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Abstract

In this work we examined the discretised form of Boltzmann-like transport, i.e. the neutron trans-
port equation and the Boltzmann-Fokker-Plank (BFP) equation with the discontinuous Galerkin
method and polynomial basis functions. In particular we examined an adaptive algorithm, which
bases its decision of where to refine on the adjoint problem, as in sensitivity analysis. In this way
an accurate detector response should be obtained in an efficient manner.

The goal-orietend criterion uses the adjoint solution as a measure for importance to the detector
response. This refinement technique is compared to traditional methods, which base refinement
on the change in the solution of a local test refinement, and tothe discrete ordinates method.

Problems with one spatial and one angular dimension are usedto test the adaptive algorithm.
In previous work the same problems were solved with first order polynomials in the spatial di-
rection and zeroth order polynomials in the angular direction. We saw then that constant patches,
zeroth order polynomials in the angular part of the domain, could not represent the angular flux in
diffusive materials accurately. We furthermore saw that the quality of the error estimate with the
global adjoint approximation was reasonable, while with the local adjoint approximation it was
poor.

In this work we employed first order polynomials in both the spatial and angular domains.
Linear patches, the first order polynomials in the angular domain, provide a better approximation
of the angular flux using less unknowns. This can be seen when comparing both the constant and
linear patches to the discrete ordinates method. Also the diffusive materials are now much easier to
approximate, which has as effect that traditional refinement gives smaller errors than with constant
patches.

The quality of the error estimate with linear patches, however, is poor for almost every test
case. A cause can be found in the approximation of the exact adjoint solution that is used in the
estimate. This approximation is done by refining all the current mesh uniformly one level. It
appears the space of the deeper level is only slightly largerthan the coarser level on which the
forward problem is solved, in the sense that the adjoint solution on that deeper level does not yield
information not contained in the coarser level. The solution we propose is to solve the adjoint
problem with higher order basis functions than those of the forward problem.

Finally we present some results on the Boltzmann-Fokker-Planck equation discretised with
discontinuous Galerkin. The discrete operator one obtainsis very similar to the discrete transport
operator, with extra bands added within a spatial element. To solve this system of equations one
could use a Gauss-Seidel iteration, which means one sometimes uses outdated angular flux values
of neighbours, or Kylov subspace methods, as the matrix operator is not computed explicitly.
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1 INTRODUCTION

1 Introduction

Nuclear physics is, since the 1940’s, part of our daily lives, albeit not conscientiously for most
of us. We use it to produce electricity, for medical treatments, in materials science and to build
weapons. Several fields of physics are involved in these technologies, for example thermodynam-
ics when heat is produced and all kinds of radiation which arereleased by the radioactive atoms. In
this work we will be considering one kind of radiation in particular; neutral and charged particles
that are produced in radioactive decay.

Let us take a closer look at two of the most widely used technologies, energy production
in nuclear power plants and medical treatments. The nuclearpower plant works very similar
to a power plant that burns fossil fuels, a heat source produces steam, which drives the electric
generator. Uranium, or another fissile material, is used instead of fossil fuels and the ‘burning’
process is a bit different. Certain atoms in the reactor corecan break apart and in the process
produce different kinds of radiation and heat. The heat is used to vaporize water and some of the
radiation is used to keep the reactor burning. Neutrons are the driving force in this process, they
are absorbed and induce fission in atoms, which in turn produces new neutrons.

Neutrons travel through the reactor core and will interact,through collisions and absorption,
with the surrounding material. The neutron transport equation, or the Boltzmann equation, de-
scribes the behaviour of the neutrons. Being able to solve the neutron transport equation efficiently
and accurately means more efficient and safer reactor core designs.

Neutrons, but also charged particles, can be used in medicaltreatments, for example to ir-
radiate and treat a tumour. In such a treatment one wants to damage the tumour, but not the
surrounding, healthy tissue. Nuclear physics, and more specifically the neutron transport equation
or the Boltzmann-Fokker-Plank (BFP) equation, enables us to make accurate predictions as to how
a tumour should be treated.

In this work we therefore also investigate the Boltzmann-Fokker-Planck equation, also known
as the Fokker-Planck equation, which is the transport equation with some additional terms. The
transport equation describes the transport of neutral particles, while the BFP equation describes
charged particles. This means the force between particles originating from the charge of the parti-
cles is taken into account.

The BFP equation was first introduces by Andrey Kolmogorov in1931, therefore it is some-
times also called the Kolmogorov forward equation. We will call it the BFP equation, to emphasize
the fact that it is an adaptation of the Boltzmann transport equation. There are more uses of this
equation apart from charged particle transport, as it describes the time evolution of the probability
density function of the velocity of particles in quantum mechanics.

One of the focuses of this work was to investigate how the BFP equation can be solved using
the discontinuous Galerkin discretisation method. We present the discretisation and propose a way
of solving the system of equations obtained from that discretisation. However, due to unexpected
behaviour of the adjoint solution of the transport equationthere was a lack of time to implement
the BFP equation in a working code.

Another focus of this work is to develop an adaptive algorithm that solves the transport equa-
tion efficiently. In each iteration the solution of the differential equation is obtained and from
that solution a choice is made where the mesh needs to be refined. In this way one keeps the

1



1 INTRODUCTION

computational and memory costs at a minimum, while obtaining an accurate result.
In many cases one is interested in a set-up with a source of neutrons, or other particles, and

a detector, where the quantity of interest is the detector response. Our goal is then to minimize
the error in the detector response with as few as possible unknowns. To achieve this we need a
criterion that will choose where in the mesh the refinement ismost efficient, i.e. decreasing the
error maximally by minimal refinement.

Traditional methods of refinement are based on observing thechange in the solution of the
differential equation upon refinement. For example, one refines locally and checks the difference
in the solution this produced. Repeating this for each element or cell in the mesh one can find
the locations where refinement leads to the largest changes in the solution, hopefully reducing the
error efficiently.

In this work we compare a traditional critirion to a refinement criterion which bases its decision
on the importance of each particular refinement location forthe detector response. This importance
is obtained by solving the adjoint problem, which turns out to be almost the same as the forward
problem. Exactly how the adjoint problem should be discretised and used is a matter of discussion.

Both equations have a solution that is seven dimentional, with three spatial dimensions, two
angular dimensions, energy and time. All these dimensions are of a different nature, calling for
different discretisation or simulation techniques.

Here, without loss of much generality, we look into a simplified version of these equations. The
problems that we consider are steady-state and have one energy group and one spatial dimension.
This means we are left with a two-dimensional problem, with one spatial and one angular variable.

The discretisation technique we apply here is the discontinuous Galerkin method, which has
been around for almost a century. This method requires that adifferential equation is solved in its
weak form on a restricted space.

This master thesis is a continuation of a master thesis done at the applied physics department
of the Delft University of Technology. The two projects are to be evaluated separately, but the
results of [4] are necessary for a full understanding of the present work.

Titled ‘Goal-oriented angular adaptive neutron transportusing a spherical discontinuous Ga-
lerkin method’, [4] is an investigation into the performance of a relatively new numerical method.
This method enables us to adaptively solve the transport equation in the angular domain, which
means we can more efficiently use our computational power andobtain more accurate results. The
mathematical description of the method is presented for thethree dimensional case, while numer-
ical results for a one dimensional model are presented. A shortened version of these results is
presented in this chapter, for a full understanding of the work done in this thesis see [4].

The first section of this thesis is a summary of the applied physics thesis where all relevant
information is briefly discussed. This includes the discretisation of the transport equation with
constant basis functions in the angular part of the domain, derivation of the goal-oriented and
traditional error criteria and the results of the implementation of this discretisation. Since irrelevant
parts are left out the summary does not include all considerations and questions that were discussed
in the physics thesis.

An investigation into the algorithm used with the constant patches and later on with the lin-
ear patches is presented in the second section. Both the method of solving the equation and of
estimating the error are subjects of investigation in this section. Also in this section we show that

2



1 INTRODUCTION

switching the order of discretisation and taking the adjoint problem is not symmetrical, that is, the
adjoint of the discrete forward problem is not the same as thediscretised adjoint problem.

The third and fourth sections are on the implementation of the linear basis functions in the
angular domain, so we are using linear basis functions to discretise the whole domain. First we
will look at what needs to be altered to the discretisation ofconstant patches to handle linear
patches. Also conservation issues are addressed in this section. After the theoretical basis is made
we present the results of the implementation of that method.This is done with eight test cases,
which can be found in the appendix.

In the fourth section we found that the error estimate that could be used as a stopping criterion
is of very poor quality. A cause for this is presented in section five. In the estimate an approxima-
tion of the adjoint solution is needed, which in the tests is taken as the solution on a more refined
mesh. It turns out this is probably not an accurate approximation for the part of the adjoint solution
that does not lie in the restricted Galerkin space. Two ways of improving the approximation are
discussed.

Finally we present in the sixth section and investigation into the Boltzmann-Fokker-Planck
equation, which was originally one of the focusses of this work. The other focus, linear patches
for the transport equation, would have to be implemented in the BFP equation for a good approxi-
mation of the angular flux. Since we ran into the loss of symmetry in the derivation of the adjoint,
the section on the BFP equation is not very elaborate. However we did discretise the equation
and derived in what ways the BFP operator matrix differs fromthe transport operator. From this
structure we also present possible methods of solving this system of equations.

This thesis is based upon a thesis in the field of applied physics at the Delft University of
Technology. This thesis is done in the context of the master thesis research of the applied math-
ematics curriculum at the same university. It was conductedin the Numerical Analysis group of
the Electrical Engineering, Mathematics and Computer Science faculty at that university.

3





2 NEUTRON TRANSPORT WITH CONSTANT ANGULAR BASIS FUNCTIONS

2 Neutron Transport with Constant Angular Basis Functions

We start with a short introduction of the neutron transport equation, which is the subject of the
physics thesis. Both the physical and mathematical background of the equation will be touched
upon. Discretization of the equation is the subject of the next part, where we will both present the
discretized equations as well as go into more detail on why this method is to be preferred over other
methods. In this section we will find that continuity relations are needed for neutrons crossing a
boundary of elements with a different angular discretization. This will be discussed in depth in the
third part. The fourth part is then on the development of the adaptive criterion on which the choice
refinement is based. This criterion is derived in this section. In the final theoretical section we
present an overview of the adaptive algorithm as is used in the one dimensional problems. Finally,
we present some results of the one dimensional model.

2.1 Introduction to the Transport Equation

In nuclear reactor physics neutrons are very important, since neutrons are necessary for the chain
reaction of fission to continue. In fact, since neutrons can travel through the reactor core and fuel
is fixed, neutrons are the main subject in reactor physics. The neutron transport equation is the
governing equation of free neutrons in the reactor core, or,for that matter, in any geometry or
substance. In certain geometries the transport equation can be solved analytically, however for
many real world problems numerical solutions are needed. Inthe process of designing nuclear
reactors or other nuclear facilities accurate approximation of the neutron density or neutron flux
are needed to predict for example heat production in the core. New numerical techniques are
still developed, which will result in more accurate reactordesigns. This section contains some
basic remarks on the neutron transport equation, which are necessary for this report. A detailed
description of the properties and derivation of the transport equation can be found in many nuclear
engineering hand books. [6] [3]

Free neutrons are the neutrons that are important to reactorphysics. These neutrons can freely
move through the material and take part in reactions with thesurrounding material. Common
reactions are collisions (scatter) and absorption. Neutrons that are captured in the nucleus of an
atom are not important to reactor physics, as these neutronswill not take part in any important
reactions. The neutron transport equation therefore considers the free neutrons and describes the
rate of reaction as well as the movement (streaming) of the neutrons. A full derivation of the
transport equation, as well as many applications, can be found in [3]. The most general form of
the transport equation is

1

v(E)

∂φ(r, E, Ω̂, t)

∂t
+ Ω̂ · ∇φ(r, E, Ω̂, t) + σt(r, E, t)φ(r, E, Ω̂, t) =

∫

4π
dΩ′

∫ ∞

0
dE′σs(r, E

′ → E, Ω̂
′
→ Ω̂, t)φ(r, E′, Ω̂

′
, t) + s(r, E, Ω̂, t) (2.1)

Some of the symbols in this equation are introduced here shortly, a nomenclature can be found in
the front of the report. The angular fluxφ is the quantity of interest, it can be interpreted as the
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2 NEUTRON TRANSPORT WITH CONSTANT ANGULAR BASIS FUNCTIONS

density of the number of neutrons that is atr, has an energyE and travels in direction̂Ω at time
t. The total cross sectionσt and the scattering cross sectionσs tell us with what rate the reactions
occur.

We will now shortly discuss the physical meaning of each of the terms. The first term on
the left hand side is the change in neutron density over time.The next term is the streaming
term of the equation, it follows from applying Gauss’ theorem on the expression describing the
neutrons travelling into a control volume. Finally on the left hand side we have the total removal
of neutrons, proportional to the total removal cross section σt. The right hand side contains two
terms, the second term is an external source, which can be arbitrarily specified. Scattering is
described by the first term of the right hand side. This can be considered a source as neutrons
with other energies and travelling in other directions can be scattered into the part of phase space
considered. Therefore the term contains an integral both over all directions and all energies. Please
note that this general form of the transport equation does not describe fission reactions. Fission
reactions result in an extra source term that has the same form as the scatter term.

To test the performance of numerical techniques it is not always necessary to consider the
general transport equation. Some approximations or simplifications can be made without altering
the behaviour or the complexity of the equation. A number of these adjustments is used in this
report, which are discussed in this section.

The time dependence is eliminated in most proofs of principle. When solving a time dependent
problem one usually approximates a certain state of the problem at timet as a steady-state problem.
To solve a time dependent problem a number of steady-state problems is solved sequentially.

Therefore we can equate the first term of the general transport equation to zero: 1
v(E)

∂φ(r,E,Ω̂,t)
∂t =

0.
Another common discretization in most solvers is that the energy dependence is discretized

into groups. All neutrons are put into energy ‘bins’ and cross sections are used to determine the
number of neutrons that switch bins or stay in the same bin. The driving force of switching bins is
scatter, since in scatter reactions neutrons may lose or gain energy. The simplest case is to consider
just one bin, this effectively eliminates energy dependence from the problem. This report uses this
one group approach.

The scatter source term is further simplified by consideringisotropic scatter only. This means
the angular dependency of the scatter cross sectionσs is neglected. To account for anisotropic
scatter multiple techniques exist, the most common being the expansion of the scatter cross section
in spherical harmonics or Legendre polynomials. In this report there is no background information
on this.

When applying all these simplifications the transport equation becomes:

Ω̂ · ∇φ(r, Ω̂) + σt(r)φ(r, Ω̂) =
σs

4π
Φ(r) + s(r, Ω̂) (2.2)

where the scalar fluxΦ is defined asΦ(r) =
∫

4π φ(r, Ω̂)dΩ̂.
Some properties of the equation are noteworthy, as they playa role in the performance of

numeric solvers. First there is the difference between an optically thick and thin medium. A thick
medium means the mean free pathλ of neutrons is small. The mean free path compared to the
size of the domain determines the probability of neutrons toleak out of the problem. When the
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2 NEUTRON TRANSPORT WITH CONSTANT ANGULAR BASIS FUNCTIONS

domain is much larger than the mean free path the problem is optically thick. The mean free path
is determined by the inverse of the total cross section,

λ =
1

σt
(2.3)

A thick medium in a small domain can however result in an optically thin problem. Conversely a
thin medium, with a large mean free pathλmay result in optically thin and optically thick medium.
However the size of the domain will be much larger for a thin medium to make a thick problem.

Besides the thickness of the material, one can also vary the ratio with which the two most
important reactions, absorption and scatter, occur. This ratio is called the scatter ratioc, and is

c =
σs

σt
(2.4)

The largerc the more diffusive the material will be. In diffusive materials the transport equation
can be approximated by the diffusion equation. In the results it will show that the scatter ratioc of
the material influences the performance of numerical methods.

In this work this equation is mostly studied in its one-dimensional form and all numerical
results are for this case. To arrive at the one dimensional form we must assume the physical
properties of the material vary only in one direction. In mathematical notation this reads

σt(x, y, z) = σt(z) (2.5)

σs(x, y, z) = σs(z) (2.6)

s(x, y, z) = s(z) (2.7)

Now the angular fluxφ will only vary along thez direction and along the polar angleθ. This can
be shown by considering the fluxφ at two points that are different only in thex andy compo-
nents. The physical surroundings of these points is exactlythe same, making them indiscernible,
therefore the flux will be the same. In other words we knowφ(x, y, z, ω, θ) = φ(z, ω, θ). Further-
more we observe that the fluxφ alongω, the azimuthal angle, does not change as a result of this
simplification.

We arrive then at the transport equation for one spatial dimension and one angular dimension,

µ
∂φ(z, µ)

∂z
+ σt(z)φ(z, µ) =

σs

4π

∫

4π
φ(z, µ)dΩ̂ + s(z) (2.8)

From now on, for conventional purposes, we will call thez directions thex direction. Although
there will be thoughts on the three dimensional case in this work, the equation we investigate is
the one dimensional transport equation in the form presented above.

2.2 Discretisation of the Transport Equation

To discretise the transport equation some questions have tobe answered first. As the goal is to
have a discretisation that can handle refinement in the angular domain well we need a discretisation
that allows for this. Furthermore the discretised system ofequations must be easily solved. Both
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2 NEUTRON TRANSPORT WITH CONSTANT ANGULAR BASIS FUNCTIONS

questions were addressed in the physics thesis and the main results are repeated here. We will start
with the advantages and drawbacks of the methods of discretisation that were considered.

The first method that was discussed is the discrete ordinatesmethod, which is the most widely
used method to discretise the angular domain of the transport equation. It comes down to requiring
the transport equation to hold for a discrete and finite set ofdirections, or values forµ in one
dimension. The integral of the scalar fluxΦ is then approximated by a quadrature rule. In one
dimension most often the Gauss-Legendre quadrature is used, as this provides exact integration of
polynomials up to a certain degree. In three dimensions the approximation is not as good as in one
dimension, since the quadratures for three dimensions introduce larger errors. Note that this only
provides us with a discretisation of the angular domain. In the spatial domain another method has
to be used. In the test cases presented throughout the work weinclude results of this method, with
linear discontinuous Galerkin in the spatial domain, for referencing purposes.

Then we turned to discontinuous Galerkin, where we have two options for the choice of basis
functions. The first is wavelets, which were investigated because of their hierarchical nature. This
hierarchy can be used for refinement, as wavelets have the same shape on each level, the numerical
computations are the same on each level. However, it turned out the hierarchical structure has a
major drawback. The cost of the wavelet algorithm is large, as the wavelets of different levels have
overlapping support. This support results in matrices thatare largely filled, so we cannot use any
algorithms that use sparse matrices. For more on the use of wavelets see [2], [1].

Finally we have the discontinuous Galerkin method with polynomial basis functions both in
space and direction. This method can be used in a hierarchical way and results in a relatively cheap
algorithm. This is the method used in the numerical tests of the thesis. Below the discretisation of
the transport equations using this method is presented.

Several researches have been done on the spatial discretization with Discontinuous Galerkin
in the field of neutron transport. This report does not focus on the behavior of the spatial part of
the transport equation, but on the angular part. For more on the spatial properties of Discontinuous
Galerkin see [9] [10].

We start the discretisation with stating the transport equation

Ω̂ · ∇φ+ σtφ = s+
σs

4π
Φ (2.9)

whereΩ̂ is the angular vector,φ is the angular flux andΦ is the scalar flux. For the application
of the discontinuous Galerkin method we first define the spaceVh in which the solution will
lie. This is done by splitting the angular flux in a spatial andan angular part. The spatial part
φj(r) will be approximated by first order polynomials in this report, but can in principle be any
polynomial. Analogously, the angular part will be approximated by zeroth order polynomials
(constant functions) in this report, but can also be other polynomials. This can be formulated as
the following sum

φ(r, Ω̂) ≈
E
∑

e

P
∑

p

φe,pγe(r)Ge,p(Ω̂) (2.10)

whereE is the number of spatial elements andP is the number of patches in a spatial element, or
on a spatial location. We can now multiply the equation from the left by a test functionGp in our
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2 NEUTRON TRANSPORT WITH CONSTANT ANGULAR BASIS FUNCTIONS

spaceVh. Then integrate over the whole angular domain to obtain

∫

V

∫

4π
γe(r)Ge,p(Ω̂)



(Ω̂ · ∇+ σt)
∑

e′,p′

φe′,p′γe′Ge′,p′ − s−
σs

4π
Φ



 dΩ̂ = 0 (2.11)

For the scalar fluxΦ in this equation we can obtain the following expression, since the patch
functionGj is unity on the patch and zero elsewhere.

Φ =

∫

4π
φdΩ̂ (2.12)

=

∫

4π

M
∑

j=1

φjGjdΩ̂ (2.13)

=
M
∑

j=1

φj

∫

4π
GjdΩ̂ (2.14)

=

M
∑

j=1

φjArea(Gj) (2.15)

Let from now on∆Gj denote the area of patchGj . Please note thatGj is just an indicator of that
patch,Gj is unity on the patch and zero outside the patch. The value of the flux on that patch is in
the parameterφj.

Let us now work out the angular integral of Equation 2.11. We will plug in the expression
for the scalar flux and evaluate the integral over two angularbasis functions. Since the patches all
have compact support we know that

M
∑

j=1

φj

∫

4π
GpGjdΩ̂ = φp∆Gp (2.16)

The equation can then be written as

∫

V
γe

[

Ω̂
′
p · ∇

∑

e′

φe′,pγe′ + σt
∑

e′

φe′,pγe′

]

dr =

∫

V
γe

[

σs

4π

∑

e′

∑

p

φe′,pγe′Ge′,p + sp(r)

]

dr (2.17)

In this equation we have:
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2 NEUTRON TRANSPORT WITH CONSTANT ANGULAR BASIS FUNCTIONS

Ω̂
′
p =

1

∆Gp

∫

∆Gp

Ω̂dΩ̂ (2.18)

Φ =

M
∑

j=1

∆Gjφj (2.19)

sp =
1

∆Gp

∫

4π
GpsdΩ̂ (2.20)

In the spatial part of the problem we use linear basis functions. So working out the spatial
integral of Equation 2.17 will result in a matrix equation for each patch. The matrices will be two
by two, since we have two spatial basis functions that have overlapping support. Before we work
out the integral we first apply the divergence theorem to the streaming term, resulting in

∫

δV
Ω̂

′
p · n̂γe

∑

e′

φbe′,pγe′dδV −

∫

V
(Ω̂

′
p∇ ·

∑

e′

γe′)γeφe′,pdV +

∫

V
γe

∑

e′

[

σtγe′φe′,p −
σs

4π
γe′φe′,p − sp(r)

]

dV = 0 (2.21)

In this equationφbe,p is the angular flux at the boundary of a cell. Now we will assignto each
element face its angular flux,e is the element index,f is the element face index. To do this we
need to compose the total element boundary out of the individual element faces. Each of those
individual faces is a plane or line, in order to be able to define an outward normal vector. This
gives us the following expression

δVe =

Nfaces
∑

f=1

δVe,f (2.22)

The flux on in flow boundaries is chosen to be the upwind flux. This means we have to make a
distinction between directions as

φbe,p,f =

{

φe,p if Ω̂
′
p · n̂f > 0

φ
upwind in f
e,p if Ω̂

′
p · n̂f < 0

(2.23)

Plugging this into the equation we arrive at a matrix equation that has the final discretized
form. The matrices are square and have the size of the number of basis functions that are in one
spatial element. The matrix equation that is to be solved foreach patch on each element is then

Nfaces
∑

f=1

Ω′
pU e,p,fφ

b
e,p,f + (−Ω′

pKe + σtM e)φe,p =
σs

4π
M eΦe + se,p (2.24)

where
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[U ]e1,e2,p,f =

∫

δVe,f

nfγe1γe2dδV (2.25)

[K]e1,e2 =

∫

Ve

(∇γe1)γe2dV (2.26)

[M ]e1,e2 =

∫

Ve

γe1γe2dV (2.27)

sei,p =

∫

Ve

γeisp(r)dV (2.28)

=

∫

Ve

∫

4π
γeiGei,ps(r, Ω̂)dΩ̂dV (2.29)

2.3 Continuity Relations

Two neighbouring elements do not necessarily have the same angular distribution of patches. This
is a result of refining in the angular domain, which is not doneuniformly but rather adaptively.
When such a situation occurs we need interpolation rules to ensure neutron conservation across
this boundary.

There are two cases that can be discerned, (a) neutrons flowing from a coarse to a fine element
and (b) from a fine to a coarse element. In general neutron conservation for neutrons crossing a
plane can be formulated as

∫

Ω̂·n̂upwind<0
Ω̂ · n̂upwindφupwind(Ω̂)dΩ̂ =

∫

Ω̂·n̂downwind>0
Ω̂ · n̂downwindφdownwind(Ω̂)dΩ̂ (2.30)

[8]. In this equationφupwind is the flux in the upwind element andφdownwind is the flux in the
downwind element. Similar notation is used for the outward normal vectorsn̂.This condition
should be met in all pointsr along the boundary of the two elements, as this insures continuity of
the neutron current. When the patches on the sphere are constant this will result in some simple
continuity relations, they are derived here.

Take two elements A and B and consider the angles such that neutrons flow from A to B. Sup-
pose element A has one patchGc and element B has two patchesGf1 andGf2, this is illustrated
in Figure 1(a). The continuity relation in Equation 2.30 canbe expressed as follows

∫

∆Gc

n̂ · Ω̂φ(Ω̂)dΩ̂ =

∫

∆Gf1

n̂ · Ω̂φ(Ω̂)dΩ̂+

∫

∆Gf2

n̂ · Ω̂φ(Ω̂)dΩ̂ (2.31)

∫

∆Gc

n̂ · Ω̂φcGcdΩ̂ =

∫

∆Gf1

n̂ · Ω̂φf1Gf1dΩ̂+

∫

∆Gf2

n̂ · Ω̂φf2Gf2dΩ̂ (2.32)

φc

∫

∆Gc

n̂ · Ω̂dΩ̂ = φf1

∫

∆Gf1

n̂ · Ω̂dΩ̂+ φf2

∫

∆Gf2

n̂ · Ω̂dΩ̂ (2.33)

Since the union of the support of patchesGf1 andGf2 is equal to the support ofGc (Gf1
⋃

Gf2 =
Gc) we can simplify this to

11



2 NEUTRON TRANSPORT WITH CONSTANT ANGULAR BASIS FUNCTIONS

x

µ

Gf1

Gf2

Gc

(a) Coarse to fine

x

µ

Gf2

Gf1

Gc

(b) Fine to coarse

Figure 1: Two cases of different angular distribution of patches in neighbouring elements. To
ensure neutron conservation relations between the discrete patches need to be derived.

φc

∫

∆Gc

n̂ · Ω̂dΩ̂ = φf1

[

∫

∆Gf1

n̂ · Ω̂dΩ̂+

∫

∆Gf2

n̂ · Ω̂dΩ̂

]

(2.34)

φc

∫

∆Gc

n̂ · Ω̂dΩ̂ = φf1

∫

∆Gf1

⋃
∆Gf2

n̂ · Ω̂dΩ̂ (2.35)

φc = φf1 (2.36)

by assuming thatφf1 = φf2. It is natural to assume this, as the two patchesGf1 andGf2 are
equally as important. This result is also what one intuitively would expect. Even though the
downwind element B can handle a more accurate solution of theflux, that information is not
available. So the two patchesGf1 andGf2 will represent the exact same angular flux as in the
upwind element.

Now suppose we have a refined element C and a coarser element D.On C we have two patches,
Gf1 andGf2, and on element D there is only one patchGc. This is illustrated in Figure 1(b). We
will use the same continuity condition as for the former case, which can be found in Equation
2.30. Applying this condition yields

∫

∆Gc

n̂ · Ω̂φcdΩ̂ =

∫

∆Gf1

n̂ · Ω̂φf1dΩ̂+

∫

∆Gf2

n̂ · Ω̂φf2dΩ̂ (2.37)

φc

∫

∆Gc

n̂ · Ω̂dΩ̂ = φf1

∫

∆Gf1

n̂ · Ω̂dΩ̂+ φf2

∫

∆Gf2

n̂ · Ω̂dΩ̂ (2.38)

Note that sinceφ is constant on a patch we can pull out this variable. Rewriting this equation
brings us to the final expression
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φc =
φf1

∫

∆Gf1
n̂ · Ω̂dΩ̂+ φf2

∫

∆Gf2
n̂ · Ω̂dΩ̂

∫

∆Gc
n̂ · Ω̂dΩ̂

(2.39)

This result can be interpreted as a weighted sum of the current through the two refined patches
Gf1 andGf2, which will be clear after rewriting the equation as follows

φc =
φf1n̂ ·

∫

∆Gf1
Ω̂dΩ̂+ φf2n̂ ·

∫

∆Gf2
Ω̂dΩ̂

n̂ ·
∫

∆Gc
Ω̂dΩ̂

(2.40)

=
φf1∆Gf1n̂ · Ω̂

′
d + φf2∆Gf2n̂ · Ω̂

′
e

∆Gcn̂ · Ω̂
′
f

(2.41)

The sum of the fluxesφf1 andφf2 is weighted by the patch size and component of the aver-
age direction in the outward normal of the element. Please note that by Equation 2.18 we have
∆GcΩ̂

′
f = ∆Gf1Ω̂

′
d+∆Gf2Ω̂

′
e. Using these continuity relations we ensure particle conservation.

2.4 Error Estimation and Adaptive Criterion

In this section we explain the different criteria that were used for determining where to refine
patches. In other words, we must compute how large the contribution to the error is of each patch,
so we can refine the patches that contribute most. Since we areinterested in a good approximation
of the detector response we will start by defining the error measure of the detector response, as
well as an alternate measure for the error. This alternate measure is a global error measure.

Thereafter two criteria are formulated, the first being the goal-oriented method. This is called
the goal-oriented method since it should make the error in the detector response as small as possi-
ble. The second criterion is called traditional refinement,since it considers how much the solution
is changed by introducing local refinement. We consider thiscriterion to compare the goal-oriented
refinement with more widely used methods.

2.4.1 Error Definition

The first error measure is that of the detector response, for which we first have to define the
detector response. Many kinds of detector configurations are possible, but only a limited amount
is physically relevant. Only the volumetric detector is used in this report.

J(φ) =

∫

V

∫

4π
σDφ(r, Ω̂)dΩ̂dV (2.42)

In this expression, the cross sectionσD determines the rate at which neutrons are being measured.
The dimensions of the detector are contained in this cross section. In regions where the detector
is not present we take the cross section to be zero. Since we integrate over the whole detector
region without discrimination in angle, neutrons in each direction have the same contribution to
the detector.

With these detector responses we can define an absolute errormeasure, which is
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Edet = |Jref − Jh| (2.43)

whereJref is the ‘exact’ detector response andJh is the detector response calculated with the
current discrete solution.

When there is a comparison to the exact error in this report wedo not use the exact error. A
reference error is computed using a very fine angular mesh andthis is taken to be equal to the exact
error. The spatial elements are small, in the sense that the spatial part of the problem is converged.
There will not be any spatial component in the error.

The other error measure with which we can compare methods is the root mean square error of
the scalar fluxΦ. This error is taken node wise, instead of integral wise:

Erms =
√

(Φref −Φh) · (Φref −Φh) (2.44)

In this equationΦh is the vector of scalar fluxes on the nodes of the current discrete solution.Φref

is again the ‘exact’ solution, however, it is now a vector quantity.
The is a difference in what an accurate solution looks like according to the two norms, es-

pecially in geometries where the source and detector regions do not overlap. Then the absolute
error of the detector response requires the solution in the detector to be very accurate, while in
other regions it is not necessarily accurate. However, the rms error will require a solution that lies
overall close to the exact solution, which may introduce a larger error in the detector response.

2.4.2 Goal-Oriented Adaptivity

First we will derive the goal-oriented criterion. We start with an alternate expression for the
transport equation, which is in terms of the operatorL and the external sourceS

Lφ = S (2.45)

The adjoint operator or equation can be derived using inner products. An inner product in this
case is an integral over the whole phase space of a product of two functions, or in mathematical
notation

< f, g >=

∫

V

∫

4π
f(r, Ω̂)g(r, Ω̂)dΩ̂dV (2.46)

With this notation the adjoint operator can be derived as follows

< φ∗, Lφ >=< φ∗, S > ⇐⇒ < L∗φ∗, φ >=< φ∗, S > (2.47)

whereL is the forward operator andL∗ is the adjoint operator. We can chose the right hand side
of the adjoint problem equal to the detector cross section, in other wordsL∗φ∗ = σD. This leads
to

< L∗φ∗, φ >=< σD, φ >=< φ∗, S >= J (2.48)

whereJ is the detector response. The relation< σD, φ >=< φ∗, S > is known as the duality
relation. The explicit expression for the forward operatorL in our case is
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First we introduce some sets that are needed for expressionslater on. The domain in phase
space of one element can be written as a set that takes care of the spatial part and one that takes
care of the angular part.

e = {r ∈ element e} (2.49)

Ω = {Ω̂ ∈ 4π} (2.50)

We can divide the angular setΩ into two sets, one for in flowing and one for outflowing directions
on an edgeδe.

Ω+ = {Ω̂ ∈ Ω|Ω̂ · n̂δe > 0} (2.51)

Ω− = {Ω̂ ∈ Ω|Ω̂ · n̂δe < 0} (2.52)

Furthermore we need to discern the edges and directions thatare specified by the boundary condi-
tions of the problem.BC in the following expression is the abbreviation for boundary condition,
which can be any of the elements of{U,D}, upwind and Dirichlet boundary conditions respec-
tively. There is an upwind ‘boundary condition’ as a result of applying the discontinuous Galerkin
method is that all patches can be solved independently, therefore the upwind flux can be taken as
a boundary condition for that patch.

Ω−
i = {Ω̂ ∈ Ω−|BC = i} (2.53)

∂Vi = {r ∈ ∂e−|BC = i} (2.54)

The Galerkin procedure for spatial elements consists of multiplying the equation by a test function
ve,p(r, Ω̂) and integrating over the domain. The indicese andp are respectively the element and
the patch index. This results in

−

∫

4π

∫

e
φΩ̂ · ∇vdrdΩ̂+

∫

4π

∫

e
σtφ

intvintdrdΩ̂−

∫

4π

∫

e

σs

4π
ΦvintdrdΩ̂

+

∫

Ω+

∫

∂e+
(Ω̂ · n̂)φintvintdrdΩ̂+

∫

Ω−

U

∫

∂e−\{∂VR∪∂VD}
(Ω̂ · n̂)φextvintdrdΩ̂

=

∫

4π

∫

e
SvintdrdΩ̂−

∫

Ω−

D

∫

∂e−∩∂VD

(Ω̂ · n̂)gvintdrdΩ̂ (2.55)

By summing this equation over all elements we can identify a bilinear form and linear form such
that we can write the discretized transport equation as

B(φ, v) = l(v),∀v ∈ Vh (2.56)

whereVh is the space of all test functions. An explicit expression for B andl is given by

15



2 NEUTRON TRANSPORT WITH CONSTANT ANGULAR BASIS FUNCTIONS

B(φ, v) =
∑

e

{

−

∫

4π

∫

e
φΩ̂ · ∇vdrdΩ̂+

∫

4π

∫

e
σtφ

intvintdrdΩ̂−

∫

4π

∫

e

σs

4π
ΦvintdrdΩ̂

+

∫

Ω+

∫

∂e+
(Ω̂ · n̂)φintvintdrdΩ̂

+

∫

Ω−

U

∫

∂e−\{∂VR∪∂VD}
(Ω̂ · n̂)φextvintdrdΩ̂ (2.57)

l(v) =
∑

e

{

∫

4π

∫

e
SvintdrdΩ̂−

∫

Ω−

D

∫

∂e−∩∂VD

(Ω̂ · n̂)gvintdrdΩ̂
}

(2.58)

We will now introduce patches with constant basis functions. The test functionve,p is therefore
assumed to be of the form

ve,p(r, Ω̂) = φe(r)Ge,p(Ω̂) (2.59)

The spatial part,φe(r), consists of linear functions. Each patch,Ge,p(Ω̂), has a constant basis
function. The linear form can then be written as:

l(v) =
∑

e

{

∑

p

∫

e
∆Ge,pSe,pv

int
e,pdr −

∑

p∈Ω−

D

∫

∂e−∩∂VD

(Ω̂e,p · n̂)Ge,pv
int
e,pdr

}

(2.60)

whereΩ̂e,p denotes
∫

∆Ge,p
Ω̂dΩ̂. With this notation no approximation is made, the integralsover

the directions are exact. Since the patches have a constant basis function we can write the4π
integrals as sums with the size of the patch as weights, as stated earlier.

The bilinear form will become:

B(φ, v) =
∑

e

{

−
∑

p

∫

e
φΩ̂e,p · ∇ve,pdr +

∑

p

∫

e
∆Ge,pσtφ

intvinte,pdr

−
∑

p

∫

e
∆Ge,p

σs

4π
Φvinte,pdr

+
∑

p∈Ω+

∫

∂e+
(Ω̂e,p · n̂)φ

intvinte,pdr

+
∑

p∈Ω−

U

∫

∂e−\∂VD

(Ω̂e,p · n̂)φ
extvinte,pdr (2.61)

A short derivation shows how we can write the error as a function of the linear and bilinear
form, using respectively: linearity, dual problem, Galerkin orthogonality and consistency [5].
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∆J = J(φ) − J(φh) (2.62)

= J(φ− φh) (2.63)

= B(φ− φh, φ
∗) (2.64)

= B(φ− φh, φ
∗ − φ∗h) (2.65)

= l(φ∗ − φ∗h)−B(φh, φ
∗ − φ∗h) (2.66)

Hereφh is the computed solution andφ is the exact or reference solution. Since the exact solution
is not always available one can use an approximation by usinga solution on a very fine mesh.

Plugging in our expressions forl andB and subsequent partial integration yields

∆J =
∑

e

∑

p

{

∫

e
∆Ge,pSe,p(φ

∗ − φ∗h)dr − 1p∈Ω−

D

∫

∂e−∩∂VD

(Ω̂e,p · n̂)ge,p(φ
∗ − φ∗h)dr

+

∫

e
φΩ̂e,p · ∇(φ∗ − φ∗h)dr −

∫

e
∆Ge,pσtφ

int
h (φ∗ − φ∗h)dr

+

∫

e
∆Ge,p

σs

4π
Φ(φ∗ − φ∗h)dr − 1p∈Ω+

∫

∂e+
(Ω̂e,p · n̂)φ

int
h (φ∗ − φ∗h)dr

−1p∈Ω−

U

∫

∂e−\∂VD

(Ω̂e,p · n̂)φ
ext
h (φ∗ − φ∗h)dr (2.67)

which is actually a sum over all patches. The sum is weighted by the patch size, which becomes
clear when we interpret̂Ωe,p as the ’average’ angle times the size of the patch. The sum over all
the patches then becomes

∆J =
∑

e

∑

p

∆Ge,p

{

∫

e
Se,p(φ

∗ − φ∗h)dr − 1p∈Ω−

D

∫

∂e−∩∂VD

(Ω̂
′
e,p · n̂)ge,p(φ

∗ − φ∗h)dr

+

∫

e
φintΩ̂

′
e,p · ∇(φ∗ − φ∗h)dr −

∫

e
σtφ

int
h (φ∗ − φ∗h)dr +

∫

e

σs

4π
Φ(φ∗ − φ∗h)dr

−1p∈Ω+

∫

∂e+
(Ω̂

′
e,p · n̂)φ

int
h (φ∗ − φ∗h)dr

−1p∈Ω−

U

∫

∂e−\∂VD

(Ω̂
′
e,p · n̂)φ

ext
h (φ∗ − φ∗h)dr (2.68)

It is interesting to compare the weights of the sum in this expression and the weights of a quadra-
ture set that is used in the discrete ordinates method. In that method one chooses a set of directions
and weights on which one demands the equation to hold. The integrals over the angular domain
are then performed by computing a sum of weighted angular fluxes. In this case the angular inte-
grals change into weighted sums naturally, where the weights are not free to chose, but are equal
to the size of the patch.
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Since the expression for∆J is a sum over all elements and all patches we can define an error
contribution for each patch, call itηe,p. Theηe,p’s will eventually tell us where to refine or coarsen
the spatial or angular discretization. The total error estimate then looks like:

∆J =
∑

e

∑

p

∆Ge,pηe,p (2.69)

after some manipulation and partial integration we see thatηe,p is of the form:

ηe,p =

∫

e
Rh(φ

∗ − φ∗h)dr + 1p∈Ω−

U

∫

∂e−\{∂VD∪∂VR}
(Ω̂

′
e,p · n̂)rh,U (φ

∗ − φ∗h)
intdr

+1p∈Ω−

D

∫

∂e−∩∂VD

(Ω̂
′
e,p · n̂)rh,D(φ

∗ − φ∗h)
intdr (2.70)

with:

Rh = Se,p +
σs

4π
Φh − Ω̂

′
e,p · ∇φh;e,p − σtφh;e,p (2.71)

rh,U = φinth;e,p − φexth;e,p (2.72)

rh,D = φinth;e,p − ge,p (2.73)

The error contribution of a patch,ηe,p, is now an integral over the domain in phase space of
that patch. The integrand is the product of the residual and the importance of the location in phase
space, sinceRh, rh,U , rh,D andrh,R turn out to be the residual of the discrete transport equation.
The importance is given by the adjoint solution. Finally thecontributionηe,p is multiplied by the
size of the patch∆Ge,p.

Rh is the spatial and ther’s are the boundary residuals of the equation.rh,D andrh,R are
the Dirichlet and reflective boundary residuals, whilerh,U is the upwind residual. This upwind
residual is non zero between elements (it is zero on the boundary of the domain). This residual is
a result of the ‘jumps’ that are allowed in the solution in thediscontinuous Galerkin method.

We can use this expression to estimate the error of the solution, without the need for an explicit
expression of the exact solution. However, we can also formulate the criterion for refinement from
this expression. We now have a contribution to the error of each patch∆Ge,pηe,p. When these
contributions are sorted we find which patches contribute most to the error. A fixed percentage of
patches will be refined in each refinement iteration, which leads to the natural choice of refining
the patches that contribute most to the error.

The only question that remains is how the exact adjoint is to be computed. Only in rare cases
can this be done analytically, therefore we will make an approximation. Two slightly different
approximations are used, the global and the local adjoint approximation. In the global adjoint ap-
proximation we compute the adjoint on one level deeper than the forward solution. This means that
for each patch of the forward there are two adjoint patches. The adjoint at this level is computed
as best as possible.

Turning to the local adjoint, we also use a refinement of one level deeper than the forward in
this case. However, the adjoint is not calculated in the normal way, rather the adjoint solution on
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the same level as the forward is first calculated. After that we can locally refine the adjoint one
level, for each patch separately, and compute the solution on the deeper level. This is done with
the ‘old’ scalar flux and angular flux values of neighbours, inother words the values of the adjoint
solution on the same level as the forward. Both approximations are presented schematically in
Figure 2.

1

11 12

(a) Forward

1

11 12

111 112 121 122

(b) Global adjoint approximation

1

11 12

111 112

(c) Local adjoint approximation

Figure 2:Schematic representation of the two approximations of the exact adjoint used in the goal-
oriented adaptive criterion. The global approximation consists of computing the adjoint on a level
deeper, while the local approximation consists of local refinements (one such local refinements is
presented).

2.4.3 Traditional Adaptivity

Traditional refinement methods can be found in many areas of mathematics and physics, however
the method described here does not necessarily apply to all these areas. It is however widely used
in numerical neutron transport and other fields. All traditional methods are based on the same idea.
A local refinement and solution is computed and compared to the original non-refined solution.
The elements or patches that have the largest change in solution will keep the refinement, the other
elements will go back to their original distribution.

We now need to quantify ‘change in the solution’. The solution in this case is the angular flux
φ and the change will be looked at in phase space. In other words, we will look at the square of
the change in the angular flux integrated over phase space of apatchη, which reads

η =

∫

∆x

∫

Gi

(φh/2 − φh)
2dΩ̂dx (2.74)

=

∫

Gi

dΩ̂

∫

∆x
(φh/2 − φh)

2dx (2.75)

= 2π∆Gi

∫

∆x
(φh/2 − φh)

2dx (2.76)

Since the integrand of the angular integral is a constant function, we can pull it out. That leaves us
with the spatial integral, which can be formulated in terms of the matrices in Equation 2.27:

η =

∫

∆x

∫

Gi

(φh/2 − φh)
2dΩ̂dx = 2π∆Gi(φh/2 −φh)

TM (φh/2 − φh) (2.77)
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In this reportφh/2 is determined in the local approximation. A patch is locallyrefined and the
new solution is computed on this patch. This means the upwindflux values that are used in the
computation of this patch are of the coarse level and are not updated. Also the scalar fluxΦ is not
updated before computing the solution on the finer patches. After the change has been computed
that patch is coarsened again, before going on to the next patch.

This method clearly tries to get an accurate solution ofφ on the whole domain, it’s goal is to
letφ vary as little as possible. However, we are interested in an accurate calculation of the detector
response. The goal of the traditional refinement strategy does not necessarily result in an accurate
detector response. As opposed to traditional methods goal-oriented methods take into account the
quantity one wants to determine accurately, in this case thedetector response.

2.5 Overview of Algorithm

A schematic overview of the algorithm is presented in Figure3. Before we will explain the
overview of the algorithm a short explanation of the method used for solving the system of equa-
tions obtained from discretising the transport equation isgiven. This method is described ex-
tensively in Section 3.2, therefore we will only briefly explain why we have two loops in this
overview. The outer iteration is the refinement iteration, which is discussed below. The inner
iteration is the source iteration, where the transport equation is solved on a certain mesh. This
iteration consists of splitting the matrix and applying a Jacobi iteration on these matrices.

We start with setting up the finite element method in an hierarchical data structure. The hierar-
chy can be used for easy reference when refining. After which we can start with the first refinement
iteration, which itself starts with the first source iteration. These iterations are represented by re-
spectively the outer and the inner box of dashed lines.

In the source iteration we start by updating the source term,that is the sum of the external
source and the scatter terms. In the first iteration the scatter term simply adds nothing to this sum.
We can then update the angular flux by solving the transport part of the transport equation. This
results in the angular flux of one-time scattered neutrons. From this angular flux we can update
the scatter term, after which we enter the second source iteration. This is repeated a fixed number
of times, however, in the tests presented here it is made surethe source iteration has converged up
to machine precision.

After the solution of the angular flux at the current refinement level is computed we can start
the first refinement procedure. The first step is to calculate the error contributions of each patch
and ordering this list of contributions in decreasing absolute contribution. When the contributions
are added the error estimate for this iteration is obtained.The other step consists of refining the
patches with the largest contributions, in the tests presented below we refine thirty per cent of all
patches in each iteration.

The first refinement iteration is then complete. We can now repeat the whole process until
the error in the detector response is as small as one wants it to be. The detector response can
be computed at the end of the algorithm, when one is solely interested in an accurate detector
response. For testing purposes we compute the detector response in each refinement iteration.
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Start

End

Set up FEM

Update source

Perform sweep

Update scalar flux

Compute det. response

Calculate error per patch

Refine patches
Repeat fixed number of times

Repeat fixed number of times

Figure 3:Schematic overview of the adaptive algorithm.

2.6 One-Dimensional Results

In this section the results of the various adaptive algorithms for several test cases are presented.
Eight cases are used to illustrate the performance of the algorithm, these test cases can be found in
Appendix A. Each of the cases will test different aspects of the adaptive methods. In all test cases
the adaptive algorithms refine 30 per cent of the patches in each refinement iteration, unless stated
otherwise.

For all test cases a figure with the error plotted against the total number of patches. This shows
how the refinement in each step improves the solution. In thisway different adaptive methods
can be compared on performance. The discrete ordinates method is also included in these plots,
although it is not an adaptive method. However, one can compare the cost in number of unknowns
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of the discrete ordinates method and the adaptive methods.
The quality of the error estimator for the two goal-orientedmethods is also examined. To this

end we compare the estimated error with the reference error,which is computed at a much deeper
level. We examine the quality to find out whether we can use theerror estimator as a trustworthy
representation of the error. This would mean that in future work the reference error does not
necessarily have to be computed.

A final comparison between the adaptive methods is an investigation into the effect of the re-
finement ratio, that is the percentage of patches that is refined in each refinement iteration. The
adaptive algorithm is run several times with different percentages. The error versus the total num-
ber of patches for all methods is then plotted in one figure, which shows the most effective refine-
ment ratio.

The first test cases have a homogeneous slab geometry, with different materials. The next
test cases have a separate source and detector in a homogeneous material. Thereafter the source
detector test case is extended by placing a shielding regionin the middle of the domain, between
the source and detector.

A final remark has to be made on all plots that are shown in this section, the legend holds
names for the different method that are presented in this work. ‘Uniform’ is the discontinuous
Galerkin method with uniform refinement, i.e. in each refinement iteration all patches are refined.
‘Traditional’ refers to the traditional refinement criterion that can be used with the discontinuous
Galerkin method. The two goal-oriented adaptive methods are referred to as ‘full adjoint’ and
‘local adjoint’. The full adjoint is the criterion that bases its decision for which patches to refine
on the adjoint solution of patches that are one level deeper (they are refined once more) than the
patches of the forward solution. The other criterion bases its decision on a local refinement of the
adjoint solution and is therefore called local adjoint. We also have the discrete ordinates method
which is referred to as ‘discrete ordinates’. Finally a linethat represents second order convergence
is plotted for convenience, this line is referred to as ‘2nd order’.

2.6.1 Homogeneous Slab (cases A and B)

The first test case is the homogeneous slab, both optically thick and thin. The exact specifications
of these test cases are presented in Appendix A. In Figure 4(a) one can find the plot of the detector
response error versus the total number of patches of test case A, the thick scattering slab. In this
plot we note that convergence is eventually second order forall methods that are presented. The
error with uniform refinement of patches decreases constantly, while the error of all other methods
decreases faster in the beginning, i.e. with few patches. Therefore the traditional, full and local
adjoint and discrete ordinates methods eventually have an advantage of an estimated factor of two,
measured in the number of patches needed to get a certain error. The similarity in error decrease
of the different methods is probably due to the homogeneity of the problem.

Turning to the plot of detector response error decrease versus the total number of patches
in case B, Figure 4(b), we see that all methods again perform somewhat similar. This time the
uniform method (all patches are refined in each refinement iteration) performs slightly better than
the other methods. The error decrease for all methods is again about second order.

In both cases the adaptive algorithms perform about the same, also the Discrete Ordinates
method performs about the same as the adaptive algorithms. The uniform refinement performs,

22



2 NEUTRON TRANSPORT WITH CONSTANT ANGULAR BASIS FUNCTIONS

however, different in case A and B. In case A the adaptive algorithms perform slightly better, while
in case B the uniform refinement performs slightly better. Ananswer to this can be found in the
spatial patch distribution, which is shown in Figure 5. In these plots the number of patches in an
element is plotted against thex position of that element.

Case B has quite a uniform patch distribution in space. Therefore one would expect the uni-
form and adaptive methods to work similarly. However in caseA the patch distribution is far from
uniform, more patches are used near the edge of the domain. Near the edges the angular flux is
more difficult to compute, because of the leakage. In the middle of the domain there is little ef-
fect of the leakage, because the material is optically thick. Therefore the adaptive algorithms can
provide a better solution.

Another remarkable result is the steps in the patch distribution of test case A. These are an
artefact of the refinement algorithm, when a smaller fraction of patches is refined these steps
disappear and the distribution becomes exponential. The exponential behaviour might be due
to the fact that effects of leakage decrease exponentially when propagating through the domain,
because a ray of neutrons also decreases exponentially.

The lack of difference between the three adaptive methods can be explained by the homogene-
ity of the problem. Since the volumetric detector is in the whole domain there is little difference
between the traditional and goal oriented criteria. One could say that a refinement that changes
the solution of the angular fluxφ most will probably also result in a better detector responseand
vice versa. Therefore we will turn to other test cases.
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(a) Test case A, thick highly scattering medium.
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(b) Test case B, thin scattering medium.

Figure 4:Error in the detector response of the two homogeneous slab test cases. In the optically
thick case all methods perform better than the uniform method, because the optimal distribution
of patches is not flat. However in the optically thin case the optimal distribution is almost flat,
therefore the uniform refinement works well.

2.6.2 Separate Source Setector (cases C, D, E and F)

In these test cases a geometry with a separate source and detector for different materials is pre-
sented. The four materials are thick scattering, thin scattering, thin absorbing and a material with
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(a) Test case A, thick highly scattering medium.
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(b) Test case B, thin scattering medium.

Figure 5: Spatial patch distribution, in one spatial element all patches are counted and plotted
at its position. The steps in the optically thick case disappear when a smaller refinement ratio is
used. The optimal distribution of patches in the optically thin case is almost uniform.

medium thickness and some scattering. For each of the test cases the material properties are listed
in Appendix A.

Figure 6 shows the error in the detector response versus the total number of patches of all
source detector test cases. We see for all four test cases thesame second order convergence of the
uniform method. For test cases C, E and F we see somewhat the same behaviour. The discrete
ordinates method outperforms all other methods, while the traditional refinement criterion with
discontinuous Galerkin performs the worst of all, since there is almost no error decrease. The two
goal-oriented adaptive methods, full and local adjoint, converge second order and perform at least
as good as the uniform method. In case D the full adjoint goal-oriented method performs best,
while all other methods perform comparably.

An explanation for this behaviour can be found looking at theangular flux profile. In the thick
and diffusive cases the flux profile is almost linear while in the absorption case it is exponential.
Since we’re using constant basic functions (patches) different behaviour can be expected when
the solution has a different angular flux profile. A linear function is harder to approximate with
constant patches, as it needs a fine representation for all directions. An accurate approximation of
exponential functions with constant functions only needs afine representation where the derivative
of the exponential function is largest.

When comparing the uniform and adaptive methods one finds that the goal-oriented adap-
tive methods are at least as good as the uniform method. The traditional adaptive method does
a very poor job. These differences between the methods can beexplained by the patch distribu-
tions, which are shown in Figure 7. In this figure we will take acloser look at the spatial patch
distribution of cases C and E. In case C we saw that the goal-orientated methods have an equal
error reduction as the uniform method, which can be explained by the diffusivity of the problem.
Constant patches cannot approximate diffusive problems well, because the angular flux profile is
linear. Since we need a fine mesh to approximate a linear function by constant basis functions, this
means the whole domain of the problem will be refined. Figure 7(a) shows the flat spatial distribu-
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(a) Test case C, thick highly scattering medium.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 100  1000  10000  100000

E
rr

or

Total number of unknowns

Error in detector response, test case D

uniform
full adjoint

local adjoint
traditional

discrete ordinates
2nd order

(b) Test case D, thin scattering medium.
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(c) Test case E, absorbing medium.
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(d) Test case F, purely absorbing medium.

Figure 6:Error in the detector response of all source detector test cases.

tion of the two goal-oriented adaptive methods. This figure also shows why the traditional method
performs so poorly. Most refinement is on the left hand side ofthe problem, while the detector
is on the right hand side of the problem, which results in a baddetector response. The traditional
criterion refines patches of which the solution changes mostwhen they are refined, which will be
around the source region in the domain and not around the detector region, as the solution is much
larger in the source region.

The patch distribution of test case E shows why the goal orientated adaptive methods outper-
form the uniform method. Even though the spatial distribution is still quite flat, more refinement
took place on the border of the source region and the detectorregion. Since this problem is less
scattering the patch distribution is less flat. Also in this case the traditional method refines locally
around the source and not at all around the detector.

It is also worth looking at the node wise root mean square error (rms error) of the flux. Since
this error measure looks at the whole domain of the problem instead of just the detector region.
Figure 8 shows a plot with the rms error versus the total number of patches. The traditional
adaptive method provides us with the smallest error of all methods and discrete while the goal
oriented adaptive methods show almost no decrease in error.This behaviour can be expected since
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(a) Test case C, thick highly scattering medium.

 1

 10

 100

 1000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

N
um

be
r 

of
 p

at
ch

es

x coordinate

Distribution of patches, test case E

full adjoint
traditional

local adjoint

(b) Test case E, absorbing medium.

Figure 7: Spatial patch distribution, in one spatial element all patches are counted and plotted
at its position. The traditional adaptive method mostly refines around the source, not around the
detector. The absorbing medium has a larger refinement near source and detector for the goal
oriented adaptive methods, while the thick case has an almost flat distribution. This is needed for
an accurate representation of a diffusive problem.

the goal of the goal-oriented methods is to get the detector response as accurate as possible, which
not necessarily needs an accurate description of the solution in the whole domain. We furthermore
note that the uniform method converges about second order and that the discrete ordinates method
performs similar to the uniform method.

2.6.3 Quality of Error Estimator

Besides using the error estimate as a criterion for refinement we can also use it as an estimator for
the error in the detector response. In many cases the exact error is not available, as we do not have
an exact solution to the neutron transport problem. To reliably use the estimator as error indicator
we first need to test its performance. This test consists of examining the error ratio, that is the
ratio between the estimated and exact error. Since the exacterror is not available we will use a
reference error, which is computed on a much finer patch distribution. In this section we will look
at three test cases (A, E and G) where the estimator behaves differently.

In each of the figures presented here three data sets are plotted, ‘uniform’, ‘full adjoint’ and
‘local adjoint’. We will treat them in reverse order, starting with the local adjoint. The local adjoint
criterion consists of the goal-oriented error estimator (see Section 2.4.2), where the exact adjoint
solution is approximated by a local refinement of the associated adjoint patch. That is, to compute
the error contribution of a certain patch in the forward patch distribution, we refine the associated
adjoint patch once locally, resulting in a representation on one level deeper. Besides using the
error estimator the refinement criterion based on the error contribution is also used. Turning to
the full adjoint criterion, this method uses the same criterion as the local adjoint, only the exact
adjoint solution is now approximated by computing the adjoint solution on a patch distribution
that is refined to one level deeper than the forward patch distribution. The last data set is obtained
by using the full adjoint error estimator on a uniform refinedpatch distribution. This means in
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Figure 8:Node wise root mean square error of scalar flux of test case F. In the root mean square
error measure we see the traditional adaptive method being more effective than the goal oriented
adaptive methods. The goal of the goal oriented adaptive methods, an accurate detector response,
is therefore not the same as an accurate overall solution.

each refinement iteration all patches are refined, so the adaptive criterion for refinement is not
used. However, we can test the error estimator that is obtained from the adaptive criterion using
this patch distribution.

The error ratio’s for the thick homogeneous slab, test case A, are shown in Figure 9(a), where
the ratio of the error estimator and the reference error is plotted against the total number of patches.
We expect the error estimator to asymptotically go to the reference error, this means the ratio
should tend to unity. We can see that for case A the ratio tendsto unity for the uniform method,
however not asymptotically. It is expected that this will happen when linear patches are used, as
constant patches cannot approximate linear flux profiles well. The same criterion but with adaptive
refinement, the full adjoint case, has somewhat the same behaviour. It has some wiggles, but the
trend is the same as the uniform case. In contrast to this, thelocal adjoint case has a very different
behaviour. The ratio lies significantly below the referenceerror and it even becomes a worse
estimator when more patches are used. For this case it cannotbe used as an error indicator.

Turning to test case E, the absorption source detector problem, we see in Figure 9(b) that the
full adjoint case does not always provide an accurate error estimator. The error ratio does not tend
to unity as patches are refined, which means we cannot use it asa reliable indicator for the error in
this case. The uniform refined method still tends to unity, but again not asymptotically. The local
adjoint estimator performs even worse in this case, compared to case A. We can certainly not use
this as an indicator for the error.
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The final case in this section is test case G, the thick boundary detector case. The error ratio’s
are shown in Figure 9(c). In this case the full adjoint the uniform methods give almost the same
error estimator, which tends to unity. However, the local adjoint estimator is still off. In all cases
the local adjoint estimator seems to provide us with an underestimate of the error, which cannot
be used as an indicator for the error.

An interesting fact is that the local and full adjoint error estimators do not agree on the error
estimator, the full adjoint provides us with a reasonably good estimator, while the local adjoint
estimator is too much off. The two methods do, however, refinealmost the same patches, resulting
in similar patch distributions. This can be seen in the patchdistribution plots shown earlier. This
means that when the error estimator is not important, the local adjoint method, which is cheaper
than the full adjoint method, can be used to decide which patches to refine.
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Figure 9:Ratio’s of error estimators and reference error. The reference error is computed using a
very deep refinement, much deeper than where the tests took place.
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3 Analysis of the Adaptive Algorithm

In this section we will investigate on the algorithm used to solve the transport equation. This is
mainly to describe the algorithm more accurately and also explain some of the results we have
seen for the constant patches. There are three parts in this section. The first part is on constructing
the full transport operator matrix. We will need this full form in order to investigate the algorithm
further. The full matrix is never constructed during the tests with the constant patches.

The second part involves the method of solving the transportequation itself. Two iterations
are used to solve the system, the source iteration and the sweep iteration. These iterations are used
in a nested way, which is described in mathematical terms in this part. Furthermore we look at the
question of convergence of the iterations in this part.

In the algorithm the adjoint operator of the transport equation is used, that is, the adjoint of the
continuous operator. We can also define a discrete adjoint operator and examine how it relates to
the discretised continous adjoint operator. A derivation and comparison between the two ways of
deriving a discrete adjoint problem is presented in the third part of this section.

Finally we have a part considering the behaviour of the localand global error estimator we saw
in the previous section. Both the global and local error estimator refine patches in a way that is to
be expected and seems to be, in general, the most effective refinement. However the error estimate
itself differs between the methods. The global error estimator provides us with a fairly accurate
estimate of the error, while the estimate of the local adjoint is off by too much to be reliable. Why
this is possible with the error estimation as described in the previous section is the subject of the
last part.

3.1 Transport Equation Matrix

The goal of this part is to construct the full transport operator matrix, when discretised using the
discontinuous Galerkin method with linear basis functionsin the spatial domain and constant basis
functions in the angular domain. We will start with derivingthe shape of the matrix for a uniformly
discretized problem term by term. Let us assume there areE elements, in the spatial direction,
andP patches on each element.

Starting with the removal termσtφ, we see that this term adds a block matrix for each cell in
the spatial-angular domain. Since applying the Galerkin procedure to this term results in

∫

p

∫

e
σtφe,pγeGe,p

∑

e,p

γeGe,pdxdµ =

[

γe1γe1G
2
e,p γe1γe2G

2
e,p

γe2γe2G
2
e,p γe2γe2G

2
e,p

] [

φe1,p
φe2,p

]

(3.1)

and the spatial basis functionsγ are linear and the angular basis functionsGe,p are constant, we
get a block diagonal matrix with the following entries

[

γe1γe1G
2
e,p γe1γe2G

2
e,p

γe2γe2G
2
e,p γe2γe2G

2
e,p

] [

φe1,p
φe2,p

]

=

[

1
3∆x∆µ

1
6∆x∆µ

1
6∆x∆µ

1
3∆x∆µ

] [

φe1,p
φe2,p

]

(3.2)

This two by two matrix block is added to the diagonal of the large matrixLh, so there are in total
E · P of these blocks.
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The scatter termσs

4πΦ is a little more involved, since this couples all patches in an element.
Φ is an integral of a piece-wise constant function and easily computed. For a uniformly refined
discretisation withP patches on an element, this results in the following matrix for one element

∫

p

∫

e

σs

4π
Φe

∑

e,p

γeGe,pdxdµ

=



















γe1γe1Ge,1 γe1γe2Ge,1 γe1γe1Ge,2 · · · γe1γe2Ge,P

γe2γe1Ge,1 γe2γe2Ge,1 γe2γe1Ge,2 · · · γe2γe2Ge,P

...
. . .

...

γe2γe1Ge,1 γe2γe2Ge,1 γe2γe1Ge,2 · · · γe2γe2Ge,P



















[

Φe1,p

Φe2,p

]

(3.3)

=



















1
3∆x∆µ

1
6∆x∆µ

1
3∆x∆µ · · · 1

6∆x∆µ
1
6∆x∆µ

1
3∆x∆µ

1
6∆x∆µ · · · 1

3∆x∆µ

...
. . .

...

1
6∆x∆µ

1
3∆x∆µ

1
6∆x∆µ · · · 1

3∆x∆µ



















[

Φe1,p

Φe2,p

]

(3.4)

This block matrix is also added to the diagonal of the large matrix Lh, however since this block is
2P by 2P , it is addedE times.

The streaming term was divided into two terms, a volumetric and a boundary term. We will
first discuss the volumetric term, which is again a two by two block matrix that will be added to
the diagonal of the large matrixLh. This block matrix is derived as follows

∫

p

∫

e
µ
∂φe,pγeGe,p

∂x

∑

e,p

γeGe,pdxdµ =

[

γ′e1γe1〈G
2
e,p〉 γ′e1γe2〈G

2
e,p〉

γ′e2γe1〈G
2
e,p〉 γ′e2γe2〈G

2
e,p〉

] [

φe1,p
φe2,p

]

(3.5)

=

[

−1
2∆µ −1

2∆µ
1
2∆µ

1
2∆µ

] [

φe1,p
φe2,p

]

(3.6)

Now we have the most involved term left, the boundary streaming term. This term will not
produce block diagonal matrices, instead it will couple patches from different elements to each
other. We have a different situation for left and right goingpatches, that is, for patches where
either

∫

p dµ > 0 or
∫

p dµ < 0. In general we have

∫

p
µγeGe,p

∑

e,p

∂γe

∂x
dµ =

[

γ′e1γe1〈G
2
e,p〉 0

0 0

]

x=e1

[

φe1,p
φe2,p

]

x=e1

+

[

0 0
0 γ′e2γe2〈G

2
e,p〉

]

x=e2

[

φe1,p
φe2,p

]

x=e2

(3.7)
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At a boundary we chose the angular flux valuesφ upwind when the patch is streaming into the
element and we chose the flux values of the element itself whenthe patch is streaming out of the
element. This gives us for

∫

p dµ > 0

∫

p
µγeGe,p

∑

e,p

∂γe

∂x
dµ =

[

〈µ〉 0
0 0

] [

φe1−1,p

φe2−1,p

]

+

[

0 0
0 〈µ〉

] [

φe1,p
φe2,p

]

(3.8)

Analogously we treat patches where
∫

p dµ < 0, only now the fluxes at the other side of the element
are taken from the neighbouring element.

Adding all these terms, we can construct the full matrix as issolved in the code. Note that in
the code the full matrix is never constructed, for large problems this is very costly computational
and memory wise. In Figure 10 the non-zero elements ofLh are shown.

Figure 10: Structure of the matrixLh. The blue blocks represent the blocks on the diagonal
which arise from the removal and volumetric streaming terms. The boundary streaming terms
result in the green blocks. The large yellow blocks arise from the scatter term. This is the matrix
corresponding to a system with two spatial elements with each four patches.

For non-uniform meshes the structure of the matrix will be the same, however since the number
of patches per spatial element is variable the yellow blocksin Figure 10 have variable size. The
elements that arise from the boundary streaming term, greenin that figure, will correspondingly
shift. This does not alter the iteration with which the system is solved, as can be seen in the next
section.

3.2 Iterative Solver

Now we will focus on the method of solving the system of equations that was obtained above.
Since the matrix is sparse, especially for large systems, a lot of computational and memory costs
can be avoided by using methods that do not need the explicit matrix. To achieve this two iterations
are used in a nested way, first the source iteration is appliedand then the sweep iteration.

Source iteration is a method that is also inspired by physical reasons, since it is an iteration
where neutrons are scattered more and more with each iteration, more on this below. The sweep
iteration is a way of solving the angular flux with the dependencies on upwind angular fluxes. As
it turns out the sweep iteration can also be understood as a reordering of the matrix.
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3.2.1 Source Iteration

We will start with applying source iteration to the discretised system of linear equations, which
will turn out to be an implementation of a block Jacobi iteration. However, the method also has
a physical explanation, for practical reasons we will use the continuous equation to explain the
physical aspect of source iteration, but the reasoning holds for the discrete domain.

The two sides of the transport equation as in Equation 2.2 describe a different process. The
left hand side of the transport equation,

Ω̂ · ∇φ(r, Ω̂) + σt(r)φ(r, Ω̂) =
σs

4π
Φ(r) + s(r, Ω̂) (3.9)

describes streaming and removal of neutrons, while the right hand side is a source of a particular
point in the spatial-angular space. This source side consists of two terms, the external sources and
the scatter sourceσs

4πΦ(r). This term can be considered as a source since it ‘redistributes’ neutrons
from all directions to the point in spatial-angular space weare considering, in other words, for this
point the neutrons scattering to this point are a source.

In many numerical implementations this term is approximated with the source iteration. In
this iteration we start with the transport equation withoutany scatter source,

Ω̂ · ∇φ0(r, Ω̂) + σt(r)φ
0(r, Ω̂) = s(r, Ω̂) (3.10)

where we solve forφ0, the zero-times scattered flux. The solutionφ0 we found is an approximation
to the solution of the transport equation where all scattering is ignored. We can use this ‘guess’
to obtain a better approximation for the angular fluxφ of Equation 3.9 by substitutingφ0 in the
scatter term and solving the equation

Ω̂ · ∇φ1(r, Ω̂) + σt(r)φ
1(r, Ω̂) =

σs

4π

∫

4π
φ0(r, Ω̂)dΩ̂+ s(r, Ω̂) (3.11)

We now obtained a ‘one scattered’ angular fluxφ1, which is a better approximation to the angular
flux of the transport equationφ. In φ1 we now take into account all neutrons that have scattered
once, but we disregard all neutrons that have scattered moretimes. This procedure can be repeated
until the approximationφl is close enough toφ. In general this iteration can be written as

Ω̂ · ∇φl+1(r, Ω̂) + σt(r)φ
l+1(r, Ω̂) =

σs

4π

∫

4π
φl(r, Ω̂)dΩ̂+ s(r, Ω̂) (3.12)

We will now continue with the numerical description of this iterative method, which turns out
to be a block Jacobi method. Some words on convergence of the complete iterative method will be
spent at the end of this section. From now on we will again consider the discrete system of linear
equationsLhφ = s.

To apply the block Jacobi method we split the matrix in two matrices,

Lh = Th + Sh (3.13)

whereTh is the operator that handles transport and removal, whileSh is the scatter operator.Th is a
block diagonal matrix with bands. The blocks are two by two, so the blocks describe the transport
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equation within one cell in the spatial-angular space. Boundary streaming terms, originating in
Equation 3.7 form the bands of the matrix. The entries inSh all follow from the scatter term in
Equation 3.4, so this matrix is also block diagonal, but withblocks of2P × 2P .

Although the matrixTh is not block diagonal we will apply the Jacobi iteration method to this
splitting of Lh. This can be done since we will be able to solve the system obtained from the
Jacobi iteration later on. Our iteration now looks like

φl+1 = T−1
h Shφ

l + T−1
h s (3.14)

3.2.2 Sweep Iteration

Now we can turn to the question how to solve the transport partof the equation, that is, a system
of the formThx = b. We can utilise the special form ofTh to solve this with a direct method. To
this end we split the matrixTh into two matrices and thus, effectively, splitting the matrix Lh into
three matrices. This results in the following matrices

Th = Bh +Dh (3.15)

Lh = Bh +Dh + Sh (3.16)

whereBh is the block diagonal matrix inTh andDh is the matrix containing all off diagonal
blocks ofTh. Before writing the iteration as an expression of these matrices, we will take a look
at the inner parts of these matrices.

First we take a look at matrixBh and let us assume the matrix isn × n. Since this is a block
diagonal matrix with blocks of two by two we can solve a systemBhx = b by solvingn

2 decoupled
systems of two by two. We would like to be able to solve the system(Bh +Dh)x = b in this way,
since it will reduce the computational cost of an implementation of this system.

The diagonal blocks ofDh can be put in the right hand side of the two by two systems if the
column entry ofx is known, or, for block(i, i) in Bh and block(i, j) in Dh we can putDh;i,j in
the right hand side of

(Bh +Dh)x = b =⇒ Bh;i,ixi = bi,i −Dh;i,jxj (3.17)

whenxj is known. In Figure 11 the sweeping iteration is performed onthe matrixBh +Dh. In
step (2) one can see how Equation 3.17 is constructed for eachblock inBh. As shown in step
(1) there are two blocks without a dependence of other blocksin Bh, these will have to be solved
first. After the first block is solved, the dependence to another block inBh is known, therefore this
block can be directly solved. This procedure will have to be repeated to solve every other block
on the diagonal, after which the same procedure can be followed, but going back up the matrix.

There are two ways of interpreting this method, a physical and mathematical one. To start
with the mathematical interpretation, we note that this method solves the entries of the vectorx
in a certain order. When rearranging the matrix in this order, we see that the matrix is actually a
triangular matrix, either upper or lower. Since a triangular matrix is directly solvable, this method
is a direct method.
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(1) Bh;i,iDh;i,j (2)

(3) (4)

Figure 11:Sweeping iteration in matrixBh + Dh. (1) shows which block inBh can be solved
without usingDh. In (2) one can see how Equation 3.17 is constructed. Situation (3) is the end of
the sweep going to the right. In (4) the sweep iteration is nearing completion.

Let us turn to the physical interpretation, in Equation 3.7 we made the choice to only use
upwind information of the angular flux. This means we must first solve the upwind angular flux
of a patch before we can solve the angular flux of the patch itself. The only exception are the
boundaries, where Dirichlet boundary conditions stipulate the upwind angular flux. In Figure
12 an illustration of the sweep algorithm in the spatial-angular space can be found. The arrows
indicate the direction of flow and therefore the dependence of the patches, which results in the
ordering of the patches.

We can now give an expression for the whole iteration, that is, both source and sweep iteration
combined. We will use the superscriptl for the source iteration andk for the sweep iteration. Note
that the source iteration and the sweep iteration are different kinds of iterations. The source iter-
ation is truly an iteration, where convergence questions can be asked. This means every instance
of the source iteration is an approximation of the solution.The sweep iteration, however, is an
iteration of the rows in the system of equations. It is actually a direct method, which becomes
clear when one looks at rows separately. Therefore we mean byindexk + 1 the next row under
consideration and byk all rows of which the equation is already computed. The full iteration can
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Figure 12: Sweep iteration in the spatial-angular space. The direction of flow, and therefore
the dependence between patches, is shown by the arrows. In (1) the right going directions are
computed, while in (2) the left going directions are computed. After both directions are finished,
the system is solved

then be written as

φl+1,k+1 = B−1
h Shφ

l,k −B−1
h Dhφ

l+1,k + skh (3.18)

For the Jacobi iteration sufficient conditions for convergence have been proven. The iteration
converges when the matrixLh is diagonally dominant. That is, when the absolute sum of the
off-diagonal elements is smaller than the absolute diagonal element.

We will show that the matrixLh satisfies this condition. To that end we will look at a general
row in the matrix. For the diagonal element we can write

Lh;i,i =
1

3
∆x∆µp′σt ±

1

2
< µp′ > + < µp′ > +

1

3
∆x∆µ2p′

σs

4π
(3.19)

where the terms originate from, respectively, removal, volumetric streaming, boundary streaming
and scatter.p′ denotes the index of the patch of this row andp is the index of the other patches in
this element. For the absolute sum of the off-diagonal elements we can write
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∑

i 6=j

|Lh;i,j| =
1

6
∆x∆µp′σt± < µp′ > + < µp′ >

+
σs

4π





1

6
∆x∆µ2p′ +

1

2

∑

p 6=p′

∆x∆µ2p′



 (3.20)

The inequality we need to prove for convergence can then be written as

1

6
∆x∆µp′σt >

σs

4π





1

6
∆x∆µ2p′ +

∑

p 6=p′

1

2
∆x∆µ2p



 (3.21)

4π∆µp′ > ∆µ2p′ + 3
∑

p 6=p′

∆µ2p (3.22)

We can further simplify this inequality to an inequality that surely holds, since∆µp′ > 0. There-
fore the inequality above holds and the Jacobi iteration is surely convergent.

4π > ∆µp′ + 3
∑

p 6=p′

∆µp (3.23)

> ∆µp′ + 3(2 −∆µp′) (3.24)

> 6− 2∆µp′ (3.25)

In these steps we used that∆µp′ +
∑

p 6=p′ ∆µp = 2. Note that this is a sufficient, not necessary,
condition for convergence of a Jacobi method.

3.3 Derivation of Adjoint Operator.

Here we will look more closely at the derivation of the adjoint problem. To that end we write the
transport problem in the following way

Lφ = s (3.26)

In Section 2.6 we derived the adjoint transport operator anddiscretised it in the same way as
the forward operator. For clarity we will repeat the definition of the adjoint operator and both
operators here. The adjoint operatorL∗ of any operatorL is defined as

< φ∗, Lφ >=< L∗φ∗, φ > (3.27)

whereφ andφ∗ are functions from the spaceL andL∗ work on, in general this isL2. < ·, · >
denotes the standard inner product on this space. Furthermore we required that the adjoint operator
satisfies the following equation
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L∗φ∗ = σD (3.28)

whereσD is the macroscopic detector cross section. This leads to thefollowing equality, which
we will call the duality relation

< s, φ >=< φ∗, σD >= J (3.29)

in which J is the detector response. With properly chosen boundary conditions, we have shown
that the forward and adjoint transport operator can be expressed as

L = Ω̂ · ∇+ σt −
σs

4π

∫

4π
dΩ̂ (3.30)

L∗ = −Ω̂ · ∇+ σt −
σs

4π

∫

4π
dΩ̂ (3.31)

Since these operators and their associated equations have asimilar form, we can discretise them
in the same way. This leads to a discretisation where in the adjoint operator the volumetric and
boundary streaming matrices are subtracted in stead of added to the matrixL∗

h.
The derivation above is one way to obtain a discretised expression for the adjoint transport

equation, however there is another way to obtain such an expression. Figure 13 shows the two
routes toL∗

h, where we have now explored the upper route, that is first deriving the adjoint operator
L∗, then discretising this operator. The other route starts bydiscretising the forward operatorL,
obtainingLh, of which we can the adjoint operator.

The discrete transport equation can be written as follows, which is a matrix equation,

Lhφh = sh (3.32)

and let us define the detector response by

J = dThφh (3.33)

= dThL
−1
h sh (3.34)

Since the detector response is a scalar we know thatJ = JT . So we can write

J = sTh (L
−1)Tdh (3.35)

= sTh (L
T )−1dh (3.36)

= sThφ
∗
h (3.37)

whereφ∗h is given by the adjoint problem

LTφ∗h = dh (3.38)
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Forward Adjoint

Cont.

Disc.

L

Lh

L∗

L∗
h,disc 6= L∗

h,cont

Figure 13:Schematic overview of the continuous and discrete forms of the forward and adjoint
equation. There are two routes that can be taken to arrive at adiscretised adjoint equation start-
ing from the continuous forward equation. The routes can result in a different expression of the
discretised adjoint.

from which we can deduce that the adjoint operator is simply the transpose of the forward operator,
L∗
h = LT

h .
We can now examine whether these two expressions for the discrete adjoint are the same.

The elements on the diagonal are not affected by transposinga matrix, therefore we will start by
looking at these elements. All terms but the boundary streaming terms that are taken from the
upwind flux add to the diagonal elements. In the continuous adjoint we see all streaming terms
are subtracted from the diagonal elements, while in the discrete adjoint they are still added to the
diagonal elements, since we are only taking the transpose ofthe forward matrix.

This means the volumetric streaming term will always make a difference, for uniformly and
non-uniformly refined meshes. However the boundary streaming term does not introduce a differ-
ence between the two adjoints for uniformly refined meshes. In the results of the constant patches
we already noted that the error estimator works better with uniformly refined meshes. For linear
patches the only case where the error estimator provides a correct answer is with a uniformly re-
fined mesh. This confirms the hypothesis that the origin of thebad quality of the error estimator is
the difference in the continuous and discrete adjoints.

We will now discuss why for non-uniform meshes the boundary streaming term can introduce
a difference between the continuous and discrete adjoints.Figure 14(a) shows the matrix of the
forward operator for a non-uniform mesh. The mesh consists of two spatial elements with two
patches on the left element and six on the right element. On the left element we have one left-
going patch and one right-going. In the right element there are two left-going patches and four
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3 ANALYSIS OF THE ADAPTIVE ALGORITHM

right-going patches. Blue, green and yellow blocks have different entries, since the position of the
patch is different, that is, theµ range is different.

(a) Forward operator (b) Discretised continous adjoint (c) Discrete adjoint

Figure 14:Difference between the discretised continuous adjoint andthe discrete adjoint for the
boundary streaming term. This difference arises from usingdifferent patch sizes and therefore
makes the difference between the adjoints only larger in non-uniformly refined meshes.

The first remark is that transposing the forward matrix looksa lot like reversing the direction
of flow. We see the same non-entries in both Figures 14(b) and 14(c). However, the patches
on which the values of the entries are based are different. When constructing the discretised
continuous adjoint the patch sizes of the current patch are considered, while in the discrete adjoint
the patch sizes of the forward associated patches are used.

This only introduces a difference between the adjoints for non-uniform meshes, since all patch
sizes are the same for uniformly refined meshes. So the discrete adjoint and discretised continuous
adjoints of uniform meshes only differ in the volumetric streaming term, which makes the error
estimator better in this case.

In the goal-oriented adaptive algorithm the breaking of this symmetry should not lead to prob-
lems, as only the discretised continuous adjoint problem isused. The error estimate and criterion
for refinement are both formulated in the continuous domain,not the discrete domain. More on
this can be found in Section 6.

3.4 Error Estimation and Adjoint Approximation

The fourth and final part of this section is an investigation into the goal-oriented error estimate
used with the constant patches to decide where refinement should take place. The goal-oriented
methods make use of the adjoint solutionφ∗ and try to refine in such a way that the detector
response error is as small as possible. Both methods refine roughly the same patches, as can be
seen in the spatial patch distributions in the last section.However, the estimate of the error they
provide is very different, the error of the global adjoint approximation is a reasonable indication
of the real error, while that of the local adjoint is not reliable. An explanation for this behaviour is
presented below.

We will start by defining both the forward and adjoint transport problems in discrete form. As
before theh subscript denotes this is the discrete form, we will useh + 1 for a level deeper in
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3 ANALYSIS OF THE ADAPTIVE ALGORITHM

refinement, in other words with more unkowns. Converselyh−1 will denote the discrete problem
on a level higher in refinement. The current level for the forward problem ish:

Lhφh = sh (3.39)

To represent the error estimator in matrix form we need the adjoint problem solved on two levels,
bothh andh+ 1:

L∗
hφ

∗
h = dh (3.40)

L∗
h+1φ

∗
h+1 = dh+1 (3.41)

Before defining the error estimator we need a matrix that projects vectors from a refinement level
h to levelsh + 1 andh − 1, which we will call respectivelyEh+1

h andEh−1
h . In the case we are

considering, with constant patches and a division into two equally sized patches upon refinement,
these matrices have the following form

Eh+1
h =























1 0 ∅
1 0
0 1 0
0 1 0

. . . . . . . . .
0 1

∅ 0 1























(3.42)

Eh−1
h =

1

2











1 1 0 ∅
0 1 1 0

. . .
. . .

. . .
. . .

∅ 0 1 1











(3.43)

whereEh+1
h is n× 2n andEh−1

h is n
2 × n.

Now we can look at the way the error estimator is built up and consecutively how a different
approximation of the exact adjoint influences the estimate.For this investigation we do not have
to be concerned with the forward solution on different levels, we will look at the influence of the
adjoint on the error calculation in one refinement iteration. This means we can represent the error
estimate per patch as

η = R(Eh+1
h φ∗h − φ∗aprx) (3.44)

whereη is the vector holding all contributions of the patches andφ∗aprx is the adjoint angular flux
approximation that is chosen, this can be either the global adjoint φ∗G or local adjointφ∗L. Note that
R is depending on physical properties of the problem, discrete parameters of our discretisation and
the forward angular flux. Furthermore the estimate of the error itself is given by∆J = 1

T η. The
global adjoint is simply given by
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φ∗G = φ∗h+1 (3.45)

= (L∗
h+1)

−1dh (3.46)

The local adjoint approximation is more involved. Before wecan give an explicit expression
for φ∗L we will need to split the matrixL∗

h in the block diagonal partB∗
h and the scatter and

boundary transport partD∗
h + S∗

h to obtain the following

B∗
hφ

∗
h = sh − (D∗

h + S∗
h)φ

∗
h (3.47)

We can now locally refine the left hand side of this equation without altering the block diagonal
form of the matrix. If we perform such a local refinement to each patch we find the following
equation

B∗
h+1φ

∗
L = sh+1 − Eh+1

h (D∗
h + S∗

h)φ
∗
h (3.48)

whereφ∗h = L∗
hsh. In this way a local refinement is performed, without altering neighbouring

patches, to give an approximation of the adjoint solution onh + 1. This constitutes the local
approximation of the adjoint.

We can now explore to what extend the two approximations of the exact adjoint solution
provide us with a similar error estimate or with a similar ordering of the contribution of the patches.
First we will take a closer look at whether the ordering of thecontribution is the same in the two
cases. This would explain why the two methods roughly refine the same regions in the domain.

In order to easily compare the two estimator expressions they are presented here

φ∗L = (B∗
h+1)

−1
[

dh+1 − Eh+1
h (D∗

h + S∗
h)φ

∗
h

]

(3.49)

φ∗G = (B∗
h+1)

−1
[

dh+1 − (D∗
h+1 + S∗

h+1)φ
∗
h+1

]

(3.50)

Note that the difference between the two estimators is the right most term, which we can see as
a difference in the right hand side of a system of equations. Considering the difference between
φh andφh+1, we can justify the following assumption. Take two entries or patches inφh, patch
A and patch B. Let us assume without loss of generality that inthis caseφA < φB . When both
patches are refined, thus obtaining entries inφh+1 which we will call patches A1, A2, B1 and B2,
the assumption will be thatφA1, φA2 < φB1, φB2. Or, to put it into words, the order of the entries
of φh is preserved as the same order of pairs ofφh+1.

The operatorsD andS do not affect the ordering of the vector, when the vector is multiplied
by it, by their nature. The matrixEh+1

h increases the length of a vector, but again the ordering
is not affected in the same sense of ordering as used above. From this we can conclude that the
ordering of the right hand side of Equations 3.49 and 3.50 areroughly the same, as our assumptions
holds in most cases but not all. Since this is the only difference between the local and global error
estimator we can conclude that in general the ordering of theerror contributions, and thus the
decisions which patches are refined, is the same.
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The matrixB∗
h+1 is block diagonal, with blocks of two by two for the constant patches. This

means the inverse of that matrix is also block diagonal. Multiplying the right hand side by this
inverse will therefore only introduce local dependence between entries in the right hand side.

In Equation 3.44 we see that the the error contributionη depends on the difference ofEh+1
h φ∗h

and the estimator flux. Since these two vectors are almost thesame, as they solve the same prob-
lem, a small perturbation in one of them will lead to large relative changes. This can cause the
total estimated error to be off for the local adjoint estimator.
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4 NEUTRON TRANSPORT WITH LINEAR ANGULAR BASIS FUNCTIONS

4 Neutron Transport with Linear Angular Basis Functions

After examining the algorithm with constant patches in moredetail we can turn to using linear
basis functions in the angular domain as well. This means we use linear basis functions in both
spatial and angular domain and we will call this method the linear patch method (as opposed to
the constant patches).

There are two issues when switching from constant patches tolinear patches. First of all we
need to discretise the transport equation with our new basisfunctions, which leads to a larger trans-
port matrix with the same number of patches, as there are moreunknowns with higher order basis
functions. Secondly we need to look at the conservation of neutrons with the new basis functions.
When the angular refinement of two neighbouring elements is different the continuity relations
that we used with the constant patches, see Section 2.3, do not ensure particle conservation.

4.1 Discretisation with Linear Basis Functions

The Galerkin discretization procedure is the same for constant and linear patches, in the sense that
only the evaluation of the integral will be different. In both cases the space of test functionsV is
the product space of the spatial and angular test functions,respectivelyVs andVa.

V = Vs ⊗ Va (4.1)

The difference is that for linear patches the space of angular basis functions has a larger dimen-
sionality. In Figure 15 an illustration of the basis functions is presented.

One can see that the basis functions are linear in the direction of the coordinates and quadratic
in any other direction. Using basis functions defined as a product of functions allows us to dis-
cretize in two steps, spatial and angular domains separately. To large extend the discretisation is
the same as that of constant basis functions, which is presented in Section 2.2. We start with the
same approximation as in that section,

φ(r, Ω̂) ≈
∑

e

∑

p

φe,pγe(r)Ge,p(Ω̂) (4.2)

which leads to equation 2.11,

∫

V

∫

4π
γe(r)Ge,p(Ω̂)



(Ω̂ · ∇+ σt)
∑

e′,p′

φe′,p′γe′Ge′,p′ − s−
σs

4π
Φ



 dΩ̂ = 0 (4.3)

Now we apply again the divergence theorem to this expression, resulting in

∫

4π

∫

V
γe(r)Ge,p(Ω̂)



(Ω̂∇ ·+σt)
∑

e′,p′

φe′,p′γe′Ge′,p′ − s−
σs

4π
Φ



 dV

+

∫

δV
Ω̂ · n

∑

e′,p′

φe′,p′γe′Ge′,p′dδV dΩ̂ = 0 (4.4)

45



4 NEUTRON TRANSPORT WITH LINEAR ANGULAR BASIS FUNCTIONS
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(a) Basis functions of each space separate.
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µ
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(b) Basis functions for the combined spatial-angular domain.

Figure 15:Basis of the linear test space for the one dimensional transport equation.

Where we will take the boundary flux values in the same way as for the constant patches. When a
face of an spatial element is an outflow boundary for the current patch, we take the angular flux of
the element itself. When it is in an inflow boundary, we take the upwind flux. This is completely
analogous to what was done in the case of the constant patches.

In the case of linear patches we can write the scalar fluxΦ as
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Φ =

∫

4π
φdΩ̂ (4.5)

Φe =

∫

4π

∑

p

φe,pGe,pdΩ̂ (4.6)

=
∑

p

φe,p

∫

4π
Ge,pdΩ̂ (4.7)

=
∑

p

φe,p
1

2
∆µ (4.8)

The matrix obtained when evaluating the integrals in Equation 4.4 has the same structure as
that of the constant patches, which is derived in Section 3.1. This means we can apply the same
method of solving the equation as for the constant patches. However, the blocks on the diagonal
will now by four by four instead of two by two. In those blocks we evaluate all the integrals over
the basis functions exactly, even if a product leads to a second order basis function.

4.2 Continuity Relations

In the algorithm we allow for each element to have a differentdistribution of patches. Since we
use flux values of neighbouring elements when updating the flux of a patch, we need interpolation
rules when the distribution of patches is not the same. More specific, we need interpolation rules
when the patch we are considering does not have a ’sister‘ patch, with the same interval inµ, in the
neighbouring element. Since the continuity relations usedfor constant patches are not generally
applicable, we need to derive new relations.

Suppose we have two neighbouring elements,ec and ef , and a patch distribution on these
elements such that interpolation rules are needed. We can distinguish two cases, where neutrons
are streaming from a coarse distribution to a fine one and viceversa. An illustration of this can be
found in Figure 16.

The interpolation rules are derived from a conservation principle regarding the number of neu-
trons. The transport equation considers ’free neutrons‘, neutrons that are not bound by a nucleus,
and describes free neutron sources and sinks. Taking these sources into account the number of
neutrons must be conserved. Therefore in our interpolationrules no neutrons may be lost or cre-
ated.

Conservation of neutrons crossing the boundary between theelementsec andef can be for-
mulated as

∫

pc

Ω̂ · n̂φec(re, Ω̂)dΩ̂ =

∫

pf1∪pf2

Ω̂ · n̂φef (re, Ω̂)dΩ̂ (4.9)

or, for one spatial dimension,
∫

pc

µφec(xe, µ)dµ =

∫

pf1∪pf2

µφef (xe, µ)dµ (4.10)
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(a) Coarse to fine
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Figure 16:Two cases of different angular distribution of patches in neighbouring elements. To en-
sure neutron conservation interpolation relations between the discrete patches need to be derived.

This expression comes down to counting the neutrons that cross the boundary from one side to
the other. We do not need to consider the whole angular domainfor this continuity relation, since
we can have the situation where only one patch is refined more in elementef . This means the
interpolation has to be local, in other words only relate to the coarse patchpc on elementec and
the fine patchespf1 andpf2 on elementef .

To find general interpolation rules it is sufficient to find rules for two cases, streaming from
two to one patch and vice versa. Upon refinement a patch is divided into two equal new patches,
so by applying the simple interpolation rule multiple timeswe can apply it to any situation we
might encounter.

4.2.1 A First Attempt

We can easily formulate an interpolation rule to go from the coarse elementec to the fine element
ef , since we can exactly represent the coarse function in the fine function space. Take the coarse
flux to be represented by the two coefficientsφec,p1 andφec,p2, wherep1 andp2 denote, respec-
tively, the left and right angular basis function on the boundary of the elements. We can likewise
do this for the fine patches, only now we have four angular basis functions.

The interpolation from the coarse to the fine element can thenbe written as









φef ,p1
φef ,p2
φef ,p3
φef ,p4









=









1 0
1
2

1
2

1
2

1
2

0 1









[

φec,p1
φec,p2

]

(4.11)

which can be used to formulate an interpolation rule of the converse direction. LetP denote the
interpolation matrix as defined above,φec denote the vector of coefficients in the coarse element
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andφef denote that of the fine element. Then we can rewrite the interpolation as

φef = Pφec (4.12)

P Tφef = P TPφec (4.13)

φec = (P TP )−1P Tφef (4.14)

where we have that

(P TP )−1P T =

[

3
4

1
4

1
4 −1

4
−1

4
1
4

1
4

3
4

]

(4.15)

It turns out this interpolation rule violates the conservation of neutrons when crossing a bound-
ary. This will introduce errors when non-uniform refined meshes are used and is therefore not
preferred. An approach where the conservation of neutrons is ensured is therefore now examined.

4.2.2 Continuity as Minimization Problem with Constraints

We can evaluate this expression by substituting the expansion of the flux in basis functions. The
angular basis functions are linear in the angular componentµ. Substituting linear functions like
this yields an expression of the continuity relation in terms of the space of basis functions.

∫

pc

µφec(xe, µ)dµ =

∫

pf1∪pf2

µφef (xe, µ)dµ (4.16)

∫

pc

µ
∑

coarse

vcnφ
ec
n (xe, µ)dµ =

∫

pf1∪pf2

µ
∑

fine

vfmφ
ef
m (xe, µ)dµ (4.17)

∑

coarse

vcn

∫

pc

µφecn (xe, µ)dµ =
∑

fine

vfm

∫

pf1∪pf2

µφ
ef
m (xe, µ)dµ (4.18)

wcTvc = wfTvf (4.19)

The vectorwc contains the integrals over each of the coarse basis functions andwf those of the
fine basis functions. Note that the vectors of the coarse space are two-vectors, while those of the
fine space are four-vectors, respectively the number of basis functions on the interval ofµ we are
considering. We call this condition the ’hard condition‘, as we want this equality to hold exactly.

Using only the hard condition we cannot yet determine an interpolated flux in each case.
To this end we need another condition. The most natural condition is that the interpolated flux
should resemble the original flux. The most resembling flux can be written as the solution of a
minimization problem. Let||.|| denote a norm, then the minimization problem is

min
v
corvf

||φec − φef || subject to wcTvc = wfTvf (4.20)

Now consider the first case of different distributions, where neutrons stream from a coarse
elementec to a fine elementef . In this case we need to determine the interpolated flux on thefine
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elementef . Since the space of basis functions of the coarse elementec is contained in that of the
fine elementef , we can represent the flux in the fine space exactly. In other words, we can findvf

such that||φf − φc|| = 0.
The inclusion of the coarse space in the fine space also means that, in general, we will need

an approximation of the flux in the other case, where neutronsare streaming from a fine element
ef to a coarse elementec. By choosing a norm in which the difference is to be minimizedwe can
derive different interpolation rules.

A natural way to start is by looking at the two-norm, since we are dealing with physically
relevant functions. The two-norm is induced by the standardinner product, which means

< f, g > =

∫

f(µ)g(µ)dµ (4.21)

||f ||22 = < f, f > (4.22)

Let us turn to the minimization of||φec − φef || whenφef is given, so in the case of neu-
trons streaming from a fine to a coarse element. We can projectφef on the coarse space of basis
functions, which results in the following split ofφef ,

φef = φ||ef + φ⊥ef (4.23)

whereφ||ef lies in the space of coarse basis functions andφ⊥ef is orthogonal to that space. This
projection, or orthogonal projection is done with respect to the standard inner product. Since the
two-norm is induced by this inner product, we find the minimumof our expression by taking

φec = φ||ef (4.24)

which results in the minimum being attained with

||φec − φef || = ||φ||ef − φ||ef − φ⊥ef || (4.25)

= ||φ⊥ef || (4.26)

By working out the integrals of the continuity expression inEquation 4.10 we conclude that the
conservation constraint is satisfied. This derivation is not presented here, as it is tedious and long.
We have now found an interpolation rule that conserves neutrons and finds the best approximate
flux in the two-norm. This is implemented in the code for linear patches.
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5 Results of One-Dimensional Linear Patches

The linear basis functions as described in the previous section were implemented using the same
method of solving as was used for the constant patches. Therefore we can compare the constant
and linear patches with each other. Besides this comparisonwe can also compare the three adaptive
criteria that were formulated in Section 2.4. As a short recapitulation we summarize what the three
criteria are.

Starting with the traditional criterion, which is a more commonly used method for determining
where to refine. This method bases its decision on how much thesolution locally changes with a
local refinement. The other two criteria are both called goal-oriented criteria, since they have as
goal to approximate the detector response as good as possible. In this criterion the exact adjoint
solutionφ∗ is needed, since this is not available we have to approximateit. The global approxi-
mation isφ∗h+1, when the level of the forward solutionφh is h, or in other words the adjoint has
twice the amount of patches as the forward has. The local adjoint is computed by taking only
local refinements of the adjoint from levelh to h+ 1. So only when the contribution of a patch is
computed the adjoint is refined to a level deeper on that patch.

As a reference we also plotted the data of the discrete ordinates method for one dimension
using a Gauss-Legendre quadrature. This is a widely used method, which is especially effective
in problems with one spatial dimension. As stated before, this method does lend itself well for
adaptive refinement.

Several kinds of plots are used to compare the various methods. In general we look at the error
versus the total number of unknowns, the error can be either the detector response error or the root
mean square error, which is a more global error measure. Thisis an indication of the performance
of the method, since the number of unknowns is also a measure of time and cost when the number
of patches that are refined is taken equal between methods. Inorder to explain certain results
spatial distributions of patches are used. These plots showthe total number of patches within
an element versus the position of that element. The quality of the error estimators will also be
investigated, which is done by dividing the estimate by the exact error. This ratio should go to one
for large numbers of unknowns when the estimator is accurate.

The obtained results are presented per kind of test case, that is, there are two homogeneous test
cases, four separate source detector cases and two shielding cases. A short explanation of the test
case will be given before the results are presented. Furthermore in Appendix A all test cases are
listed with material properties and overviews of the geometry. The final results that are presented
here are on the effect of the ratio of patches that is refined ineach refinement iteration.

5.1 Homogeneous Slab (cases A and B)

Two homogeneous test cases are used, one with an optically thick and highly scattering medium
(A) and the other with an optically thin and little scattering medium (B). Homogeneity here means
that the material properties, that is the cross sections, are the same throughout the domain. Also
the source and detector are present in the whole domain.

Figure 17 shows the error reduction in the detector responseversus the number of unknowns.
For patches with linear functions in both the spatial and angular direction we have four unknowns
per patch. For both test cases we see that the discrete ordinates converges slower and needs
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Figure 17:Absolute error in the detector response versus the number ofunknowns of test cases A
and B.

more unknowns than the discontinuous Galerkin method with linear patches. Comparing the error
reduction of the linear patches in this figure with that of theerror reduction using constant patches
in Figure 4 we can conclude that the linear patches work much better than the constant patches.

Also note that the difference is much larger in test case A, with the highly scattering material.
This is due to the quadrature that is used with the discrete ordinates method, which is the same
throughout the domain. However, the adaptive methods can refine certain parts of the domain,
making that even more efficient. From Figure 18 we can conclude that this is the case. Case B has
an almost flat distribution of patches as the outcome of several refinement iterations, while case A
has an exponential distribution of patches.
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Figure 18:Distribution of patches along the spatial coordinate. The total number of patches in a
spatial element is plotted agains the position of that element.

We can investigate the method by comparing not only the errorin the detector response, but
also the root mean square error of the scalar flux. Figure 19 shows this error measure of the
solution for the homogeneous test cases. For case A we can seein both error measures, the
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detector response and the rms error of the scalar flux, that the adaptive methods perform similarly.
It is especially noteworthy that the traditional refinementmethod behaves in the same way as the
goal-oriented adaptive methods. This can also be seen in thespatial distribution of this test case,
see Figure 18(a). In this distribution we also see the reasonwhy all adaptive methods perform
better than uniform refinement, the boundaries of the domainare more difficult than the middle to
approximate well.
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Figure 19:Reduction in the root mean square error of the scalar flux for the homogeneous test
cases. The error is plotted against the total number of unknowns needed to obtain this error.

The difference between the adaptive methods in both cases A and B can be neglected. The
goal-oriented methods have a slightly larger decrease in error in case B, but that is not significant
until the end of the graph. Comparing the spatial distribution in Figure 18(b) we can conclude that
the traditional method refines too much on the edges of the domain, compared to the goal-oriented
methods. This is is qualified as a minor difference between the methods.

More interesting is the difference between the adaptive methods and uniform refinement in
the detector response error. In case A we see that the adaptive methods have a smaller error than
the uniform, while in case B this is the other way around. An explanation for this can be found
when looking at the spatial distribution in Figure 18 and thesolution of the scalar fluxΦ, the
integrated angular flux over the angular domain only, of the two cases in Figures 33(a) and 34(a).
A correlation exists between the number of patches after refinement in an element and the change
in the scalar fluxΦ along the spatial direction. In the middle of the domain of case A we see little
refinement and the scalar fluxΦ is nearly constant in the spatial direction. However in the whole
of domain B and on the edges of the domain of A we see much refinement and change in the scalar
flux Φ. From this we can deduce that a uniform distribution of patches will work well in case B,
while it will not work well in case A. Adaptivity therefore has an advantage in case A and the
adaptive methods in case B cannot do much better than the uniform method. In the best case, for
the adaptive methods, they will meet the performance of the uniform method.

As a last remark on convergence we would like to point out thatthe convergence rate of all
adaptive methods and the uniform refinement are, before hitting the floor, fourth order or almost
fourth order. Since the convergence of constant patches wassecond order, we expected then
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that the convergence of linear patches would be fourth order. This indicates that this expectation
was justified. We will see that for all cases the same conclusion can be drawn on the order of
convergence.

The last observation on the homogeneous test cases is on the quality of the error estimator. We
can quantify this quality as a ratio of the estimated error over the ‘exact’ error, where the exact
error is approximated by looking at the detector response ofthe reference solution. The reference
solution is computed at a deeper level than the tests take place, in this case with 1024 patches on
each spatial element. This is one level deeper than the deepest uniform refinement level. In Figure
20 the error ratio’s of both test cases are presented.

Only the global adjoint estimator with uniform refinement incase B produces an accurate
estimator. We can disregard the final point in this graph as this point is close to the reference
solution. The approximation of the exact error can for this point be too far off for an accurate
quality. It will turn out that only this estimator has a good quality. All other test cases with all
estimators provide useless error estimators. An explanation for this behaviour is proposed in the
next section, if the reader wants to know more on this we referto Section 6.
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Figure 20:Ratio of the estimated error over the ‘exact’ error. The exact error is determined by
comparing the current detector response with that of the reference solution, computed with a very
refined mesh.

5.2 Separate Source and Detector (cases C, D, E and F)

The next set of test cases we present the results of are the separate source and detector geometries.
This means one tenth of the domain on the left is the source region, with an isotropic homogeneous
source. One tenth of the domain on the right of the domain is the detector region, where the
detector is also isotropic and homogeneous. To obtain an accurate detector response for these test
cases it is important to represent the neutrons streaming from source to detector well. However,
in order to get an accurate overall solution, measured with the root mean square error of the scalar
flux Φ, we need an accurate representation of the angular fluxφ around the source.

A first observation of the error in the detector response of these test cases presented in Figure
21 is that the discrete ordinates method provides a more accurate detector response in three out
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of four cases. This is somewhat the same behaviour as for the constant patches, except that the
difference between discrete ordinates and discontinuous Galerkin has become smaller by using
linear patches, see Figure 6.
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(d) Test case F

Figure 21:Decrease in the detector response error versus the total number of unknowns for the
separate source ande detector test cases.

Case D, with different behaviour, has a scatter to total cross section ratio of 2, while case C
has a much larger ratio and cases E and F have much smaller ratio’s. In this fact we can find
an explanation for the observation that linear patches workbetter in case D. In case C we have
an almost linear flux profile along the angular direction, this can be well described by the linear
patches. However, the Gauss-Legendre quadrature of discrete ordinates performs very well in with
these properties too. Therefore we see that linear patches do ‘gain’ error reduction on discrete
ordinates, but do not perform better.

In cases E and F we have very little and no scattering respectively, therefore the quadrature
of discrete ordinates does not play any role in achieving andaccurate detector response. In one
dimension we use the Gauss-Legendre quadrature also for choosing the directions used in discrete
ordinates. These directions can very efficiently representthe angular flux. Linear patches can
describe that angular flux more efficiently than constant patches, that is why the error of linear
patches is smaller than that of constant patches, using the same number of unknowns. However,
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it is not yet as efficient as discrete ordinates. Then in case Dwe can see the situation where the
linear patches perform well, since in this case the quadrature of discrete ordinates is important and
the flux profile is not linear. Linear patches can efficiently represent an exponential angular flux,
while the quadrature of discrete ordinates performs less well in these conditions.

Comparing the different refinement methods of discontinuous Galerkin we see that in general
the traditional method provides the most accurate detectorresponse. When we examine the spatial
distribution in Figure 22 we can see that the accurate solution is achieved when there is more
refinement in the source region than in the detector region. There are some differences between
the two test cases in the spatial distribution of the traditional method. Figure 22(a) shows that in
case C there is no refinement in the detector region at all, while in case D (Figure 22(b)) we see
that the refinement in the detector region is about one tenth of that in the source region. This is
due to the different angular flux profile in the two cases, linear in C and more exponential in D.
To represent a linear profile with linear basis functions requires few patches, while representing
an exponential function requires more patches.
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Figure 22:Distribution of patches along the spatial coordinate. The total number of patches in a
spatial element is plotted agains the position of that element.

In general the goal-oriented adaptive methods provide a more or less uniform distribution of
patches, as can be seen in Figure 22. This explains why it in general has the same error reduction
as the uniform refinement. That, however, does not provide the solution with the smallest error in
both error measures. The difference between the goal-oriented refinement and traditional refine-
ment is the use of the adjoint. The solution of the adjoint problem can be used as the importance
of a location in the domain to the detector response. Therefore the fact that goal-oriented meth-
ods produce an almost uniform distribution of patches wouldmean that the adjoint puts too much
importance on patches near the detector. In the next sectionwe present an explanation for this
behaviour, which is likely connected with the problem of theerror estimator.

Furthermore it is remarkable to see the error reduction in the detector response error with the
traditional refinement criterion. Comparing Figure 21 withFigure 6 we see that with constant
patches the traditional method provides us with a poorly refined mesh. Poor in the sense that
it provides an erroneous detector response. This is not the case with linear patches, where the
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method works very well. This shows that linear patches are much more efficient in representing
the angular flux well. This can also be seen in the fact that convergence in these four cases is again
approximately fourth order.

The last remark we would like to make concerning the separatesource detector test cases C,
D, E and F is that the error estimator is off by a large factor. Figure 23 shows the error ratio of
each relevant refinement method. In all cases, except one, wehave seen so far the estimated error
is too small. In the next section we will present a more in-depth investigation of this problem.
However, the distribution of patches after refinement is like what one would expect in most cases.
The distribution is also similar to that of the constant patches. A final observation is that the global
and local adjoint methods produce almost the same distributions. Taking all this into account it is
likely that the refinement criterion is, generally speaking, correct and provides accurate results.
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Figure 23:Ratio of the estimated error over the ‘exact’ error. The exact error is determined by
comparing the current detector response with that of the reference solution, computed with a very
refined mesh.
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5.3 Shielding (cases G and H)

This section holds the results of the final two test cases, cases G and H. Both cases have an added
shielding region in the middle of the domain compared to the previous cases. So we have a
source region on the left of domain and for the neutrons to reach the detector region on the right
of the domain they have to pass through a shielding region in the middle. Since few neutrons
will pass through the domain to the detector it is important to refine the directions leading to the
detector in order to obtain an accurate detector response. Furthermore we can see what the effect
of discontinuities in the materials properties is.

Figure 24 shows the detector response error of the two shielding test cases. Besides the error
of the two goal-oriented adaptive methods for test case H we generally see the same behaviour as
in the separate source detector test cases. For the same reasoning as in the previous test cases we
think this behaviour can be explained by looking at the adjoint. We refer to the next section for
more on this.
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(b) Test case H

Figure 24:Error of the detector response of the two shielding test cases versus the total number
of unknowns.

The traditional refinement method performs best of the adaptive methods in both cases. By
looking at Figure 25 we see a clear distinction in the spatialdistribution of the traditional and
goal-oriented methods. The goal-oriented method refines ‘too much’ on the right side of the
shielding region, around the detector, to be efficient. Notethat the distribution the traditional
method produces is more efficient, but not necessarily the most efficient distribution. It is possible
that more refinement on the right of the shielding region willresult in an even more accurate
detector response.

In the spatial distribution we can furthermore see that the discontinuities in the material prop-
erties are more difficult to approximate, according to all adaptive methods. Especially in the
shielding region of Figure 25(b) we see that such a discontinuity needs more refinement than the
discontinuity introduces by a source or detector region.

Also in these test cases we have an estimated error that is toosmall, as can be seen in Figure
26. In Section 6 an explanation for this result is presented.
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(b) Test case H

Figure 25:Spatial distribution of patches of the two shielding test cases, G and H.
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(b) Test case H

Figure 26:Error ratio of the two shielding test cases. The ratio of the estimated error over the
exact error is plotted versus the total number of unknowns.

5.4 Effects of the Refinement Ratio

As final result we discuss the effect of the number of patches that is refined in each iteration. In
this work a percentage of patches is refined in each iteration. In all cases up till now we used thirty
per cent refinement per iteration.

Figures with plots of the detector response error versus thetotal number of unknowns are once
more presented, but now each plot holds the error for different percentages of only one adaptive
method. We will only discuss some exemplary cases here.

Figures 27(a) and 28(a) show the error for the global adjointmethod and Figures 27(b) and
28(b) are the plots of the detector response error of the local adjoint method. In general we can
say that for the global and local adjoint methods the refinement percentage does not affect the
error much. For test case C we see a little oscillation of the error and the lower percentages have
a slightly smaller error in this oscillation. This difference is negligible.

Turning to Figures 27(c) and 28(c), showing the error of the traditional method, we see there
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(c) Traditional criterion

Figure 27:Error in the detector response versus the total number of unknowns for different refine-
ment percentages of case A.

is more difference between the percentages here. In both figures we see that small percentages
achieve a smaller error when less unknowns are used, while for large enough number of unknowns
the percentage return to the level of the small percentages.

Smaller percentages will refine only the absolute necessarypatches, thus achieving a high
efficiency (small error for a given number of unknowns). Using larger percentages means that
there will be patches that are refined that are not necessary,especially at the start of the iteration.
At the start of the iteration cutting a patch into two new patches has a great effect on the error in
the detector response. When many patches are already present in the problem, refining a patch
does not assort a large effect. The patches that are refined inthe beginning can become useful later
in the refinement iteration, which is clearly what happens with the two cases presented here.

As a final remark we would like to point out that a method that produces a small error for
a given number of unknowns is not necessarily a good choice. The plots presented here show
the efficiency of a method in the cost of number of unknowns, not in the cost in memory or
computational power. Refining more patches each iteration means one obtains an accurate detector
response more quickly, in computation time, than with smallpercentages. Therefore in this work
not one per cent was used, but thirty.
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(b) Local adjoint criterion
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Figure 28:Error in the detector response versus the total number of unknowns for different refine-
ment percentages of case C.
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6 Quality of the Error Estimate

In the previous section we have seen that the error estimate is of poor quality, while the refinement
criterion produced a distribution of patches that in some cases is better than uniform refinement
and in some cases it is not. In this section we will look more closely at the error estimate, as this
cannot be used reliably as an indicator of the error.

To further investigate the behaviour of the error estimatorwe will look into the definition of
the estimator. In Section 2.4 the error estimator is derivedin terms of the transport equation, to
be able to formulate an expression of the estimator that can be coded in an algorithm. Here we
will present the same derivation, but now we will look more closely at the precise definition of the
transport equation operator and its adjoint.

Starting with the definition of the problem at hand we define a spaceH in which the solution
lies. The forward transport problem is then

find φ̃ ∈ H such that Lφ̃ = s (6.1)

We will call this the strong formulation of the problem, as opposed to the weak definition of the
problem, which is

find φ̃ ∈ H such that 〈Lφ̃, ψ〉 = 〈s, ψ〉 ∀ψ ∈ H (6.2)

So far we use the full spaceH, i.e. these formulations are for the continuous problem. Discretisa-
tion means that we restrict ourselves to a spaceV ⊂ H, consisting of all functions inH that can
be represented by all combinations of basis functions. The numerical results presented in Section
5 are, for example, with the spaceV the space of all piece-wise constant functions with a restric-
tion on the size of the linear pieces. Before formulating thediscretised problem we formulate the
continuous restricted problem,

find φ̃v ∈ V such that 〈Lφ̃v , ψv〉 = 〈s, ψv〉 ∀ψv ∈ V (6.3)

Consequently we can represent the spaceV by vectors that lie inRN , which are the coefficients
corresponding to a basis inV . LetP v

h be a projector that projects these vectors onto the spaceV ,
i.e. the projectorP v

h is the expansion in basis functions,

P v
hφh =

∑

n

γ(n)φh(n) (6.4)

whereγ(n) are the basis functions that span the spaceV . With this projection the discretised
problem can be formulated as

find φ̃h ∈ R
N such that 〈LP v

h φ̃h, P
v
hψh〉 = 〈s, P v

hψh〉 ∀ψh ∈ R
N (6.5)

Here it is important to note that we apply the Galerkin discretisation method by choosing the test
functionsψh from the same space in which the solution lies, i.e.V orRN with the projectionP v

h .
The detector responseJ is defined as the following inner product, which is the same expression

as in Equation 2.42,
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J = 〈φ̃, σD〉 (6.6)

Now we can define the error in the detector response as

∆J = 〈φ̃, σD〉 − 〈φ̃v , σD〉 (6.7)

where the subscriptv denotes that it is the restriction to the spaceV ⊂ H. By linearity we can
also write this as

∆J = 〈φ̃− φ̃v, σD〉 (6.8)

At this point in the derivation in Section 2.4 the adjoint equation and its solution are substituted
in this expression. We will therefore define the adjoint problem in the same way as the forward
problem. We start with the strong formulation,

find φ̃∗ ∈ H such that L∗φ̃∗ = σD (6.9)

Note that the spaceH is the same space as in the definition of the forward equation.The weak
form of the adjoint equation is defined analogously,

find φ̃∗ ∈ H such that 〈L∗φ̃∗, ψ〉 = 〈σD, ψ〉 ∀ψ ∈ H (6.10)

Restricting the spaceH to the same spaceV again we arrive at

find φ̃∗v ∈ V such that 〈L∗φ̃∗v, ψv〉 = 〈σD, ψv〉 ∀ψv ∈ V (6.11)

Finally, we can also write the adjoint problem in terms ofN -dimensional vectors,

find φ̃∗h ∈ R
N such that 〈L∗P v

h φ̃
∗
h, P

v
hψh〉 = 〈s, P v

hψh〉 ∀ψh ∈ R
N (6.12)

Again we applied the Galerkin discretisation procedure on the adjoint problem.
Now we can rewrite the expression for the error estimator in Equation 6.8 by substitutingL∗φ∗

for the right hand side of the adjoint problem,σD,

∆J = 〈φ̃− φ̃v, L
∗φ̃∗〉 (6.13)

Equivalently we can write this estimator as

∆J = 〈L(φ̃− φ̃v), φ̃
∗〉 (6.14)

We now arrived at Equation 2.64 of Section 2.4. The error in the detector is now expressed in
terms of the bilinear form. Analogous to the derivation fromEquation 2.64 to Equation 2.65, we
will apply Galerkin orthogonality. We can identify〈Lφ̃, ψv〉 as the bilinear form and〈s, ψv〉 as the
linear form of our problem. Galerkin orthogonality is the fact that the error̃φ − φ̃v is orthogonal
to our restricted spaceV ,
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〈L(φ̃− φ̃v), ψv〉 = 〈Lφ̃, ψv〉 − 〈Lφ̃v), ψv〉 (6.15)

= 〈s, ψv〉 − 〈s, ψv〉 (6.16)

= 0 (6.17)

We can express Equation 2.65 therefore as

∆J = 〈L(φ̃− φ̃v), φ̃
∗ − ψv〉 (6.18)

whereψv can be any element of the spaceV . In particular we can chooseψv to be the solution of
the weak restricted adjoint problem,φ̃∗v, resulting in

∆J = 〈L(φ̃− φ̃v), φ̃
∗ − φ̃∗v〉 (6.19)

The error can then be expressed in terms of the discrete forward problem as follows

∆J = 〈P v
h sh − LP v

h φ̃h, φ̃
∗ − P v

h φ̃
∗
h〉 (6.20)

Here we assume that both the sources and the detector cross sectionσD obey the following
relation

s = P v
hsh (6.21)

σD = P v
hσD;h (6.22)

Similarly, by continuing from Equation 6.14 instead of Equation 6.13 we can derive the fol-
lowing expression for the error, which we will call the dual form of the error,

∆J = 〈φ̃− P v
h φ̃h, P

v
hσD;h − L∗P v

h φ̃
∗
h〉 (6.23)

Note that we again used the Galerkin orthogonality property, however now on the adjoint problem.
On the spaceH we have an expression for the detector responseJ derived from the adjoint

problem. This property is sometimes called the duality relation and can be proven by substituting
the adjoint problem in the following way

J = 〈φ̃, σD〉 (6.24)

= 〈φ̃, L∗φ̃∗〉 (6.25)

= 〈Lφ̃, φ̃∗〉 (6.26)

= 〈s, φ̃∗〉 (6.27)

The duality relation also holds on the restricted spaceV , which can be shown by rewriting Equa-
tion 6.13 as
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∆J = 〈φ̃− φ̃v, L
∗φ̃∗〉 (6.28)

= 〈L(φ̃− φ̃v), φ̃
∗〉 (6.29)

= 〈s− Lφ̃v, φ̃
∗〉 (6.30)

= 〈s, φ̃∗〉 − 〈Lφ̃v, φ̃
∗〉 (6.31)

Furthermore, by rewriting Equation 6.13 by applying the Galerkin orthogonality principle twice
(on the forward and adjoint problem respectively) we obtain

∆J = 〈L(φ̃− φ̃v), φ̃
∗〉 (6.32)

= 〈L(φ̃− φ̃v), φ̃
∗ − φ̃∗v〉 (6.33)

= 〈φ̃, L∗(φ̃∗ − φ̃∗v)〉 (6.34)

= 〈s, φ̃∗ − φ̃∗v〉 (6.35)

= 〈s, φ̃∗〉 − 〈s, φ̃∗v〉 (6.36)

Combining these two expressions for the error in the detector response we see that we must have
equivalence between two terms, resulting in

〈s, φ̃∗v〉 = 〈φ̃v , σD〉 (6.37)

which is the duality relation on the spaceV .
To this point no approximation is made, the expression we have for the error in the adjoint

is exact. When the exact solution of respectively the adjoint or forward problem is available we
can compute the error made by restricting the spaceH to the spaceV . However, in general this
exact solution is not available, which makes an approximation of thi solution necessary. The
approximation we choose is perform a refinement on all basis functions of the spaceV , call this
spaceU . We then have the following nested spaces,

V ⊂ U ⊆ H (6.38)

Let us denote the adjoint solution in the spaceU by φ̃∗h+1 in the discretised problem formu-

lation. We then havẽφ∗h ∈ R
N and φ̃∗h+1 ∈ R

M , with M ≥ N , more specifically in the case
of the linear basis functions we have thatM = 2N . Analogously we define the solution of the
discretised forward problem on the spaceU . Substituting this approximation in the discrete form
of the error we obtain

∆J ≈ 〈P v
h sh − LP v

h φ̃h, P
u
h+1φ̃

∗
h+1 − P v

h φ̃
∗
h〉 (6.39)

∆J ≈ 〈P u
h+1φ̃h+1 − P v

h φ̃h, P
v
hσD;h − L∗P v

h φ̃
∗
h〉 (6.40)

In the results of the linear basis functions in Section 5 the version in Equation 6.39 is used as error
estimate. Therefore we will look into this expression to findthe cause of the underestimation of
the error estimator.
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Since the ratio of the error estimator over the reference error is very small, we know the esti-
mate is too small. The inner product in Equation 6.39 will become small when the two functions
in the arguments are orthogonal to each other. We can distinguish four cases in which this happens
for different reasons.

1. The residual of the forward problems− LP v
h φ̃h decreases.

2. The exact adjoint error̃φ∗−P v
h φ̃

∗
h decreases, hence the approximate adjoint error will most

likely also decrease.

3. There is a possibility that the approximate adjoint errorP u
h+1φ̃

∗
h+1 − P v

h φ̃
∗
h decreases while

the exact adjoint error does not decrease. This could be due to stagnation between consecu-
tive refinements.

4. Finally, the residual of the forward problem can be orthogonal to the approximate adjoint
error, while neither of these are zero.

Several tests were performed to determine which of the abovereasons is the cause of the poor
quality of the error estimator. The step where the adjoint solution P V

h φ̃
∗
h is added to the error

expression by applying Galerkin orthogonality is not necessary to arrive at a correct expression
for the error. We verified that leaving out this term leads to similar results, i.e. also to an error
estimator with poor quality. This means that option 3) is notthe cause of the poor quality, as there
cannot be stagnation in the approximate error of the adjointwhen it is not used. Figure 29 shows
a plot of the error estimate of test case D without the termP V

h φ̃
∗
h in the second argument of the

inner product, where the quality of the error estimate is still poor.
AlsoP u

h+1φ̃
∗
h+1 is not small, as it is the adjoint solution of our problem.

Furthermore we computed the norm of the forward residual vector and together with the norm
of the approximate adjoint, which are shown in Figure 30 for test case D. Considering Figures
21(b) and 23(b) we can conclude that the residual is too largeto account for the small value of the
inner product, reducing the possible options to numbers 2) and 4).

Furthermore we conclude that reason 2) cannot be the cause ofthe problem with the error
estimator, since this would mean that the discrete adjoint solutionP v

h φ̃
∗
h is very accurate, which in

turn would mean that the detector response computed by the duality relation (see Equation 6.27)
is very accurate. This is not the case, as the adjoint detector response sometimes stagnates for
several refinement iterations.

Only option 4) now remains, hence the forward residual and approximate adjoint error are
orthogonal, but neither are zero. We also conclude that, by Galerking orthogonality, the forward
residual is orthogonal to the adjoint approximationP u

h+1φ̃
∗
h+1. The most likely cause for this is

the introduction of the approximation in Equation 6.39.
The residual is computed in the spaceV and the adjoint approximation in the spaceU , where

U is obtained by refiningV once. In the results of Section 5 and of [4] piece-wise linearand
piece-wise constant angular basis functions were used respectively. The spatial basis functions
were in both cases piece-wise linear. We will concentrate onthe angular basis functions, as this
is the part of the domain where refinement takes place. The basis functions of the spaceU have
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Figure 29: Ratio of the error estimate over the reference error withoutapplying the Galerkin
orthogonality to the error estimate. The quality of this error estimate is also poor, meaning that
stagnation in the adjoint error cannot be the cause of the poor quality.

half the support of the basis functions inV . These spaces are in a sense very similar, which could
cause stagnation in refinement.

The exact error in the detector responseφ̃∗ − P v
h φ̃

∗
h lies in the spaceH, we could write this

error as

φ̃∗ − P v
h φ̃

∗
h = e (6.41)

= e|| + e⊥ (6.42)

wheree|| ∈ V ande⊥ orthogonal toV . The approximate error can then be written as

P u
h+1φ̃

∗
h+1 − P v

h φ̃
∗
h = eh (6.43)

= e
||
h + e⊥h (6.44)

where againe||h ∈ V ande⊥h orthogonal toV .
The approximation of the adjoint solution in the derivationof the error estimate is an approxi-

mation of the forme ≈ eh. However, the part ofeh that lies in the spaceV , i.e. e||, does actually
not contribute to the error estimate, as Galerkin orthogonality applies to all functions inV . There-
fore an approximation of the errore that leads to an accurate error estimate must approximatee⊥

well, this leads to the following condition
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Figure 30:The norms of the approximate adjoint and forward residual oftest case D are plotted
against the total number of unknowns. This shows that the error estimate, which is the inner
product of the two, is not small because the adjoint or the forward residual is small.

e⊥ ≈ e⊥h (6.45)

Furthermore, we still want that the the errore is approximated well byeh, which leads us to the
following two conditions for the approximation of̃φ∗

e⊥ ≈ e⊥h (6.46)

e|| ≈ e
||
h (6.47)

which impliese ≈ eh. Note that the converse is not true. For example, assume thate|| >> e⊥, in
which case the perpendicular part of the error is not important in the approximation of the whole
errore.

To test this hypothesis a more refined approximation of the exact adjoint could be used, for
example refine each basis function in the spaceV twice to obtain the basis functions ofU . This
approximation should lead to an error estimate of better quality, however the computational costs
will go up rather quickly, as they grow exponentially with the number of refinement levels.
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Another way to test this hypothesis, that leads to cheaper algorithms is to use different basis
functions for the adjoint problem, that is, solve the adjoint problem not on the restricted space
V , but on a different restricted spaceV ′. When piece-wise polynomials span the the spaceV ,
higher order polynomials could be chosen to span the spaceV ′, for example solve the adjoint
approximation on piece-wise quadratic basis functions. Refinement in basis function order is
sometimes referred to asp refinement, as opposed to refinement in mesh, which is then referred to
ash refinement.p refinement has the advantage of the computational costs scaling linear with the
number of refinement levels, however, it is not always feasible to use higher order polynomials or
other higher order basis functions.
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7 Notes on the Boltzmann-Fokker-Planck Equation

One of the goals of this work was to investigate whether the discretisation method that is used
with the transport equation can be used for the Boltzmann-Fokker-Planck equation. In this section
the results of that are presented. Since the loss of symmetryin the derivation of the discrete
adjoint transport operator the investigation is not very thorough. However, we have discretised the
equation and a proposal for solving the discrete system of equations. This loss of symmetry is
also present in the BFP equation, since the terms from which this results are also present in this
equation.

7.1 Discretisation of the BFP Equation

The Boltzmann-Fokker-Planck equation reads

µ
∂

∂x
φ(x, Ω̂) + σtφ(x, µ) +

α

2

∂

∂µ

[

(1− µ2)
∂

∂µ
φ(x, µ)

]

=
σs

2

∫ 1

−1
φ(x, µ)dµ (7.1)

which is the transport equation as in Equation 2.8, with two extra terms on the left hand side [7].
These terms describe a diffusion process in the angular variables. The parameterα is called the
momentum transfer, which determines the rate at which the direction of the neutrons diffuses over
the angular coordinates.

To discretise this equation we use the same discretisation for all terms as already obtained for
the transport equation, see Section 4.1. Below we will only discretise the extra terms, using the
same method. To that end we start with rewriting the terms as

α

2

∂

∂µ

[

(1− µ2)
∂

∂µ
φ(z, µ)

]

=
α

2

[

∂

∂µ
(1− µ2)

∂

∂µ
φ(z, µ) + (1− µ2)

∂2

∂µ2
φ(z, µ)

]

(7.2)

=
α

2

[

−2µ
∂

∂µ
φ(z, µ) + (1− µ2)

∂2

∂µ2
φ(z, µ)

]

(7.3)

Now we can substitute a function from our test space for the angular flux in this term. The
function is a double sum of elements and patches on the elements, which can be expressed as

φh =
∑

e

∑

p

φe,pγeGe,p (7.4)

Substitution of this expression and integration over the whole spatial-angular space leads to

α

2

∫

x
2π

∫ 1

−1
γeGe,p



(1− µ2)
∑

e′

∑

p′

γe′
∂2Ge′,p′

∂µ2
− 2µ

∑

e′

∑

p′

∂Ge′,p′

∂µ



 dµdx (7.5)

In this expression there is a second order derivative of one of the linear basis functions. We want
at most a first order derivative with these basis functions, since otherwise the term would vanish.
Therefore we use partial integration to obtain
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α
2

∫

x 2π
∫ 1
−1 γeGe,p



(1− µ2)
∑

e′

∑

p′

γe′
∂2Ge′,p′

∂µ2
− 2µ

∑

e′

∑

p′

∂Ge′,p′

∂µ



 dµdx =

−
α

2

∫

x
2π

∫ 1

−1
(1− µ2)

∑

e′

∑

p′

γeγe′
∂Ge,p

∂µ

∂Ge′,p′

∂µ
dµdx

+
α

2

∫

x



(1− µ2)γeGe,p

∑

e′

∑

p′

γe′
∂Ge′,p′

∂µ





µ+

µ=µ−

dx (7.6)

The next step is to see how each term is added to the large matrix Ph. We will start with the
first term in 7.6, which is the equivalent of the volumetric streaming term in the discretisation of
the streaming term of the transport equation. However, it isnow a volumetric diffusion term, since
we have a second order derivative in this term. The block matrix for one patch, which are added
as block diagonal matrix toPh, looks like

απ

∫

x

∫ 1

−1
(1− µ2)

∑

e′

∑

p′

γeγe′
∂Ge,p

∂µ

∂Ge′,p′

∂µ
dµdx

= απ

∫

x

∫ 1

−1
(1− µ2)









γe1γe1G
′
e1,p1G

′
e1,p1 γe1γe1G

′
e1,p1G

′
e1,p2 γe1γe2G

′
e1,p1G

′
e2,p1 γe1γe2G

′
e1,p1G

′
e2,p2

γe1γe1G
′
e1,p2G

′
e1,p1 γe1γe1G

′
e1,p2G

′
e1,p2 γe1γe2G

′
e1,p2G

′
e2,p1 γe1γe2G

′
e1,p2G

′
e2,p2

γe2γe1G
′
e2,p1G

′
e1,p1 γe2γe1G

′
e2,p1G

′
e1,p2 γe2γe2G

′
e2,p1G

′
e2,p1 γe2γe2G

′
e2,p1G

′
e2,p2

γe2γe1G
′
e2,p2G

′
e1,p1 γe2γe1G

′
e2,p2G

′
e1,p2 γe2γe2G

′
e2,p2G

′
e2,p1 γe2γe2G

′
e2,p2G

′
e2,p2

















φe1,p1
φe1,p2
φe2,p1
φe2,p2









dµdx (7.7)

= απ∆x
1− µ2+ − µ−µ+ − µ2−

∆µ









1
3 −1

3
1
6 −1

6
−1

3
1
3 −1

6
1
6

1
6 −1

6
1
3 −1

3
−1

6
1
6 −1

3
1
3

















φe1,p1
φe1,p2
φe2,p1
φe2,p2









(7.8)

Now we can turn to the second term in Equation 7.6, which is equivalent to the boundary
streaming term for the streaming term in the transport equation. Since there is no upwind direction
we will take at both sides of the patch the neighbouring patchangular flux values. This results in
the following blocks matrices being added to diagonal bandsof Ph
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α

2

∫

x



(1− µ2)γeGe,p

∑

e′

∑

p′

γe′
∂Ge′,p′

∂µ





µ+

µ=µ−

=
α

2

∫

x
(1− µ2+)









0 0 0 0
γe1γe1G

′
e1,p2G

′
e1,p1 γe1γe1G

′
e1,p2G

′
e1,p2 γe1γe2G

′
e1,p2G

′
e2,p1 γe1γe2G

′
e1,p2G

′
e2,p2

0 0 0 0
γe2γe1G

′
e2,p2G

′
e1,p1 γe2γe1G

′
e2,p2G

′
e1,p2 γe2γe2G

′
e2,p2G

′
e2,p1 γe2γe2G

′
e2,p2G

′
e2,p2

















φe1,p1
φe1,p2
φe2,p1
φe2,p2









dx

+
α

2

∫

x
(1− µ2−)









γe1γe1G
′
e1,p1G

′
e1,p1 γe1γe1G

′
e1,p1G

′
e1,p2 γe1γe2G

′
e1,p1G

′
e2,p1 γe1γe2G

′
e1,p1G

′
e2,p2

0 0 0 0
γe2γe1G

′
e2,p1G

′
e1,p1 γe2γe1G

′
e2,p1G

′
e1,p2 γe2γe2G

′
e2,p1G

′
e2,p1 γe2γe2G

′
e2,p1G

′
e2,p2

0 0 0 0

















φe1,p1
φe1,p2
φe2,p1
φe2,p2









dx

(7.9)

=
α

2
(1− µ2+)









0 0 0 0
1
3∆x

1
3∆x

1
6∆x

1
6∆x

0 0 0 0
1
6∆x

1
6∆x

1
3∆x

1
3∆x

















φe1,p1
φe1,p2
φe2,p1
φe2,p2









+
α

2
(1− µ2−)









1
3∆x

1
3∆x

1
6∆x

1
6∆x

0 0 0 0
1
6∆x

1
6∆x

1
3∆x

1
3∆x

0 0 0 0

















φe1,p1
φe1,p2
φe2,p1
φe2,p2









(7.10)
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7.2 Solving the BFP Equation

To compare the matrix of the operatorPh to that ofLh we present in Figure 31 both matrices.
We see in the transport matrix, Figure 31(b), the diagonal blocks in blue, which determine the
patch internal calculations. The green blocks represent the coupling between spatial elements,
in other words, they represent the neutrons streaming from one element to the next. The large
yellow blocks represent the scatter term, these blocks are larger because the scatter term couples
all patches within an element with each other.

Turning to the matrix of the BFP equation, Figure 31(a), we see there are extra blocks in this
matrix. The orange blocks represent the extra coupling between patches due to the diffusion in the
angular component. This coupling is therefore only presentbetween patches of the same spatial
element.

(a) BFP equation (b) Transport equaiton

Figure 31:Structure of the matrices of the transport equation and the Boltzmann-Fokker-Planck
equation. The structure of the BFP equation is different because the patches are now coupled.
This coupling originates from particles that diffuse in theangular direction. The orange blocks
are the blocks that couple the patches.

The source iteration that is used for the transport equation, see Section 3.2.1, can still be used
for this matrix, since in that part no changes were introduced. However, the sweep iteration cannot
be applied any more, since there is coupling between patchesin such a way that we cannot make
a lower triangular matrix by solving the system in a certain order.

A Gauss Seidel iteration can be applied to the BFP equation, which is similar to the sweep
iteration. Before applying this iteration the matrix will need to be reordered in the same way as
with the sweep iteration. We then end up with an iteration that is ‘almost direct’, in the sense that
the neighbour angular flux values of the stream term and one oftwo neighbour angular flux values
of the diffusive term are up-to-date and only one of the two flux values of the diffusive term is
from the previous iteration. The stability of this method will have to be investigated.

Another possibility for solving the system of equations obtained from the discretisation of the
BFP equation is using Krylov subspace methods. The Krylov subspace of a matrixA of sizen×n
and a vectorb of sizen is a subspace of then-sized vectors like

Kr = span

(

b,A1b,A2b,
.. . , Ar−1b

)

(7.11)
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wherer is the order of the Krylov subspace. Several iterative methods have been constructed that
make use of this space and do not use the full form of matrixA. The matrix is only used in a
multiplication with a vector, removing the need to construct the full matrix. This can be applied
to the BFP equation, since multiplyingPh by a vector can be easily done.Ph is a sparse matrix
and is never constructed in the code that was written for thisproject. In the same way an efficient
multiplication algorithm for sparse matrices can be used.
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8 Discussion

Here the main conclusions are presented, which can all be found in the main text. However, this
gives an overview of the most important conclusions and putsthem into perspective. We will
roughly present the conclusions grouped per section and by relevance to each other. Besides the
conclusion possible future work is also discussed here. Thefuture work can basically be divided
into three domains, implementing this method for three dimensional problems (possibly combin-
ing spatial adaptivity with angular adaptivity), investigating the loss of symmetry between the
discrete adjoint operator obtained through reversing discretising and deriving adjoint and finally
investigating and implementing the Boltzmann-Fokker-Planck equation.

8.1 Conclusions

In the first section that is new for this report, we derived thefull form of the matrix and have
used this to show what the algorithm that solves the equationdoes. Essentially the source iteration
combined with the sweep iteration is a block Jacobi iteration. This can be done since the matrix
can be split in three parts, the diagonal blocks, the larger scatter diagonal blocks and the streaming
blocks that form a band. By moving specific blocks to the righthand side, or reordering the
unknowns in the matrix, we can solve the transport part directly and iterate only the scatter term.

Furthermore we have looked at the definition of the discrete adjoint problem that is used for
error estimation. There are two routes to follow to the discrete adjoint problem, either discretising
the continous adjoint or taking the adjoint operator of the discretised forward problem. It turns
out the symmetry between these routes is broken for transport equation operator. The transport
term of the equation has a different sign in the two cases. Since the error estimation criterion only
uses the discretised continuous adjoint problem this loss of symmetry will not affect the estimate,
however, it is possible to formulate a different estimate using the discrete adjoint.

We also looked at the difference in quality of the two goal-oriented adaptive methods, the
global and local adjoint approximations. By defining all problems in discrete terms and substitut-
ing them in the error estimate we saw that the ordering in magnitude of the global and local adjoint
does not change. Successive pairs of unknowns can switch in the ordering in magnitude, but that
does not matter, since this unknown represents the same patch but a different spatial location. By
a small perturbation in magnitude of the adjoint vector we saw that this can greatly affect the total
error estimate.

Discretisation of the transport equation using linear basis functions in the angular domain,
linear patches, is not much different from using constant basis functions. The matrix will be
larger, since there are more unknowns for the same number of patches, but the structure remains
the same. Therefore we can keep using the same algorithm for solving the equation.

The other question involved in discretising with linear angular basis functions was the con-
tinuity between two elements with a different angular refinement. We can write the continuity
relations in two conditions, a hard condition and a soft condition. The hard condition ensures the
continuity of the number of neutrons between elements, while the soft condition can be formu-
lated as a minimization problem that lets the angular fluxes of the two elements be similar, in some
norm. By choosing in what norm the difference between the elements must be minimized, we also
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choose what interpolation rules must be used. The orthogonal projection of basis functions leads
to the minimized difference in the two-norm.

After implementation of the linear patches we presented theresults of the same test cases as
were used for the constant patches. In general we saw that linear patches provide a much better
approximation of the angular flux, since the convergence is generally fourth order. We also see
this in the convergence of the traditional criterion, as this is in most cases much better than with
the constant patches.

Considering the distribution of patches the goal-orientedmethods produces, we can conclude
that they work as expected. The spatial distribution are somewhat similar to the distributions of the
constant patches and are what one would expect. As with the constant patches the performance of
the methods in the error versus the number of unknowns variesbetween the test cases. The linear
patches do however show a significant decrease in error relative to the discrete ordinates method,
which indicates that linear patches can approximate the angular flux well.

Although the results in general show the refinement criterion is an effective way of refinement
in some cases we see that uniform refinement results in a more efficient calculation of the detector
response. Efficiency in this case means acquiring an accurate detector response with a smaller
total number of unknowns. This is not unexpected when comparing it to the constant patch results,
where this was also found in some test cases. The cause of thisis likely similar to those of the
poor quality of the error estimate.

The quality of the error estimate is very poor. Only with uniform refinement in the homoge-
neous test case B is the error estimate accurate. The estimator cannot be used as a reliable indicator
of the error, for example for a stopping criterion. We have identified the cause for this poor quality
in the approximation of the exact adjoint that is used in the estimate. In order to obtain an accurate
error estimate we need an approximation of the error in the adjoint solution that does not lie in
the same space as we are solving the forward problem in, as only the orthogonal part will lead
to a contribution in the error estimate. The hypothesis is that stagnation takes place because the
approximation of the adjoint on a level deeper does not contain a large orthogonal component.
This could be tested by using a different approximation of the adjoint, most likely by solving the
adjoing with higher order basis functions.

We think this is also the cause of the problem with the decision of refinement in some test
cases, in particular the cases where uniform refinement provides more accurate results than goal-
oriented adaptive refinement. As the refinement decision is alocal form of the error estimate the
same approximation of the exact adjoint is made. However, besides this the effects of boundary
residuals could also play a role. This should be investigated further.

78



8 DISCUSSION

Finally we looked at the Boltzmann-Fokker-Planck equation, which was one of the goals at
the start of the project. Due to the unexpected discovery that the derivation of the adjoint is
not symmetrical, not much time was spend on this part. However, we did derive the full matrix
operator of the BFP equation and looked at possible ways of solving it. The difference with the
transport equation is that extra bands are added within an element, making it impossible to use
the sweep iteration in the same way, in other words, we cannotreorder the matrix in such a way
that the bands form a lower or upper diagonal matrix. A solution to this is to use a Gauss-Seidel
iteration as sweep, which effectively means that we use outdated values for the angular flux on
one of the neighbouring patches. The other possibility is touse Krylov subspace methods, as the
full matrix is not needed in these methods.

8.2 Future Work

As in the physics thesis, one of the possible expansions is toimplement the methods for three
dimensional problems. One has to take into account that the difference in the adjoint will remain
in this case. Another area of investigation is the combination with spatial refinement, where the
central question is on the choice of refinement. Are we completely free to choose where to refine
or are there restrictions? Another question is, do we have a choice in refining either in the spatial
domain or in the angular domain, or are these refinements coupled?

The hypothesis that the poor quality of the error estimate arises from an inaccurate approxi-
mation of the exact adjoint has to be verified by implementingan approximation that takes into
account the orthogonal part of the exact adjoint to the current restricted space. Also the effects of
this on the refinement criterion were not yet fully investigated.

In this work we did not implement the BFP equation, however weexplored possible methods
of solving this equation. There are two possible ways to implement the equation, either by a Gauss-
Seidel iteration, which uses outdated angular flux values ofone of the neighbouring patches. The
other possibility is using Krylov subspace methods, where the full matrix is not needed.
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A TEST CASES

A Test Cases

Here we present the test cases used throughout this work, with specified geometries and material
properties. For each test case we supply a short description, expected result, geometry and material
properties. In the geometry diagram blue represents a volumetric source and green represents a
volumetric detector.

A.1 Case A, Thick slab

The first test case is a uniform slab with a homogeneous sourceand detector. It is optically thick,
which means that the neutrons have a small mean free path. Thedimension of the slab is1 cm. In
Figure 32 a diagram of the geometry can be found and in Table 1 the material properties are listed.
The boundary conditions of the slab are vacuum boundaries onboth sides.

Since the boundary conditions are hard to satisfy properly it is expected that the mesh near the
edges of the slab will be very fine.

0 1
x

Vac. Vac.

Figure 32:Homogeneous slab geometry.

σt 100 cm−1

σs 99 cm−1

Source 1 cm−1s−1rad−1

Detector 4π cm−1

Table 1:Material properties for test problem A

A.2 Case B, Thin slab

Test case B is again a homogeneous slab with the same dimensions as the test cases above. How-
ever, since the total cross section is much lower the mean free path of the neutrons is larger, which
makes this an optically thin problem. Again the geometry canbe found in Figure 32, while the
material properties can be found in Table 2. This test case also has vacuum boundary conditions
on both sides.

Refinement is expected to be similar to the refinement in test case A, although the effects of
the edges will propagate much further into the domain, as this is an optically thin problem.
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Figure 33:Forward and adjoint solution of test case A.
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Figure 34:Forward and adjoint solution of test case B.

84



A TEST CASES

σt 1 cm−1

σs .5 cm−1

Source 1 cm−1s−1rad−1

Detector 4π cm−1

Table 2:Material properties for test problem B

A.3 Case C, Thick source detector

This test case has a separate source and detector region in a homogeneous material. The boundaries
of this slab geometry are again vacuum boundaries. A diagramof the geometry can be found in
Figure 35. The material properties are listed in Table 3.

In this test case it is important to have an accurate solutionin the source and detector regions.
Since the source is at the left hand side of the domain we also need an accurate solution of right
going directions. Therefore we expect refinement in the detector source and regions, as well as
refinement of right going directions.

0 1.1 .9
x

Vac. Vac.

Figure 35:Source detector slab geometry.

σt 100 cm−1

σs 99 cm−1

Source 1 cm−1s−1rad−1

Detector 4π cm−1

Table 3:Material properties for test problem C

A.4 case D, Thin source detector

This test case is also a source detector problem, but now withoptically thin material. An illustra-
tion of the geometry can be found in Figure 35. Table 4 lists the material properties.

The expected behaviour is similar to that of test case C. However, since this is an optically thin
problem the effects of the edges will propagate much furtherinto the domain.

A.5 Case E, Highly absorbing source detector

This is also a source detector geometry as shown in Figure 35.However, the homogeneous mate-
rial that is used in this problem is strongly absorbing. The material properties are listed in Table
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Figure 36:Forward and adjoint solution of test case C.
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Figure 37:Forward and adjoint solution of test case D.
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σt 1 cm−1

σs .5 cm−1

thickness 1 cm
Source 1 cm−1s−1rad−1

Detector 4π cm−1

Table 4:Material properties for test problem D
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Figure 38:Forward and adjoint solution of test case E.

5.
In this test case we expect the same results as for test case C,as this is also an optically thick

problem.

σt 10 cm−1

σs 1 cm−1

Source 1 cm−1s−1rad−1

Detector 4π cm−1

Table 5:Material properties for test problem E

A.6 Case F, Purely absorbing source detector

Test case F is the last separate source detector geometry as shown in Figure 35. The material is
now purely absorbing, which means there is no scatter sourcein the right hand side of the transport
equation. The material properties of this test case are listed in Table 6.

In this case there is no coupling between directions throughthe scatter, which will yield results
on the choice of directions of the discontinuous Galerkin method.
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σt 10 cm−1

σs 0 cm−1

Source 1 cm−1s−1rad−1

Detector 4π cm−1

Table 6:Material properties for test problem F
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Figure 39:Forward and adjoint solution of test case F.

A.7 Case G, Shielding

This test case is an extension of test case C. There is again a separate source and detector, however,
the detector is behind a shield. A region of0.05 cm in the middle of the slab has a large total cross
section, making it a neutron shield. The properties of the other regions remain the same. A
diagram of the geometry is shown in Figure 40. The material properties are listed in Table 7, the
source and detector are only present in the specified regions.

As this test case is similar to test case C we expect the refinement to be almost the same. Only
the source region is not very important now, as only a few neutrons will traverse the shielding.
Therefore it is more important to get an accurate flux in the shielding region. It is expected that
refinement takes place in the shielding and detector region,as well as for right going directions.

0 1.1 .475 .525 .9
x

Vac. Vac.

Figure 40:Shielding slab geometry.
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Property Material Shielding
σt 100 cm−1 50 cm−1

σs 99 cm−1 5 cm−1

thickness 2× .475 cm 0.05 cm
Source 1 cm−1s−1rad−1 0 cm−1s−1rad−1

Detector 4π cm−1 0 cm−1

Table 7:Material properties for test problem G.
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Figure 41:Forward and adjoint solution of test case G.

A.8 Case H, Purely absorbing shielding

Test case H has the same geometry as the previous test case, shown in Figure 40. Now both the
medium and the neutron shield are purely absorbing. The material properties are listed in Table 8.

Expectations on refinement are the same as in the other shielding test case, case G.

Property Material Shielding
σt 1 cm−1 100 cm−1

σs 0 cm−1 0 cm−1

thickness 2× .475 cm 0.05 cm
Source 1 cm−1s−1rad−1 0 cm−1s−1rad−1

Detector 4π cm−1 0 cm−1

Table 8:Material properties for test problem H
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Figure 42:Forward and adjoint solution of test case H.
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