ve pdr + Z/AGe,pg@intU?;dr
e p v€ p V¢
_Zp:/eAG Y > i dr
5[ mian

+ Z / )¢emt mtd,r, (261)

\aVD

A short derivation shows how we can write the error as a fonctif the linear and bilinear
form, using respectively: linearity, dual problem, Galar&rthogonality and consistency [5].
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AJ = J(@)— J(¢n) (2.62)
= J(6— ¢n) (2.63)
— B¢ —¢n¢") (2.64)
— B¢ dn ¢" — ) (2.65)
= U(¢" — ¢}) — B(on. 0" — 6}) (2.66)

Hereg,, is the computed solution anglis the exact or reference solution. Since the exact solution
is not always available one can use an approximation by wssaution on a very fine mesh.
Plugging in our expressions foand B and subsequent partial integration yields

DN | 8GerSn(o" = b ey [ @y lgesl6” — g
/mlp (6" = 6iir = [ AGL,moi (6" - di)ir
+ [ AG, F20(0" ~ Gi)dr — Lyeor [ @y o7 = o)ar
“Lpeag /8 \aVD(Qe,p - R)GF (¢* — ¢ )dr (2.67)
which is actually a sum over all patches. The sum is weighyethé patch size, which becomes

clear when we interpraﬁe,p as the 'average’ angle times the size of the patch. The sumative
the patches then becomes

Z AGep /S ep(@" — ¢p)d /86 . (Q,e,p 1) Ge,p(¢* — dp)dr
+/¢anfvw“—ﬁ> /m#mw“—ﬁﬂr+/£?NW—¢mW
“Lyeor [ (O, @)@ = o)ar

A/

_1p69{,/8\8v (Q - )R (0" — ¢} )dr (2.68)

It is interesting to compare the weights of the sum in thigesgion and the weights of a quadra-
ture set that is used in the discrete ordinates method. tmtathod one chooses a set of directions
and weights on which one demands the equation to hold. Thgrais over the angular domain

are then performed by computing a sum of weighted angulaedlub this case the angular inte-

grals change into weighted sums naturally, where the weigtd not free to chose, but are equal
to the size of the patch.
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Since the expression fdx.J is a sum over all elements and all patches we can define an error
contribution for each patch, callit ,,. Then. ,'s will eventually tell us where to refine or coarsen
the spatial or angular discretization. The total erromeate then looks like:

AT =YY AGepney (2.69)
e p
after some manipulation and partial integration we seerthats of the form:
* * A/ ~ * *\ N
Neyp = /Rh(¢ - th)d’l" + ]'pEQE / (Qe,p ’ n)rh,U(Qb - ¢h) tdr
e 867\{8VDU8VR}
A/ ~ * *\int
+1P€QB /c’)emavD (Qe’p ~n)rp p(¢* — ¢5)" dr (2.70)
with:
Os ~ 1
Ry, = Se,p + E(I)h - Qe,p ’ vsth;e,p - Utﬁbh;e,p (2-71)
U = Ohicp— Phiew (2.72)
Th,D = Zf?é,p — Ye,p (2-73)

The error contribution of a patchy, ,, is now an integral over the domain in phase space of
that patch. The integrand is the product of the residual Badtportance of the location in phase
space, sincéy,, ., r,,p andry, g turn out to be the residual of the discrete transport eguatio
The importance is given by the adjoint solution. Finally teatribution. , is multiplied by the
size of the patci\G.. .

Ry, is the spatial and the's are the boundary residuals of the equatief).p andr;, r are
the Dirichlet and reflective boundary residuals, whilg; is the upwind residual. This upwind
residual is non zero between elements (it is zero on the l@oyraf the domain). This residual is
a result of the ‘jumps’ that are allowed in the solution in thigcontinuous Galerkin method.

We can use this expression to estimate the error of the snjuwtiithout the need for an explicit
expression of the exact solution. However, we can also ftatadhe criterion for refinement from
this expression. We now have a contribution to the error ohgatchAG, yn.,. When these
contributions are sorted we find which patches contributstrmthe error. A fixed percentage of
patches will be refined in each refinement iteration, whieleto the natural choice of refining
the patches that contribute most to the error.

The only question that remains is how the exact adjoint isstadmputed. Only in rare cases
can this be done analytically, therefore we will make an apipnation. Two slightly different
approximations are used, the global and the local adjoiptceqimation. In the global adjoint ap-
proximation we compute the adjoint on one level deeper thafarward solution. This means that
for each patch of the forward there are two adjoint patché® adjoint at this level is computed
as best as possible.

Turning to the local adjoint, we also use a refinement of onel ldeeper than the forward in
this case. However, the adjoint is not calculated in the @abrray, rather the adjoint solution on
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the same level as the forward is first calculated. After thatcan locally refine the adjoint one
level, for each patch separately, and compute the solutici@ deeper level. This is done with
the ‘old’ scalar flux and angular flux values of neighboursptimer words the values of the adjoint
solution on the same level as the forward. Both approximatiare presented schematically in
Figure 2.

12

(a) Forward (b) Global adjoint approximation  (c) Local adjoint approximation

Figure 2:Schematic representation of the two approximations oftaeteadjoint used in the goal-
oriented adaptive criterion. The global approximation sists of computing the adjoint on a level
deeper, while the local approximation consists of locahefients (one such local refinements is
presented).

2.4.3 Traditional Adaptivity

Traditional refinement methods can be found in many areasatiematics and physics, however
the method described here does not necessarily apply teeaktareas. It is however widely used
in numerical neutron transport and other fields. All tramfiil methods are based on the same idea.
A local refinement and solution is computed and compareddamtlginal non-refined solution.
The elements or patches that have the largest change ifosohitl keep the refinement, the other
elements will go back to their original distribution.

We now need to quantify ‘change in the solution’. The soluiivthis case is the angular flux
¢ and the change will be looked at in phase space. In other watelsvill look at the square of
the change in the angular flux integrated over phase spacpaithr), which reads

— — ép,)%d2d 2.
" /Aw/&«m o) 2dSl (2.74)
— [ a0 [ (- onis (2.75)
G, Ax
— 2AG, /A (Onja = n)’da (2.76)

Since the integrand of the angular integral is a constarutimm, we can pull it out. That leaves us
with the spatial integral, which can be formulated in terrhthe matrices in Equation 2.27:

n= /M /Gi(¢h/2 — ) 2ddz = 2nAGi (D) — d1)T M () — ) 2.77)
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2 NEUTRON TRANSPORT WITH CONSTANT ANGULAR BASIS FUNCTIONS

In this reportgy, /; is determined in the local approximation. A patch is locaéifined and the
new solution is computed on this patch. This means the upflirxdvalues that are used in the
computation of this patch are of the coarse level and arepudted. Also the scalar fluk is not
updated before computing the solution on the finer patchéter e change has been computed
that patch is coarsened again, before going on to the nectt pat

This method clearly tries to get an accurate solutiog oh the whole domain, it's goal is to
let ¢ vary as little as possible. However, we are interested ircaarate calculation of the detector
response. The goal of the traditional refinement strategyg dot necessarily result in an accurate
detector response. As opposed to traditional methodsayaaited methods take into account the
guantity one wants to determine accurately, in this casedéhector response.

2.5 Overview of Algorithm

A schematic overview of the algorithm is presented in FigBreBefore we will explain the
overview of the algorithm a short explanation of the methsedufor solving the system of equa-
tions obtained from discretising the transport equatiogiven. This method is described ex-
tensively in Section 3.2, therefore we will only briefly eajpl why we have two loops in this
overview. The outer iteration is the refinement iteratiomjcl is discussed below. The inner
iteration is the source iteration, where the transport igas solved on a certain mesh. This
iteration consists of splitting the matrix and applying aala iteration on these matrices.

We start with setting up the finite element method in an hétviaal data structure. The hierar-
chy can be used for easy reference when refining. After whicham start with the first refinement
iteration, which itself starts with the first source iteoati These iterations are represented by re-
spectively the outer and the inner box of dashed lines.

In the source iteration we start by updating the source ténat, is the sum of the external
source and the scatter terms. In the first iteration theesdatm simply adds nothing to this sum.
We can then update the angular flux by solving the transpaettgbahe transport equation. This
results in the angular flux of one-time scattered neutromemRhis angular flux we can update
the scatter term, after which we enter the second souragider This is repeated a fixed number
of times, however, in the tests presented here it is maddlseisource iteration has converged up
to machine precision.

After the solution of the angular flux at the current refinetriewel is computed we can start
the first refinement procedure. The first step is to calculaeetror contributions of each patch
and ordering this list of contributions in decreasing abotontribution. When the contributions
are added the error estimate for this iteration is obtairidtke other step consists of refining the
patches with the largest contributions, in the tests ptesepelow we refine thirty per cent of all
patches in each iteration.

The first refinement iteration is then complete. We can nowaeghe whole process until
the error in the detector response is as small as one wartsé.t The detector response can
be computed at the end of the algorithm, when one is solegrésted in an accurate detector
response. For testing purposes we compute the detectansesm each refinement iteration.
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(Stard———>Setup FEWD

Repeat fixed number of times

Refine patches> W W @ oo N ——

Update source

Update scalar flux

Perform sweep

Compute det. response

Figure 3:Schematic overview of the adaptive algorithm.

2.6 One-Dimensional Results

In this section the results of the various adaptive algoriHor several test cases are presented.
Eight cases are used to illustrate the performance of tlogitdgn, these test cases can be found in
Appendix A. Each of the cases will test different aspecthefadaptive methods. In all test cases
the adaptive algorithms refine 30 per cent of the patchescim edinement iteration, unless stated
otherwise.

For all test cases a figure with the error plotted againstatad humber of patches. This shows
how the refinement in each step improves the solution. Invitlaig different adaptive methods
can be compared on performance. The discrete ordinatedhitlalso included in these plots,
although it is not an adaptive method. However, one can coartha cost in number of unknowns

21



2 NEUTRON TRANSPORT WITH CONSTANT ANGULAR BASIS FUNCTIONS

of the discrete ordinates method and the adaptive methods.

The quality of the error estimator for the two goal-orientedthods is also examined. To this
end we compare the estimated error with the reference @rhich is computed at a much deeper
level. We examine the quality to find out whether we can usethar estimator as a trustworthy
representation of the error. This would mean that in futumekwthe reference error does not
necessarily have to be computed.

A final comparison between the adaptive methods is an imagin into the effect of the re-
finement ratio, that is the percentage of patches that isackiim each refinement iteration. The
adaptive algorithm is run several times with different petages. The error versus the total num-
ber of patches for all methods is then plotted in one figurackvbhows the most effective refine-
ment ratio.

The first test cases have a homogeneous slab geometry, fiéhedi materials. The next
test cases have a separate source and detector in a homagenaterial. Thereafter the source
detector test case is extended by placing a shielding reégitre middle of the domain, between
the source and detector.

A final remark has to be made on all plots that are shown in #isien, the legend holds
names for the different method that are presented in thik.wdsniform’ is the discontinuous
Galerkin method with uniform refinement, i.e. in each refigetriteration all patches are refined.
‘Traditional’ refers to the traditional refinement criteni that can be used with the discontinuous
Galerkin method. The two goal-oriented adaptive methodsrefierred to as ‘full adjoint’ and
‘local adjoint’. The full adjoint is the criterion that basés decision for which patches to refine
on the adjoint solution of patches that are one level degpey @re refined once more) than the
patches of the forward solution. The other criterion batedédcision on a local refinement of the
adjoint solution and is therefore called local adjoint. Maave the discrete ordinates method
which is referred to as ‘discrete ordinates’. Finally a lihat represents second order convergence
is plotted for convenience, this line is referred to as ‘2miko’.

2.6.1 Homogeneous Slab (cases A and B)

The first test case is the homogeneous slab, both opticatly &md thin. The exact specifications
of these test cases are presented in Appendix A. In Figuy@aéacan find the plot of the detector
response error versus the total number of patches of testAcabe thick scattering slab. In this
plot we note that convergence is eventually second ordeailfonethods that are presented. The
error with uniform refinement of patches decreases corgtavttile the error of all other methods
decreases faster in the beginning, i.e. with few patchegrefbre the traditional, full and local
adjoint and discrete ordinates methods eventually haveleangage of an estimated factor of two,
measured in the number of patches needed to get a certain Enesimilarity in error decrease
of the different methods is probably due to the homogendith@problem.

Turning to the plot of detector response error decreasausdte total number of patches
in case B, Figure 4(b), we see that all methods again performew/hat similar. This time the
uniform method (all patches are refined in each refinemenattite) performs slightly better than
the other methods. The error decrease for all methods is apaut second order.

In both cases the adaptive algorithms perform about the satee the Discrete Ordinates
method performs about the same as the adaptive algorithims.uiiiform refinement performs,
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however, different in case A and B. In case A the adaptiverdlgus perform slightly better, while
in case B the uniform refinement performs slightly better. alswer to this can be found in the
spatial patch distribution, which is shown in Figure 5. legh plots the number of patches in an
element is plotted against theposition of that element.

Case B has quite a uniform patch distribution in space. Taerene would expect the uni-
form and adaptive methods to work similarly. However in cAghe patch distribution is far from
uniform, more patches are used near the edge of the domagr. thieedges the angular flux is
more difficult to compute, because of the leakage. In the laidfithe domain there is little ef-
fect of the leakage, because the material is optically thidierefore the adaptive algorithms can
provide a better solution.

Another remarkable result is the steps in the patch didtdbof test case A. These are an
artefact of the refinement algorithm, when a smaller fractd patches is refined these steps
disappear and the distribution becomes exponential. Tperential behaviour might be due
to the fact that effects of leakage decrease exponentidignwpropagating through the domain,
because a ray of neutrons also decreases exponentially.

The lack of difference between the three adaptive methaubeaxplained by the homogene-
ity of the problem. Since the volumetric detector is in theolehdomain there is little difference
between the traditional and goal oriented criteria. Onddceay that a refinement that changes
the solution of the angular flux most will probably also result in a better detector resparst
vice versa. Therefore we will turn to other test cases.

Error in detector response, test case A Error in detector response, test case B

T T
uniform —&— uniform —s—
full adjoint full adjoint
L'} local adjoint ----a--- 1k Boay local adjoint ------- 4
01p AN traditional v 4 R traditional v
W O discrete ordinates N discrete ordinates
A 2nd order ------ 01k Ty, 2nd order ------+ |

0.01 LN
0.01 F
0.001

Error
Error

0.001 |

0.0001
0.0001 |

1le-05 | 1e-05

1e-06 - 1e-06 -
100 100

L L . L L N
1000 10000 100000 1000 10000 100000
Total number of unknowns Total number of unknowns

(a) Test case A, thick highly scattering medium. (b) Test case B, thin scattering medium.

Figure 4:Error in the detector response of the two homogeneous skiltéses. In the optically
thick case all methods perform better than the uniform nuthecause the optimal distribution
of patches is not flat. However in the optically thin case théneal distribution is almost flat,

therefore the uniform refinement works well.

2.6.2 Separate Source Setector (cases C, D, Eand F)

In these test cases a geometry with a separate source actbdéoe different materials is pre-
sented. The four materials are thick scattering, thin edaty, thin absorbing and a material with
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Distribution of patches, test case A Distribution of patches, test case B

1000 T T T 1000 T T
full adjoint full adjoint
traditional v 1 traditional ~ ~
¢ local adjoint ~ « % local adjoint
S
* "J"
g 100 f ’x,‘;' r 8 F
‘§ xx’%”xw ‘”{0#{ § A",'w d"i‘
k] S 100 |, A o
s K 5 o
3 ‘&% *‘x‘ 5 %wmwmmw
3 10k 'I:‘ “t 2 %‘""
1 L L L L L L L L L 10 L L L L L L L L L
0O 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
x coordinate x coordinate
(a) Test case A, thick highly scattering medium. (b) Test case B, thin scattering medium.

Figure 5: Spatial patch distribution, in one spatial element all ges are counted and plotted
at its position. The steps in the optically thick case disgwpvhen a smaller refinement ratio is
used. The optimal distribution of patches in the opticdiiy tcase is almost uniform.

medium thickness and some scattering. For each of the gt tlae material properties are listed
in Appendix A.

Figure 6 shows the error in the detector response versusthlenumber of patches of all
source detector test cases. We see for all four test cassartieesecond order convergence of the
uniform method. For test cases C, E and F we see somewhatrtielszhaviour. The discrete
ordinates method outperforms all other methods, while ithdittonal refinement criterion with
discontinuous Galerkin performs the worst of all, sincerdtie almost no error decrease. The two
goal-oriented adaptive methods, full and local adjoinbvenge second order and perform at least
as good as the uniform method. In case D the full adjoint goi@ikted method performs best,
while all other methods perform comparably.

An explanation for this behaviour can be found looking atahgular flux profile. In the thick
and diffusive cases the flux profile is almost linear whiletia absorption case it is exponential.
Since we're using constant basic functions (patches)rdiftebehaviour can be expected when
the solution has a different angular flux profile. A lineardtian is harder to approximate with
constant patches, as it needs a fine representation foredtidins. An accurate approximation of
exponential functions with constant functions only neefisearepresentation where the derivative
of the exponential function is largest.

When comparing the uniform and adaptive methods one findsthieagoal-oriented adap-
tive methods are at least as good as the uniform method. @b#idnal adaptive method does
a very poor job. These differences between the methods carained by the patch distribu-
tions, which are shown in Figure 7. In this figure we will takelaser look at the spatial patch
distribution of cases C and E. In case C we saw that the gaaitated methods have an equal
error reduction as the uniform method, which can be expthimethe diffusivity of the problem.
Constant patches cannot approximate diffusive problentls mexause the angular flux profile is
linear. Since we need a fine mesh to approximate a lineariumlsy constant basis functions, this
means the whole domain of the problem will be refined. Figa® 3hows the flat spatial distribu-
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Error in detector response, test case C Error in detector response, test case D
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(a) Test case C, thick highly scattering medium. (b) Test case D, thin scattering medium.
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(c) Test case E, absorbing medium. (d) Test case F, purely absorbing medium.

Figure 6:Error in the detector response of all source detector tesesa

tion of the two goal-oriented adaptive methods. This figuse ahows why the traditional method
performs so poorly. Most refinement is on the left hand sidthefproblem, while the detector
is on the right hand side of the problem, which results in adetdctor response. The traditional
criterion refines patches of which the solution changes mvbsh they are refined, which will be
around the source region in the domain and not around thetdetegion, as the solution is much
larger in the source region.

The patch distribution of test case E shows why the goal taied adaptive methods outper-
form the uniform method. Even though the spatial distrimutis still quite flat, more refinement
took place on the border of the source region and the detesiimn. Since this problem is less
scattering the patch distribution is less flat. Also in ttasethe traditional method refines locally
around the source and not at all around the detector.

It is also worth looking at the node wise root mean square émas error) of the flux. Since
this error measure looks at the whole domain of the problestead of just the detector region.
Figure 8 shows a plot with the rms error versus the total nunobgatches. The traditional
adaptive method provides us with the smallest error of athoas and discrete while the goal
oriented adaptive methods show almost no decrease in @tisrbehaviour can be expected since
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Distribution of patches, test case C Distribution of patches, test case E
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(a) Test case C, thick highly scattering medium. (b) Test case E, absorbing medium.

Figure 7: Spatial patch distribution, in one spatial element all ges are counted and plotted

at its position. The traditional adaptive method mostlyrresi around the source, not around the
detector. The absorbing medium has a larger refinement neaice and detector for the goal

oriented adaptive methods, while the thick case has an alfladslistribution. This is needed for

an accurate representation of a diffusive problem.

the goal of the goal-oriented methods is to get the deteesranse as accurate as possible, which
not necessarily needs an accurate description of the aolitithe whole domain. We furthermore
note that the uniform method converges about second ordethahthe discrete ordinates method
performs similar to the uniform method.

2.6.3 Quality of Error Estimator

Besides using the error estimate as a criterion for refinémercan also use it as an estimator for
the error in the detector response. In many cases the exactsenot available, as we do not have
an exact solution to the neutron transport problem. Tolvsliase the estimator as error indicator
we first need to test its performance. This test consists afm@xng the error ratio, that is the
ratio between the estimated and exact error. Since the examtis not available we will use a
reference error, which is computed on a much finer patchiloligion. In this section we will look
at three test cases (A, E and G) where the estimator behdfereulily.

In each of the figures presented here three data sets aredpltiform’, ‘full adjoint’ and
‘local adjoint’. We will treat them in reverse order, stagiwith the local adjoint. The local adjoint
criterion consists of the goal-oriented error estimatee(Section 2.4.2), where the exact adjoint
solution is approximated by a local refinement of the assediadjoint patch. That is, to compute
the error contribution of a certain patch in the forward paltistribution, we refine the associated
adjoint patch once locally, resulting in a representationoae level deeper. Besides using the
error estimator the refinement criterion based on the ewotribution is also used. Turning to
the full adjoint criterion, this method uses the same ddteas the local adjoint, only the exact
adjoint solution is now approximated by computing the atjgiolution on a patch distribution
that is refined to one level deeper than the forward patchlaision. The last data set is obtained
by using the full adjoint error estimator on a uniform refingtch distribution. This means in
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0-1. T T L | T T L T T T
| uniform —s— |
full adjoint
L N local adjoint ----4---
001 F j:\‘--A--A--A--A--Ap--&--A--Ar--A--A--.ﬁ--A traditional v i
: 3 Y m discrete ordinates 1
- 2nd order -------
5 oo0lrp ' 1
w A3
%) | -
=
& 00001 | -
1le-05 .
1le-06 el e e
100 1000 10000 100000

Total number of unknowns

Figure 8:Node wise root mean square error of scalar flux of test casa the root mean square
error measure we see the traditional adaptive method beioge reffective than the goal oriented
adaptive methods. The goal of the goal oriented adaptivladst an accurate detector response,
is therefore not the same as an accurate overall solution.

each refinement iteration all patches are refined, so thetiaglapiterion for refinement is not
used. However, we can test the error estimator that is aaldiom the adaptive criterion using
this patch distribution.

The error ratio’s for the thick homogeneous slab, test cagseéshown in Figure 9(a), where
the ratio of the error estimator and the reference errooigga against the total number of patches.
We expect the error estimator to asymptotically go to thereafce error, this means the ratio
should tend to unity. We can see that for case A the ratio temdsity for the uniform method,
however not asymptotically. It is expected that this wilppan when linear patches are used, as
constant patches cannot approximate linear flux profilek Wiké same criterion but with adaptive
refinement, the full adjoint case, has somewhat the samevibehalt has some wiggles, but the
trend is the same as the uniform case. In contrast to thisotlaéadjoint case has a very different
behaviour. The ratio lies significantly below the refererceor and it even becomes a worse
estimator when more patches are used. For this case it chamusted as an error indicator.

Turning to test case E, the absorption source detectorgmghle see in Figure 9(b) that the
full adjoint case does not always provide an accurate estimator. The error ratio does not tend
to unity as patches are refined, which means we cannot use iediable indicator for the error in
this case. The uniform refined method still tends to unity,dgain not asymptotically. The local
adjoint estimator performs even worse in this case, condp@arease A. We can certainly not use
this as an indicator for the error.
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The final case in this section is test case G, the thick boyrikstector case. The error ratio’s
are shown in Figure 9(c). In this case the full adjoint thefamh methods give almost the same
error estimator, which tends to unity. However, the locgbed estimator is still off. In all cases
the local adjoint estimator seems to provide us with an wexlignate of the error, which cannot
be used as an indicator for the error.

An interesting fact is that the local and full adjoint erratimators do not agree on the error
estimator, the full adjoint provides us with a reasonablgdyestimator, while the local adjoint
estimator is too much off. The two methods do, however, refimost the same patches, resulting
in similar patch distributions. This can be seen in the pdistribution plots shown earlier. This
means that when the error estimator is not important, thal ladjoint method, which is cheaper
than the full adjoint method, can be used to decide whichhestto refine.
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(a) Ratio of error estimator and reference error of test(b) Ratio of error estimator and reference error of test

case A, the thick scattering homogeneous slab problencase E, the absorption source volumetric detector prob-

The full adjoint gives an accurate error when uniformly lem. In this case the full adjoint estimator gives an ac-

refined, the estimator is also quite accurate when refinedurate estimator when refinement takes place uniformly,

adaptively. However, the local adjoint estimator gives arhowever not when the refinement takes place adaptively.

inaccurate estimator. The local adjoint estimator does not provide an accurate
estimator.

Ratio of error estimate and real error, test case G
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(c) Ratio of error estimator and reference error of test
case G, the thick source boundary detector problem. The
full adjoint refinement criterion gives us an accurate esti-
mator, in contrast to the local adjoint estimator.

Figure 9:Ratio’s of error estimators and reference error. The refe error is computed using a
very deep refinement, much deeper than where the tests ok pl
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3 ANALYSIS OF THE ADAPTIVE ALGORITHM

3 Analysis of the Adaptive Algorithm

In this section we will investigate on the algorithm used aétvs the transport equation. This is
mainly to describe the algorithm more accurately and alga@x some of the results we have
seen for the constant patches. There are three parts iretitisrs The first part is on constructing
the full transport operator matrix. We will need this fulkfio in order to investigate the algorithm
further. The full matrix is never constructed during thegesith the constant patches.

The second part involves the method of solving the transgquition itself. Two iterations
are used to solve the system, the source iteration and thepsteeation. These iterations are used
in a nested way, which is described in mathematical termisignpiart. Furthermore we look at the
question of convergence of the iterations in this part.

In the algorithm the adjoint operator of the transport eignat used, that is, the adjoint of the
continuous operator. We can also define a discrete adjoaratgr and examine how it relates to
the discretised continous adjoint operator. A derivatind eomparison between the two ways of
deriving a discrete adjoint problem is presented in thaltpart of this section.

Finally we have a part considering the behaviour of the landl global error estimator we saw
in the previous section. Both the global and local erromestdr refine patches in a way that is to
be expected and seems to be, in general, the most effediiverment. However the error estimate
itself differs between the methods. The global error edtimprovides us with a fairly accurate
estimate of the error, while the estimate of the local adijisioff by too much to be reliable. Why
this is possible with the error estimation as described énpitevious section is the subject of the
last part.

3.1 Transport Equation Matrix

The goal of this part is to construct the full transport oparanatrix, when discretised using the
discontinuous Galerkin method with linear basis functiorthe spatial domain and constant basis
functions in the angular domain. We will start with derivitig shape of the matrix for a uniformly
discretized problem term by term. Let us assume therdzasdements, in the spatial direction,
and P patches on each element.

Starting with the removal termm; ¢, we see that this term adds a block matrix for each cell in
the spatial-angular domain. Since applying the Galerkit@dure to this term results in

_ r}/ef}/elG Yer 762 :| [ ¢€17P :|
o G Ge pdrdy = 5P 3.1
/p /e tﬁbe,PVe €,p ;p Yelep H |: YeoVes Ge » Yeo 'Yeg ¢62,p ( )

and the spatial basis functionsare linear and the angular basis functi@ss, are constant, we
get a block diagonal matrix with the following entries

[ 761'761Gep YerVe: G } [ Pet,p } _ [ sAzAp ?AxA,u } [ Gel,p } (3.2)
’yezlyezGep 762762 ¢62,p EALEAIU ALEA,U, ¢€27P

This two by two matrix block is added to the diagonal of thgéamatrixL;, so there are in total
E - P of these blocks.
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The scatter ternf= @ is a little more involved, since this couples all patchesnneiement.
® is an integral of a piece-wise constant function and easimpmuted. For a uniformly refined
discretisation withP patches on an element, this results in the following matinohe element

O
—@eg G pdxd
/p/e47r ep7G7p$M

rVelryelGe,l 761762Ge,1 Yeq Ve Ge,Z ce ’Velr}%QGe,P
YeaVer Ge,l Yeo Vea Ge,l Yea Ve1 Ge,2 o YexVeo Ge,P
q)elp :|
= ’ 3.3
E - ' E |: ¢827p ( )
L YeaVer Ge 1 YexVes Ge 1 YexVey Ge, o Yea Veo Ge,P
i ?AmAu ?AmAu %AxA,u ?AxA,u
sATAp sAzAp FArAp - sAzAp
q)el »
= ’ 3.4
E - . E |: ¢627p } ( )
i %ACEAM %ACEAM %AacA,u %AacA,u ]

This block matrix is also added to the diagonal of the largé&imnd ;,, however since this block is
2P by 2P, itis addedF times.

The streaming term was divided into two terms, a volumetnid a boundary term. We will
first discuss the volumetric term, which is again a two by twaxk matrix that will be added to
the diagonal of the large matrik;,. This block matrix is derived as follows

/ 2
//Ma¢e,pVeGe,p ZV@Ge pdacd,u _ 7?1'761 <Ge,p> ’Yel"Ye2< > ¢elp (35)
»Je ox pps ’

’732 Ye1 <G2 p> 762762 <G2,p> ¢627P
—3Ap —1Au] [m ]
_ 2 eLp 3.6
|: %A:U' %A:U' ¢€2,p ( )

Now we have the most involved term left, the boundary stregnérm. This term will not
produce block diagonal matrices, instead it will couplechas from different elements to each
other. We have a different situation for left and right gopegches, that is, for patches where
eitherfp dp > 0 or fp dp < 0. In general we have

[l 0] [0
eGe du = el /€1 €,p esp
/pM’Y 7P§ i H |: 0 0 z—el ¢e2,p r=el

0 0 d)el D :|
+ ’ 3.7
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3 ANALYSIS OF THE ADAPTIVE ALGORITHM

At a boundary we chose the angular flux valyespwind when the patch is streaming into the
element and we chose the flux values of the element itself WHeepatch is streaming out of the
element. This gives us qup dp >0

e <M>0}[¢11} [0 0}[@%]
Gle dp = TR 4 ehp 3.8
/p,u’}/ 7pezp ox H |: 0 0 ¢6271,p 0 <:U'> ¢e2,p ( )
Analogously we treat patches whg@)edu < 0, only now the fluxes at the other side of the element
are taken from the neighbouring element.
Adding all these terms, we can construct the full matrix asised in the code. Note that in

the code the full matrix is never constructed, for large fgots this is very costly computational
and memory wise. In Figure 10 the non-zero elements;ofire shown.

]
] L]

T

Figure 10: Structure of the matrixt;,. The blue blocks represent the blocks on the diagonal
which arise from the removal and volumetric streaming terfike boundary streaming terms
result in the green blocks. The large yellow blocks arisenftbe scatter term. This is the matrix
corresponding to a system with two spatial elements with éawr patches.

For non-uniform meshes the structure of the matrix will leghme, however since the number
of patches per spatial element is variable the yellow blacksigure 10 have variable size. The
elements that arise from the boundary streaming term, gretirat figure, will correspondingly
shift. This does not alter the iteration with which the sgstie solved, as can be seen in the next
section.

3.2 lterative Solver

Now we will focus on the method of solving the system of equaithat was obtained above.
Since the matrix is sparse, especially for large systents, af computational and memory costs
can be avoided by using methods that do not need the explitibmTo achieve this two iterations
are used in a nested way, first the source iteration is apptiddhen the sweep iteration.

Source iteration is a method that is also inspired by phiseasons, since it is an iteration
where neutrons are scattered more and more with eachdteratiore on this below. The sweep
iteration is a way of solving the angular flux with the deperades on upwind angular fluxes. As
it turns out the sweep iteration can also be understood azrdemréng of the matrix.
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3 ANALYSIS OF THE ADAPTIVE ALGORITHM

3.2.1 Source lteration

We will start with applying source iteration to the discsetil system of linear equations, which
will turn out to be an implementation of a block Jacobi itemat However, the method also has
a physical explanation, for practical reasons we will usedbntinuous equation to explain the
physical aspect of source iteration, but the reasoningstfolidthe discrete domain.

The two sides of the transport equation as in Equation 2.2ritbesa different process. The
left hand side of the transport equation,

Q- Vo(r, Q) + ou(r)o(r, ) = Z8(r) + 5(r, Q) (3.9)

describes streaming and removal of neutrons, while the highd side is a source of a particular
point in the spatial-angular space. This source side dsngfiswo terms, the external soureand
the scatter sourcg ®(r). This term can be considered as a source since it ‘rediggsboeutrons
from all directions to the point in spatial-angular spaceangconsidering, in other words, for this
point the neutrons scattering to this point are a source.

In many numerical implementations this term is approximiatéth the source iteration. In
this iteration we start with the transport equation withaay scatter source,

Q- Ve (r, Q) + 0:(r)¢’ (r, Q) = s(r, Q) (3.10)

where we solve fop", the zero-times scattered flux. The solutifhwe found is an approximation
to the solution of the transport equation where all scatteis ignored. We can use this ‘guess’
to obtain a better approximation for the angular ftuxf Equation 3.9 by substituting in the
scatter term and solving the equation

Os

Q- Vqﬁl(r, Q) + Ut(r)tbl(r, Q) = (bo(r, Q)dﬂ + s(r, Q) (3.11)

4 A
We now obtained a ‘one scattered’ angular fikkx which is a better approximation to the angular
flux of the transport equation. In ¢' we now take into account all neutrons that have scattered
once, but we disregard all neutrons that have scatteredtinugs. This procedure can be repeated
until the approximation’ is close enough te. In general this iteration can be written as

Os

Q-VeT(r, Q) + oy (r)o! T (r, Q) = o (r, 2)d2 + s(r, ) (3.12)

T Jar
We will now continue with the numerical description of thierative method, which turns out
to be a block Jacobi method. Some words on convergence obthplete iterative method will be
spent at the end of this section. From now on we will again icemghe discrete system of linear
equationsL,¢ = s.
To apply the block Jacobi method we split the matrix in twoncas,

Ly =T+ 5, (313)

whereTy, is the operator that handles transport and removal, vihile the scatter operatdry, is a
block diagonal matrix with bands. The blocks are two by twothe blocks describe the transport
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3 ANALYSIS OF THE ADAPTIVE ALGORITHM

equation within one cell in the spatial-angular space. Biam streaming terms, originating in
Equation 3.7 form the bands of the matrix. The entries)jrall follow from the scatter term in
Equation 3.4, so this matrix is also block diagonal, but \biibcks of2P x 2P.

Although the matrixXl}, is not block diagonal we will apply the Jacobi iteration noatho this
splitting of L. This can be done since we will be able to solve the systemngatdrom the
Jacobi iteration later on. Our iteration now looks like

o =TS0t + T, s (3.14)

3.2.2 Sweep lteration

Now we can turn to the question how to solve the transportgfatte equation, that is, a system
of the formT},z = b. We can utilise the special form @, to solve this with a direct method. To
this end we split the matriXj, into two matrices and thus, effectively, splitting the maik;, into
three matrices. This results in the following matrices

T, = B+ D, (3.15)
Ly, = Bp+Dp+5), (3.16)

where B;, is the block diagonal matrix i}, and D;, is the matrix containing all off diagonal
blocks ofT},. Before writing the iteration as an expression of these ey we will take a look
at the inner parts of these matrices.

First we take a look at matri®;, and let us assume the matrixrisx n. Since this is a block
diagonal matrix with blocks of two by two we can solve a syst@m = b by solving5 decoupled
systems of two by two. We would like to be able to solve theaystB;, + Dy,)x = b in this way,
since it will reduce the computational cost of an implemgateof this system.

The diagonal blocks ab;, can be put in the right hand side of the two by two systems if the
column entry ofx is known, or, for block(é, 7) in B;, and block(s, j) in D, we can putDy,; ; in
the right hand side of

(Bn + Dp)x = b == Bpiiw; = b; i — Dpi j; (3.17)

whenz; is known. In Figure 11 the sweeping iteration is performedt@nmatrix 5, + Dy,. In
step (2) one can see how Equation 3.17 is constructed forldach in B,. As shown in step
(1) there are two blocks without a dependence of other blotks,, these will have to be solved
first. After the first block is solved, the dependence to amolthock in By, is known, therefore this
block can be directly solved. This procedure will have to éeeated to solve every other block
on the diagonal, after which the same procedure can be fetdptwt going back up the matrix.

There are two ways of interpreting this method, a physicdl mathematical one. To start
with the mathematical interpretation, we note that thishodtsolves the entries of the vector
in a certain order. When rearranging the matrix in this qrder see that the matrix is actually a
triangular matrix, either upper or lower. Since a trianguhatrix is directly solvable, this method
is a direct method.
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3 ANALYSIS OF THE ADAPTIVE ALGORITHM

(1)

g@

@) (4)

Figure 11: Sweeping iteration in matri¥s;, + D;,. (1) shows which block iB;, can be solved
without usingD;,. In (2) one can see how Equation 3.17 is constructed. Sitng8) is the end of
the sweep going to the right. In (4) the sweep iteration igingacompletion.

Let us turn to the physical interpretation, in Equation 3& mvade the choice to only use
upwind information of the angular flux. This means we must 8mdve the upwind angular flux
of a patch before we can solve the angular flux of the patclf.it3de only exception are the
boundaries, where Dirichlet boundary conditions stipuldite upwind angular flux. In Figure
12 an illustration of the sweep algorithm in the spatialtdagspace can be found. The arrows
indicate the direction of flow and therefore the dependeridbeopatches, which results in the
ordering of the patches.

We can now give an expression for the whole iteration, thdtdth source and sweep iteration
combined. We will use the superscridbr the source iteration anfdfor the sweep iteration. Note
that the source iteration and the sweep iteration are diftekinds of iterations. The source iter-
ation is truly an iteration, where convergence questiomsbeaasked. This means every instance
of the source iteration is an approximation of the solutidie sweep iteration, however, is an
iteration of the rows in the system of equations. It is adyualdirect method, which becomes
clear when one looks at rows separately. Therefore we meamdey & + 1 the next row under
consideration and by all rows of which the equation is already computed. The felidtion can
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0

r —>
Figure 12: Sweep iteration in the spatial-angular space. The directd flow, and therefore
the dependence between patches, is shown by the arrows) time(tight going directions are
computed, while in (2) the left going directions are comgut&fter both directions are finished,
the system is solved

—--

then be written as

@R — Bolgy gbk — B Dy gtk 4 b (3.18)

For the Jacobi iteration sufficient conditions for conveige have been proven. The iteration
converges when the matrik;, is diagonally dominant. That is, when the absolute sum of the
off-diagonal elements is smaller than the absolute didgereent.

We will show that the matrix.;, satisfies this condition. To that end we will look at a general
row in the matrix. For the diagonal element we can write

1
3
where the terms originate from, respectively, removalyn@tric streaming, boundary streaming
and scatterp’ denotes the index of the patch of this row anid the index of the other patches in
this element. For the absolute sum of the off-diagonal efesn&e can write

1 1
Liis = gAzAuyor £ 5 < iy > + < iy > + Amug,z—; (3.19)
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1
Z [ Lnsi | = éAxAﬂp’Uti <Hp >+ < pyp >
i#j
+ 2 L aea + 137 Avag? (3.:20)
dr |67 Ty S TR '
PFpP

The inequality we need to prove for convergence can then litewes

1 os |1 ) 1 )
sArApyor > 2 éAmAup,JijAmAup (3.21)
PFD
Arlpy > Apl+3Y  Apl (3.22)

p#p’

We can further simplify this inequality to an inequality tisairely holds, sincé\y,, > 0. There-
fore the inequality above holds and the Jacobi iteratiomiislg convergent.

dr > Apy +3) Apy (3.23)
p#p

> Apy +3(2 - Apy) (3.24)

> 6 2Auy (3.25)

In these steps we used thaf, + Zmép, Ap, = 2. Note that this is a sufficient, not necessary,
condition for convergence of a Jacobi method.

3.3 Derivation of Adjoint Operator.
Here we will look more closely at the derivation of the adjginoblem. To that end we write the
transport problem in the following way

Lp=s (3.26)

In Section 2.6 we derived the adjoint transport operatordiscretised it in the same way as
the forward operator. For clarity we will repeat the defitiof the adjoint operator and both
operators here. The adjoint operaifor of any operatot. is defined as

< @, Lo >=< L*¢*, ¢ > (3.27)

where¢ and¢* are functions from the spade and L* work on, in general this i€?. < -,- >
denotes the standard inner product on this space. Furthemmorequired that the adjoint operator
satisfies the following equation
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whereop is the macroscopic detector cross section. This leads ttoosving equality, which
we will call the duality relation
< 8,0 >=<¢*,0p >=J (3.29)

in which J is the detector response. With properly chosen boundargtibons, we have shown
that the forward and adjoint transport operator can be sgprkas

L = QVio-2/ df (3.30)
47T A
I = Q. Vio-2[ a6 (3.31)
47T A

Since these operators and their associated equations tsavelar form, we can discretise them
in the same way. This leads to a discretisation where in ti@rddperator the volumetric and
boundary streaming matrices are subtracted in stead ofldaddae matrixL; .

The derivation above is one way to obtain a discretised sspe for the adjoint transport
eqguation, however there is another way to obtain such aresgjon. Figure 13 shows the two
routes taLy, where we have now explored the upper route, that is firstiderthe adjoint operator
L*, then discretising this operator. The other route startdigretising the forward operatdr,
obtainingL;,, of which we can the adjoint operator.

The discrete transport equation can be written as follownéglnis a matrix equation,

Lpon = sp (3.32)

and let us define the detector response by

J = dioy (3.33)
= diL,'sy (3.34)

Since the detector response is a scalar we knowthat/”. So we can write

J = st hHld, (3.35)
= st d, (3.36)
= 5,95 (3:37)

where¢; is given by the adjoint problem

LT¢: = dy (3.38)
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Forward Adjoint

Cont. L ===4=-=->L*
1 Y
1 \
: A
1 ‘\
1 y
\J |
: * *
Disc. Ly ==~ h.disc 7é Lh,cont

Figure 13: Schematic overview of the continuous and discrete formiseofarward and adjoint
equation. There are two routes that can be taken to arrive diseretised adjoint equation start-
ing from the continuous forward equation. The routes canltér a different expression of the
discretised adjoint.

from which we can deduce that the adjoint operator is sintpttanspose of the forward operator,
Ly = L.

We can now examine whether these two expressions for theetiisadjoint are the same.
The elements on the diagonal are not affected by transpasimgtrix, therefore we will start by
looking at these elements. All terms but the boundary stieguterms that are taken from the
upwind flux add to the diagonal elements. In the continuoygitdwe see all streaming terms
are subtracted from the diagonal elements, while in theelisadjoint they are still added to the
diagonal elements, since we are only taking the transpodedbrward matrix.

This means the volumetric streaming term will always makéffarénce, for uniformly and
non-uniformly refined meshes. However the boundary streguterm does not introduce a differ-
ence between the two adjoints for uniformly refined meshethé results of the constant patches
we already noted that the error estimator works better wiifoumly refined meshes. For linear
patches the only case where the error estimator providesect@nswer is with a uniformly re-
fined mesh. This confirms the hypothesis that the origin obtdaequality of the error estimator is
the difference in the continuous and discrete adjoints.

We will now discuss why for non-uniform meshes the bound#égasning term can introduce
a difference between the continuous and discrete adjokitgire 14(a) shows the matrix of the
forward operator for a non-uniform mesh. The mesh consiste/@ spatial elements with two
patches on the left element and six on the right element. ©tetih element we have one left-
going patch and one right-going. In the right element theestwo left-going patches and four
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right-going patches. Blue, green and yellow blocks havieint entries, since the position of the
patch is different, that is, the range is different.

[T 1]
[ [T TT]

1™

(a) Forward operator (b) Discretised continous adjoint (c) Discrete adjoint

B
=

Figure 14:Difference between the discretised continuous adjointtheddiscrete adjoint for the
boundary streaming term. This difference arises from usiifigrent patch sizes and therefore
makes the difference between the adjoints only larger inuraformly refined meshes.

The first remark is that transposing the forward matrix loakst like reversing the direction
of flow. We see the same non-entries in both Figures 14(b) dfc).1 However, the patches
on which the values of the entries are based are differentenAdonstructing the discretised
continuous adjoint the patch sizes of the current patch@rsidered, while in the discrete adjoint
the patch sizes of the forward associated patches are used.

This only introduces a difference between the adjoints for-nniform meshes, since all patch
sizes are the same for uniformly refined meshes. So the tBsmi@int and discretised continuous
adjoints of uniform meshes only differ in the volumetricestming term, which makes the error
estimator better in this case.

In the goal-oriented adaptive algorithm the breaking of #yimmetry should not lead to prob-
lems, as only the discretised continuous adjoint probleoséd. The error estimate and criterion
for refinement are both formulated in the continuous domadn,the discrete domain. More on
this can be found in Section 6.

3.4 Error Estimation and Adjoint Approximation

The fourth and final part of this section is an investigatiotoithe goal-oriented error estimate
used with the constant patches to decide where refinemeunldstake place. The goal-oriented
methods make use of the adjoint solutigh and try to refine in such a way that the detector
response error is as small as possible. Both methods refilghlgothe same patches, as can be
seen in the spatial patch distributions in the last sectiéowever, the estimate of the error they
provide is very different, the error of the global adjoinfpapximation is a reasonable indication
of the real error, while that of the local adjoint is not rele. An explanation for this behaviour is
presented below.

We will start by defining both the forward and adjoint tranggwoblems in discrete form. As
before theh subscript denotes this is the discrete form, we will is¢ 1 for a level deeper in

41



3 ANALYSIS OF THE ADAPTIVE ALGORITHM

refinement, in other words with more unkowns. Converselyl will denote the discrete problem
on a level higher in refinement. The current level for the famivproblem ish:

Lypén = sp (3.39)

To represent the error estimator in matrix form we need tlh@@tdoroblem solved on two levels,
bothh andh + 1:

hn = dp (3.40)
hi1Phi1 = dnyt (3.41)

Before defining the error estimator we need a matrix thatggtsjvectors from a refinement level
h to levelsh + 1 andh — 1, which we will call respectivelyZ ™ and E"~*. In the case we are
considering, with constant patches and a division into tquedly sized patches upon refinement,
these matrices have the following form

1 0 0
1 0
0 1 0
E}/:-H _ 0 1 0 (3.42)
0 1
L0 0 1 |
11 0 0
1 0 1 1 0
By = g D (3.43)
0 0 1 1

whereE™ isn x 2n andE} ' is & x n.

Now we can look at the way the error estimator is built up angseoutively how a different
approximation of the exact adjoint influences the estimit@.this investigation we do not have
to be concerned with the forward solution on different Iey&le will look at the influence of the
adjoint on the error calculation in one refinement iteratibhis means we can represent the error
estimate per patch as

n= R(EZH(?Z - (Zs:;prx) (344)

wherer is the vector holding all contributions of the patches afig., is the adjoint angular flux
approximation that is chosen, this can be either the glatjalrat ¢, or local adjointy} . Note that
Ris depending on physical properties of the problem, disggatameters of our discretisation and
the forward angular flux. Furthermore the estimate of theretself is given byAJ = 17y. The
global adjoint is simply given by
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oG = Oh (3.45)
= (Lj1) 'dn (3.46)

The local adjoint approximation is more involved. Before gam give an explicit expression
for ¢7 we will need to split the matrix_; in the block diagonal parB; and the scatter and
boundary transport paf?; + S} to obtain the following

B¢y, = sn— (Dy, + S;)¢h (3.47)

We can now locally refine the left hand side of this equatiothauit altering the block diagonal
form of the matrix. If we perform such a local refinement torepatch we find the following
equation

B0} = sne1 — EVTY(D; 4 S7) o (3.48)

where¢; = Ljsy. In this way a local refinement is performed, without altgrimeighbouring
patches, to give an approximation of the adjoint solutionhof 1. This constitutes the local
approximation of the adjoint.

We can now explore to what extend the two approximations efekact adjoint solution
provide us with a similar error estimate or with a similarenidg of the contribution of the patches.
First we will take a closer look at whether the ordering of ¢oatribution is the same in the two
cases. This would explain why the two methods roughly refieesame regions in the domain.

In order to easily compare the two estimator expressionsahepresented here

i = Bip) " [duer — ELTN(D; + 5303 ] (3.49)
¢c = (Bi) ' [dnyr — (Dhyr + Sh1)Ohi] (3.50)

Note that the difference between the two estimators is tite most term, which we can see as
a difference in the right hand side of a system of equatiorms(@ering the difference between
¢n andeyp 1, we can justify the following assumption. Take two entriepatches inpy,, patch
A and patch B. Let us assume without loss of generality th#tigicasep, < ¢p. When both
patches are refined, thus obtaining entrieg;in; which we will call patches Al, A2, B1 and B2,
the assumption will be that 1, 42 < @1, Pp2. Or, to put it into words, the order of the entries
of ¢y, is preserved as the same order of pairgf; .

The operatord and S do not affect the ordering of the vector, when the vector ifiplied
by it, by their nature. The matri)E,’j+1 increases the length of a vector, but again the ordering
is not affected in the same sense of ordering as used abowm this we can conclude that the
ordering of the right hand side of Equations 3.49 and 3.56arghly the same, as our assumptions
holds in most cases but not all. Since this is the only diffeeebetween the local and global error
estimator we can conclude that in general the ordering okther contributions, and thus the
decisions which patches are refined, is the same.
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The matrixB;,_ ; is block diagonal, with blocks of two by two for the constaatghes. This
means the inverse of that matrix is also block diagonal. Mlyihg the right hand side by this
inverse will therefore only introduce local dependencevieen entries in the right hand side.

In Equation 3.44 we see that the the error contributj@epends on the difference Et,’;“gzb,’;
and the estimator flux. Since these two vectors are almosaime, as they solve the same prob-
lem, a small perturbation in one of them will lead to largeatigk changes. This can cause the
total estimated error to be off for the local adjoint estionat
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4 Neutron Transport with Linear Angular Basis Functions

After examining the algorithm with constant patches in mae¢ail we can turn to using linear
basis functions in the angular domain as well. This meanssedinear basis functions in both
spatial and angular domain and we will call this method thedr patch method (as opposed to
the constant patches).

There are two issues when switching from constant patchlsear patches. First of all we
need to discretise the transport equation with our new fasitions, which leads to a larger trans-
port matrix with the same number of patches, as there are umkrgowns with higher order basis
functions. Secondly we need to look at the conservation ofraas with the new basis functions.
When the angular refinement of two neighbouring elementsdffisreint the continuity relations
that we used with the constant patches, see Section 2.3 tdmsare particle conservation.

4.1 Discretisation with Linear Basis Functions

The Galerkin discretization procedure is the same for eanistnd linear patches, in the sense that
only the evaluation of the integral will be different. In batases the space of test functidnss
the product space of the spatial and angular test functiespgctivelyV’; andV/,.

V=VsoV, (41)

The difference is that for linear patches the space of andpalsis functions has a larger dimen-
sionality. In Figure 15 an illustration of the basis funads presented.

One can see that the basis functions are linear in the direofithe coordinates and quadratic
in any other direction. Using basis functions defined as dyrbof functions allows us to dis-
cretize in two steps, spatial and angular domains sepgrafellarge extend the discretisation is
the same as that of constant basis functions, which is pexsém Section 2.2. We start with the
same approximation as in that section,

Z Z qbe,p’}/e 7p Q) (42)

which leads to equation 2.11,

N ~ Os A
/V /M 1e(P)Gep(@) |(QV +01) Y b preGey —5— 20| d2 =0 (4.3)

!l
e7p

Now we apply again the divergence theorem to this expressisnlting in

~ PN US
| 0G| Q) 3 by Gy — 5 = 20|
vy e/,p/
—|—/ Q-n Z ¢e’,p’7@’Ge’,p’d5VdQ =0 (4.4)
6V / /
€ 7p
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W — W —

(a) Basis functions of each space separate.

T
(b) Basis functions for the combined spatial-angular domai

Figure 15:Basis of the linear test space for the one dimensional trarigzjuation.

Where we will take the boundary flux values in the same way athéoconstant patches. When a
face of an spatial element is an outflow boundary for the otipatch, we take the angular flux of
the element itself. When it is in an inflow boundary, we tale wpwind flux. This is completely
analogous to what was done in the case of the constant patches

In the case of linear patches we can write the scalar®las
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P = $d (4.5)
um

o, = /Mg%pae,pdﬁ (4.6)

_ zp:% /4 G Y (4.7)

- g%ém 438)

The matrix obtained when evaluating the integrals in Equa4i.4 has the same structure as
that of the constant patches, which is derived in Section Btils means we can apply the same
method of solving the equation as for the constant patchesveker, the blocks on the diagonal
will now by four by four instead of two by two. In those blockewvaluate all the integrals over
the basis functions exactly, even if a product leads to argbooder basis function.

4.2 Continuity Relations

In the algorithm we allow for each element to have a diffeidistribution of patches. Since we
use flux values of neighbouring elements when updating tieofla patch, we need interpolation
rules when the distribution of patches is not the same. Mpeeific, we need interpolation rules
when the patch we are considering does not have a 'sistet paith the same interval in, in the
neighbouring element. Since the continuity relations Usedonstant patches are not generally
applicable, we need to derive new relations.

Suppose we have two neighbouring elementsand ey, and a patch distribution on these
elements such that interpolation rules are needed. We stingliish two cases, where neutrons
are streaming from a coarse distribution to a fine one andwdcga. An illustration of this can be
found in Figure 16.

The interpolation rules are derived from a conservationgipie regarding the number of neu-
trons. The transport equation considers ‘free neutroritrons that are not bound by a nucleus,
and describes free neutron sources and sinks. Taking tbesees into account the number of
neutrons must be conserved. Therefore in our interpolatit®@s no neutrons may be lost or cre-
ated.

Conservation of neutrons crossing the boundary betweesléments:, ande; can be for-
mulated as

/ Q- e (my, 2) ) — / Q- A% (r, Q)dOY (4.9)
Pe Pr1Upysa

or, for one spatial dimension,

/ e (Te, p)dp = / ! P (we, 1) dp (4.10)
c Pf1pr2
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(a) Coarse to fine (b) Fine to coarse

Figure 16:Two cases of different angular distribution of patches ilghbouring elements. To en-
sure neutron conservation interpolation relations betwtee discrete patches need to be derived.

This expression comes down to counting the neutrons thasdhe boundary from one side to
the other. We do not need to consider the whole angular dofoithis continuity relation, since
we can have the situation where only one patch is refined nmoedemente;. This means the
interpolation has to be local, in other words only relatehi ¢oarse patch,. on element. and
the fine patcheg; andp;, on element;.

To find general interpolation rules it is sufficient to findesilfor two cases, streaming from
two to one patch and vice versa. Upon refinement a patch idativinto two equal new patches,
so by applying the simple interpolation rule multiple timgs can apply it to any situation we
might encounter.

4.2.1 A First Attempt

We can easily formulate an interpolation rule to go from tharse element, to the fine element
ef, since we can exactly represent the coarse function in tieefdimction space. Take the coarse
flux to be represented by the two coefficiesits ,1 and¢., 2, wherepl andp2 denote, respec-
tively, the left and right angular basis function on the baany of the elements. We can likewise
do this for the fine patches, only now we have four angularstfasictions.

The interpolation from the coarse to the fine element canlteenritten as

¢ef,p1 1 0

¢ef,p2 — % % |: ¢ec,p1 :| (4 11)
¢ef,p3 2 9 ¢ec,p2 '
¢ef,p4 0 1

which can be used to formulate an interpolation rule of thevecse direction. LeP denote the
interpolation matrix as defined abovg,, denote the vector of coefficients in the coarse element
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and¢., denote that of the fine element. Then we can rewrite the iok&tipn as

¢ef = Poe, (4.12)
Pl¢., = PPy, (4.13)
T —1 pT
¢e. = (PTP)"'PTo,, (4.14)
where we have that

3 1 1 _1
Prp)ytPt=| 4§ § 4 (4.15)

4 4 4 4

It turns out this interpolation rule violates the conseabf neutrons when crossing a bound-
ary. This will introduce errors when non-uniform refined imes are used and is therefore not
preferred. An approach where the conservation of neutassured is therefore now examined.

4.2.2 Continuity as Minimization Problem with Constraints

We can evaluate this expression by substituting the exparwdithe flux in basis functions. The
angular basis functions are linear in the angular componer@ubstituting linear functions like
this yields an expression of the continuity relation in terofithe space of basis functions.

/ pee(Te, p)dp = / Pt (e, p)dp (4.16)
Pe ps1Ups2
By v (ze, pdp = / 1> vl bl (ze, p)dp (4.17)
Pe  coarse PraYPf2  fine
> ot [ wirendn = Yoh [ pil e s (4.18)
coarse c fine Py1Upyse
wlv® = w/Tv/ (4.19)

The vectorw® contains the integrals over each of the coarse basis fursctindw/ those of the
fine basis functions. Note that the vectors of the coarseespaetwo-vectors, while those of the
fine space are four-vectors, respectively the number oflfiastctions on the interval of we are
considering. We call this condition the 'hard conditiors, \se want this equality to hold exactly.

Using only the hard condition we cannot yet determine arrpalated flux in each case.
To this end we need another condition. The most natural dondis that the interpolated flux
should resemble the original flux. The most resembling flux loa written as the solution of a
minimization problem. Le}|.|| denote a norm, then the minimization problem is

min ||¢p® — ¢°/|| subject to wT v = w/Tv/ (4.20)

veorvf
Now consider the first case of different distributions, whaeutrons stream from a coarse
elemente. to a fine element;. In this case we need to determine the interpolated flux ofiriee
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elemente;. Since the space of basis functions of the coarse elemésicontained in that of the
fine element, we can represent the flux in the fine space exactly. In othedsyave can findy/
such that|¢/ — ¢¢|| = 0.

The inclusion of the coarse space in the fine space also mieasrt general, we will need
an approximation of the flux in the other case, where neutanestreaming from a fine element
ey to a coarse element. By choosing a norm in which the difference is to be minimigegican
derive different interpolation rules.

A natural way to start is by looking at the two-norm, since we dealing with physically
relevant functions. The two-norm is induced by the standardr product, which means

<fig> = / F0)9(u)dn (4.21)
173 = <f.f> (4.22)

Let us turn to the minimization ofi¢.. — ¢.,|| when ., is given, so in the case of neu-
trons streaming from a fine to a coarse element. We can projeatn the coarse space of basis
functions, which results in the following split of.

be, = BL. + O, (4.23)

Where¢!f lies in the space of coarse basis functions ag*rpl is orthogonal to that space. This
projection, or orthogonal projection is done with respedtie standard inner product. Since the
two-norm is induced by this inner product, we find the minimoihour expression by taking

Pe. = L, (4.24)

which results in the minimum being attained with

lde. = desll = [0l — ol — o] (4.25)

Al (4.26)
By working out the integrals of the continuity expressiofEguation 4.10 we conclude that the
conservation constraint is satisfied. This derivation ispresented here, as it is tedious and long.

We have now found an interpolation rule that conserves apsitand finds the best approximate
flux in the two-norm. This is implemented in the code for linpatches.
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5 Results of One-Dimensional Linear Patches

The linear basis functions as described in the previousoseatere implemented using the same
method of solving as was used for the constant patches. foheme can compare the constant
and linear patches with each other. Besides this companieaan also compare the three adaptive
criteria that were formulated in Section 2.4. As a shortpéoation we summarize what the three
criteria are.

Starting with the traditional criterion, which is a more cmonly used method for determining
where to refine. This method bases its decision on how muchdiuion locally changes with a
local refinement. The other two criteria are both called @wainted criteria, since they have as
goal to approximate the detector response as good as poshilthis criterion the exact adjoint
solution¢* is needed, since this is not available we have to approximaieéhe global approxi-
mation is¢;, | |, when the level of the forward solutiap, is h, or in other words the adjoint has
twice the amount of patches as the forward has. The localrdgpcomputed by taking only
local refinements of the adjoint from levielto 1 + 1. So only when the contribution of a patch is
computed the adjoint is refined to a level deeper on that patch

As a reference we also plotted the data of the discrete degimaethod for one dimension
using a Gauss-Legendre quadrature. This is a widely usedoahetvhich is especially effective
in problems with one spatial dimension. As stated befors, tiethod does lend itself well for
adaptive refinement.

Several kinds of plots are used to compare the various methiogeneral we look at the error
versus the total number of unknowns, the error can be eltiestid¢tector response error or the root
mean square error, which is a more global error measure.ifaisindication of the performance
of the method, since the number of unknowns is also a meastireoand cost when the number
of patches that are refined is taken equal between methodsrdém to explain certain results
spatial distributions of patches are used. These plots sheviotal number of patches within
an element versus the position of that element. The qudlitheerror estimators will also be
investigated, which is done by dividing the estimate by tkeceerror. This ratio should go to one
for large numbers of unknowns when the estimator is accurate

The obtained results are presented per kind of test casés thtzere are two homogeneous test
cases, four separate source detector cases and two shietdies. A short explanation of the test
case will be given before the results are presented. Fontirerin Appendix A all test cases are
listed with material properties and overviews of the geaométhe final results that are presented
here are on the effect of the ratio of patches that is refineddat refinement iteration.

5.1 Homogeneous Slab (cases A and B)

Two homogeneous test cases are used, one with an opticialyathd highly scattering medium
(A) and the other with an optically thin and little scattgrimedium (B). Homogeneity here means
that the material properties, that is the cross sectiomstha same throughout the domain. Also
the source and detector are present in the whole domain.

Figure 17 shows the error reduction in the detector respomiseis the number of unknowns.
For patches with linear functions in both the spatial ancudargdirection we have four unknowns
per patch. For both test cases we see that the discrete ®slinanverges slower and needs
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Figure 17:Absolute error in the detector response versus the numbenlafowns of test cases A
and B.

more unknowns than the discontinuous Galerkin method \wittal patches. Comparing the error
reduction of the linear patches in this figure with that of éner reduction using constant patches
in Figure 4 we can conclude that the linear patches work metietbthan the constant patches.

Also note that the difference is much larger in test case & thie highly scattering material.
This is due to the quadrature that is used with the discratmates method, which is the same
throughout the domain. However, the adaptive methods darereertain parts of the domain,
making that even more efficient. From Figure 18 we can corcthdt this is the case. Case B has
an almost flat distribution of patches as the outcome of sévefinement iterations, while case A
has an exponential distribution of patches.
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Figure 18:Distribution of patches along the spatial coordinate. Tb&at number of patches in a
spatial element is plotted agains the position of that eletme

We can investigate the method by comparing not only the énrtre detector response, but
also the root mean square error of the scalar flux. Figure d@shhis error measure of the
solution for the homogeneous test cases. For case A we caim $&th error measures, the
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detector response and the rms error of the scalar flux, teadaptive methods perform similarly.
It is especially noteworthy that the traditional refinememdthod behaves in the same way as the
goal-oriented adaptive methods. This can also be seen spttél distribution of this test case,
see Figure 18(a). In this distribution we also see the readonall adaptive methods perform
better than uniform refinement, the boundaries of the doma@more difficult than the middle to
approximate well.
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Figure 19: Reduction in the root mean square error of the scalar flux fer homogeneous test
cases. The error is plotted against the total number of unkisoneeded to obtain this error.

The difference between the adaptive methods in both caseslBaan be neglected. The
goal-oriented methods have a slightly larger decreaseram &r case B, but that is not significant
until the end of the graph. Comparing the spatial distrdoutn Figure 18(b) we can conclude that
the traditional method refines too much on the edges of theadlgroompared to the goal-oriented
methods. This is is qualified as a minor difference betweemnrtathods.

More interesting is the difference between the adaptivehott and uniform refinement in
the detector response error. In case A we see that the aglapdithods have a smaller error than
the uniform, while in case B this is the other way around. Aplaxation for this can be found
when looking at the spatial distribution in Figure 18 and sleéution of the scalar flux, the
integrated angular flux over the angular domain only, of the ¢ases in Figures 33(a) and 34(a).
A correlation exists between the number of patches aftaraefent in an element and the change
in the scalar fluxp along the spatial direction. In the middle of the domain cfecA we see little
refinement and the scalar fldxis nearly constant in the spatial direction. However in thwle
of domain B and on the edges of the domain of A we see much refineamd change in the scalar
flux ®. From this we can deduce that a uniform distribution of peschill work well in case B,
while it will not work well in case A. Adaptivity therefore saan advantage in case A and the
adaptive methods in case B cannot do much better than theromihethod. In the best case, for
the adaptive methods, they will meet the performance of ti@um method.

As a last remark on convergence we would like to point out thatconvergence rate of all
adaptive methods and the uniform refinement are, beforaditbe floor, fourth order or almost
fourth order. Since the convergence of constant patchesse@snd order, we expected then
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that the convergence of linear patches would be fourth offfeis indicates that this expectation
was justified. We will see that for all cases the same cormiusan be drawn on the order of
convergence.

The last observation on the homogeneous test cases is ondli gf the error estimator. We
can quantify this quality as a ratio of the estimated errardtie ‘exact’ error, where the exact
error is approximated by looking at the detector responskenfeference solution. The reference
solution is computed at a deeper level than the tests take plathis case with 1024 patches on
each spatial element. This is one level deeper than the ske@piéorm refinement level. In Figure
20 the error ratio’s of both test cases are presented.

Only the global adjoint estimator with uniform refinementdase B produces an accurate
estimator. We can disregard the final point in this graph a&sghint is close to the reference
solution. The approximation of the exact error can for ttegnpbe too far off for an accurate
quality. It will turn out that only this estimator has a goodatjty. All other test cases with all
estimators provide useless error estimators. An explaméar this behaviour is proposed in the
next section, if the reader wants to know more on this we tef&ection 6.
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Figure 20:Ratio of the estimated error over the ‘exact’ error. The éxawor is determined by
comparing the current detector response with that of therezfce solution, computed with a very
refined mesh.

5.2 Separate Source and Detector (cases C, D, E and F)

The next set of test cases we present the results of are themepource and detector geometries.
This means one tenth of the domain on the left is the souréerregith an isotropic homogeneous
source. One tenth of the domain on the right of the domainasdittector region, where the
detector is also isotropic and homogeneous. To obtain amatecdetector response for these test
cases it is important to represent the neutrons streamimg $ource to detector well. However,
in order to get an accurate overall solution, measured Wéthr@ot mean square error of the scalar
flux ®, we need an accurate representation of the angularfamound the source.

A first observation of the error in the detector response e$dttest cases presented in Figure
21 is that the discrete ordinates method provides a moreaecdetector response in three out
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of four cases. This is somewhat the same behaviour as foroti&tant patches, except that the
difference between discrete ordinates and discontinualerkdn has become smaller by using
linear patches, see Figure 6.
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Figure 21:Decrease in the detector response error versus the totabeurof unknowns for the
separate source ande detector test cases.

Case D, with different behaviour, has a scatter to totalxeastion ratio of 2, while case C
has a much larger ratio and cases E and F have much smaltegs.rdti this fact we can find
an explanation for the observation that linear patches wetker in case D. In case C we have
an almost linear flux profile along the angular directions tt&n be well described by the linear
patches. However, the Gauss-Legendre quadrature of gismdinates performs very well in with
these properties too. Therefore we see that linear patahégath’ error reduction on discrete
ordinates, but do not perform better.

In cases E and F we have very little and no scattering respdcttherefore the quadrature
of discrete ordinates does not play any role in achievingaouirate detector response. In one
dimension we use the Gauss-Legendre quadrature also fosiclgthe directions used in discrete
ordinates. These directions can very efficiently reprefiemtangular flux. Linear patches can
describe that angular flux more efficiently than constanthes, that is why the error of linear
patches is smaller than that of constant patches, usingathe sumber of unknowns. However,
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it is not yet as efficient as discrete ordinates. Then in cagee@an see the situation where the
linear patches perform well, since in this case the quadratidiscrete ordinates is important and
the flux profile is not linear. Linear patches can efficiendpnesent an exponential angular flux,
while the quadrature of discrete ordinates performs ledsimihese conditions.

Comparing the different refinement methods of discontisu@alerkin we see that in general
the traditional method provides the most accurate deteesponse. When we examine the spatial
distribution in Figure 22 we can see that the accurate swius achieved when there is more
refinement in the source region than in the detector regidrerd are some differences between
the two test cases in the spatial distribution of the traddl method. Figure 22(a) shows that in
case C there is no refinement in the detector region at allevithicase D (Figure 22(b)) we see
that the refinement in the detector region is about one tefntiiad in the source region. This is
due to the different angular flux profile in the two cases,dim@ C and more exponential in D.
To represent a linear profile with linear basis functionsunexg few patches, while representing
an exponential function requires more patches.
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Figure 22:Distribution of patches along the spatial coordinate. To&ak number of patches in a
spatial element is plotted agains the position of that eleime

In general the goal-oriented adaptive methods provide & moless uniform distribution of
patches, as can be seen in Figure 22. This explains why itnargkhas the same error reduction
as the uniform refinement. That, however, does not providesthfution with the smallest error in
both error measures. The difference between the goaltedaefinement and traditional refine-
ment is the use of the adjoint. The solution of the adjoinbfm can be used as the importance
of a location in the domain to the detector response. Therdfe fact that goal-oriented meth-
ods produce an almost uniform distribution of patches woudén that the adjoint puts too much
importance on patches near the detector. In the next sesopresent an explanation for this
behaviour, which is likely connected with the problem of éneor estimator.

Furthermore it is remarkable to see the error reductionerditector response error with the
traditional refinement criterion. Comparing Figure 21 whtigure 6 we see that with constant
patches the traditional method provides us with a poorlyneefimesh. Poor in the sense that
it provides an erroneous detector response. This is notdke with linear patches, where the
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method works very well. This shows that linear patches arelnmiore efficient in representing
the angular flux well. This can also be seen in the fact thatexgience in these four cases is again
approximately fourth order.

The last remark we would like to make concerning the sepa@iece detector test cases C,
D, E and F is that the error estimator is off by a large factagufe 23 shows the error ratio of
each relevant refinement method. In all cases, except oneaveeseen so far the estimated error
is too small. In the next section we will present a more intdepvestigation of this problem.
However, the distribution of patches after refinement ie likhat one would expect in most cases.
The distribution is also similar to that of the constant pat: A final observation is that the global
and local adjoint methods produce almost the same distritmit Taking all this into account it is
likely that the refinement criterion is, generally speakiogrrect and provides accurate results.
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Figure 23:Ratio of the estimated error over the ‘exact’ error. The éxagor is determined by
comparing the current detector response with that of theregfce solution, computed with a very
refined mesh.
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5.3 Shielding (cases G and H)

This section holds the results of the final two test casegsc@sand H. Both cases have an added
shielding region in the middle of the domain compared to thevipus cases. So we have a
source region on the left of domain and for the neutrons totrélae detector region on the right
of the domain they have to pass through a shielding regiohémtiddle. Since few neutrons
will pass through the domain to the detector it is importanteffine the directions leading to the
detector in order to obtain an accurate detector responsthdfmore we can see what the effect
of discontinuities in the materials properties is.

Figure 24 shows the detector response error of the two amiptdst cases. Besides the error
of the two goal-oriented adaptive methods for test case Hememally see the same behaviour as
in the separate source detector test cases. For the saroringgaas in the previous test cases we
think this behaviour can be explained by looking at the adjoiWe refer to the next section for
more on this.
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Figure 24:Error of the detector response of the two shielding test €asesus the total number
of unknowns.

The traditional refinement method performs best of the agaptethods in both cases. By
looking at Figure 25 we see a clear distinction in the spalisiribution of the traditional and
goal-oriented methods. The goal-oriented method refiras rtuch’ on the right side of the
shielding region, around the detector, to be efficient. Nb# the distribution the traditional
method produces is more efficient, but not necessarily the efficient distribution. It is possible
that more refinement on the right of the shielding region walult in an even more accurate
detector response.

In the spatial distribution we can furthermore see that tkeahtinuities in the material prop-
erties are more difficult to approximate, according to athgttve methods. Especially in the
shielding region of Figure 25(b) we see that such a discoityimeeds more refinement than the
discontinuity introduces by a source or detector region.

Also in these test cases we have an estimated error that grtalh, as can be seen in Figure
26. In Section 6 an explanation for this result is presented.
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Figure 25:Spatial distribution of patches of the two shielding testass G and H.
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Figure 26:Error ratio of the two shielding test cases. The ratio of tistiraated error over the
exact error is plotted versus the total number of unknowns.

5.4 Effects of the Refinement Ratio

As final result we discuss the effect of the number of patchasis refined in each iteration. In
this work a percentage of patches is refined in each iteralioall cases up till now we used thirty
per cent refinement per iteration.
Figures with plots of the detector response error versutothenumber of unknowns are once
more presented, but now each plot holds the error for diftepercentages of only one adaptive
method. We will only discuss some exemplary cases here.
Figures 27(a) and 28(a) show the error for the global adjmiethod and Figures 27(b) and
28(b) are the plots of the detector response error of the &mjaint method. In general we can
say that for the global and local adjoint methods the refimgrpercentage does not affect the
error much. For test case C we see a little oscillation of therend the lower percentages have
a slightly smaller error in this oscillation. This differamis negligible.
Turning to Figures 27(c) and 28(c), showing the error of theitional method, we see there
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Error in detector response with different refinement ratio, test case AR full djoint Error in detector response with different refinement ratio, test case AR local,djoint
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Figure 27:Error in the detector response versus the total number ohawnks for different refine-
ment percentages of case A.

is more difference between the percentages here. In botrefigue see that small percentages
achieve a smaller error when less unknowns are used, whilarége enough number of unknowns
the percentage return to the level of the small percentages.

Smaller percentages will refine only the absolute necegsatches, thus achieving a high
efficiency (small error for a given number of unknowns). dsiarger percentages means that
there will be patches that are refined that are not necessspgcially at the start of the iteration.
At the start of the iteration cutting a patch into two new pat has a great effect on the error in
the detector response. When many patches are already piesba problem, refining a patch
does not assort a large effect. The patches that are refirleel beginning can become useful later
in the refinement iteration, which is clearly what happenthwie two cases presented here.

As a final remark we would like to point out that a method thatdoices a small error for
a given number of unknowns is not necessarily a good choid¢ee plots presented here show
the efficiency of a method in the cost of number of unknowng, indhe cost in memory or
computational power. Refining more patches each iteratiean®one obtains an accurate detector
response more quickly, in computation time, than with sipafcentages. Therefore in this work
not one per cent was used, but thirty.
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Error in detector response with different refinement ratio, test case CR full djoint Error in detector response with different refinement ratio, test case CR local,djoint
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Figure 28:Error in the detector response versus the total number ohawks for different refine-
ment percentages of case C.
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6 QUALITY OF THE ERROR ESTIMATE

6 Quality of the Error Estimate

In the previous section we have seen that the error estimafgbor quality, while the refinement
criterion produced a distribution of patches that in somsesas better than uniform refinement
and in some cases it is not. In this section we will look mowesely at the error estimate, as this
cannot be used reliably as an indicator of the error.

To further investigate the behaviour of the error estimaterwill look into the definition of
the estimator. In Section 2.4 the error estimator is derivetgrms of the transport equation, to
be able to formulate an expression of the estimator that earoed in an algorithm. Here we
will present the same derivation, but now we will look moresgly at the precise definition of the
transport equation operator and its adjoint.

Starting with the definition of the problem at hand we definpaceH in which the solution
lies. The forward transport problem is then

find ¢ € H suchthat Lo = s (6.1)

We will call this the strong formulation of the problem, agpoped to the weak definition of the
problem, which is

find ¢ € H suchthat (Lo, ) = (s,)) Vo € H (6.2)

So far we use the full spadé, i.e. these formulations are for the continuous problenscigiisa-
tion means that we restrict ourselves to a spgace H, consisting of all functions il that can
be represented by all combinations of basis functions. Timeemical results presented in Section
5 are, for example, with the spatéthe space of all piece-wise constant functions with a i@stri
tion on the size of the linear pieces. Before formulatingdiseretised problem we formulate the
continuous restricted problem,

find ¢, € V suchthat (Lo, ) = (s,1,) Vi, € V. (6.3)

Consequently we can represent the spdday vectors that lie irRYY, which are the coefficients
corresponding to a basis In. Let P be a projector that projects these vectors onto the space
i.e. the projector”; is the expansion in basis functions,

Pign =Y y(n)gn(n) (6.4)

where~(n) are the basis functions that span the speceWith this projection the discretised
problem can be formulated as

find ¢, € RN suchthat (LPP¢y, PPy) = (s, PYy) Vo, € RN (6.5)

Here it is important to note that we apply the Galerkin digsagion method by choosing the test
functionsy, from the same space in which the solution lies, Veor R™Y with the projection?;.

The detector responskis defined as the following inner product, which is the sanmpession
as in Equation 2.42,
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6 QUALITY OF THE ERROR ESTIMATE

J={d,0p) (6.6)
Now we can define the error in the detector response as

AJ = ($,0p) — (b, 0D) (6.7)

where the subscript denotes that it is the restriction to the spa¢e- H. By linearity we can
also write this as

AJ = (§ = v, o) (6.8)
At this point in the derivation in Section 2.4 the adjoint atian and its solution are substituted
in this expression. We will therefore define the adjoint peabin the same way as the forward
problem. We start with the strong formulation,
find ¢* € H suchthat L*¢* = op (6.9)
Note that the spacél is the same space as in the definition of the forward equafitve. weak
form of the adjoint equation is defined analogously,
find ¢* € H suchthat (L*¢*,¢) = (op,¢p) Y€ H (6.10)

Restricting the spac# to the same spadé again we arrive at

find ¢; €V suchthat (L*¢}, ) = (op,%y) Vi €V (6.11)

Finally, we can also write the adjoint problem in terms\éfdimensional vectors,

find ¢f € RN suchthat (L*PY¢L, PPy = (s, PPyy) Yaby, € RY (6.12)

Again we applied the Galerkin discretisation procedurehenadjoint problem.
Now we can rewrite the expression for the error estimatoignaEon 6.8 by substituting* ¢*
for the right hand side of the adjoint problesry,,

AT =($— ¢y, L*¢") (6.13)

Equivalently we can write this estimator as

AJ = (L(¢ — ¢v), 9*) (6.14)

We now arrived at Equation 2.64 of Section 2.4. The error endbtector is now expressed in
terms of the bilinear form. Analogous to the derivation fr&guation 2.64 to Equation 2.65, we
will apply Galerkin orthogonality. We can identify.¢, 1, ) as the bilinear form an, v,,) as the
linear form of our problem. Galerkin orthogonality is thetféhat the error) — ¢, is orthogonal
to our restricted spack,
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6 QUALITY OF THE ERROR ESTIMATE

(L(d — du)ythu) = (Lo, tby) — (L) 1by) (6.15)
= (8,%0) — (5, %0) (6.16)
= 0 (6.17)

We can express Equation 2.65 therefore as

J = (L(¢ — du), ¢ — 1) (6.18)

where, can be any element of the space In particular we can choosg, to be the solution of
the weak restricted adjoint problem;, resulting in

AT = (L(6 — 60), 0" — &) (6.19)
The error can then be expressed in terms of the discrete fdppvablem as follows

AJ = (Pisp — LP o, 6" — PYoy) (6.20)

Here we assume that both the soukcand the detector cross sectiem, obey the following
relation

s = Pysp, (6.21)
op =Plop.n (6.22)

Similarly, by continuing from Equation 6.14 instead of Etjoa 6.13 we can derive the fol-
lowing expression for the error, which we will call the duaith of the error,

J = (¢ — PP, PPop.s, — L*PYé}) (6.23)
Note that we again used the Galerkin orthogonality propadwever now on the adjoint problem.
On the spacdd we have an expression for the detector respohsgerived from the adjoint

problem. This property is sometimes called the dualitytimheand can be proven by substituting
the adjoint problem in the following way

J = (¢,0p) (6.24)
= ($,L*¢") (6.25)
= (L, ¢") (6.26)
= (s,0%) (6.27)

The duality relation also holds on the restricted spécevhich can be shown by rewriting Equa-
tion 6.13 as
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6 QUALITY OF THE ERROR ESTIMATE

AT = (6=, L'6") (6.28)
= (L(¢— ), 9") (6.29)
= (s — L¢y, ¢") (6.30)
= (5,6") = (Ly, ") (6.31)

Furthermore, by rewriting Equation 6.13 by applying thed&bgih orthogonality principle twice
(on the forward and adjoint problem respectively) we obtain

AT = (L(¢— ¢v),8") (6.32)
= (L(d—¢v), 0" — &}) (6.33)
= (&, L*(¢" —4})) (6.34)
= (s,0" —}) (6.35)
= (5,0%) — (s, 0}) (6.36)

Combining these two expressions for the error in the deteegponse we see that we must have
equivalence between two terms, resulting in

(s,0%) = (v, 0D) (6.37)

which is the duality relation on the spake

To this point no approximation is made, the expression we Hawthe error in the adjoint
is exact. When the exact solution of respectively the atjoirforward problem is available we
can compute the error made by restricting the spdde the spacd’. However, in general this
exact solution is not available, which makes an approximmatf thi solution necessary. The
approximation we choose is perform a refinement on all basistions of the spac¥, call this
spacel/. We then have the following nested spaces,

VcUCH (6.38)

Let us denote the adjoint solution in the spacdy ng;‘LH in the discretised problem formu-

lation. We then have); € RN and¢;_ , € R, with M > N, more specifically in the case

of the linear basis functions we have thdt = 2/N. Analogously we define the solution of the
discretised forward problem on the spdée Substituting this approximation in the discrete form
of the error we obtain

AJ =~ (PPsp— LP én, Prdhir — PO} (6.39)
AJ =~ (P1dn+1 — Py, Popy — L Py éy,) (6.40)

In the results of the linear basis functions in Section 5 #rsion in Equation 6.39 is used as error
estimate. Therefore we will look into this expression to fihd cause of the underestimation of
the error estimator.
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6 QUALITY OF THE ERROR ESTIMATE

Since the ratio of the error estimator over the referencar ésrvery small, we know the esti-
mate is too small. The inner product in Equation 6.39 willdree small when the two functions
in the arguments are orthogonal to each other. We can dissimdour cases in which this happens
for different reasons.

1. The residual of the forward problesn LP;;q?h decreases.

2. The exact adjoint erraf* — P;;gfb,’; decreases, hence the approximate adjoint error will most
likely also decrease.

3. There is a possibility that the approximate adjoint eﬁg[l&;zﬂ — P;;&;; decreases while
the exact adjoint error does not decrease. This could beodstagnation between consecu-
tive refinements.

4. Finally, the residual of the forward problem can be ortiva to the approximate adjoint
error, while neither of these are zero.

Several tests were performed to determine which of the al@asons is the cause of the poor
quality of the error estimator. The step where the adjoihitEm P,y<z§; is added to the error
expression by applying Galerkin orthogonality is not neeeg to arrive at a correct expression
for the error. We verified that leaving out this term leadsitoilar results, i.e. also to an error
estimator with poor quality. This means that option 3) isthetcause of the poor quality, as there
cannot be stagnation in the approximate error of the adyalmn it is not used. Figure 29 shows
a plot of the error estimate of test case D without the tétfiw; in the second argument of the
inner product, where the quality of the error estimate Isgbior.

Also P2, ¢, is not small, as it is the adjoint solution of our problem.

Furthermore we computed the norm of the forward residuabovend together with the norm
of the approximate adjoint, which are shown in Figure 30 &st tase D. Considering Figures
21(b) and 23(b) we can conclude that the residual is too targecount for the small value of the
inner product, reducing the possible options to numberai@ya.

Furthermore we conclude that reason 2) cannot be the cause gifoblem with the error
estimator, since this would mean that the discrete adjointisn Py'¢? is very accurate, which in
turn would mean that the detector response computed by th@ydrelation (see Equation 6.27)
is very accurate. This is not the case, as the adjoint deteesponse sometimes stagnates for
several refinement iterations.

Only option 4) now remains, hence the forward residual arqtaimate adjoint error are
orthogonal, but neither are zero. We also conclude that, &gri&ng orthogonality, the forward
residual is orthogonal to the adjoint approximatiB;ﬁng?;kLH. The most likely cause for this is
the introduction of the approximation in Equation 6.39.

The residual is computed in the spdc¢eand the adjoint approximation in the spdéewhere
U is obtained by refining” once. In the results of Section 5 and of [4] piece-wise lirezal
piece-wise constant angular basis functions were use@ctdgply. The spatial basis functions
were in both cases piece-wise linear. We will concentratéherangular basis functions, as this
is the part of the domain where refinement takes place. Thie hawxtions of the spacE have
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Ratio of detector response error and reference error, test case D
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Figure 29: Ratio of the error estimate over the reference error withapplying the Galerkin
orthogonality to the error estimate. The quality of thisa@restimate is also poor, meaning that
stagnation in the adjoint error cannot be the cause of ther pality.

half the support of the basis functionslih These spaces are in a sense very similar, which could
cause stagnation in refinement. . .

The exact error in the detector resporse— Py ¢; lies in the spaced, we could write this
error as

O — Py, = e (6.41)
ell 4 et (6.42)

whereell € V andet orthogonal tol”. The approximate error can then be written as

Pidh —Pio, = e (6.43)
= e‘h‘—keﬁ (6.44)

where againe‘h‘ € V ande;- orthogonal tol/.

The approximation of the adjoint solution in the derivatafithe error estimate is an approxi-
mation of the forme = e;,. However, the part of,;, that lies in the spac¥, i.e. ell, does actually
not contribute to the error estimate, as Galerkin ortholjigragpplies to all functions iri/. There-
fore an approximation of the errerthat leads to an accurate error estimate must approxietate
well, this leads to the following condition
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Norms of adjoint solution and forward residual, test case D
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Figure 30:The norms of the approximate adjoint and forward residuaiest case D are plotted
against the total number of unknowns. This shows that ther estimate, which is the inner
product of the two, is not small because the adjoint or thevéwd residual is small.

et ~eit (6.45)

Furthermore, we still want that the the errois agproximated well by;,, which leads us to the
following two conditions for the approximation gf

et~ eﬁ (6.46)
el (6.47)

el =~
which impliese =~ ¢;,. Note that the converse is hot true. For example, assumelthat- e, in
which case the perpendicular part of the error is not impoitathe approximation of the whole
errore.

To test this hypothesis a more refined approximation of tlesteadjoint could be used, for
example refine each basis function in the spicevice to obtain the basis functions bf. This
approximation should lead to an error estimate of bettelityuhowever the computational costs
will go up rather quickly, as they grow exponentially wittethumber of refinement levels.
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6 QUALITY OF THE ERROR ESTIMATE

Another way to test this hypothesis, that leads to cheagerithims is to use different basis
functions for the adjoint problem, that is, solve the adjgroblem not on the restricted space
V, but on a different restricted spa8€. When piece-wise polynomials span the the spéce
higher order polynomials could be chosen to span the spacéor example solve the adjoint
approximation on piece-wise quadratic basis functionsfin@ment in basis function order is
sometimes referred to agefinement, as opposed to refinement in mesh, which is therreefto
ash refinementp refinement has the advantage of the computational costagdtiakar with the
number of refinement levels, however, it is not always fdagibuse higher order polynomials or
other higher order basis functions.
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7 Notes on the Boltzmann-Fokker-Planck Equation

One of the goals of this work was to investigate whether tiserdiisation method that is used
with the transport equation can be used for the BoltzmarikkérePlanck equation. In this section
the results of that are presented. Since the loss of symriretitye derivation of the discrete
adjoint transport operator the investigation is not vegrétugh. However, we have discretised the
equation and a proposal for solving the discrete system wéte@ns. This loss of symmetry is
also present in the BFP equation, since the terms from whishrésults are also present in this
equation.

7.1 Discretisation of the BFP Equation

The Boltzmann-Fokker-Planck equation reads

9
M@:ﬂ

Q o 1
d(2,Q) + ovp(x, p) + a0 (1- /f)%w,m] =— /1 o(, p)dp (7.1)

2 0u 2
which is the transport equation as in Equation 2.8, with twinaeterms on the left hand side [7].
These terms describe a diffusion process in the angulaahlad. The parameter is called the
momentum transfer, which determines the rate at which tleetion of the neutrons diffuses over
the angular coordinates.

To discretise this equation we use the same discretisatioallfterms as already obtained for
the transport equation, see Section 4.1. Below we will ondgrétise the extra terms, using the
same method. To that end we start with rewriting the terms as

0 0 0 0 0?2
%@ (1- MQ)@MZ’M)] = % [%(1 - MQ)%MZ’M) +(1 - /‘2)&”2 ¢(Z’M)] (7.2)
@ 0 0?
= 3 {—Q,uaqﬁ(z,,u) +(1- M2)3—;ﬂ¢(27u)] (7.3)

Now we can substitute a function from our test space for thgaulan flux in this term. The
function is a double sum of elements and patches on the etenvelnich can be expressed as

(bh = Z Z (Zse,p'YeGe,p (7-4)
e p

Substitution of this expression and integration over thele/spatial-angular space leads to

(6% 1 2 azGe/J)/ aGe’,p’
3 )2 | eGew L= 3D et =) > =g | dpde (7.5)
x - e/ p/ e/ p/

In this expression there is a second order derivative of dtieedinear basis functions. We want
at most a first order derivative with these basis functioimgesotherwise the term would vanish.
Therefore we use partial integration to obtain

71



7 NOTES ON THE BOLTZMANN-FOKKER-PLANCK EQUATION

2f277f1 YeGe,p ZZ’YeaGep - ZZaGeP dudr =
(0% aG& aGe/, /
‘5)42”/}“"_M52;%;7ﬁ@ on op M

fy

8] aGe/ /
+§/ (1— MQ)VerZZ%’TM’p du (7.6)
x e p

p=p—

The next step is to see how each term is added to the largexniatriwe will start with the
first term in 7.6, which is the equivalent of the volumetriceaiming term in the discretisation of
the streaming term of the transport equation. Howevernibis a volumetric diffusion term, since
we have a second order derivative in this term. The blockimdr one patch, which are added
as block diagonal matrix té,, looks like

! 0G., OGor
aT 1— 2 Aot —L 2P g da
/x/_l( u)gg'w T T

=a¢//urﬁﬂ

’YelfyelG/el ,P1 G/el ,»P1 Ye1Ver Glel ,P1 G/ehpz Ye1Ves Glel ,»P1 G/e27p1 Ye1Vea Glel ,»P1 G/e2,p2
Yer rVelG/el ,P2 G61 ,P1 Ye1Ver G/el ,D2 Gel,pg Ye1 Ve G,el ,P2 Geg,pl Ye1Vez G,el ,P2 Geg,pg
Yex Ve G/e2 »P1 G,ehpl Tea Ve G/62 »P1 Gl@l p2  Te2TVe: Gl@z »P1 G/e2,p1 TexVez Gl@z »P1 G/e27p2
762 ’YEIGIEQ ,P2 G/el,pl 762 761 G/ez ,D2 Gel ,D2 762 762 Geg ,D2 G/ez,pl 762'762 Geg ,D2 G/ez,pz

¢€17P1
Der.p2 dudr  (7.7)
¢€27P1
Pes,po
1 11 1
2 , | 3 3 5 8 Derp1
—arAgePETHMETHE ) 5 5 E G || Pe (7.8)
Ap § 6 3 3 Des.pr
_1 1 _1 1 é
6 6 3 3 €2,P2

Now we can turn to the second term in Equation 7.6, which igvetgnt to the boundary
streaming term for the streaming term in the transport éguasince there is no upwind direction
we will take at both sides of the patch the neighbouring patajular flux values. This results in
the following blocks matrices being added to diagonal barids,
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7.2 Solving the BFP Equation

To compare the matrix of the operatéy, to that of L;, we present in Figure 31 both matrices.
We see in the transport matrix, Figure 31(b), the diagonatkd in blue, which determine the
patch internal calculations. The green blocks representtiupling between spatial elements,
in other words, they represent the neutrons streaming froenetement to the next. The large
yellow blocks represent the scatter term, these blocksaager because the scatter term couples
all patches within an element with each other.

Turning to the matrix of the BFP equation, Figure 31(a), weetbere are extra blocks in this
matrix. The orange blocks represent the extra coupling &etvpatches due to the diffusion in the
angular component. This coupling is therefore only prebetiween patches of the same spatial
element.

]
L] L]

[ Drr.T.

(a) BFP equation (b) Transport equaiton

Figure 31:Structure of the matrices of the transport equation and tbézBhann-Fokker-Planck
equation. The structure of the BFP equation is differentaloee the patches are now coupled.
This coupling originates from particles that diffuse in @wegular direction. The orange blocks
are the blocks that couple the patches.

The source iteration that is used for the transport equasiea Section 3.2.1, can still be used
for this matrix, since in that part no changes were introdut¢owever, the sweep iteration cannot
be applied any more, since there is coupling between patolsgh a way that we cannot make
a lower triangular matrix by solving the system in a certaitheo.

A Gauss Seidel iteration can be applied to the BFP equatibithwis similar to the sweep
iteration. Before applying this iteration the matrix wiked to be reordered in the same way as
with the sweep iteration. We then end up with an iteration ih&lmost direct’, in the sense that
the neighbour angular flux values of the stream term and otwecofieighbour angular flux values
of the diffusive term are up-to-date and only one of the twa flalues of the diffusive term is
from the previous iteration. The stability of this methodl\Wwave to be investigated.

Another possibility for solving the system of equationsadfsed from the discretisation of the
BFP equation is using Krylov subspace methods. The Kryltgpace of a matrid of sizen x n
and a vectob of sizen is a subspace of the-sized vectors like

K, = span<b,A1b, A%, . ,A’“%) (7.11)
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wherer is the order of the Krylov subspace. Several iterative nmaghave been constructed that
make use of this space and do not use the full form of mattiXThe matrix is only used in a
multiplication with a vector, removing the need to constrilne full matrix. This can be applied
to the BFP equation, since multiplying, by a vector can be easily don&;, is a sparse matrix
and is never constructed in the code that was written fortigect. In the same way an efficient
multiplication algorithm for sparse matrices can be used.
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8 Discussion

Here the main conclusions are presented, which can all bedfouthe main text. However, this
gives an overview of the most important conclusions and phem into perspective. We will
roughly present the conclusions grouped per section andlbyance to each other. Besides the
conclusion possible future work is also discussed here.ftiaee work can basically be divided
into three domains, implementing this method for three disienal problems (possibly combin-
ing spatial adaptivity with angular adaptivity), investitng the loss of symmetry between the
discrete adjoint operator obtained through reversingreiising and deriving adjoint and finally
investigating and implementing the Boltzmann-FokkemBlkaequation.

8.1 Conclusions

In the first section that is new for this report, we derived fiié form of the matrix and have
used this to show what the algorithm that solves the equdti@s. Essentially the source iteration
combined with the sweep iteration is a block Jacobi iteratibhis can be done since the matrix
can be splitin three parts, the diagonal blocks, the larggtter diagonal blocks and the streaming
blocks that form a band. By moving specific blocks to the rigahd side, or reordering the
unknowns in the matrix, we can solve the transport part tiremd iterate only the scatter term.

Furthermore we have looked at the definition of the discrdjeiat problem that is used for
error estimation. There are two routes to follow to the diseadjoint problem, either discretising
the continous adjoint or taking the adjoint operator of tisxmbtised forward problem. It turns
out the symmetry between these routes is broken for trangpoation operator. The transport
term of the equation has a different sign in the two casexeSime error estimation criterion only
uses the discretised continuous adjoint problem this [bsgrametry will not affect the estimate,
however, it is possible to formulate a different estimategishe discrete adjoint.

We also looked at the difference in quality of the two goakoted adaptive methods, the
global and local adjoint approximations. By defining alllpieams in discrete terms and substitut-
ing them in the error estimate we saw that the ordering in ribadgm of the global and local adjoint
does not change. Successive pairs of unknowns can switble iortlering in magnitude, but that
does not matter, since this unknown represents the same Ip#ta different spatial location. By
a small perturbation in magnitude of the adjoint vector we gt this can greatly affect the total
error estimate.

Discretisation of the transport equation using linear d&shctions in the angular domain,
linear patches, is not much different from using constasisbéunctions. The matrix will be
larger, since there are more unknowns for the same numbextdfgs, but the structure remains
the same. Therefore we can keep using the same algorithrolfang the equation.

The other question involved in discretising with linear alag basis functions was the con-
tinuity between two elements with a different angular refieat. We can write the continuity
relations in two conditions, a hard condition and a soft ¢oral The hard condition ensures the
continuity of the number of neutrons between elements,enthié soft condition can be formu-
lated as a minimization problem that lets the angular flutéiseotwo elements be similar, in some
norm. By choosing in what norm the difference between thenetes must be minimized, we also

e
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choose what interpolation rules must be used. The orthégwopection of basis functions leads
to the minimized difference in the two-norm.

After implementation of the linear patches we presenteddbalts of the same test cases as
were used for the constant patches. In general we saw tlegtr lpatches provide a much better
approximation of the angular flux, since the convergenceeisernlly fourth order. We also see
this in the convergence of the traditional criterion, as fhiin most cases much better than with
the constant patches.

Considering the distribution of patches the goal-oriemtexihods produces, we can conclude
that they work as expected. The spatial distribution areesamat similar to the distributions of the
constant patches and are what one would expect. As with thetantt patches the performance of
the methods in the error versus the number of unknowns Vagiegeen the test cases. The linear
patches do however show a significant decrease in erroiveetatthe discrete ordinates method,
which indicates that linear patches can approximate thalanfjux well.

Although the results in general show the refinement criteisan effective way of refinement
in some cases we see that uniform refinement results in a rfimierd calculation of the detector
response. Efficiency in this case means acquiring an aecdedector response with a smaller
total number of unknowns. This is not unexpected when comgérto the constant patch results,
where this was also found in some test cases. The cause dé thisly similar to those of the
poor quality of the error estimate.

The quality of the error estimate is very poor. Only with anifh refinement in the homoge-
neous test case B is the error estimate accurate. The esticaainot be used as a reliable indicator
of the error, for example for a stopping criterion. We haweniified the cause for this poor quality
in the approximation of the exact adjoint that is used in gtevate. In order to obtain an accurate
error estimate we need an approximation of the error in thairgdsolution that does not lie in
the same space as we are solving the forward problem in, gsttmmlorthogonal part will lead
to a contribution in the error estimate. The hypothesis @ #iagnation takes place because the
approximation of the adjoint on a level deeper does not dorstdarge orthogonal component.
This could be tested by using a different approximation efaljoint, most likely by solving the
adjoing with higher order basis functions.

We think this is also the cause of the problem with the degisibrefinement in some test
cases, in particular the cases where uniform refinemenigeswmore accurate results than goal-
oriented adaptive refinement. As the refinement decisioriasa form of the error estimate the
same approximation of the exact adjoint is made. Howeveidbe this the effects of boundary
residuals could also play a role. This should be investibfugher.
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Finally we looked at the Boltzmann-Fokker-Planck equatiehich was one of the goals at
the start of the project. Due to the unexpected discovery ttiea derivation of the adjoint is
not symmetrical, not much time was spend on this part. Howewve did derive the full matrix
operator of the BFP equation and looked at possible waysleihgoit. The difference with the
transport equation is that extra bands are added withinenesit, making it impossible to use
the sweep iteration in the same way, in other words, we caootler the matrix in such a way
that the bands form a lower or upper diagonal matrix. A sofutp this is to use a Gauss-Seidel
iteration as sweep, which effectively means that we useabetilvalues for the angular flux on
one of the neighbouring patches. The other possibility isst® Krylov subspace methods, as the
full matrix is not needed in these methods.

8.2 Future Work

As in the physics thesis, one of the possible expansions iimptement the methods for three
dimensional problems. One has to take into account thatitfezathce in the adjoint will remain
in this case. Another area of investigation is the combamatiith spatial refinement, where the
central question is on the choice of refinement. Are we cotelyldéree to choose where to refine
or are there restrictions? Another question is, do we hav®ge in refining either in the spatial
domain or in the angular domain, or are these refinementdexip

The hypothesis that the poor quality of the error estimaearfrom an inaccurate approxi-
mation of the exact adjoint has to be verified by implementingapproximation that takes into
account the orthogonal part of the exact adjoint to the otimestricted space. Also the effects of
this on the refinement criterion were not yet fully investegh

In this work we did not implement the BFP equation, howevemrwglored possible methods
of solving this equation. There are two possible ways to émpnt the equation, either by a Gauss-
Seidel iteration, which uses outdated angular flux valuemefof the neighbouring patches. The
other possibility is using Krylov subspace methods, whiesftll matrix is not needed.

79






REFERENCES

References

[1]
[2]

Christian Blatter.Wavelets: a primerCRC Press, January 1999. ISBN 1-5688-1095-4.

A.G. Buchan, C.C. Pain, M.D. Eaton, R.P. Smedley-Stevenand A.J.H. Goddard. Linear
and quadratic octahedral wavelets on the sphere for angjslanetisations of the Boltzmann
transport equationAnnals of Nuclear Energ\d2:1224-1273, January 2005.

[3] James J. Duderstadt and Louis J. HamiltNiniclear Reactor Analysislohn Wiley and Sons,

[4]

[5]

[6]

1942. ISBN 0-471-22363-8.

Dion J Koeze. Goal-oriented angular adaptive neutrangport using a spherical discontin-
uous galerkin method. Master thesis, Delft University offr@logy, December 2011.

Danny Lathouwers. Goal oriented spatial adaptivity loe Sy equations on unstructured
triangular meshesAnnals of Nuclear Energy88:1373—-1381, January 2011.

E.E. Lewis and W.F. Miller. Computational methods of neutron transportWiley-
Interscience, 1984. ISBN 0-471-09245-2.

[7] Jim E. Morel. Boltzmann-Fokker-Planck calculationsings standard discrete-ordinates

codes. InComputational Methods in High Temperature Physiass Alamos National Lab-
oratory, February 1987.

[8] Joseph C. Stone and Marvin L. Adams. Adaptive discretirates algorithms and strate-

gies. InMathematics and computation, supercomputing, reactosisiyand nuclear and
biological applications page 5/12, Palais des Papes, Avignon, France, Septem@gr 20
American Nuclear Society (ANS).

[9] Todd A. Warening, John M. McGhee, Jim E. Morel, and ShawrPButz. Discontinuous

finite element {§ methods on three-dimensional unstructured griblsiclear Science and
Engineering 138:256-268, 2001.

[10] James S. Warsa. A continuous finite element-basedyiseious finite element method for

81

Sy transport.Nuclear Science and Engineerint60:385-400, March 2008.






A TEST CASES

A Test Cases

Here we present the test cases used throughout this wotkspétcified geometries and material

properties. For each test case we supply a short descriptipacted result, geometry and material
properties. In the geometry diagram blue represents a \@higrsource and green represents a
volumetric detector.

A.1 Case A, Thick slab

The first test case is a uniform slab with a homogeneous samdeetector. It is optically thick,
which means that the neutrons have a small mean free pathdifiession of the slab it cm. In
Figure 32 a diagram of the geometry can be found and in Tallle fntterial properties are listed.
The boundary conditions of the slab are vacuum boundariémtmnsides.

Since the boundary conditions are hard to satisfy propeityexpected that the mesh near the
edges of the slab will be very fine.

Figure 32:Homogeneous slab geometry.

Ot 100 em !
Os 99 em !
Source | 1em 's~lrad™!
Detector 47 em ™1

Table 1:Material properties for test problem A

A.2 Case B, Thin slab

Test case B is again a homogeneous slab with the same dimerssidhe test cases above. How-
ever, since the total cross section is much lower the mearpféh of the neutrons is larger, which
makes this an optically thin problem. Again the geometry lbarfound in Figure 32, while the
material properties can be found in Table 2. This test caselas vacuum boundary conditions
on both sides.

Refinement is expected to be similar to the refinement in &est @, although the effects of
the edges will propagate much further into the domain, asishén optically thin problem.
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Angular flux of test case A Adjoint scalar flux of test case A
14 T T T 14 T T ——
forward profile adjoint profile
E E
5 e
8 8
3 T
=, S
£ [
0 | | | | 0 | | | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x coordinate x coordinate

(a) Solution of the forward scalar flux of test case A (b) Solution of the adjoint scalar flux of test case A

Figure 33:Forward and adjoint solution of test case A.

Angular flux of test case B Adjoint scalar flux of test case B
125 T T 125 T T

forward leOfI|e adjoint p}ofile

12

12
115 115
11 11
E 10.5 x 105
g 10 5 10
E} 3
< 95 ® 95
9 9
8.5 85
8 8
75 | | | | 75 | | | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x coordinate x coordinate

(a) Solution of the forward scalar flux of testcase B (b) Solution of the adjoint scalar flux of test case B

Figure 34:Forward and adjoint solution of test case B.
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1

O lem™

Os Sem!
Source | 1em 's~lrad™!
Detector 47 em ™1

Table 2:Material properties for test problem B

A.3 Case C, Thick source detector

This test case has a separate source and detector regioorrogéneous material. The boundaries
of this slab geometry are again vacuum boundaries. A diagifaime geometry can be found in
Figure 35. The material properties are listed in Table 3.

In this test case it is important to have an accurate solutiohe source and detector regions.
Since the source is at the left hand side of the domain we &ed an accurate solution of right
going directions. Therefore we expect refinement in theadletesource and regions, as well as
refinement of right going directions.

0 .1 9

1

Vac.

r ——

Figure 35:Source detector slab geometry.

Ot 100 em !
Os 99 em !
Source | 1em 's lrad™!
Detector 47 em ™1

Table 3:Material properties for test problem C

A.4 case D, Thin source detector

This test case is also a source detector problem, but nowopttbally thin material. An illustra-
tion of the geometry can be found in Figure 35. Table 4 listsrtfaterial properties.

The expected behaviour is similar to that of test case C. Mewysince this is an optically thin
problem the effects of the edges will propagate much fuiititerthe domain.

A.5 Case E, Highly absorbing source detector

This is also a source detector geometry as shown in Figurel@&ever, the homogeneous mate-
rial that is used in this problem is strongly absorbing. Ttedearial properties are listed in Table
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Angular flux of test case C Adjoint scalar flux of test case C
6 T T 6 T

adjoint ﬁrofile

forward p‘roflle

Angular flux
L
Scalar flux
w
T

L L 0 L L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

x coordinate x coordinate

(a) Solution of the forward scalar flux of test case C  (b) Solution of the adjoint scalar flux of test case C

Figure 36:Forward and adjoint solution of test case C.

Angular flux of test case D Adjoint scalar flux of test case D

3 T T T 3 T T
forward profile

adjoint p‘rofile

Angular flux
Scalar flux

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x coordinate x coordinate

(a) Solution of the forward scalar flux of test case D  (b) Solution of the adjoint scalar flux of test case D

Figure 37:Forward and adjoint solution of test case D.
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o lem™!

Os Sem™!
thickness lem
Source 1em s rad™!
Detector A emt

Table 4:Material properties for test problem D

Angular flux of test case E Adjoint scalar flux of test case E
1 T T

1 T T T
adjoint profile

forward p:’OfI|E

B 08

B 0.7 -

0.6

05

Angular flux
L
Scalar flux

0.4

B 03

q 02

B 0.1

L L 0 L L !
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1

x coordinate x coordinate

(a) Solution of the forward scalar flux of test case E ~ (b) Solution of the adjoint scalar flux of test case E

Figure 38:Forward and adjoint solution of test case E.

5.
In this test case we expect the same results as for test casetl@s is also an optically thick
problem.

Ot 10 em™!
O lem™1t
Source | 1em™'s~lrad™!
Detector A em ™!

Table 5:Material properties for test problem E

A.6 Case F, Purely absorbing source detector

Test case F is the last separate source detector geometnpvas B Figure 35. The material is
now purely absorbing, which means there is no scatter sautbe right hand side of the transport
equation. The material properties of this test case aeglist Table 6.

In this case there is no coupling between directions thrahglscatter, which will yield results
on the choice of directions of the discontinuous Galerkinhoe.

87



A TEST CASES

1

Ot 10 em™

Os 0cem™t
Source | 1em 's~lrad™!
Detector 47 em ™1

Table 6:Material properties for test problem F

Angular flux of test case F Adjoint scalar flux of test case F
0.9

T T
forward profile adjoint profile

0.8

0.7 -
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05

Angular flux
Scalar flux

0.4

03

02

0.1

! L L 0 L L !
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

x coordinate x coordinate

(a) Solution of the forward scalar flux of test case F  (b) Solution of the adjoint scalar flux of test case F

Figure 39:Forward and adjoint solution of test case F.

A.7 Case G, Shielding

This test case is an extension of test case C. There is agajpaease source and detector, however,
the detector is behind a shield. A regiondad5 cm in the middle of the slab has a large total cross
section, making it a neutron shield. The properties of theiotegions remain the same. A
diagram of the geometry is shown in Figure 40. The materigb@uties are listed in Table 7, the
source and detector are only present in the specified regions

As this test case is similar to test case C we expect the refinetm be almost the same. Only
the source region is not very important now, as only a fewno@gtwill traverse the shielding.
Therefore it is more important to get an accurate flux in tHelgimg region. It is expected that
refinement takes place in the shielding and detector reg®well as for right going directions.

e ESRSSSE

A75 .525 1

Vac.

r —————

Figure 40:Shielding slab geometry.
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Property Material Shielding

oy 100 em ™! 50 cm ™1

Os 99 cm ! 5em™t
thickness 2 x .475 cm 0.05 cm
Source lem s lrad=! | 0em™ts lrad™!
Detector 47 em ! 0cem™t

Table 7:Material properties for test problem G.

Angular flux of test case | Adjoint scalar flux of test case |
6 T T 6 T T

adjoint p‘rofile

forward p‘roflle

Angular flux
w
L
Scalar flux
w
T

!

0 ! L L 0 L L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

x coordinate x coordinate

(a) Solution of the forward scalar flux of test case G (b) Solution of the adjoint scalar flux of test case G

Figure 41:Forward and adjoint solution of test case G.

A.8 Case H, Purely absorbing shielding

Test case H has the same geometry as the previous test case, ishFigure 40. Now both the
medium and the neutron shield are purely absorbing. Theriapeoperties are listed in Table 8.
Expectations on refinement are the same as in the other isigiedrbt case, case G.

Property Material Shielding

O Lem™! 100 em ™!

Os 0em™t 0em™t
thickness| 2 x .475cm 0.05 cm
Source lem™ts™trad™ | 0em™ts~trad™!
Detector A em™1 0cm™!

Table 8:Material properties for test problem H
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Angular flux

(a) Solution of the forward scalar flux of test case H

90

Angular flux of test case J

25

forward p‘roflle

0.2

|
0.4 0.6 0.8
x coordinate

Adjoint scalar flux of test case J

25

15

Scalar flux

05

adjoint p‘rofile

0.2

0.4 0.6 0.8 1
x coordinate

(b) Solution of the adjoint scalar flux of test case H

Figure 42:Forward and adjoint solution of test case H.



