

Pricing multi-asset financial products with tail dependence using copulas

Jan de Kort

October 1, 2007

Worst-of corn and wheat

Payoff = min(Corn price, Wheat price)

What is tail dependence mathematically?

 $X \sim F$, $Y \sim G$ random variables

 $\mbox{Upper tail dependence} \quad := \quad \mbox{lim}_{u\uparrow 1} \; \mathbb{P}[\, F(X) > u \, | \, G(Y) > u \,]$

No tail dependence (Gaussian density)

Upper tail dependence (Gumbel density)

Example: Corn and wheat

Lower tail dependence

Example: Copper and gold

No upper tail dependence

Example: Nikkei 225 and SP 500

Upper tail dependence

Outline

- 1 Copulas recap
- 2 Calibration
- 3 Pricing model
- 4 Hedge test
- 5 Conclusions and recommendations

Outline

- 1 Copulas recap
- 2 Calibration
- 3 Pricing mode
- 4 Hedge test
- 5 Conclusions and recommendations

A function $C: [0,1]^2 \to \mathbb{R}$ is called a 2-**copula** if

• for all $(u, v) \in [0, 1]^2$

$$C(u,0)=0\,,$$

$$C(0,v)=0\,,$$

$$C(u,1)=u$$
,

$$C(1, v) = v,$$

• and for every $[x_1, x_2] \times [y_1, y_2] \in [0, 1]^2$

$$C(x_2, y_2) - C(x_2, y_1) - C(x_1, y_2) + C(x_1, y_1) \ge 0.$$

Sklar's Theorem

Let H be a joint distribution function with continuous margins F and G such that

$$Ran F = Ran G = [0,1],$$

then

$$\exists ! \ _{Copula\ C} \ : \ H(x,y) = C(\ F(x),\ G(y)\)$$

for all $(x, y) \in \mathbb{R}$.

Copulas and dependence

Correlation Association along linear

function

Measure of concordance Association along **mono**-

tone function

Measures of concordance are a function of the copula only.

Example: Spearman's rank correlation

Spearman's
$$\rho := 12 \iint_{I^2} C(u, v) du dv - 3$$

Example: Spearman's rank correlation

Spearman's
$$\rho := 12 \iint_{I^2} C(u, v) du dv - 3$$

Sample 1		Sample 2		
Observation	Rank	Observation	Rank	
1	1	0.2	2	
12	2	0.3	3	
123	3	0.1	1	
1234	4	0.4	4	

Copulas and tail dependence

- Tail dependence is a property of the copula only.
- Construct right amount of tail dependence by using linear combination of copulas (Hu, 2002).

Outline

- 1 Copulas recap
- 2 Calibration
- 3 Pricing mode
- 4 Hedge test
- 5 Conclusions and recommendations

Calibration criterion?

- Likelihood of observing the sample given the model
- L² distance to empirical copula
- Measures of concordance (e.g. Spearman's rho)

Likelihood (1)

Differentiating the joint distribution

$$H(x,y) = C(F(x), G(y))$$

with respect to x and y gives the **joint density function**

$$h(x,y) = \frac{\partial^2 C(u,v)}{\partial u \partial v}\Big|_{(u,v)=(F(x),G(y))} \frac{\partial F}{\partial x}(x) \frac{\partial G}{\partial y}(y)$$

Likelihood (1)

Differentiating the joint distribution

$$H(x,y) = C(F(x), G(y))$$

with respect to x and y gives the **joint density function**

$$h(x,y) = \frac{\partial^2 C(u,v)}{\partial u \partial v} \Big|_{(u,v)=(F(x),G(y))} \frac{\partial F}{\partial x}(x) \frac{\partial G}{\partial y}(y)$$

$$:= c(F(x), G(y)) \qquad f(x) \qquad g(y)$$

Likelihood (2)

Likelihood of observing a sample $\{(x_i, y_i)\}_{i=1}^n$ from (X, Y) where $X \sim F$ and $Y \sim G$ is defined as

Likelihood :=
$$\prod_{i=1}^{n} c(F(x_i), G(y_i)) f(x_i) g(y_i).$$

It is equivalent to maximize

$$\log(\text{Likelihood}) = \sum_{i=1}^{n} \log c(F(x_i), G(y_i)) + \sum_{i=1}^{n} \log f(x_i) g(y_i).$$

Likelihood (3)

$$\log\left(\text{Likelihood}\right) = \underbrace{\sum_{i=1}^{n} \log c(F(x_i), G(y_i))}_{I} + \underbrace{\sum_{i=1}^{n} \log f(x_i) g(y_i)}_{II}$$

Approach 1 ("Inference For the Margins")

- Choose parametric form for F, G and C
- Maximize term II, this fixes F and G
- Maximize term I

Approach 2 ("Canonical Maximum Likelihood")

- Choose parametric form for C
- Replace F and G by their empirical counterparts
- Maximize term I

Likelihood (4)

If a mix of copulas is used, i.e.

$$c_{\text{mix}}(u,v) = \alpha_1 c_1(u,v) + \alpha_2 c_2(u,v) + \ldots,$$

one has to maximize

$$\sum_{\substack{\text{observations}\\k}} \log \sum_{\substack{\text{components}\\i}} \alpha_i \ c_i \left(F^{\text{emp}}(x_k), \ G^{\text{emp}}(y_k) \right).$$

Use Expectation Maximization (EM) algorithm because of good global convergence characteristics.

L^2 distance to empirical copula

$$||C - C^{\text{emp}}||_{L^2}^2 = \iint_{I^2} |C(u, v) - C^{\text{emp}}(u, v)|^2 du dv$$

Application: NIKKEI 225 and SP 500

Copula		Likeli-	L^2 -dist.	Spear-
		hood		man's $ ho$
100.00%	Normal (ρ =0.239)	14.18	0.0387	0.158
100.00%	Gumbel (θ =1.201)	21.26	0.0368	0.142
100.00%	Gumbel survival $(heta{=}1.144)$	10.09	0.0417	
100.00%	Clayton $(\theta=0.201)$	6.39	0.0447	
100.00%	Clayton survival (θ =0.394)	20.72	0.0363	0.110
100.00%	Frank $(\theta=1.403)$	13.11	0.0382	
23.62%	Normal ($\rho = -0.230$)	22.19	0.0373	0.156
76.38%	Clayton survival (θ =0.641)			
23.74%	Gumbel (θ =1.812)	21.71	0.0361	0.140
76.26%	Clayton survival (θ =0.211)			

Application: NIKKEI 225 and SP 500

Copula		Likeli-	L^2 -dist.	Spear-
		hood		man's $ ho$
100.00%	Normal (ρ =0.239)	14.18	0.0387	0.158
100.00%	Gumbel (θ =1.201)	21.26	0.0368	0.142
100.00%	Gumbel survival $(\theta=1.144)$	10.09	0.0417	
100.00%	Clayton $(\theta=0.201)$	6.39	0.0447	
100.00%	Clayton survival (θ =0.394)	20.72	0.0363	0.110
100.00%	Frank $(\theta=1.403)$	13.11	0.0382	
23.62%	Normal (ρ = -0.230)	22.19	0.0373	0.156
76.38%	Clayton survival (θ =0.641)			
23.74%	Gumbel (θ =1.812)	21.71	0.0361	0.140
76.26%	Clayton survival (θ =0.211)			

Outline

- 1 Copulas recap
- 2 Calibration
- 3 Pricing model
- 4 Hedge test
- 5 Conclusions and recommendations

Pricing model

- Building block: multivariate Gaussian model
- Hack 1: Keep Gaussian copula, replace margins
- Hack 2: Replace copula, replace margins

Model calibration: Instantaneous vs. terminal dependence

Terminal dependence

- Dependence between price levels
- This is what matters for pricing!
- Autocorrelation between consecutive levels usually high

Calibration method assumes observations to be time-independent

Model calibration: Instantaneous vs. terminal dependence

Terminal dependence

- Dependence between price levels
- This is what matters for pricing!
- Autocorrelation between consecutive levels usually high

Calibration method assumes observations to be time-independent

Instantaneous dependence

- Dependence between (daily, weekly, monthly) returns
- Autocorrelation in returns usually low

Marginal distributions

- Multivariate Gaussian model prices back one vanilla option (i.e. one strike)
- We need to price back a continuum of options (all posible strikes)
- Therefore, use volatility parametrization instead of constant volatility

Differences Hack 1 – Hack 2

	Hack 1	Hack 2		
Copula	Gaussian	Mix / Archimedean		
Calibration	Spearman's rho	Maximum likelihood		
Pricing method		Sample from distribution of returns. Add up daily increments.		

Pricing algorithm (Hack 2)

- ① Calibrate a copula to historical Δt periodical forward returns
- ② For $k = \Delta t, 2\Delta t, \ldots$ to maturity
 - (i) **Simulate** an observation **from the copula** obtained in step 1.
 - (ii) Transform these numbers into daily increments and **update forwards**
- 3 Calculate the option price (at maturity, forward = spot)
- 4 Repeat steps 2 and 3 and average the option price.

Application: Worst-of returns NIKKEI 225 and SP500

Copula	Daily returns		Monthly returns		Levels	
	Price	Rel. diff.	Price	Rel. diff.	Price	Rel. diff.
Normal	5.05		5.00		6.97	
Gumbel	4.98	-1.39%	5.07	1.40%	7.05	1.17%
Clayton surv.	4.88	-3.37%	5.12	2.40%	6.98	0.18%
Normal	5.04	-0.20%	5.03	0.60%	7.06	1.37%
Clayton surv.						
Gumbel	5.00	-0.99%	5.13	2.60%		
Clayton surv.						

Application: Worst-of returns, fix Spearman's rho

Contracts studied

$$\textbf{Best-of returns} \quad = \quad \max\left(0, \, \max\left(\frac{S_1(\textit{T})}{S_1(0)}, \frac{S_2(\textit{T})}{S_2(0)}\right) - 1\right)$$

Worst-of returns =
$$\max \left(0, \min\left(\frac{S_1(T)}{S_1(0)}, \frac{S_2(T)}{S_2(0)}\right) - 1\right)$$

At-the-money spread =
$$\max(0, S_1(T) - S_2(T) - S_1(0) + S_2(0))$$

Bivariate digital =
$$\mathbb{1}(S_1(T) > K_1) \mathbb{1}(S_2(T) > K_2)$$

Outline

- 1 Copulas recap
- 2 Calibration
- 3 Pricing mode
- 4 Hedge test
- 5 Conclusions and recommendations

Why hedging?

- Bank sells options to others who are interested in gambling
- Bank itself does not want to take on any risk
- Replicate option by buying 'right amount' of underlyings

What is hedging?

Option value V(A, B) depends on value underlyings A and B.

Our aim is to duplicate the option using the underlyings, i.e.

$$\frac{\partial}{\partial A} \left[V(A,B) + \Delta_A \cdot A + \Delta_B \cdot B \right] = 0,$$

$$\frac{\partial}{\partial B} \left[- - - - - - \right] = 0.$$

Therefore, set

$$\Delta_A = -rac{\partial V(A,B)}{\partial A}, \quad \Delta_B = -rac{\partial V(A,B)}{\partial B}.$$

Delta hedging with futures

- The option is sold and the premium is put in a money account earning the overnight rate.
- The portfolio is delta hedged using futures on the underlying assets and zero coupon bonds.
- The portfolio is revalued and rebalanced in the same way on each day of the simulation period. Every day the hedging instruments are liquidated and replaced to re-establish delta-neutrality.

Measuring hedging performance

- Average hedged position should be close to zero
- Variance of hedged portfolio considerably smaller than variance of naked option position

Worst-of corn and wheat — Gaussian copula

Worst-of corn and wheat — Copula w/ tail dependence

ATM Spread corn and wheat — Gaussian copula

ATM Spread corn and wheat — Copula w/ tail dependence

Outline

- 1 Copulas recap
- 2 Calibration
- 3 Pricing mode
- 4 Hedge test
- 5 Conclusions and recommendations

Conclusions

- Experiments suggests that price shift due to changing copulas is small for best-of, worst-of and spread contracts. Heuristic explanation:
 - Terminal distribution converges to Gaussian.
 - Low strike does not emphasize bivariate tail.
- Hedging performance for products with tail dependent underlyings is acceptable if a Gaussian copula is used.

Recommendations

Study impact tail dependence on path-dependent products.

This is more difficult, since:

- Consistency with marginal price processes
- Higher dimensional Archimedean copulas have identical bivariate margins

Questions?

