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1
Introduction

Reservoir simulation is a widely used means for prediction and optimization of oil recovery from a reservoir.
The reservoir simulators are based on multiphase porous media flow models which describe the flow of a
gaseous phase, an aqueous phase and a hydrocarbon phase through porous rock. These models are based
on conservation of mass of the fluids and on a generalization of Darcy’s law from one phase to multiphase.
This extension of Darcy’s law is of questionable validity and requires the use of a relative permeability, which
describes the interaction between a phase and the rock and describes how easily a phase can flow through
the rock in presence of other phases. When there are only two phases present, relative permeability can be
measured relatively easy and mathematical models used in general are satisfactory and perform well. On the
other hand, measuring three-phase relative permeabilities is complicated, time consuming and expensive
(Alizadeh and Piri, 2014). This means that three-phase relative permeability data is scarce and that in gen-
eral relative permeabilities are modelled. The way this is done greatly influences the resulting multiphase
porous media flow model and, in contrast to two-phase flow, incorrectly modelling the relative permeability
can lead to an ill-posed multiphase flow model and to subsequent simulation problems. The cause of this
ill-posedness is the loss of strict hyperbolicity of the linearized system which is characterized by the existence
of an elliptic region or an umbilic point in the linearized system. In general, loss of strict hyperbolicity is
considered to be an unwanted feature of a three-phase porous media flow model, as the resulting nature of
the solution is deemed unphysical. Hence, it seems reasonable to investigate how loss of strict hyperbolicity
can be avoided.
Usually, water or gas is injected into the reservoir in order to displace the oil towards the producer well. In
enhanced oil recovery (EOR) other materials are injected into the reservoir, see e.g. Lake et al. (2014) for ex-
amples of the materials used. These materials change properties of the phases present in the reservoir and
change how the phases interact with the rock. This means that the relative permeability can change dras-
tically throughout the reservoir, making it especially important in EOR to model the relative permeabilities
correctly in order to avoid loss of strict hyperbolicity.

A lot of research has already been done concerning the effect of the relative permeability model on the strict
hyperbolicity of the linear system. Bell et al. (1986) showed that an elliptic region can exist for a Stone-type
relative permeability model, i.e. if the oil relative permeability depends on both the water and gas satura-
tions, when gravity and capillary pressure are ignored and that the system with capillary pressure is weakly
stable. Fayers (1989) derived sufficient conditions on the fractional flow functions for the system to be strictly
hyperbolic when using Stone-type models. Trangenstein (1989) showed that a system including gravity is
hyperbolic if and only if the relative permeability model is of Corey-type, i.e if the relative permeability of a
phase only depends on the saturation of that phase. He also showed that for Stone-type models, given vis-
cosity, it is always possible to find density and gravity coefficients such that the linear system with gravity has
an elliptic region. Shearer and Trangenstein (1989) showed that a system without gravity and capillary pres-
sure has at least one point inside the saturation triangle for which the system is non-strictly hyperbolic when
using a certain class of Stone-type models. They also showed that every corner of the saturation triangle is
an umbilic point for the relative permeabilities they consider. Falls and Schulte (1992) showed that loss of
hyperbolicity can only occur in the region where all three phases are mobile, i.e. for one- and two-phase flow
the system is strictly hyperbolic for all saturations. Juanes and Patzek (2004a) derived necessary conditions

1



2 1. Introduction

for the three-phase relative permeability on the edges of the saturation triangle for the system to be strictly
hyperbolic everywhere inside the saturation triangle. They also gave an example of a relative permeability
model for which the system is indeed strictly hyperbolic for all saturations. Despite all this research a relative
permeability model that results in a strictly hyperbolic system while at the same time matching all available
data has still not been found and commonly used three-phase relative permeability models generally give rise
to loss of strict hyperbolicity. Therefore the question is how loss of strict hyperbolicity can be recognized, but
more importantly the question still remains whether loss of strict hyperbolicity can be avoided by choosing
the right relative permeability model.

This thesis is structured as follows. In the rest of this chapter the mathematical model describing three-phase
porous media flow is derived. In Chapter 2 the solution to the Buckley-Leverett problem, which describes
two-phase porous media flow, is given. In Chapter 3 three-phase flow and the occurrence of loss of strict
hyperbolicity is discussed. Furthermore, the effect of loss of strict hyperbolicity on the numerical solution is
investigated. In Chapter 4 multiple existing three-phase relative permeability models are discussed and three
new models are introduced. In Chapter 5 the construction of the Riemann solution for strictly hyperbolic
three-phase flow models is described and the issues with this construction when loss of strict hyperbolicity
occurs are discussed. In Chapter 6 the effect of the new three-phase relative permeability models on the oc-
currence of loss of strict hyperbolicity is investigated. Numerical experiments to investigate the effect of the
new relative permeability models on the numerical solution of the three-phase porous media flow model are
given in Chapter 7. Finally, the conclusions are given and discussed in Chapter 8.

1.1. Multiphase porous media flow model
Reservoir simulators model the flow of multiple phases through a reservoir. Most of these simulators are de-
signed to be able to model a wide variety of problems, e.g. a different number of phases or dimensions, or a
heterogeneous medium. However, in this thesis a simple one dimensional homogeneous reservoir with an
injection well at one side of the reservoir and a production well at the other end of the reservoir will be looked
at, see Figure 1.1. Inside the reservoir, the flow is described by a multiphase porous media flow model. For

PI

x = 0 x = Lx

flow

Reservoir

Figure 1.1: Simple reservoir with one injection well I at the left and one production well P at the right. The direction of flow is from the
injector to the producer.

the simplified one dimensional model considered in this thesis, the direction of flow will always be from the
injector to the producer, i.e. there is no back flow, and the injector can be identified as upstream and the
producer as downstream. The boundary conditions enter the multiphase flow model by assuming a constant
total flow rate throughout the entire reservoir, including the injector well and the producer well. Therefore, a
constant injection rate and an equal constant production rate will be assumed.

The equations governing three phase flow in a porous medium are derived from conservation of mass and
from an extension of Darcy’s law. For a more detailed derivation of the governing equation than the one given
below see e.g. Aziz and Settari (1979). One dimensional, immiscible incompressible flow of three phases - oil,
water and gas - in a homogeneous porous medium will be assumed. Furthermore, the effects due to gravity
and capillary pressure will be ignored. For one dimensional, immiscible flow without gravity and capillary
pressure the conservation of mass for each phase is given by:

∂φραSα

∂t
+ ∂

∂x

(
ραvα

)= 0 for α ∈ {o, w, g } (1.1)
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Here, φ is the rock porosity and ρα is the density of phase α. Sα is the saturation of phase α which is defined
as the the volume fraction of pores in the medium occupied by phase α. Finally, vα is the velocity of phase α
which is defined as the volume of phase α flowing per unit time and per unit area. Since incompressible flow
is assumed the density for each phase is constant and assuming constant rock porosity the conservation of
mass can be rewritten as:

φ
∂Sα

∂t
+ ∂

∂x

(
vα

)= 0 for α ∈ {o, w, g } (1.2)

Darcy’s law was originally determined experimentally for the flow of one phase, namely water, through sand
and gives the relation between flow rate and the pressure difference. It is the equivalent of Fick’s law for
diffusion and Fourier’s law for heat conduction. Darcy’s law can be extended from one phase to multiphase
flow by introducing a relative permeability kαr for each phase α. This extension is given by:

vα =−K kαr
µα

∂pα

∂x
for α ∈ {o, w, g } (1.3)

where µα is the viscosity of phaseα and pα is the pressure of phaseα. K is the absolute permeability which is
assumed to be independent of the phase and which is the permeability of the porous medium in single-phase
flow. Finally kαr is the relative permeability of phase α which determines how easily a phase flows through
the medium. Relative permeability is a dimensionless number between 0 and 1. The higher the relative
permeability the easier the phase will flow. If the relative permeability of a phase is zero that phase can no
longer flow and the phase is called immobile.
It will be assumed that the available pore space in the porous medium is completely filled, meaning that:

So +Sw +Sg = 1 (1.4)

Due to this relation, every saturation triple (Sw , So , Sg ) can be expressed as a saturation pair (Sw , Sg ) and it
can be represented in a ternary diagram or saturation triangle T given by:

T = {
(Sw , Sg ) | Sw ∈ [0,1], Sg ∈ [0,1], Sw +Sg ≤ 1

}
(1.5)

A general ternary diagram is depicted in Figure 1.2. Note that on the edges of the ternary diagram the satu-
ration of one of the phases will be zero, meaning that the edges of the ternary diagram represent two-phase
flow. Similarly, in the corners of the ternary diagram only one phase is present. Since capillary pressure is
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Figure 1.2: Ternary diagram. The corners represent points in the saturation space where only one phase is present. On the edge of the
triangle opposite a corner, the saturation of that phase is zero and only the other two phases are present. Along the dashed lines the

saturation of one of the phases is constant, e.g. along the blue lines the water saturation is constant.

ignored the pressure of each phase is the same, i.e. po = pw = pg ≡ p. Summing the conservation of mass
(1.2) over all three phases and using Darcy’s law (1.3) and equation (1.4) leads to the pressure equation or flow
equation:

∂vT

∂x
= ∂

∂x

(
−KλT

∂p

∂x

)
= 0 (1.6)
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Here, vT = vo + v w + v g is the total velocity and λT = λo +λw +λg is the total mobility with λα := kαr
µα the

mobility of phase α. From the pressure equation (1.6) it follows that vT is a function of time only, i.e. vT is
constant in space. For the analysis in this thesis vT will be assumed constant in time as well. This means that
the pressure equation reduces to:

vT =−KλT
∂p

∂x
(1.7)

Using Darcy’s law (1.3), the conservation of mass (1.2) can be rewritten to obtain the saturation equation or
transport equation:

φ
∂Sα

∂t
− ∂

∂x

(
Kλα

∂p

∂x

)
= 0 for α ∈ {o, w, g } (1.8)

Substituting the expression of the total velocity (1.7) in the saturation equation (1.8) and using equation (1.4)
to eliminate the equation for oil the fractional flow equations are obtained:{

φ ∂Sw

∂t + vT
∂ f w

∂x = 0

φ ∂Sg

∂t + vT
∂ f g

∂x = 0
(1.9)

where f α := λα

λT
is the fractional flow of phaseα. Note that the fractional flows of all phases sum up to one, i.e.∑

α
f α = 1. Rewriting the fractional flow equation (1.9) in matrix form results in the following 2×2 system:

St + vT

φ
fx = 0 (1.10)

with S = (
Sw Sg

)T and f = (
f w f g

)T , where [·]T denotes the transpose. In general, the relative permeabilities
are non-linear functions of the saturation of one or two phases, meaning that the system (1.10) is non-linear.
System (1.10) can be linearized to obtain the quasilinear form:

St + vT

φ

∂ f

∂S
Sx = 0 (1.11)

with ∂ f
∂S the Jacobian matrix given by:

∂ f

∂S
:=

 f w
w f w

g

f g
w f g

g

= 1

λ2
T

(
λTλ

w
w −λwλT,w λTλ

w
g −λwλT,g

λTλ
g
w −λgλT,w λTλ

g
g −λgλT,g

)
(1.12)

Here, [·]α1
α2

is used to denote ∂[·]α1

∂Sα2 with α1,α2 ∈ {w, g } and λT,α is used to denote ∂λT
∂Sα with α ∈ {w, g }. The

fractional flow equation (1.10) can be made dimensionless by introducing the dimensionless time t and di-
mensionless space x given by:

t = vt

Lφ
tD x = xD

L
(1.13)

where L is the length of the reservoir, tD is the time with dimension and xD is space with dimension. The
dimensionless form of the fractional flow equation is then given by:

St + fx = 0 (1.14)

In the same way, the dimensionless quasilinear form of the fractional flow equation is given by:

St + ∂ f

∂S
Sx = 0 (1.15)

This dimensionless linearized system will be used to investigate the loss of strict hyperbolicity in chapter 3
and the structure of the solutions in chapter 5. To help understand the behavior of the numerical solutions
to the three-phase flow problem, two-phase porous media flow will first be discussed.



2
Two-phase flow through porous media

The analytical solution to the two-phase porous media flow problem with Riemann initial data was first ob-
tained by Buckley and Leverett. An oil-water system will be considered, but the same analysis holds for any
two-phase system. This means the gas saturation will be assumed zero and that the water and oil saturations
sum up to one, i.e. Sw +So = 1. Therefore, the gas equation can be removed from the dimensionless fractional
flow equations (1.15) leaving only one equation to describe two-phase flow:

Sw + f w
w Sw = 0 (2.1)

with f w
w = ∂ f w

∂Sw . This equation is known as the Buckley-Leverett (BL) equation.

2.1. Two-phase relative permeability
In order to obtain a solution for the Buckley-Leverett equation, the fractional flow function f w must be spec-
ified. Recall from Section 1.1 that the fractional flow function is defined as the ratio between the phase mo-

bility and the total mobility such that f w = λw

λT
with the mobility given by λα = kαr

µα and λT = λw +λo , so by
specifying the relative permeability for both oil and water the fractional flow function will be specified.

Relative permeability is the representation of pore-level displacement physics, fluid-fluid properties and
rock-fluid properties (Alizadeh and Piri, 2014; Juanes and Patzek, 2004a; Lake et al., 2014). An example of
such a property is wettability, which describes the degree to which a liquid maintains contact with a solid
surface. When looking at two-phase flow the endpoint of the relative permeability of the wetting phase will
in general be smaller than the endpoint of the non-wetting phase (Lake et al., 2014). The pore-level dis-
placement physics, fluid-fluid properties and rock-fluid properties determine the shape of the relative per-
meability curve. Relative permeabilities are usually modelled as functions of saturation alone and the effect
of the fluid-fluid properties, rock-fluid properties and pore-scale physics on the shape of the curve is incor-
porated through one or more parameters. The most used model for two-phase relative permeabilities is a
Corey-correlation, which is an empirical model and for a water-oil system it is given by (Lake et al., 2014):

kw
r (Sw ) = K w

r

(
Sw −Swc

1−Swc −Sor

)nw

ko
r (Sw ) = K o

r

(
1−Sw −Sor

1−Swc −Sor

)no
(2.2)

Here, kw
r and ko

r are the relative permeabilities of water and oil respectively, K w
r and K o

r are the endpoints of
the relative permeabilities, nw and no are the Corey-coefficients, Swc is the connate water saturation and Sor

is the residual oil saturation. Typical relative permeabilities for a water-oil system are shown in Figure 2.1a.
From equation (2.2) it follows that using Corey-correlation results in a fractional flow function of water that is
a function of the water saturation only. In general the fractional flow function shows an S-shape which is also
the case when using a Corey-correlation for the relative permeability, see Figure 2.1b.

5



6 2. Two-phase flow through porous media

(a) Relative permeabilities (b) Fractional flow function

Figure 2.1: Typical relative permeabilities (a) for water (blue) and oil (red) for a water-oil system and corresponding typical fractional
flow function for water (b).

2.2. Buckley-Leverett problem
In order to find a solution Sw (x, t ) to the BL equation (2.1) an initial condition must be specified, for which
Riemann initial data will be used. This means that the saturation is assumed constant throughout the entire
reservoir and that from time t = 0 water is injected at a constant rate at position x is zero:

Sw (x,0) =
{

Sw
u if x < 0

Sw
d if x > 0

(2.3)

Here, Sw
u is the upstream or injection state and Sw

d is the downstream or reservoir state. Looking at the BL
equation it can be seen that it is the quasilinear form of a scalar conservation law with the fractional flow
function as flux function (LeVeque, 2002). If the fractional flow function f w would be convex or concave,

i.e. if f w
w w = ∂2 f w

∂Sw 2 would have the same sign for all 0 ≤ Sw ≤ 1 , the solution is straightforward and can be
obtained using the method of characteristics. Depending on the sign of f w

w w and on whether Sw
u > Sw

d or
Sw

u < Sw
d the solution consists of either a rarefaction wave traveling with speed f w

w (S) or a shock wave from Sw
u

to Sw
d (LeVeque, 2002). Nonlinear scalar conservation laws for which the flux function is convex or concave

are called genuinely nonlinear problems. The difficulty with the BL problem arises from the fact that the

(a) Triple valued solution Sw (x, t ) for a certain time t > 0. The triple valued
solution is shown in blue and the shock that replaces it is shown in black.

(b) Buckley-Leverett solution for a certain time t > 0. The oil saturation is
shown in red and the water saturation is shown in blue.

Figure 2.2: Triple valued solution (a) and Buckley-Leverett solution (b) of the two-phase porous media flow model with Riemann initial
data for a certain time t > 0.

fractional flow function is S-shaped and is therefore not convex or concave but contains an inflection point.
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At the inflection point the derivative of the fractional flow function has a maximum, meaning that the second
derivative changes sign. Nonlinear scalar conservation laws for which the flux function has one or more
inflection points are called non-genuinely nonlinear problems. The method of characteristics fails for non-
genuinely nonlinear problem. To see this, suppose that the inflection point occurs at Sw = Sinfl such that
f w

w w (Sinfl) = 0. If Sw
u ,Sw

d < Sinfl or Sw
u ,Sw

d > Sinfl the problem behaves as if it is genuinely nonlinear and the

solution consists of either a shock wave or rarefaction wave. If however Sw
u < Sinfl < Sw

d or Sw
u > Sinfl > Sw

d the

method of characteristics would result in a triple valued solution since f w
w has a maximum at Sinfl (LeVeque,

2002). This triple valued part of the solution is not physical and is replaced by a shock, see Figure 2.2a. For
the example shown in Figure 2.2a the relative permeabilities and fractional flow function as shown in Figure
2.1 are used and as reservoir state Sw

d = 0.4 is assumed and pure water is injected. From Figure 2.1a it follows
that the residual oil saturation is Sor = 0.15, which means that the upstream state will be Sw

u = 0.85 even
though pure water is injected. Replacing the triple valued part of the solution by a shock wave results in
the solution as shown in Figure 2.2b. From this figure it can be concluded that the solution to the Buckley-
Leverett problem, when looking from downstream to upstream, consists of a shock wave directly followed by
a rarefaction wave simply called a shock-rarefaction wave. Such a combination of a shock and a rarefaction
is called a composite wave.

2.2.1. Convex-hull construction

Figure 2.3: The convex-hull (grey) of the water fractional flow function (blue) from the downstream state Sw
d (left black point) to the

upstream state Sw
u (right black point). The middle black point gives the state S∗ just after the shock.

The complete BL solution, including the correct shock to replace the region where the solution becomes
triple valued, can be constructed using the convex-hull of the fractional flow function, see Figure 2.3. The
convex-hull is the smallest convex set containing the set {(Sw ,F ) | Sw

d ≤ Sw ≤ Sw
u , F ≤ f w (Sw )} (LeVeque,

2002). The shock wave must be a weak solution of the BL equation (2.1) and to determine if it is a physically
admissible solution it must satisfy an entropy condition. For non-genuinely nonlinear scalar conservation
laws this admissibility condition was determined by Oleinik and is an extension of the Lax entropy condition,
which is used for genuinely nonlinear problems (LeVeque, 2002). A weak solution S(x, t ) of the BL equation
satisfies the Oleinik entropy condition if:

f w (S)− f w (Sw
l )

S −Sw
l

≥σ≥ f w (S)− f w (Sw
r )

S −Sw
r

(2.4)

for all S between Sl and Sr . Here, Sl is the state directly behind the discontinuity and Sr the state directly be-
fore the discontinuity and σ is the speed of the discontinuity S(x, t ), which is given by the Rankine-Hugoniot
condition (LeVeque, 2002):

σ= f w (Sr )− f w (Sl )

Sr −Sl
(2.5)
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Since in the BL solution the shock wave is directly followed by the rarefaction wave, the speed of both waves
at the point where the two waves connect must be equal. Denoting the saturation where they join by S∗ and
using that the speed of the rarefaction wave is equal to f w

w this means that:

f w
w (S∗) =σ= f w (S∗)− f w (Sw

d )

S∗−Sw
d

(2.6)

The solution to equation (2.6) is a straight line passing through (Sw
d , f w (Sw

d )) with slope f w
w (S∗), which means

that it is tangent to the fractional flow function f w at the point S∗, see the straight line segment between Sw
d

and S∗ in Figure 2.3. This straight line correspond to the shock wave of the BL solution. The convex-hull
is completed by the the fractional flow function f w itself for S∗ < Sw < Sw

u and this part corresponds to the
rarefaction wave of the BL solution. Note that this convex-hull construction also holds for a genuine nonlin-
ear scalar conservation law. In that case the convex-hull would either consist of only a single straight line,
which corresponds to a single shock wave, or it would consist of the flux function itself, which corresponds to
a single rarefaction wave.

From the convex-hull construction it follows that the fractional flow function and its derivative determine
the wave speeds of the Buckley-Leverett solution. The wave speeds are always real and positive, meaning that
the BL equation is a strictly hyperbolic equation. Therefore, loss of strict hyperbolicity does not occur for
two-phase flow.



3
Loss of strict hyperbolicity in three-phase

flow

From the previous section it follows that loss of strict hyperbolicity does not occur for two-phase flow. This
was also shown by Falls and Schulte (1992), who found that loss of strict hyperbolicity can only occur in the
region where all three phases are mobile. Therefore, three-phase flow will be considered throughout the rest
of this thesis.
In order to determine if loss of strict hyperbolicity occurs a definition of when the system is called strictly
hyperbolic is needed. First recall from Section 1.1 that the dimensionless quasilinear form of the fractional
flow equations is given by:

St + ∂ f

∂S
Sx = 0 (3.1)

with S = (
Sw Sg

)T , f = (
f w f g

)T and ∂ f
∂S the Jacobian matrix J given by:

J = ∂ f

∂S
= 1

λ2
T

λTλ
w
w −λwλT,w λTλ

w
g −λwλT,g

λTλ
g
w −λgλT,w λTλ

g
g −λgλT,g

 (3.2)

Then, in a point (Sw ,Sg ) ∈ T , the linearized system (3.1) is called:

• Strictly hyperbolic if the eigenvalues of the Jacobian matrix are real and distinct.

• Non-strictly hyperbolic if the eigenvalues of the Jacobian matrix are real and equal.

• Elliptic if the eigenvalues of the Jacobian matrix are complex.

Loss of strict hyperbolicity occurs if the system (3.1) is non-strictly hyperbolic or elliptic in at least one point
inside the saturation triangle. The complete linearized system (3.1) is called strictly hyperbolic if the lin-
earized system is strictly hyperbolic in every point (Sw ,Sg ) ∈ T and it is called non-strictly hyperbolic if the
system is not strictly hyperbolic, i.e. if loss of strict hyperbolicity occurs. The subdomain of the saturation
triangle T for which the system is elliptic is called the elliptic region. A single saturation value for which the
system is non-strictly hyperbolic is called an umbilic point. An example of an elliptic region is given in Figure
3.1. Note that the boundary of the elliptic region consists of a line of umbilic points.

From the definition of loss of strict hyperbolicity it follows that the eigenvalues of the Jacobian matrix (3.2)
must be looked at to determine if loss of strict hyperbolicity occurs. The eigenvalues are given by (Juanes and
Patzek, 2004a):

η=
f w

w + f g
g ±

√
( f w

w + f g
g )2 −4( f w

w f g
g − f w

g f g
w )

2

=
f w

w + f g
g ±

√
( f w

w − f g
g )2 +4 f w

g f g
w

2
(3.3)

9
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Figure 3.1: Example of an elliptic region (blue) within the ternary diagram.

If the term ( f w
w − f g

g )2 + 4 f w
g f g

w is negative, the eigenvalues η will be complex conjugates. So the shape of
fractional flow functions f α determines whether there are saturations for which the linear system (3.1) is el-
liptic or non-strictly hyperbolic. But, just like for two-phase flow, the fractional flows are determined by the
relative permeabilities. Therefore, the relative permeabilities determine whether loss of strict hyperbolicity
occurs. Measuring three-phase relative permeabilities is complicated, time consuming and expensive (Al-
izadeh and Piri, 2014). For instance, hysteresis becomes more complicated in three-phase than in two-phase
flow meaning that three-phase relative permeability is more difficult to measure than two-phase relative per-
meability. This means there is very little three-phase relative permeability data available and therefore three
phase relative permeabilities are usually modelled. The existing three-phase relative permeability models
can be classified as being either of Corey-type or of Stone-type. Note that Corey-type is not be confused with
Corey-correlations as introduced in the previous chapter. Corey-type refers to a certain type of three-phase
relative permeability model, which will be described below, whereas Corey-correlations refer to a specific
functional form of two-phase relative permeabilities. Similarly, Stone-type is not be confused with normal-
ized Stone interpolation, which will be described later in this section. Like Corey-type, Stone-type refers to a
certain type of three-phase relative permeability model, whereas normalized Stone interpolation refers to a
specific three-phase relative permeability model which can be of Corey-type or of Stone-type.
Corey-type models assume that the relative permeability of each phase depends only on the saturation of
that phase, i.e:

kw
r = kw

r (Sw ), ko
r = ko

r (So), kg
r = kg

r (Sg ) (3.4)

Stone-type models are based on the assumption that for a water-wet rock, the non-wetting phase (gas) oc-
cupies the largest pores, the wetting phase (water) occupies the smallest pores and the intermediate wetting
phase (oil) occupies the pores of intermediate size (Holden, 1990; Stone, 1970). From this it follows that the
relative permeability of water and gas only depend on their respective saturations, while the relative perme-
ability of oil depends on both the water and gas saturations. So a Stone-type model is characterized by:

kw
r = kw

r (Sw ), ko
r = ko

r (Sw ,Sg ), kg
r = kg

r (Sg ) (3.5)

For both a Corey-type and a Stone-type model the three-phase relative permeabilities of water and gas are
the same as the relative permeabilities of the water and gas relative permeabilities in the two-phase water-oil
and oil-gas systems respectively. A convenient way to picture three-phase relative permeability is by isop-
erms. Isoperms are lines in the ternary diagram along which the relative permeability is constant. Three
main types of isoperms can be distinguished, namely concave, convex and linear, see Figure 3.2. A combi-
nation of these types is also possible, see for example Figure 3.3b where the isoperms are partly convex and
partly concave. An example of the isoperms of three-phase oil relative permeability for a both Corey-type
and a Stone-type model is shown in Figure 3.3. Note that the isoperms of a Corey-type model are parallel
to the edge where the saturation is zero. For instance, the oil isoperms of a Corey-type model are parallel to
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G

(a) Linear isoperms

W O
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(b) Concave isoperms

W O

G

(c) Convex isoperms

Figure 3.2: Three possible shapes of oil isoperms: Linear (a), concave (b) and convex (c)

(a) Corey-type model (b) Stone-type model

Figure 3.3: Oil isoperms obtained using normalized Stone interpolation. For the two-phase relative permeabilities, both models use a
Corey-correlation with endpoints equal to one and zero residual saturations. The Corey-coefficients for the Corey-type model are

nw = ng = now = nog = 1 and nw = ng = now = nog = 2 for the Stone-type model.

the water-gas (WG) edge, see Figure 3.3a. Also note that for both a Corey-type and a Stone-type model the
isoperms of gas and water are always parallel to the oil-water (OW) and oil-gas (OG) edge respectively due to
the assumption that kg

r = kg
r (Sg ) and kw

r = kw
r (Sw ). A multitude of three-phase relative permeabilities mod-

els exist, see e.g. Baker (1988), but in this section only one of the most used models in reservoir simulations,
namely normalized Stone interpolation, is discussed. Some other three-phase relative permeability models
are discussed in Chapter 4.

3.1. Normalized Stone interpolation
Since three-phase relative permeability data is scarce, two-phase relative permeabilities are used, which are
relatively easy to measure. Three-phase relative permeability is then modelled by interpolating between these
two-phase relative permeabilities. Since kw

r = kw
r (Sw ) and kg

r = kg
r (Sg ) interpolation is only used for the oil

relative permeability. Therefore, interpolation is used between the water-oil and the oil-gas system. For the
two-phase relative permeabilities in these systems a Corey-correlation is used, as was done for two-phase
flow, see equation (2.2). For the water-oil system the Corey-correlations are given by:

kw
r (Sw ) = K w

r

(
Sw −Swc

1−Swc −Sor w

)nw

kow
r (Sw ) = K ow

r

(
1−Sw −Sor w

1−Swc −Sor w

)now
(3.6)

And for the oil-gas system they are given by:

kg
r (Sg ) = K g

r

(
Sg −Sg c

1−Swc −Sg c

)ng

kog
r (Sg ) = K og

r

(
1−Sg −Sor g −Swc

1−Swc −Sg c −Sor g

)nog
(3.7)
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Here, kw
r and kg

r are the relative permeabilities of water and gas, kow
r and kog

r are the relative permeabilities
of oil in a water-oil respectively oil-gas system, K w

r , K ow
r , K g

r and K og
r are endpoints of the relative perme-

abilities, nw , now , ng and nog are the Corey-coefficients, Swc and Sg c are the connate water and connate
gas saturations and Sor w and Sor g are the residual oil saturations for the water-oil respectively oil-gas sys-
tem. The connate water saturation Swc is incorporated in the relative permeabilities for the oil-gas system
because relative permeabilities for the oil-gas system are usually measured in the presence of connate water
saturation.

Stone interpolation was introduced by Stone (1970) and several variations have later been proposed (Aziz
and Settari, 1979; Baker, 1988). The original model, StoneI (Stone, 1970), is based on probability and requires
the estimation of the minimum value of the three-phase oil residual saturation. A second model, StoneII
(Stone, 1973), is also based on probability but does not require the minimum value of the oil residual satura-
tion. Therefore, StoneII is the preferred method.
The main assumption of StoneII is that the total relative permeability is equal to the product of the sum of
the two-phase relative permeabilities:

ko
r +kg

r +kw
r = (

kw
r +kow

r

)(
kg

r +kog
r

)
(3.8)

or, rewritten:
ko

r = (
kw

r +kow
r

)(
kg

r +kog
r

)−kg
r −kw

r (3.9)

In order to view the resulting relative permeability as a probability it must be between 0 and 1. Therefore a
normalization is applied. Several ways of normalization have been proposed (Aziz and Settari, 1979; Baker,
1988), but the general form is given by:

ko
r = ko

r,max

[(
kw

r

kw
r,max

+ kow
r

ko
r,max

)(
kg

r

kg
r,max

+ kog
r

ko
r,max

)
− kw

r

kw
r,max

− kg
r

kg
r,max

]
(3.10)

In this thesis, the following normalization will be used:

kw
r,max = kw

r (1−Sor w ) (3.11)

kg
r,max = kg

r (1−Swc ) (3.12)

ko
r,max = kow

r (Swc ) = kog
r (Sg c ) (3.13)

Assuming all endpoints of the Corey-correlations to be one, all these normalisation factors will be equal to
one.

Looking at equation (3.10) it follows that there might be values within the saturation triangle where ko
r can

become negative. Since this has no physical meaning ko
r ≡ 0 is used in this region, meaning that the oil is

immobile in this region of the saturation triangle. Since the flow reduces to two-phase flow on the edges of
the ternary diagram the oil is immobile on the WG edge. Therefore, the region were the oil is immobile is
adjacent to the WG edge. In Figure 3.3b it can be seen that the region where ko

r = 0 is located to the left of
the zero, i.e. the lightest blue, isoperm which is indeed closest to the water-gas edge. Finally, note that us-
ing Corey-correlations (3.6) and (3.7) for the two-phase relative permeabilities means that normalised Stone
interpolation can only lead to a Corey-type relative permeability model if nw = now = nog = ng = 1. These
Corey-coefficients are only realistic if interfacial tension is negligible.

3.2. Numerical method
The three-phase flow model has not yet been solved analytically when loss of strict hyperbolicity occurs,
except in very specific cases, e.g. (Azevedo et al., 2010). This means that the system (1.14) will be solved nu-
merically. Furthermore, the effect of the existence of the elliptic region on the numerical solution obtained
using an existing reservoir simulator is to be investigated. The reservoir simulator considered uses a fully im-
plicit method (FIM). This means that a finite volume approach will be used for the spatial part combined with
an implicit method for the time differentiation. Since gravity and capillary pressure are neglected, back flow
is not possible, meaning that if the eigenvalues are real they are also positive (Guzmán and Fayers, 1997b).
Therefore, information always travels in one direction, as was the case for two-phase flow. Again, the direc-
tion of flow is from the injector to the producer, meaning that the injector well is on the upstream side and
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the producer well is on the downstream side, see Figure 1.1. The existing reservoir simulator is designed to be
able to solve more complicated problems than the simplified model discussed in this thesis. Therefore, the
reservoir simulator does not solve the fractional flow equations (1.14), which has the water and gas saturation
as primary variables, but solves the saturation equation (1.8) and uses the pressure, the oil accumulation and
the gas accumulation as primary variables. For comparison purposes an explicit upwind method will be used
to solve the fractional flow equation (1.14).

3.2.1. Fully implicit method
For FIM the one dimensional reservoir, see Figure 1.1, is divided into grid cells ci with i = 0,1, . . . , N using an
equal spacing, i.e. every grid cell has length∆x, see Figure 3.4. Note that even though it is an one dimensional

xi− 1
2

xixi−1 xi+1

xi+ 1
2

∆x
ci

Figure 3.4: Grid cells ci . The middle of grid cell ci is denoted as xi and the boundaries by xi+ 1
2

and xi− 1
2

.

problem, every grid cell must have a volume to use a finite volume method. Therefore, every grid cell has
width ∆y and height ∆z such that every grid cell has a volume Vg c of ∆x∆y∆z. Then a finite volume method
is used to approximate the spatial derivative in the saturation equation (1.8). First note that by including the
phase density the saturation equation can be rewritten as:

∂ραSα

∂t
= ∂

∂x

(
K

kαr ρ
α

µα
∂p

∂x

)
, for α ∈ {w,o, g } (3.14)

The integral form of the saturation equation over one grid cell ci is then given by:∫
Vg c

∂ραSα

∂t
d x =

∫
Vg c

∂

∂x

(
K

kαr ρ
α

µα
∂p

∂x

)
d x

∆y∆z
∫
ci

∂ραSα

∂t
d x =∆y∆z

∫
ci

∂

∂x

(
K

kαr ρ
α

µα
∂p

∂x

)
d x, for α ∈ {w,o, g }, i = 0,1, . . . , N (3.15)

Introducing the phase mass accumulation Aα and the flux Fα gives:

d

d t
Aα

i :=∆y∆z
∫
ci

∂ραSα

∂t
d x =∆y∆z

[
K

kαr ρ
α

µα
∂p

∂x

]x
i+ 1

2

x
i− 1

2

:= Fα

i+ 1
2
−Fα

i− 1
2

, for α ∈ {w,o, g }, i = 0,1, . . . , N (3.16)

where Fα

i+ 1
2

and Fα

i− 1
2

are the fluxes through the cell boundaries at xi− 1
2

and xi+ 1
2

respectively. This equation

still contains a time derivative which will be approximated implicitly:

d

d t
Aα

i = Aα,n+1
i − Aα,n

i

∆t
, for α ∈ {w,o, g }, i = 0,1, . . . , N (3.17)

Here, Aα,n
i is Aα at x = xi and at time t n = n∆t + t 0 with t 0 the starting time and n the discrete time level. The

mass accumulation Aα,n
i is approximated by the midpoint rule:

Aα,n
i =∆y∆z

∫
ci

ραSα,nd x ≈∆x∆y∆zφραSα,n
i , for α ∈ {w,o, g }, i = 0,1, . . . , N (3.18)

Combining equation (3.16) and equation (3.17) leads to the following discretized equations:

Aα,n+1
i − Aα,n

i

∆t
= Fα,n+1

i+ 1
2

−Fα,n+1
i− 1

2

(3.19)
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In order to find an expression for the fluxes Fα

i+ 1
2

and Fα

i− 1
2

an upwind approach is used. Using the nota-

tion from Figure 3.4 and using the direction of flow as in Figure 1.1 the upwind value of xi+1/2 is xi since
the direction of flow is from xi to xi+1 . Note that the flux terms contain a pressure gradient, which will be
approximated by a central difference scheme. The flux functions are then given by:

Fα

i+ 1
2
=∆y∆zK

ρα

µα
kαri

pi+1 −pi

∆x
(3.20)

Combining the discretized equations (3.19) with the expression for the fluxes (3.20) gives the full discretiza-
tion of the saturation equation:

Aα,n+1
i − Aα,n

i

∆t
=∆y∆zK

ρα

µα
kα,n+1

ri

pn+1
i+1 −pn+1

i

∆x
−∆y∆zK

ρα

µα
kα,n+1

ri−1

pn+1
i −pn+1

i−1

∆x
(3.21)

This expression only holds for the internal grid cells, for the boundary grid cells a boundary condition must
be incorporated into the expression. For this, a constant injection rate and an equal constant production rate
are assumed.

In section 1.1 one of the phases was eliminated using equation (1.4) which states that saturations must sum
up to one. In order to be able to eliminate a phase from the discretized saturation equations (3.21) equation
(1.4) is rewritten in terms of volumes and accumulations. From the definition of the accumulation (3.18) it
follows that:

Sαi ≈ Aα
i

φ∆x∆y∆zρα
, for α ∈ {w,o, g } (3.22)

Note that the sum of the saturation must be one in every grid cell, such that:

∑
α

Sαi =∑
α

Aα
i

φ∆x∆y∆zρα
, for α ∈ {w,o, g }

1 = 1

φ∆x∆y∆z

∑
α

Aα
i

ρα

0 =φ∆x∆y∆z −∑
α

Aα
i

ρα
(3.23)

Since φ∆x∆y∆z gives the available pore volume in grid cell ci , it follows that
Aαi
ρα gives the pore volume occu-

pied by phase α in grid cell ci .
Equation (3.21) for all phases together with equation (3.23) gives the system of discretized equations. Note
that equation (3.21) is nonlinear due to the relative permeability function. This means that at every time
step a nonlinear system must be solved. In order to approximate the solution of this nonlinear system the
Newton-Raphson method is used.

Newton-Raphson
The discretized equations (3.23) and (3.21) can be rewritten in residual form as:

RVi =φ∆x∆y∆z −∑
α

Aα,n+1
i

ρα
(3.24)

RAαi
= Aα,n+1

i − Aα,n
i − ∆t

∆x
∆y∆zKρα

1

µα

[
kα,n+1

ri
(pn+1

i+1 −pn+1
i )−kα,n+1

ri−1
(pn+1

i −pn+1
i−1 )

]
(3.25)

This is a systems with four equations for every grid cell; one saturation equation for each phase and one
phase volume equation. Due to the phase volume equation (3.24) one of the saturation equations can be
eliminated, which leads to a system of three equations for every grid cell. In accordance with the existing
reservoir simulator the water accumulation will be eliminated even though the oil saturation was eliminated
in the continuous system (3.1). The elimination of the water phase is done by substituting the phase volume
residual (3.24) in the transport residual (3.25) for the water phase, which gives the following residual (for the
full derivation, see Appendix A.1):

R Ãw
i
=−ρw A

g ,n+1
i
ρg −ρw Ao,n+1

i
ρo +ρw A

g ,n
i
ρg +ρw Ao,n

i
ρo − ∆t

∆x∆y∆zK ρw

µw

[
kw,n+1

ri
(pn+1

i+1 −pn+1
i )−kw,n+1

ri−1
(pn+1

i −pn+1
i−1 )

]
(3.26)
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For both Corey-type and Stone-type models kw
ri

is a function of the water saturation only, but it can be ex-
pressed as a function of the oil and gas accumulations using equation (3.22) and Sw = 1−Sg −So as follows:

kw
ri
= kw

ri

(
1− Ag

i

φ∆x∆y∆zρg − Ao
i

φ∆x∆y∆zρo

)
, for i = 0,1, . . . , N (3.27)

The residuals R Ãw
i

, RAo
i

, and RA
g
i

give a 3 ·N ×3 ·N nonlinear system of equations with N the number of grid

cells. The primary variables of this system are:

Y =
[

pn+1
1 , Ao,n+1

1 , Ag ,n+1
1 , . . . , pn+1

i , Ao,n+1
i , Ag ,n+1

i , . . . , pn+1
N , Ao,n+1

N , Ag ,n+1
N

]T

At every time step the 3 ·N ×3 ·N nonlinear system is solved using a Newton-Raphson approximation:

J k dY k+1 =−Rk (3.28)

with k the iteration index, J k the Jacobian matrix and Rk the residual vector given by

R = [R Ãw
1

,RAo
1

,RA
g
1

, . . . ,R Ãw
i

,RAo
i

,RA
g
i

, . . . ,R Ãw
N

,RAo
N

,RA
g
N

]T (3.29)

and dY k+1 is the Newton update, i.e. the new iteration Y k+1 is obtained from the old iteration Y k by Y k+1 =
Y k + dY k+1. The final iteration of the Newton-Raphson method is then used as an approximation of the
solution of the three-phase flow model at the new time level n +1.
Dropping the time level n +1 and the iteration index k for notational simplicity, the Jacobian matrix can be
written as:

J =


J11 J12 . . . J1N

J21 J22
...

...
. . .

JN 1 . . . JN N

 (3.30)

where every submatrix Ji j is a 3×3 matrix, since three residuals and three primary variables are considered,
given by:

Ji j =



∂R Ãw
i

∂p j

∂R Ãw
i

∂Ao
j

∂R Ãw
i

∂A
g
j

∂RAo
i

∂p j

∂RAo
i

∂Ao
j

∂RAo
i

∂A
g
j

∂R
A

g
i

∂p j

∂R
A

g
i

∂Ao
j

∂R
A

g
i

∂A
g
j

 (3.31)

For Corey-type and Stone-type relative permeability models the entries of the submatrices of the Jacobian
matrix are given by the following matrices, for which the full derivation is given in Appendix A:

Ji i−1 =


− ∆t
∆x∆y∆zKρw 1

µw kw
ri−1

− ∆t
∆x2

1
φK ρw

ρo
1
µw (pi −pi−1)

∂kw
ri−1

∂Sw
i−1

− ∆t
∆x2

1
φK ρw

ρg
1
µw (pi −pi−1)

∂kw
ri−1

∂Sw
i−1

− ∆t
∆x∆y∆zKρo 1

µo ko
ri−1

− ∆t
∆x2

1
φK 1

µo (pi −pi−1)
∂ko

ri−1
∂Sw

i−1

∆t
∆x2

1
φK ρo

ρg
1
µo (pi −pi−1)

(
∂ko

ri−1

∂S
g
i−1

− ∂ko
ri−1

∂Sw
i−1

)
− ∆t
∆x∆y∆zKρg 1

µg kg
ri−1

∆t
∆x2

1
φK ρg

ρo
1
µg (pi −pi−1)

∂k
g
ri−1

∂So
i−1

∆t
∆x2

1
φK 1

µg (pi −pi−1)
∂k

g
ri−1

∂S
g
i−1

 (3.32)

Ji i =


∆t
∆x∆y∆zKρw 1

µw (kw
ri
+kw

ri−1
) −ρw

ρo + ∆t
∆x2

K
φ
ρw

ρo
1
µw (pi+1 −pi )

∂kw
ri

∂Sw
i

−ρw

ρg + ∆t
∆x2

K
φ
ρw

ρg
1
µw (pi+1 −pi )

∂kw
ri

∂Sw
i

∆t
∆x∆y∆zKρo 1

µo (ko
ri
+ko

ri−1
) 1+ ∆t

∆x2
1
φK 1

µo (pi+1 −pi )
∂ko

ri
∂Sw

i
− ∆t
∆x2

1
φK ρo

ρg
1
µo (pi+1 −pi )

(
∂ko

ri

∂S
g
i

− ∂ko
ri

∂Sw
i

)
∆t
∆x∆y∆zKρg 1

µg (kg
ri
+kg

ri−1
) − ∆t

∆x2
1
φK ρg

ρo
1
µg (pi+1 −pi )

∂k
g
ri

∂So
i

1− ∆t
∆x2

1
φK 1

µg (pi+1 −pi )
∂k

g
ri

∂S
g
i

 (3.33)

Ji i+1 =

−
∆t
∆x∆y∆zKρw 1

µw kw
ri

0 0

− ∆t
∆x∆y∆zKρo 1

µo ko
ri

0 0

− ∆t
∆x∆y∆zKρg 1

µg kg
ri

0 0

 (3.34)

Ji j ≡ 0, if j 6= i −1, i , i +1 (3.35)
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Note that for both a Corey-type and a Stone-type relative permeability model the entries with ∂k
g
r

∂So are zero

since both types of model assume that kg
r = kg

r (Sg ). Also note that, as for the discretized equations (3.21) and
(3.23), these expressions for the submatrices only hold for the internal grid cells, i.e. the submatrices J11 and
JN N will have different entries due to boundary conditions.

3.2.2. Upwind method
An upwind method will be used to solve the fractional flow equation (1.15) in order to compare the results
with the solution using the existing reservoir simulator. Recall that dimensionless form of the fractional flow
equation is given by:

St + fx = 0 (3.36)

The same spatial discretization will be used as for FIM, see Figure 3.4. Using a standard upwind approach
and explicit time discretization the following numerical scheme is obtained:

Sn+1
i = Sn

i − ∆t

∆x

[
f n

i+ 1
2
− f n

i− 1
2

]
(3.37)

with f n
i+ 1

2

= f
(
Sn

i

)
and f n

i− 1
2

= f
(
Sn

i−1

)
. Unlike FIM, this method is conditionally stable.

3.3. Effect of elliptic region on numerical solution
Now that the numerical schemes are derived the effect of an elliptic region on the numerical solution can be
looked at. To show this effect more clearly Corey-coefficients are used that fall outside the range of physically
realistic coefficients as described in chapter 4. For the water-oil and oil-gas relative permeabilities Corey-
correlations (3.6) and (3.7) are used with the following Corey-coefficients:

now = 2

nw = 1.1

nog = 2

ng = 1.1

Furthermore, all residual saturations are assumed to be zero and all endpoints are asssumed to be one. This
non-realistic choice of Corey-correlations results in larger than average elliptic region, see Figure 3.5a. Note

(a) Elliptic region (b) Isoperms

Figure 3.5: Elliptic region (a) and oil isoperms (b) for normalized Stone with now = nog = 2 and nw = ng = 1.1 as Corey-coefficients. All
residual saturations are zero and all endpoints are one.

that left of the isoperms in Figure 3.5b the oil relative permeability is zero, meaning that in this region the oil
is immobile. This region is therefore governed by two-phase flow instead of three-phase flow, and the ellip-
tic region indeed does not extent into this two-phase flow region. This was also shown by Falls and Schulte
(1992), who stated that loss of strict hyperbolicity can only occur in the three-phase flow region.
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In order to solve the three-phase flow model an initial condition must be given. As initial data S(x,0) =(
Sw (x,0) Sg (x,0)

)T Riemann data will be assumed, as was done for two-phase flow:

S(x,0) =
{

Su if x < 0

Sd if x > 0
(3.38)

Bell et al. (1986) showed that the elliptic region causes linear instability of the solution. They also showed that
taking capillary pressure into account, which result in a diffusion term, damps the linear instability leading
to what Bell et al. (1986) call a weakly stable system. Since both FIM and the first order upwind scheme
result in some numerical diffusion the numerical solution is expected to be weakly stable. It will be shown,
however, that there are situation for which the solution of the Riemann problem is influenced by the elliptic
region. This behavior can be explained by the structure of the Riemann solution, which will be explained in
Chapter 5. Furthermore, Isaacson et al. (1990) and Azevedo and Marchesin (1995) showed, amongst others,
that uniqueness of the Riemann solution is not guaranteed if loss of strict hyperbolicity occurs, see Chapter
5.

3.3.1. Hyperbolic region
The first example takes both the initial state Sd and injection state Su inside the hyperbolic region of the
ternary diagram, and both in the three-phase flow region. Looking at figure 3.5a, choosing

Su =
(
0.46
0.16

)
Sd =

(
0.2
0.3

)
(3.39)

means that both Su and Sd lie in the hyperbolic region. Using this initial condition results in the the numeri-

(a) FIM (b) Upwind scheme

Figure 3.6: Numerical solution after 7 years using FIM (a) and the upwind scheme (b) with both the initial and the injection state inside
the hyperbolic region. The oil saturation is shown in red, the water saturation in blue and the gas saturation in green.

(a) FIM (b) Upwind scheme

Figure 3.7: Saturation path of point 1 (black dots) after 7 years using FIM (a) and the upwind scheme (b) with both the initial and the
injection state inside the hyperbolic region. The red circle shows the injection or upstream state, also denoted by u, and the red

diamond shows the initial or downstream state, also denoted by d. The elliptic region is shown in blue.
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cal solution as shown in Figure 3.6 with corresponding saturation path as shown in Figure 3.7. The saturation
path gives the saturations as a function of time for a single point xi in the reservoir. Two points are used to
obtain saturation paths. Point 1 is located at 1/5 of the reservoir starting from the injector and point 2 is lo-
cated at 4/5 of the reservoir. No instability can be seen in the numerical solution which is to be expected since
the complete saturation path lies inside the hyperbolic region. Also note that both numerical schemes give
the same solution, although the solution using FIM shows more diffusion than the solution using the upwind
scheme.

As a second example both the injection and initial state are again chosen inside the hyperbolic region, but
the injection state lies close to the boundary of the elliptic region:

Su =
(
0.05
0.5

)
Sd =

(
0.46
0.16

)
(3.40)

Figure 3.8 shows the numerical solution for both FIM and the upwind method and Figure 3.9 shows the sat-
uration path of point 1. These figures also show the numerical solution and saturation path when using the

(a) FIM (b) Upwind scheme. (c) Upwind scheme. Different ∆t
∆x .

Figure 3.8: Numerical solution after 15 years using FIM (a), the upwind scheme (b) and the upwind scheme with different ∆t (c) with
both the initial and the injection state inside the hyperbolic region. The oil saturation is shown in red, the water saturation in blue and

the gas saturation in green.

(a) FIM (b) Upwind scheme. (c) Upwind scheme. Different ∆t
∆x .

Figure 3.9: Saturation path of point 1 (black dots) after 15 years using FIM (a), the upwind scheme (b) and the upwind scheme with
different ∆t

∆x (c) with both the initial and the injection state inside the hyperbolic region. The red circle shows the injection or upstream
state, also denoted by u, and the red diamond shows the initial or downstream state, also denoted by d. The elliptic region is shown in

blue.

upwind scheme but with a bigger ∆t
∆x . It can be seen that changing this ratio changes the structure of the

solution. Using the same ∆t
∆x as in Figure 3.9c for FIM did not result in a change in structure of the solution

but resulted in the same structure as in Figure 3.9a. As was the case for the previous example, no instability
occurs.

3.3.2. Elliptic region
In order to further investigate the effect of the elliptic region on the numerical solution, three different cases
will be looked at. The first case has the initial state inside the elliptic region and the injection state outside the
elliptic region. The second case has the initial state outside the elliptic region and the injection state inside
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the elliptic region. Finally, a case with both states inside the elliptic region is looked at.
For the first case, the following states will be used:

(a) FIM (b) Upwind scheme

Figure 3.10: Numerical solution after 7 years using FIM (a) and the upwind scheme (b) with the initial state inside the elliptic region and
the injection state outside the elliptic region. The oil saturation is shown in red, the water saturation in blue and the gas saturation in

green.

(a) FIM (b) Upwind scheme.

Figure 3.11: Saturation path of point 1 (black dots) after 7 years using FIM (a) and the upwind scheme (b) with the initial state inside the
elliptic region and the injection state outside the elliptic region. The red circle shows the injection or upstream state, also denoted by u,

and the red diamond shows the initial or downstream state, also denoted by d. The elliptic region is shown in blue.

Su =
(
0.46
0.16

)
Sd =

(
0.1
0.5

)
(3.41)

The numerical solution for both FIM and the upwind method are shown in Figure 3.10 and the corresponding
saturation paths of point 1 are shown in Figure 3.11. There is no instability in the solution, and the solution
shocks out of the elliptic region to a constant state. The solution shocks out of the elliptic region due to the
integral curves and Rankine-Hugoniot locus of a state inside the elliptic region, which will be explained in
chapter 5. Since the constant state and the injection state are both in the hyperbolic region, the wave be-
tween these two constant state also shows no instability. So in this example the elliptic region has no effect
on the numerical solution, since the solution shocks out of the elliptic region and afterwards does not return
to the elliptic region. Furthermore, note that the bend in the saturation path of FIM in Figure 3.11a is less
sharp than the bend in the saturation path of the upwind scheme in Figure 3.11b. This is caused by the larger
numerical diffusion of FIM compared to the numerical diffusion of the explicit upwind method.

For the second case the injection and initial states are interchanged such that:

Su =
(
0.1
0.5

)
Sd =

(
0.46
0.16

)
(3.42)

The numerical solution for both FIM and the upwind method, with 12 years simulated, are shown in Figure
3.12 and the corresponding saturation paths of point 1 are shown in Figure 3.13. The numerical solution for



20 3. Loss of strict hyperbolicity in three-phase flow

(a) FIM (b) Upwind scheme

Figure 3.12: Numerical solution after 12 years using FIM (a) and the upwind scheme (b) with the injection state inside the elliptic region
and the initial state outside the elliptic region. The oil saturation is shown in red, the water saturation in blue and the gas saturation in

green.

(a) FIM (b) Upwind scheme.

Figure 3.13: Saturation path of point 1 (black dots) after 12 years using FIM (a) and the upwind scheme (b) with the injection state
inside the elliptic region and the initial state outside the elliptic region. The red circle shows the injection or upstream state, also

denoted by u, and the red diamond shows the initial or downstream state, also denoted by d.

(a) FIM (b) Upwind scheme

Figure 3.14: Numerical solution after 60 years using FIM (a) and the upwind scheme (b) with the injection state inside the elliptic region
and the initial state outside the elliptic region. The oil saturation is shown in red, the water saturation in blue and the gas saturation in

green.

both FIM and the upwind method, with 60 years simulated, are shown in Figure 3.14 and the corresponding
saturation paths of point 2 are shown in Figure 3.15. Looking at Figures 3.12 and 3.13 there are no instabilities
and the elliptic region does not seem to have any effect on the numerical solution to the Riemann problem.
However, Figure 3.14a shows some oscillations which is an indication of linear instability. This linear instabil-
ity is damped out by the numerical diffusion, resulting in small oscillations. Furthermore, comparing Figures
3.13 and 3.15 it can seen that the saturation path changes later in time, which means that the structure of the
Riemann solution changes through time. Since point 2 is expected to have the same saturation path as point
1 once the injection state has also reached point 2, this change in structure is undesired behaviour. From this
it can be concluded that the elliptic region does affect the numerical solution to the Riemann problem if the
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(a) FIM (b) Upwind scheme.

Figure 3.15: Saturation path of point 2 (black dots) after 60 years using FIM (a) and the upwind scheme (b) with the injection state
inside the elliptic region and the initial state outside the elliptic region. The red circle shows the injection or upstream state, also
denoted by u, and the red diamond shows the initial or downstream state, also denoted by d. The elliptic region is shown in blue.

(a) FIM (b) Upwind scheme

Figure 3.16: Numerical solution after 14 years using FIM (a) and the upwind scheme (b) with both states inside the elliptic region. The
oil saturation is shown in red, the water saturation in blue and the gas saturation in green.

(a) FIM (b) Upwind scheme.

Figure 3.17: Saturation path of point 1 (black dots) after 14 years using FIM (a) and the upwind scheme (b) with both states inside the
elliptic region. The red circle shows the injection or upstream state, also denoted by u, and the red diamond shows the initial or

downstream state, also denoted by d. The elliptic region is shown in blue.

injection state lies inside the elliptic region.

For the last case, both the injection state and the initial state are taken inside the elliptic region. Holden (1990)
showed that if both the initial and injection state lie inside the elliptic region, the solution must contain at
least one state outside the elliptic region. This means there will be an intermediate state in the hyperbolic
region while the injection state is in the elliptic region. From the previous example it follows that this will
result in some effect on the numerical solution. As injection and initial states the following saturations are
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(a) FIM (b) Upwind scheme

Figure 3.18: Numerical solution after 65 years using FIM (a) and the upwind scheme (b) with both states inside the elliptic region. The
oil saturation is shown in red, the water saturation in blue and the gas saturation in green.

(a) FIM (b) Upwind scheme.

Figure 3.19: Saturation path of point 1 (black dots) after 65 years using FIM (a) and the upwind scheme (b) with both states inside the
elliptic region. The red circle shows the injection or upstream state, also denoted by u, and the red diamond shows the initial or

downstream state, also denoted by d. The elliptic region is shown in blue.

used:

Su =
(
0.19
0.41

)
Sd =

(
0.1
0.5

)
(3.43)

The numerical solution for both FIM and the upwind method, with 14 years simulated, are shown in Figure
3.16 and the corresponding saturation paths of point 1 are shown in Figure 3.17. The numerical solution for
both FIM and the upwind method, with 65 years simulated, are shown in Figure 3.18 and the corresponding
saturation paths of point 2 are shown in Figure 3.19. Looking at Figures 3.17 and Figures 3.19 there is indeed
at least on state outside the elliptic region. Comparing these two figures with each other shows that the
numerical solution to the Riemann problem changes structure as time progresses. Finally, in Figure 3.16a
and Figure 3.18a oscillations can be seen, just like for the previous example.

3.4. Analysis of Jacobian matrix
Choosing the injection state or both the injection and the initial state inside the elliptic region causes oscilla-
tions and unwanted changes in structure of the Riemann solution. It would therefore be convenient to detect
if the solution is in the elliptic region or is entering the elliptic region during a simulation. One way to do this
might be to look at the Jacobian matrix of the numerical scheme. The question is if it is possible to determine
if the elliptic region is entered during simulation using the reservoir simulator, i.e. using FIM. This means
that the Jacobian matrix of FIM, see equation (3.30), will be analysed. More specifically, it is investigated
if the eigenvalues of the Jacobian matrix of FIM are a good indicator for the eigenvalues of the Jacobian of
the continuous system (3.2). Looking at the submatrices Ji i−1 and Ji i of the FIM Jacobian given by equation
(3.32) and equation (3.33) it follows that they give the Jacobian matrix of the discretized equations (3.21) and
(3.23) describing three-phase porous media flow. So the eigenvalues of these two submatrices in each grid
cell will be compared with the eigenvalues of the continuous equation (3.3) using the saturation values in
each grid cell. Note that the Jacobian matrix (3.2) of the continuous equation is a 2×2 matrix, thus it has 2
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(a) Saturation profile (b) Normalized imaginary part of the eigenvalues

Figure 3.20: Saturation profile after 15 years (a) obtained from FIM. The oil saturation is shown in red, the water saturation in blue and
the gas saturation in green. The normalized imaginary part of the eigenvalues (b) of the submatrices Ji i (black) and Ji i−1 (blue) of the
FIM Jacobian. The imaginary part of the eigenvalues of the Jacobian of the continuous systems is zero for each grid cell. Both injection

and initial state are outside the elliptic region.

(a) Saturation profile (b) Normalized imaginary part of the eigenvalues

Figure 3.21: Saturation profile after 15 years (a) obtained from FIM. The oil saturation is shown in red, the water saturation in blue and
the gas saturation in green. The normalized imaginary part of the eigenvalues (b) of the submatrices Ji i (black) of the FIM Jacobian and

of the eigenvalues of the Jacobian of the continuous systems (red) for each grid cell. The imaginary part of the eigenvalues of the
submatrices Ji i−1 of the FIM Jacobian is zero for each grid cell. The initial state is inside the elliptic region.

eigenvalues. The submatrices of the FIM Jacobian on the other hand are 3×3 matrices, and the submatrices
therefore have 3 eigenvalues but one of the eigenvalues always has zero imaginary part. Also note that, even
if the eigenvalues of the submatrices of the Jacobian matrix of FIM give a good indication, it means that the
eigenvalues must be calculated for each grid cell for each time step, which is computationally expensive.
Three examples will be looked at, namely case two from section 3.3.1 which has both states outside the el-
liptic region, case one from section 3.3.2 which has the initial state inside the elliptic region and case three
from section 3.3.2 which has both states inside the elliptic region. For all examples the normalized imaginary
part of the eigenvalues of the submatrices of the Jacobian of FIM and of the eigenvalues of the Jacobian of the
continuous equation will be shown. This means that imaginary part of the eigenvalues of three different ma-
trices will be plotted. As mentioned above, for each of the two submatrices of FIM one of the eigenvalues has
zero imaginary part, and these eigenvalues are therefore plotted on top of each other. If the imaginary part
of the eigenvalues of the Jacobian of the continuous system is also zero, these values will not be visible since
they are plotted under the eigenvalues of the submatrices of FIM. For comparison purposes the saturation
profile will also be shown even though they are already shown in the previous section.

The first example has both states inside the hyperbolic region. The saturation profile and the normalized
imaginary part of the eigenvalues for each grid cell are shown in Figure 3.20. Figure 3.9 shows that all the sat-
urations of the numerical solution stay outside the elliptic region. Therefore, all eigenvalues are expected to
be real for all grid cells. Looking at Figure 3.20b it can be seen that the eigenvalues of the Jacobian of the con-
tinuous equations indeed have zero imaginary part. The eigenvalues of the two submatrices Ji i and Ji i−1 on
the other hand have non-zero imaginary part for the grid cells where the injection state is (almost) reached.
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This means that complex eigenvalues of the submatrices of the FIM Jacobian do not necessarily indicate the
presence of an elliptic region.

The second example has the initial state inside the elliptic region. The saturation profile and the normal-
ized imaginary part of the eigenvalues for each grid cell are shown in Figure 3.21. Figure 3.11 shows that once
the solution leaves the elliptic region, it does not return inside the elliptic region. This means that complex
eigenvalues are expected on the producer side of the reservoir and real eigenvalues are expected on the injec-
tor side of the reservoir. Figure 3.21 shows that the eigenvalues of the Jacobian of the continuous equations
indeed have non-zero imaginary part in the part of the reservoir where the saturations are (almost) equal to
the initial state. The eigenvalues of the submatrices of the FIM Jacobian on the other hand have zero imag-
inary part throughout the entire reservoir. This means that real eigenvalues of the submatrices of the FIM
Jacobian do not necessarily indicate the lack of elliptic region.

The final example has both the initial and the injection state inside the elliptic region. The saturation profile

(a) Saturation profile (b) Normalized imaginary part of the eigenvalues

Figure 3.22: Saturation profile after 14 years (a) obtained from FIM. The oil saturation is shown in red, the water saturation in blue and
the gas saturation in green. The normalized imaginary part of the eigenvalues (b) of the submatrices Ji i−1 (blue) of the FIM Jacobian

and the eigenvalues of the Jacobian of the continuous systems (red) for each grid cell. The imaginary part of the eigenvalues of the
submatrices Ji i of the FIM Jacobian is zero for each grid cell. Both states are inside the elliptic region.

(a) Saturation profile (b) Normalized imaginary part of the eigenvalues

Figure 3.23: Saturation profile after 37 years (a) obtained from FIM. The oil saturation is shown in red, the water saturation in blue and
the gas saturation in green. The normalized imaginary part of the eigenvalues (b) of the submatrices Ji i (black) and Ji i−1 (blue) of the
FIM Jacobian and the eigenvalues of the Jacobian of the continuous systems (red) for each grid cell. Both states are inside the elliptic

region.

and the imaginary part of the eigenvalues for each grid cell are shown in Figure 3.22 for a simulation of 14
years and in Figure 3.23 for a simulation of 37 years. In both figures it can be seen that the eigenvalues of the
Jacobian of the continuous equations indeed have non-zero part for the grid cells where the saturations are
equal to the initial or injection state. From Figure 3.19 it can concluded that it is possible that the solution
enters the elliptic region again after leaving it. Similar behavior is seen in Figure 3.23 where there are some
complex eigenvalues close to 200m. Although the eigenvalues of the submatrices of the FIM Jacobian also
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have non-zero imaginary part close to 200m, they do not have non-zero imaginary part for all the grid cells
for which the Jacobian of the continuous equations has complex eigenvalues. Furthermore, the submatrices
of the FIM Jacobian have real eigenvalues for the grid cell that have saturations equal to the injection or initial
state. From this, and the previous examples, it can be concluded that the eigenvalues of the submatrices Ji i

and Ji i−1 do not provide enough information to conclude if the numerical solution enters the elliptic region
or is in the elliptic region.

Since it is not so easy to determine if an elliptic region is encountered during a simulation and since com-
puting the eigenvalues of the submatrices of the Jacobian matrix of FIM for every grid cell and time step is
too expensive in practical applications, another approach can be to develop a way to avoid elliptic regions in
the first place. For this some methods must be used to ensure that the solution does not enter the elliptic re-
gion. One option is to determine where the elliptic region is located inside the ternary diagram before starting
a simulation. Since the eigenvalues are determined by the fractional flow functions, which are determined by
the relative permeability, the relative permeability model determines if and where an elliptic region is located
in the ternary diagram. Different three-phase relative permeability models will therefore be investigated.



4
Three-phase relative permeability models

In Chapter 3 it was concluded that the existence of an elliptic region inside the ternary diagram can have a
significant effect on the numerical solution of the three-phase porous media flow model. Furthermore, it is
not easy to detect the presence of an elliptic region during a simulation. Therefore, the existence and location
of the elliptic region will be looked at before the simulation is started. Since the existence and location of the
elliptic region depends on the three-phase relative permeability model, different possible relative permeabil-
ity models will be discussed. This chapter first describes some of the existing relative permeabilities models.
Then, the available three phase relative permeability data is discussed. Finally some new three-phase relative
permeability models will be introduced. The existence and location of the elliptic region based on a chosen
relative permeability will be discussed in Chapter 6.

As mentioned in Chapter 2 relative permeability is usually modelled as a function of saturation alone, despite
being a representation of pore-level displacements, fluid-fluid properties and rock-fluid properties. The ef-
fect of these properties or pore-level effects are generally incorporated through one or more parameters. All
of the three-phase relative permeabilities models discussed are based on two-phase relative permeabilities,
for which Corey-correlations will be assumed, see equations (3.6) and (3.7). The effect of the rock proper-
ties on the relative permeabilities can then be incorporated through the Corey-coefficients and through the
endpoints of the relative permeabilities. In general the more wetting a phase the higher its Corey coefficient.
Typical Corey-coefficients are 2.5 < nw ,now ,nog < 6 and 1.5 < ng < 2.5. For an intermediate-wet rock the
Corey-coefficient for water and oil can become roughly equal and will be around 2.5 to 3. Since gas is the
most non-wetting phase for both a water-wet and an intermediate-wet rock, the oil-gas system can be con-
sidered to be oil-wet in both cases. Therefore, the Corey-coefficient of oil nog is always higher than that of gas
ng .

4.1. Current models
Besides normalized Stone, described in Section 3.1, a wide variety of three-phase relative permeability mod-
els exists which are almost all Stone-type models, see e.g. Baker (1988). All these models use different phys-
ical aspects to determine their model, some of these aspects are hysteresis effects, wettability of the rock, or
pore scale effects. Despite the research into relative permeability models, no model yet exists that is able to
account for all the physical effects. Furthermore, most of the models are based on two-phase relative perme-
ability data.
In this section two more existing three-phase relative permeability models will be discussed, namely linear
isoperms and saturation weighted interpolation. Figure 4.1 shows the oil isoperms using normalized Stone,
linear isoperms and saturation weighted for the same two-phase Corey-correlations.

4.1.1. Linear isoperms
Linear isoperms, assumes, as the name suggests, that the isoperms of the three-phase oil relative permeability
are straight lines between the line of residual gas saturation and residual water saturation, see Figure 3.2a. In
order to obtain the linear isoperms the water saturation S̃w on the OW edge and the gas saturation S̃g on the
WG edge are determined such that the oil relative permeabilities of the two two-phase systems are equal, i.e.

26
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(a) Normalized Stone (b) Linear isoperms (c) Saturation weighted

Figure 4.1: Oil isoperms for normalized Stone (a), linear isoperms (b) and saturation weighted (c). Two-phase relative permeabilities
modelled with Corey-correlation with zero residuals and endpoints equal to one and nw = now = 3.5 and ng = nog = 2 as

Corey-coefficients.

such that kow
r (S̃w ) = kog

r (S̃g ). Then the line between these two saturations is taken as an isoperm with the
value of the three-phase oil relative permeability equal to that of the two two-phase relative permeabilities,
i.e.:

ko
r (Sw ,Sg ) = kow

r (S̃w ) = kog
r (S̃g ) for each (Sw ,Sg ) on the isoperm (4.1)

where each (Sw ,Sg ) lies on the isoperm between S̃w and S̃g if:

S̃g Sw +Sg S̃w = Sg Sw (4.2)

This construction is also shown in Figure 4.2. Equation (4.1) and equation (4.2) determine the oil relative

0

1

1

S̃g

S̃w

(Sw ,Sg )

ko
r

Sw

Sg

Figure 4.2: Linear isoperm (red) between S̃w and S̃g . Along this isoperm the value of the oil relative permeability ko
r is constant and

given by ko
r (Sw ,Sg ) = kow

r (S̃w ) = k
og
r (S̃g ).

permeability, but a closed expression for ko
r as a function of Sw and Sg can not be obtained. This means that

linear isoperms is a more difficult method to implement and analyse then normalized Stone.
If Corey-correlations with residuals zero and endpoints one are assumed for the two two-phase systems, lin-
ear isoperms results in a Corey-type model if now = nog since then S̃w = S̃g meaning that the isoperms will
be parallel to the WG edge. Conversely, linear isoperms results in a Stone-type model if now 6= nog , since then
S̃w 6= S̃g for 0 < S̃w , S̃g < 1 meaning that the isoperms will not be parallel to the WG edge.

4.1.2. Saturation weighted interpolation
Saturation weighted interpolation is a near-linear interpolation between the two two-phase systems, and is
given by (Baker, 1988):

ko
r (Sw ,Sg ) = (Sw −Swc )kow

r + (Sg −Sg c )kog
r

(Sw −Swc )+ (Sg −Sg c )
(4.3)
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where kow
r is taken at the actual oil saturation and kog

r is taken at the actual gas saturation. Furthermore, kog
r

is assumed to be measured in the presence of irreducible water saturation Swc . Saturation weighted inter-
polation will favor the two-phase system with the largest relative permeability. This means that the relative
permeability in the interior of the ternary diagram will be dominated by the largest relative permeability of
the two two-phase systems. This behaviour becomes stronger if the difference between the two two-phase
relative permeabilities kow

r and kog
r becomes greater, and is especially a problem if the residual oil saturation

in both two-phase systems are not equal (Baker, 1988).
If Corey-correlations with residuals zero and endpoints one are assumed for the two two-phase systems, sat-
uration weighted results in a Corey-type model if now = nog and in a Stone-type model if now 6= nog .

4.2. Experimental data
Although measuring three-phase relative permeability is complicated, costly and time consuming some mea-
surements have been carried out over the years. Alizadeh and Piri (2014) give a review of the experimental
results concerning three-phase relative permeability between 1980 and 2013. They state that, despite re-
cent interest in measuring three-phase relative permeabilities, common practice is still to model three-phase
relative permeabilities. Furthermore, a lot of the experiments have been carried out under comparable con-
ditions, e.g. most of the experiments have been conducted using water-wet rocks.

Baker (1988) compares the three-phase relative permeability models he describes with the available data
at that time. He finds that all the models fit the available data well for large oil saturation, but that linear
isoperms and saturation weighted generally give a better fit with the data than normalized Stone for small oil
saturations. In a more recent paper Kianinejad and DiCarlo (2016) give experimental data for the oil relative
permeability for two different types of rock and compare their results with a Corey-type model, saturation
weighted interpolation and StoneI. For the Corey-type model, they assume a Corey-correlation for the oil rel-
ative permeability. They find that both the Corey-type model and the saturation weighted model fit the data
well, but that the Corey-type model fits the data better. They find that StoneI fails for low oil saturations.

Alizadeh and Piri (2014) discuss one experiment where the effect of viscosity on the relative permeabilities
was studied. In this experiment, not only the oil isoperms were concave, but the gas isoperms as well. The
water isoperms on the other hand were straight lines parallel to the OG edge. Therefore, this experiment sug-
gests that there is at least one case for which the gas and oil relative permeabilities depend on both the water
and gas saturations. Akhlaghinia et al. (2014) investigate the effect of temperature on three-phase relative
permeabilities for a system with water, gas and heavy oil. They find that all three phases show a curvature
in their isoperms, meaning that the relative permeabilities of all three phases depend on both the water and
gas saturation. Lü et al. (2012) investigate three-phase relative permeability in both a water-wet rock and
oil-wet rock. They find that for the water-wet rock the isoperms of water are straight lines parallel to the OG
edge while the isoperms of gas and oil are concave. This shows that the water relative permeability depends
only on the water saturation whereas the oil and gas relative permeabilities depend on both the water and oil
saturation. For the oil-wet rock, they find that the isoperms of all phases are concave, meaning the all three
three-phase relative permeabilities depend on both the water and gas saturations. From the experiments
above it can concluded that there are situations in which both Corey-type and Stone-type models will model
the relative permeabilities incorrectly. Furthermore, the experiments show that, depending on the situation
at hand, the isoperms of the three phases can show completely different behavior. Therefore, the best relative
permeability model will most likely be a different model for each situation.

4.2.1. Three-phase relative permeability as an interpolation problem
The isoperms can be linear, concave, convex or a combination of two or three of these depending on the
particular situation at hand. This means that for every situation the three-phase relative permeability should
be chosen such that it matches the data, when available. Furthermore, Trangenstein (1989) showed that a
Corey-type model will always result in an umbilic point inside the ternary diagram. He also showed that for a
Stone-type model, given viscosity, it is always possible to find density and gravity coefficients such that there
is an elliptic region inside the ternary diagram. This adds to the view that a relative permeability model should
be chosen for each individual situation. Modelling relative permeability can thus be seen as an interpolation
problem between two two-phase systems. For instance, if the measured isoperms of oil suggest that the oil
relative permeability depends on both the water and gas saturations, interpolation must be done between
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the water-oil and oil-gas system. Similarly, if the gas relative permeability depends on both the water and
gas saturation, interpolation must be done between the water-gas and oil-gas systems. In Corey-type (3.4)
and Stone-type models (3.5) only the oil relative permeability needs to be interpolated. In this thesis, the
relative permeability models are extended to types where all three relative permeabilities depend on both the
water and gas saturations and interpolation is needed for all three phases. Depending on the desired shape
of the isoperms a different interpolation method can be chosen for each phase. For instance, oil relative
permeability can be obtained using saturation weighted interpolation while gas relative permeability can be
obtained using linear isoperms. Even though it is possible to use a different interpolation method for each
phase, the same interpolation method will be used for all phases in this thesis. In order to use a interpolation
method for the water and gas relative permeabilities, the two-phase relative permeabilities in the water-gas
system must also be known. For this Corey-correlation with zero residual saturation and endpoint equal to
one will be assumed as well. The two-phase relative permeabilities in all two-phase systems are then given
by:

kwo
r = kwo

r (Sw ) = (Sw )nwo (4.4)

kow
r = kow

r (Sw ) = (1−Sw )now (4.5)

kg o
r = kg o

r (Sg ) = (Sg )ng o (4.6)

kog
r = kog

r (Sg ) = (1−Sg )nog (4.7)

kw g
r = kw g

r (Sw ) = (Sw )nw g (4.8)

kg w
r = kg w

r (Sw ) = (1−Sw )ng w (4.9)

Here kα1α2
r is used to denote the relative permeability of phase α1 in a α1-α2 system with nα1α2 the corre-

sponding Corey-coefficient. For example kw g
r denotes the relative permeability of water in a water-gas system

with nw g the corresponding Corey-coefficient. Note that the two-phase relative permeabilities in the water-
gas systems are chosen as functions of Sw , but they can be rewritten as functions of Sg using that Sw = 1−Sg

in the water-gas system.

4.3. New Models
In this section two new interpolation methods, interpolation I and interpolation II, will be introduced as
well as a combination of these two methods called interpolation III. Interpolation I is introduced because it
is the most simple method to interpolate between two two-phase systems. Interpolation II is introduced to
construct isoperms that are more concave than the isoperms of interpolation I. Interpolation III is introduced
to use the benefits of interpolation II, namely the concavity of the isoperms, without having its drawbacks.
The interpolation to obtain the oil relative permeability for each interpolation method is given in detail. The
interpolation to obtain the relative permeability of the other two phases is similar and can be found in detail
in Appendix B.

4.3.1. Interpolation I
Interpolation I is the first of the three newly introduced interpolation methods. It is introduced with the
idea to make the interpolation as simple as possible, without taking any physical arguments into account
other than that the oil relative permeability should reduce to the two-phase relative permeability kow

r on the
WO and to kog

r on the OG edge. Therefore, for a point (Sw ,Sg ) in the interior of the ternary diagram the
points on the WO and OG edge that have the same oil-saturation as the interior point are determined and
interpolation is done between these two points. These two points, called S̃w and S̃g , are the endpoints of the
oil isosaturation line, see Figure 4.3. Since So = 1−Sw −Sg for So in the ternary diagram, and since S̃w and S̃g

lie on the oil isosaturion and on the OW respectively OG edge, it follows that:

So = 1− S̃g (4.10)

So = 1− S̃w (4.11)

So = 1−Sw −Sg (4.12)

(4.13)

Therefore,
S̃w = S̃g = Sw +Sg (4.14)
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S̃g

S̃w

(Sw ,Sg )

Sw

Sg

Figure 4.3: Oil isosaturion (red) for a point (Sw ,Sg ). The oil relative permeability in (Sw ,Sg )is obtained by linear interpolation between
the oil relative permeability in S̃w and the oil relative permeability in S̃g

Then linear interpolation is used between the oil relative permeabilities in S̃w and S̃g to obtain the oil rel-
ative permeability for the interior points. Since S̃w and S̃g lie on the edge of the ternary diagram, the oil
relative permeability is given by the two-phase relative permeability of each edge. This leads to the following
expression for the three-phase oil relative permeability:

ko
r (Sw ,Sg ) = Sw

Sw +Sg kow
r (Sw +Sg )+ Sg

Sw +Sg kog
r (Sw +Sg ) (4.15)

Comparing this interpolation method with the saturation weighted interpolation, see section 4.1.2, and as-
suming that all residual saturations are zero, it can seen that they are identical. Looking at equation (4.15)
it follows that ko

r (Sw ,0) = kow
r (Sw ) and ko

r (0,Sg ) = kog
r (Sg ), meaning that the oil relative permeability indeed

reduces to the two-phase oil relative permeability on the WO and OG edges. Furthermore, looking at the oil
relative permeability when the oil saturation is zero, that is when Sg = 1−Sw , gives:

ko
r (Sw ,1−Sw ) = Sw

Sw +1−Sw kow
r (Sw +1−Sw )+ 1−Sw

Sw +1−Sw kog
r (Sw +1−Sw ) (4.16)

= Sw kow
r (1)+Sw kog

r (1) (4.17)

Since Corey-correlations with endpoints equal to one and zero residual saturation are assumed for the two-
phase systems it holds that ko

r (Sw ,1−Sw ) = 0. Therefore, this interpolation method also reduces to the ex-
pected two-phase behavior on the WG edge. Furthermore interpolation I will reduce to a Corey-type method
if now = nog if interpolation I is only used to obtain the oil relative permeability. Since kow

r (Sw + Sg ) =
kog

r (Sw + Sg ) if now = nog and since Sw + Sg = 1− So , equation (4.15) gives ko
r = kow

r (1− So) meaning that
ko

r is only a function of the oil saturation.

Similarly, expressions for the three-phase water and gas relative permeabilities can be obtained:

kw
r (Sw ,Sg ) = 1−Sw −Sg

1−Sw −Sg +Sg kwo
r (1− (1−Sw −Sg )−Sg )+ Sg

1−Sw −Sg +Sg kw g
r (1− (1−Sw −Sg )−Sg )

= 1−Sw −Sg

1−Sw kwo
r (Sw )+ Sg

1−Sw kw g
r (Sw ) (4.18)

kg
r (Sw ,Sg ) = 1−Sw −Sg

1−Sw −Sg +Sw kg o
r (1− (1−Sw −Sg )−Sw )+ Sg

1−Sw −Sg +Sw kg w
r (1−Sw −Sg +Sw )

= 1−Sw −Sg

1−Sg kg o
r (Sg )+ Sw

1−Sg kg w
r (1−Sg ) (4.19)

Note that kw
r (Sw ,0) = kwo

r , kw
r (0,Sg ) = 0 and kw

r (Sw ,1−Sw ) = kw g
r , meaning that the water relative perme-

ability reduces to the expected two phase behavior. This also holds for the gas relative permeability since
kg

r (Sw ,0) = 0, kg
r (0,Sg ) = kg o

r and kw
r (Sw ,1−Sg ) = kg w

r . Furthermore, note that interpolation I will still re-
duce to a Corey-type model when interpolation I is used to obtain the relative permeability for all phases if
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now = nog , nwo = nw g and ng o = ng w . It will reduce to a Stone-type model if ng o = ng w , nwo = nw g and
now 6= nog .

4.3.2. Interpolation II
Just like interpolation I, interpolation II is not based on any physical assumptions other than that the oil
relative permeability should reduce to the two-phase oil relative permeability at the WO and OG edge edge.
However, a slightly more complex interpolation method is used to make the isoperms more concave. Instead
of obtaining S̃w and S̃g from the oil isosaturation line as was done for interpolation I, S̃w and S̃g are now
obtained by defining a circle through (Sw ,Sg ). This circle takes the origin as centre and uses the distance from

the origin to the point (Sw ,Sg ) as radius, see Figure 4.4. This means that S̃w = S̃g = R =
√

(Sw )2 + (Sg )2 .

0

1

1

S̃g

S̃w

(Sw ,Sg )

Sw

Sg

R

Figure 4.4: Circle (red) through (Sw ,Sg ) with radius R and the origin as center. The oil relative permeability in (Sw ,Sg ) is obtained by
linear interpolation between the oil relative permeability in S̃w and the oil relative permeability in S̃g

Again, linear interpolation is used between the oil relative permeabilities in S̃w and S̃g on the two edges to
obtain the oil relative permeability for the interior point. This leads to the following expression for the three-
phase oil relative permeability:

ko
r (Sw ,Sg ) = Sw

Sw +Sg kow
r

(√
(Sw )2 + (Sg )2

)
+ Sg

Sw +Sg kog
r

(√
(Sw )2 + (Sg )2

)
(4.20)

Note that, as for interpolation I, ko
r (Sw ,0) = kow

r (Sw ) and ko
r (0,Sg ) = kog

r (Sg ), meaning that the oil relative
permeability indeed reduces to the two-phase oil relative permeability on the WO and OG edges. However,
looking at the oil relative permeability when the oil saturation is zero, that is when Sg = 1−Sw , it follows that:

ko
r (Sw ,1−Sw ) = Sw

Sw +1−Sw kow
r

(√
(Sw )2 + (1−Sw )2

)
+ 1−Sw

Sw +1−Sw kog
r

(√
(Sw )2 + (1−Sw )2

)
= Sw kow

r

(√
2(Sw )2 +2Sw +1

)
+Sg kog

r

(√
2(Sw )2 +2Sw +1

)
(4.21)

For 0 < Sw < Sg it holds that 0 <
√

2(Sw )2 +2Sw +1 < 1
2

p
2 which gives that 1 > kow

r

(√
(Sw )2 + (Sg )2

)
> 1

2

p
2 .

Therefore, the oil relative permeability does not go to zero as the oil saturation tends to zero. This means that
the oil phase would still be mobile even when there is no oil left. Hence, this interpolation method does not
reduce to the expected two-phase flow behavior on the WG edge. Furthermore, interpolation II does not re-
duce to a Corey-type model if now = nog . As for interpolation I kow

r (S̃w ) = kog
r (S̃w ) if now = nog such that

ko
r = kow

r (S̃w ). But now S̃w =
√

(Sw )2 + (Sg )2 which cannot be written as a function of So alone. This means
that interpolation II will always result in a Stone-type model if interpolation II is only used to obtain the oil
relative permeability.
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Similarly, expressions for the three-phase water and gas relative permeabilities can be obtained:

kw
r (Sw ,Sg ) = 1−Sw −Sg

1−Sw −Sg +Sg kwo
r

(
1−

√
(So)2 + (Sg )2

)
+ Sg

1−Sw −Sg +Sg kw g
r

(
1−

√
(So)2 + (Sg )2

)
= 1−Sw −Sg

1−Sw kwo
r

(
1−

√
(So)2 + (Sg )2

)
+ Sg

1−Sw kw g
r

(
1−

√
(So)2 + (Sg )2

)
(4.22)

kg
r (Sw ,Sg ) = 1−Sw −Sg

1−Sw −Sg +Sw kg o
r

(
1−

√
(So)2 + (Sw )2

)
+ Sw

1−Sw −Sg +Sw kg w
r

(√
(So)2 + (Sw )2

)
= 1−Sw −Sg

1−Sg kg o
r

(
1−

√
(So)2 + (Sw )2

)
+ Sw

1−Sg kg w
r

(√
(So)2 + (Sw )2

)
(4.23)

with

(So)2 + (Sg )2 = (1−Sw −Sg )2 + (Sg )2

= 1−2Sw −2Sg +2Sw Sg + (Sw )2 +2(Sg )2

(So)2 + (Sw )2 = (1−Sw −Sg )2 + (Sw )2

= 1−2Sw −2Sg +2Sw Sg +2(Sw )2 + (Sg )2

Note that kw
r (Sw ,0) = kwo

r and kw
r (Sw ,1−Sw ) = kw g

r , meaning that the water relative permeability reduces to
the expected two phase behavior on the OW and WG edge. The gas relative permeability reduces to the ex-
pected two phase behavior on the OG and WG edge since kg

r (0,Sg ) = kg o
r and kg

r (Sw ,1− Sw ) = kg w
r . Both

relative permeabilities, however, do not go to zero as the saturation goes to zero, i.e. kw
r (0,Sg ) > 0 and

kg
r (Sw ,0) > 0. This means that water is still mobile if the water saturation is zero and that gas is still mo-

bile if the gas saturation is zero. This unphysical behavior means that interpolation II does not reduce to the
expected two-phase flow behavior on the OG edge due to the water relative permeability and on OW edge
due to the gas relative permeability. Furthermore, the relative permeability of all phases will depend on both
the water and gas saturations if interpolation II is used to obtain the relative permeabilities of all phases. In
other words, interpolation II will never result in a Corey-type or Stone-type model if interpolation II is used
to obtain the relative permeability of all three phases.

4.3.3. Interpolation III
Interpolation III is the last of the new interpolation methods. This method is introduced to combine the con-
cave isoperms of interpolation II with the reduction to two-phase behavior on all edges of interpolation I. To
achieve this, interpolation III must reduce to interpolation II for large saturation values and to interpolation
I for small saturation values. Therefore, the three-phase relative permeabilities are given by:

ko
r (Sw ,Sg ) = Soko,I I

r (Sw ,Sg )+ (1−So)ko,I
r (Sw ,Sg )

= (1−Sw −Sg )ko,I I
r (Sw ,Sg )+ (Sw +Sg )ko,I

r (Sw ,Sg ) (4.24)

kw
r (Sw ,Sg ) = Sw kw,I I

r (Sw ,Sg )+ (1−Sw )kw,I
r (Sw ,Sg ) (4.25)

kg
r (Sw ,Sg ) = Sg kg ,I I

r (Sw ,Sg )+ (1−Sg )kg ,I
r (Sw ,Sg ) (4.26)

Here kα,I
r (Sw ,Sg ) and kα,I I

r (Sw ,Sg ) denote the relative permeability of phase α obtained using interpolation
I and interpolation II respectively.
Note that using interpolation III for only the oil relative permeability will not reduce ko

r to a Corey-type model
when now = nog due to the influence of interpolation II. Interpolation III will therefore always result in a
Stone-type model. Also note that, as for interpolation I, ko

r (Sw ,0) = kow
r (Sw ) and ko

r (0,Sg ) = kog
r (Sg ). So in-

terpolation III reduces to the expected two-phase behavior on the OW and OG edge. Looking at the oil relative
permeability when the oil saturation is zero, that is when Sg = 1−Sw , it can be seen that ko

r (Sw ,1−Sw ) = 0.
So interpolation III also reduces to two-phase flow behavior on the WG edge, as expected.

Similar behavior holds for the water and gas relative permeabilities. This means that if interpolation III is
used to obtain the relative permeabilities for all phases, the model will reduce to two-phase behavior on all
edges due to the influence of interpolation I. Furthermore, it means that all three relative permeabilities de-
pend on both the water and gas saturations due to the influence of interpolation II, such that interpolation
III will never result in a Corey-type or Stone-type model if interpolation III is used to obtain the relative per-
meability of all three phases.
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Three-phase Riemann problem

In order to investigate the effect that the different three-phase relative permeability models have on the so-
lution of the three-phase porous media flow model, the structure of the solution to the Riemann problem
will be looked at. Riemann problems play an important role in analysing hyperbolic systems of equations,
since the solution to these relatively simple problems can help to understand the structure of the solutions
for the system with more complicated initial data. In oil recovery they play an even more important role. If
the reservoir initially has a constant distribution of phase saturations and if injection is done at a constant
flow rate, Riemann initial data would be the way to model this situation. In chapter 2 the solution to the Rie-
mann problem for two-phase flow was given. This solution consisted of either a single shock wave, a single
rarefaction wave or a composite wave. The structure of the Riemann solution for a system of two equations
is richer than that for the single two-phase flow equation, and can become quite complex when loss of strict
hyperbolicity is involved. First the Riemann problem for a strictly hyperbolic problem will be looked at and
the main steps to construct a solution in this case will be given. Then the effect of loss of strict hyperbolicity
on the structure of the Riemann solution will be discussed.

5.1. Strictly hyperbolic system
For the strictly hyperbolic Riemann problem, the dimensionless system describing three phase flow (1.14) will
be looked at and the fractional flow functions are assumed to be such that the system is strictly hyperbolic for
all saturations in the saturation triangle T . As initial data the saturations are assumed constant throughout
the entire reservoir and an injection of a constant mixture at the left of the reservoir is assumed. This means
the following problem will be looked at:

St + fx = 0 (5.1)

with initial data

S(x,0) =
{

Su if x ≤ 0

Sd if x > 0
(5.2)

where Su is the upstream or injection state and Sd is the downstream or reservoir state. For a strictly hyper-
bolic system, the solution is a self-similar solution, i.e. the solution S is a function of x

t only, e.g (Azevedo
et al., 2010). The solution consists of one or more self-similar waves and there are several types of waves that
can be distinguished, e.g. the trivial constant solution, a rarefaction wave and a discontinuity or shock.

5.1.1. Rarefaction waves
As mentioned above, a rarefaction wave is a self-similar solution. Therefore, a solution S to the Riemann
problem is written as S = S( x

t ) := S(η). Substituting this in the linear form of the system of equations (1.15)
gives:

−ηdS

dη
+ J (S)

dS

dη
= 0 (5.3)

33
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where J (S) = ∂ f
∂S is the Jacobian matrix given by equation (1.12). This system can be rewritten as an eigenvalue

problem as follows: [
J (S)−ηI

] dS

dη
= 0 (5.4)

where, for a given S, η is the eigenvalue given by equation (3.3) and dS
dη := r (S) = (

r w r g
)T the corresponding

right eigenvector given by (Juanes and Patzek, 2004b):

r w

r g =
f w

g

η− f w
w

=
η− f g

g

f g
w

(5.5)

Since the system is assumed to be strictly hyperbolic for all S in the saturation space, the eigenvalues will be
real and distinct. This means that the solution S will travel with speed η(S) along the integral curve obtained
from dS

dη = r (S). Since the eigenvalues are distinct, a slow-family rarefaction wave travelling with speed ηs and
a fast-family rarefaction wave travelling with speed η f where ηs < η f can be distinguished.

Rarefaction curves
From the eigenvalue problem (5.4) it follows that:

dS

dη
= r (S) (5.6)

This ODE gives the integral curves in the saturation space. For each state S there are two integral curves
that cross each other; one integral curve for ηs (S) and one for η f (S). Since the speed of the solution must
increase from upstream to downstream the wave speed, i.e the eigenvalues, along an integral curve must in-
crease when following the integral curve from an upstream to an downstream state. Therefore, a distinction
is made between genuinely nonlinear problems and non-genuinely nonlinear problems. For genuinely non-
linear problems, the eigenvalues increase monotonically along the entire integral curve. This corresponds to
a convex flux function for the scalar case, see Chapter 2. The system is genuinely nonlinear if (Juanes and
Patzek, 2004b):

∇ηp (S) · rp (S) 6= 0, for all S ∈ T, p ∈ {s, f } (5.7)

For a non-genuinely nonlinear system the eigenvalues do not increase monotonically along an integral curve,
instead the eigenvalues reach an extreme value somewhere on the integral curve, say at state S∗. Therefore,
the system is called non-genuinely nonlinear if there exists an S∗ ∈ T such that:

∇ηp (S∗) · rp (S∗) = 0, for S∗ ∈ T, p ∈ {s, f } (5.8)

The curve that connects all maxima or minima along the integral curves of one family, given by all S ∈ T
for which equation (5.8) holds, is called the inflection locus, e.g. (Juanes and Patzek, 2004b), or the fognal,
e.g (Holden, 1987). The existence of an extreme value means that, for a non-genuinely nonlinear system,
only part of the integral curve corresponds to a rarefaction wave. For an upstream state Su only that part
of the slow-family integral curve of Su along which the eigenvalue increases is the rarefaction curve of Su .
Equivalently, for a downstream state Sd the rarefaction curve of Sd is only that part of the fast-family integral
curve along which the eigenvalue decreases.

5.1.2. Shock waves
Another possibility for a self-similar solution is a discontinuity that travels with a speed σ. These discon-
tinuities are weak solutions, meaning that they to do not satisfy the problem in differential form (1.14) but
satisfy the corresponding integral equation. From this integral equation it is possible to obtain the Rankine-
Hugoniot (RH) conditions, see e.g. LeVeque (2002):

−σ (Sd −Su)+ f (Sd )− f (Su) = 0 (5.9)

where Sd denotes the state downstream of the discontinuity and Su denotes the state upstream of the discon-
tinuity. This condition remains valid if the states Su and Sd are interchanged (Azevedo et al., 2010). Therefore,
for a discontinuity to be a shock, an additional physical admissibility condition must be satisfied. If the sys-
tem is strictly hyperbolic and if the fractional flow functions are such that the problem is genuinely nonlinear,
the Lax entropy condition determines which discontinuities are physical shocks. This condition ensures that,
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for a p-shock, the p-characteristics impinge on the discontinuity while the other characteristics cross the
discontinuity (LeVeque, 2002). The Lax entropy condition, for a 2×2 system, is given by (Azevedo et al., 2010):

ηs (Sd ) <σ< ηs (Su) and σ< η f (Sd ) for a slow-family shock wave

η f (Sd ) <σ< η f (Su) and σ> ηs (Su) for a fast-family shock wave
(5.10)

For a non-genuinely nonlinear system, the number of characteristics impinging on a shock might be different
(LeVeque, 2002) and the Lax entropy condition cannot be used to determined physical admissibility. Instead,
the Liu entropy condition can be used. The Liu entropy condition, which is an extension of the Lax entropy
condition and Oleinik’s entropy condition which only holds for the scalar case, is given by (Liu, 1974):

σp (Sd ,Su) ≤σp (S,Su), for p ∈ {s, f } (5.11)

If the inflection loci are single connected curves, this condition is equivalent to (Juanes and Patzek, 2004b):

ηs (Sd ) <σ≤ ηs (Su) and σ< η f (Sd )

η f (Sd ) <σ≤ η f (Su) and σ> ηs (Su)
(5.12)

Note that the Liu entropy condition reduces to the Lax entropy condition in the case that the system is gen-
uinely nonlinear.

Another option for an admissibility condition is the vanishing viscosity criterion which is sometimes also
called the viscous profile criterion. For the vanishing viscosity criterion a small viscosity term is introduced
to the system:

St + fx = ε (D(S)Sx )x (5.13)

where D(S) is a diffusion term. Taking Su and Sd as boundary conditions the weak discontinuity S joining Su

and Sd is a shock if it is a solution to equation (5.13) in the limit ε→ 0 (Isaacon et al., 1992).

Rankine-Hugoniot loci
The Rankine-Hugoniot condition (5.9) together with the appropriate admissibility conditions determine the
shock solution. If one state in the RH condition is fixed, say the upstream state Su , then all downstream states
Sd for which the states Su and Sd satisfy the RH condition describe a curve through saturation space. This
curve is called the Rankine-Hugoniot locus. The part of this curve for which the admissibility condition is
satisfied is called the shock curve and gives all the states Sd that can be reached by a shock from state Su . In
a similar way, it is possible to determine a ‘backward’ Rankine-Hugoniot locus and shock curve, which is the
curve given by all states Su that can shock to a state Sd (Azevedo et al., 2010). If the system is strictly hyperbolic
and non-genuinely nonlinear and if the Liu entropy condition is used to determine shock admissibility, then
the shock curve through every state S is connected to S and consists of two continuous branches without
self intersections (Holden, 1987). The RH-locus is tangent to the integral curve in the reference state, which
means that one of these shock curves is tangent to the fast-family integral curve and the other one is tangent
to the slow-family integral curve (LeVeque, 2002). This leads to a division of the shock curve in a fast-family
curve and a slow-family curve.

5.1.3. Wave-curve method
In general the solution to the Riemann problem consists of a sequence of constant states, starting with the
downstream state and ending with the upstream state, that are connected with rarefaction waves, shock
waves or a combination thereof. Assuming a strictly hyperbolic system, which may be non-genuinely non-
linear, a slow-family wave Ws connects the upstream state Su to a constant middle state Sm which is subse-
quently connected to the downstream state Sd by a fast-family wave W f (Juanes and Patzek, 2004b; Marchesin
and Plohr, 2001), such that:

Sd
W f−−→ Sm

Ws−−→ Su

If the system is genuinely-nonlinear, such a slow- or fast-family wave is either a rarefaction wave or a shock
wave. If the system is non-genuinely nonlinear such a wave is a rarefaction wave, a shock wave, or a compos-
ite wave. A fast-family composite wave consist of fast-family shock followed by a fast-family rarefaction and
a slow-family composite wave consists of slow-family rarefaction followed by a slow-family shock (Holden,
1987). A composite wave of a family can only occur if the upstream and downstream states lie on opposite
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sides of the inflection locus of that family (Juanes and Patzek, 2004b), see also the BL solution in Chapter 2.
The shock speed is then equal to the speed of the rarefaction wave at the state where the rarefaction wave and
the shock wave connect (Holden, 1987; Juanes and Patzek, 2004b). This means that there is no constant state
between the shock wave and rarefaction wave that make up the composite wave.
In order to determine the solution to the Riemann problem, the middle state Sm must be found. This is done
by computing the rarefaction and shock curves through the upstream state Su and the ‘backward’ rarefaction
and shock curves through the downstream state Sd . Recall that the wave speed must increase from upstream
to downstream. This means that through state Su the slow-family rarefaction and shock curves are computed,
while through state Sd the fast-family rarefaction and shock curves are computed. The rarefaction and shock
curves form a continuous curve, called a wave-curve (Azevedo et al., 2010), along which the wave speed in-
creases when looking from upstream to downstream. The intersection between the slow-family wave-curve
and fast-family wave-curve determine the middle state Sm . Following the slow-family wave-curve from the
upstream state Su to the middle state Sm and from there following the fast-family wave-curve to the down-
stream state Sd , the complete Riemann solution can be obtained. For a more detailed explanation see e.g.
Azevedo et al. (2010).

An example is shown in Figure 5.1. This figure shows the integral curves through the upstream and down-
stream state, the RH locus of the middle state and the saturation path. First note that the saturation path
follows the integral curves or the RH locus, as expected when using the wave curve method. Also note that
the upstream state has not yet reached the point that was used to obtain the saturation path, meaning that
the saturation path does not fully reach the upstream state. From Figure 5.1b combined with the value of the
eigenvalues on the integral curves and the values of the shock speed of the RH locus it follows that the solution
starts with the downstream state which is connected to the middle state with a fast-family shock-rarefaction
wave. This middle state is then connected to the upstream state with a slow-family shock-rarefaction wave.
Hence, the full solution has the following structure:

Sd
SR f−−→ Sm

SRs−−→ Su (5.14)

where
S−→ denotes a shock wave,

R−→ denotes a rarefaction wave and
SR−−→ denotes a shock-rarefaction wave.

(a) Saturation profile (b) Analysis of numerical solution

Figure 5.1: Saturation profile at half of the total simulation time (a) and analysis of numerical solution for the total simulation time (b)
using interpolation I. In (a) the blue line shows the water saturation, the red line shows the oil saturation and the green line shows the

gas saturation. In (b) the red line shows the fast integral curve through the downstream state and the blue line shows the RH locus of the
downstream state. The pink line shows the slow integral curve through the upstream state. The green lines shows the RH locus of the

middle state. The black crosses show the saturation path. The injection state, upstream state and complete saturation path are located
inside the hyperbolic region.

5.2. Non-strictly hyperbolic system
The same problem described as in the beginning of Section 5.1 will be looked at, only now fractional flow
functions are allowed such that the system becomes non-strictly hyperbolic. This means that the satura-
tion triangle contains one or multiple umbilic points or one or multiple elliptic regions. One of the main
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problems with the solution to the Riemann problem in case of loss of strict hyperbolicity is the existence
and uniqueness of the Riemann problem. There are examples in which the Liu entropy conditions cannot
guarantee existence, e.g. (Shearer et al., 1987), and at the same time there are examples in which the vanish-
ing viscosity criterion fails to guarantee uniqueness, e.g. (Azevedo and Marchesin, 1995) or (Isaacson et al.,
1990). Moreover, there are other examples in which the vanishing viscosity criterion fails to guarantee exis-
tence (Čanić, 2003). Therefore, none of the admissibility conditions for shocks used in the strictly hyperbolic
case are sufficient to ensure existence and uniqueness of the solution to the Riemann problem in the case of
loss of strict hyperbolicity. Since there is yet no admissibility condition that ensures uniqueness for a gen-
eral 2x2 non-strictly hyperbolic system, one of these classical admissibility conditions must still be used. In
multiphase porous media flow, the preferred method is the vanishing viscosity criterion, since this condi-
tion encompasses and generalizes the Lax and the Oleinik entropy condition (Azevedo and Marchesin, 1995).
Furthermore, the vanishing viscosity criterion takes physical effects into account that were neglected in the
multiphase porous media flow model (Azevedo and Marchesin, 1995; Isaacson et al., 1990). Since it is the
most used criterion in porous media flow, the vanishing viscosity criterion will be used to obtain a numerical
solution in this thesis.

Another problem that arises when solving the Riemann problem for non-strictly hyperbolic systems is the
possibility of transitional waves which do not belong to either the fast family or the slow family. Transitional
shock waves are shock waves that obey the vanishing viscosity criterion but that do not obey the Lax entropy
condition (Isaacson et al., 1990). These transitional shock waves are also called undercompressive shock
waves (Marchesin and Plohr, 2001) because they have a smaller number of characteristics impinging on the
shock than in the classical case causing them to violate Lax entropy condition (LeVeque, 2002). This violation
of Lax entropy condition also means that it is unclear whether the shock belongs to the fast or slow family
(LeVeque, 2002). Since the transitional shocks obey the vanishing viscosity criterion they are sensitive to the
precise form of the diffusion term (Isaacson et al., 1990). This means that qualitatively different solutions
might arise when the diffusion term is modelled differently, e.g. due to an incorrect capillary pressure term
or due to numerical diffusion (Azevedo et al., 2002; Isaacson et al., 1990; Marchesin and Plohr, 2001).
Transitional rarefaction waves are rarefactions waves that change family. It occurs when a slow-family rar-
efaction curve joins a fast-family rarefaction curve and if the fast and slow eigenvalues are equal at the point
where the rarefaction curves join (Isaacson et al., 1990). This means that this can only happen at an umbilic
point or at the edge between the elliptic region and the hyperbolic region. When looking from upstream
to downstream, these transitional rarefaction waves start of as a slow-rarefaction wave and switch to a fast-
rarefaction wave at the point where the two rarefaction curves join. Since the fast and slow speed are equal
at this point the state where they join is not a constant state. Note that it is also possible to have a composi-
tional transitional wave (Isaacon et al., 1992), i.e. a transitional shock wave directly followed by a transitional
rarefaction wave or the other way around.
Thirdly, note that rarefactions curves do not enter the elliptic region (Holden, 1987). Furthermore, the use of
the vanishing viscosity condition, opposed to using the Liu entropy condition, combined with loss of strict-
hyperbolicity implies that the shock curves of state S are no longer necessarily connected to S nor necessarily
smooth curves without self-intersections. They might contain loops or detached branches (Holden, 1987;
Keyfitz, 1991). If a state S is inside the elliptic region, its RH locus will not be connected to state S itself an
it will be completely located outside the elliptic region (Holden, 1987). Therefore, if the upstream and the
downstream state are both in the elliptic region, they cannot be connected directly by either a rarefaction
wave, shock wave or composite wave. The solution must then always contain at least one state outside the
elliptic region (Holden, 1987).

5.2.1. Wave-curve method for non-strictly hyperbolic system
For a system that is not strictly hyperbolic more than three constant states can arise, e.g. (Azevedo et al.,
2010). This means that the wave-curve method as described in Section 5.1.3 fails, since now multiple con-
stant states must be determined. Currently a general method to determine the Riemann solution for a non-
strictly hyperbolic system does not exist. However, the RH loci and the rarefaction curves can still be used
to obtain information about the structure of the numerical solution. For instance, the constant states can
be obtained from the numerical solution after which the rarefaction curves and the RH locus of this state
can be computed. Due to numerical errors, these curves will not be exact and the saturation path can show
some deviations from the rarefaction curves or the RH loci. An example is shown in Figure 5.2 and a further
zoom in of the saturation path is shown in Figure 5.3. In this second figure it can be seen that there is an
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elliptic region and that the saturation path passes through the elliptic region. From Figure 5.2a it can be con-

(a) Saturation profile (b) Analysis of numerical solution

Figure 5.2: Saturation profile at half of the total simulation time (a) and analysis of numerical solution for the total simulation time (b),
both using interpolation I. In (a) the water saturation is shown in blue, the gas saturation is shown in green and the oil saturation is
shown in red. In (b) the light blue curves shows the RH locus of the downstream state d , the green curve shows the RH locus of the

second constant state c2, the red curve shows the RH locus of the third constant state c3. The pink line shows the slow integral curve
through the upstream state u and the yellow line shows the fast-family integral curve through c3. The saturation path is shown in black

and the elliptic region is shown in blue.

Figure 5.3: Analysis of numerical solution using interpolation I. The light blue curves shows the RH locus of the downstream state d , the
green curve shows the RH locus of the second constant state c2, the red curve shows the RH locus of the third constant state c3. The

pink line shows the slow integral curve through the upstream state u and the yellow line shows the fast-family integral curve through c3.
The saturation path is shown in black and the elliptic region is shown in blue.

cluded that there is indeed more than one constant state, meaning that the wave-curve method cannot be
used. There are even three constant states aside from the upstream en downstream states, denoted by c1, c2

and c3 when looking from downstream to upstream. These constant states are also shown in the saturation
path in Figures 5.2b and 5.3. Knowing these constant states, the RH loci and integral curves of these constant
states can be computed in order to determine the structure of the numerical solution. When looking at the
wave speeds of the resulting RH loci and integral curves, only one wave-curve remains such that the speed
increases from upstream to downstream. Part of this wave-curve is shown in Figures 5.2b and 5.3 from which
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it can be concluded that the numerical solution has the following structure from downstream to upstream;
the downstream state is connected to the first constant state c1 with a fast-family shock, shown in light blue
in Figures 5.2b and 5.3. The constant state c1 is then connected to the second constant state c2 with a shock.
Note that this part of the wave-curve is not shown in Figures 5.2b and 5.3 since c1 and c2 are too close to
each other. The constant state c2 is then connected to the third constant state c3 by a shock-rarefaction wave,
which is shown in green followed by yellow in Figures 5.2b and 5.3. Finally, the constant state c3 is connected
to the upstream state by a shock-rarefaction, which is shown in red followed by pink in Figures 5.2b and 5.3.
Thus, the full solution has the following structure:

Sd
S f−→ Sc1

S−→ Sc2

SR−−→ Sc3

SR−−→ Su (5.15)

This example clearly shows that multiple constant states can indeed arise when loss of strict hyperbolicity
occurs, meaning that the wave-curve method as described in section 5.1.3 cannot be used to obtain the Rie-
mann solution. Furthermore, this example shows that a non-strictly hyperbolic system can result in a more
complex structure of the Riemann solution than the Riemann solution of the strictly hyperbolic case.

Now that the structure of a solution can be analysed, the effect of different relative permeability models on
the existence of the elliptic region and on the numerical solution can be investigated.
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Effect of relative permeability model on the
existence and location of the elliptic region

From section 3.4 it can be concluded that it is not easy to detect if the numerical solution is in the elliptic
region or is entering the elliptic region during the simulation based on the Jacobian of FIM. As an alterna-
tive, analysis to determine the existence and location of the elliptic region can be done before the simulation
is started. It is straightforward to make a plot like Figure 3.1 which shows the elliptic region in the ternary
diagram. This works well for system with a relative permeability model that results in a large elliptic region.
However, for realistic relative permeabilities the elliptic regions are typically small and occupy only 1% of the
ternary diagram (Jackson and Blunt (2002) and references therein). Using relative permeability models de-
scribed in Chapter 4 with realistic Corey-coefficients also results in small elliptic regions. In order to make a
plot as in Figure 3.1, the eigenvalues η of the Jacobian (3.3) must be determined for every saturation value in
the ternary diagram. To compute the eigenvalues numerically only a finite number of discrete saturation val-
ues can be used. If the spacing between the discrete saturation values is too large, a small elliptic region might
not be visible. Furthermore, a single umbilic point is almost impossible to detect by computing the eigenval-
ues for a finite number of saturation values. Therefore, different techniques must be used to determine the
existence and location of the elliptic region based on the relative permeability model. Multiple methods will
be discussed in this chapter. First, rotation in the direction of the eigenvectors on the edges of the ternary
diagram might be used to determine the existence of an elliptic region. Secondly, curves through the ternary
diagram based on the fractional flow functions can be used to determine the existence and location of the
elliptic region. Two sets of these curves will be discussed, namely the curves by Holden (1990) and the two-
phase-like flow curves by Medeiros (1992).

To discuss the importance of the rotation of the eigenvectors on the edges of the ternary diagram and the
importance of the curves by Holden a distinction is made between removable and non-removable elliptic
regions. These terms are introduced by Holden (1990), who states that an elliptic region is called removable
if it can be removed from the ternary diagram by a continuous perturbation of the fractional flow functions.
A non-removable elliptic region is an elliptic region that can only be shrunk to an umbilic point by a continu-
ous perturbation of the fractional flow functions. It is important to note that Holden (1990) considers only a
certain class of relative permeability models. He assumes a Stone-type model and requires certain conditions
on the fractional flow functions inside the ternary diagram and on the edges of the ternary diagram on top of
the condition that the model must reduce to two-phase flow on the edges. This means that there are elliptic
regions that are non-removable in the context of Holden (1990) but that may be removed from the ternary
diagram by choosing a different three-phase relative permeability model.

6.1. Eigenvectors on edges of ternary diagram
Holden (1990) finds that the ternary diagram contains a non-removable elliptic region if and only if the eigen-
vectors rotate along a path following the boundary of the three-phase flow region where all three phases are
mobile. This means that if the eigenvectors switch direction along one of the edges, i.e rotate 180°, there is
a non-removable elliptic region inside the ternary diagram. Furthermore, this means that if the eigenvectors

40
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of one family are parallel to each edge and if the eigenvector points into the ternary diagram for saturations
close to the corners, there is a non-removable elliptic region (Holden, 1990; Juanes and Patzek, 2004a). Based
on this observation Juanes and Patzek (2004a) derive necessary conditions on the relative permeability model
for the system to be strictly hyperbolic, which will be discussed later in this section.

Note that an eigenvector is parallel to the edge on that edge if and only if two-phase flow behavior occurs

(a) Interpolation I (b) Interpolation III

Figure 6.1: Direction of the eigenvectors on the edges of the ternary diagram for interpolation I (a) and III (b). The fast eigenvectors are
shown in red and the slow eigenvector is shown in blue.

on the edge. This means that for interpolation I and III at least one of the eigenvectors is parallel to the edge
on each edge and it can be determined to which family this eigenvector belongs. Interpolation II will not be
considered, since it does not reduce to two-phase behavior on the edges, and therefore none of the eigenvec-
tors is parallel to the edge on any of the edges.
In order to determine for interpolation I and III to which family the parallel eigenvector belongs, first recall
that the eigenvectors of the linearized dimensionless system (5.5) are given by:

r w

r g =
f w

g

η− f w
w

=
η− f g

g

f g
w

(6.1)

where the eigenvalues are given by equation (3.3):

η= 1

2

[
f w

w + f g
g ±

√
( f w

w − f g
g )2 +4 f w

g f g
w

]
If the eigenvalues are real then the fast eigenvalue η f is equal to η+ and the slow eigenvalue ηs is equal to η−.
Note that an eigenvector is parallel to the OW edge if r = (1 0)T , parallel to the OG edge if r = (0 1)T and
parallel to the WG edge if r = (1 −1)T .
This section will only give the short version of the proof of which family is parallel to which edge. For the
proof in full detail, see Appendix C.

6.1.1. Interpolation I
First the eigenvectors on the OW edge will be looked at. The right eigenvector r = (

r w r g
)T will be parallel

to the OW edge if r = (1 0)T . In other words, using equation (6.1), the right eigenvector is parallel to the OW
edge if:

r g

r w = η− f w
w

f w
g

= 0 (6.2)

On the OW edge interpolation I gives f g
w , f g

g = 0 for all 0 < Sw ,Sg < 1 and f w
g , f w

w 6= 0 for most 0 < Sw ,Sg < 1.
Substituting this and the expression for the eigenvalues in equation (6.2) gives that the large eigenvector will
always be parallel to the OW edge.
A similar argument holds on the OG edge. The right eigenvector is parallel to the OG edge if:

r w

r g =
η− f g

g

f g
w

= 0 (6.3)
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On the OG edge interpolation I gives f w
g , f w

w = 0 for all 0 < Sw ,Sg < 1 and f g
w , f g

g 6= 0 for most 0 < Sw ,Sg < 1.
Substituting this and the expression for the eigenvalues in equation (6.3) gives that the large eigenvector will
always be parallel to the OG edge.
The proof for the WG edge is slightly different but goes along the same lines. The right eigenvector is parallel
to the WG edge if:

r w

r g =
η− f g

g

f g
w

=−1 (6.4)

On the WG edge interpolation I gives f g
w = − f w

w and f w
g = − f g

g . Substituting this and the expression for the
eigenvalues in equation (6.4) gives that the large eigenvector will always be parallel to the WG edge.
So, for interpolation I the fast-family eigenvector is always parallel to the edge on all three edges of the ternary
diagram, see Figure 6.1a. In this figure it can also be seen that the small eigenvector switches direction on the
WG edge, meaning that a non-removable elliptic region should be present. In figure 6.4 it can be seen that
there is indeed a non-removable elliptic region inside the ternary diagram.

6.1.2. Interpolation III
Again, the OW edge is considered first. As for interpolation I, the condition for the right eigenvector to
be parallel to the OW edge is given by equation (6.2). On the OW edge interpolation III gives f g

w = 0 and
f w

w , f g
g , f w

g 6= 0. Substituting this in the expression for the eigenvalues gives that the eigenvalues have a√
( f w

w − f g
g )2 term. This term is either f w

w − f g
g or −( f w

w − f g
g ) depending on the sign of f w

w − f g
g . There-

fore, the following conditions to determine which eigenvector is parallel to the OW edge can be obtained
from equation (6.2):

• If f w
w − f g

g > 0 then the fast-family eigenvector is parallel to the OW edge.

• If f w
w − f g

g < 0 then the slow-family eigenvector is parallel to the OW edge.

• If f w
w − f g

g = 0 then both eigenvectors are parallel to the OW edge.

On the OG edge interpolation III gives f w
g = 0 and f w

w , f g
g , f g

w 6= 0. Again, this results in a
√

( f w
w − f g

g )2 term in

the expression for the eigenvalues. Using this, equation (6.3) results in the following conditions to determine
which eigenvector is parallel to the OG edge:

• If f w
w − f g

g < 0 then the fast-family eigenvector is parallel to the OG edge.

• If f w
w − f g

g > 0 then the slow-family eigenvector is parallel to the OG edge.

• If f w
w − f g

g = 0 then both eigenvectors are parallel to the OG edge.

On the WG edge interpolation III gives f w
g =− f g

g − 1
λT
λo

w and f g
w =− f w

w − 1
λT
λo

w using thatλo
w =λo

g on the WG

edge. After some rewriting this results in a
√

( f w
w + f g

g +2 1
λT
λo

w )2 = | f w
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w | term in the eigenvalues.

Equation (6.4) then gives the following conditions to determine which eigenvector is parallel to the WG edge:

• If f w
w + f g

g +2 1
λT
λo

w < 0 then the fast-family eigenvector is parallel to the WG edge.

• If f w
w + f g

g +2 1
λT
λo

w > 0 then the slow-family eigenvector is parallel to the WG edge.

• If f w
w + f g

g +2 1
λT
λo

w = 0 then both eigenvectors are parallel to the WG edge.
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Thus for interpolation III the eigenvector that is parallel to the edges is not necessarily from the same family
on every edge, see Figure 6.1b. In fact, the family might change on an edge such that the fast-family eigen-
vector is parallel to the edge on part of the edge and the slow-family eigenvector is parallel to the edge on
the other part of the edge. This difference with interpolation I is caused by the influence of interpolation II,
which introduces a non-zero derivative of the relative permeability on the edge where the saturation is zero.

6.1.3. Hyperbolic model
The assumptions that are commonly made on three-phase relative permeability, see e.g. (Holden, 1990) or
(Shearer, 1988), will lead to systems where the fast-family eigenvectors are always parallel to the edge on
all edges. This means that those type of relative permeability models will generally give rise to an elliptic
region (Holden, 1990; Juanes and Patzek, 2004a). In order to avoid the existence of an elliptic region and to
obtain a relative permeability model that results in a strictly hyperbolic system Juanes and Patzek (2004a) let
go of these common assumptions. They start by assuming that the system is strictly hyperbolic everywhere
inside the ternary diagram. This leads to necessary conditions on the relative permeability models for the
systems to be strictly hyperbolic. The only assumption on the relative permeability model is that the system
must reduce to two-phase flow behavior on the edges of the ternary diagram. From this it directly follows

W O

G

Sw Sg

So

r f

rs

r fr f

rs

r f

Figure 6.2: Direction of fast eigenvector r f (red) and slow eigenvector rs (blue) along all edges to allow strict hyperbolicity inside the
ternary diagram.

that on each edge one of the eigenvectors must be parallel to that edge. This means that the systems cannot
be strictly hyperbolic on all edges and in all corners. The systems is either strictly hyperbolic in all corners
which means that there is at least one edge with an umbilic point, or the system is strictly hyperbolic on all
edges and at least one of the corners is an umbilic point. Since the mobility of gas is usually higher than
the mobility of the other two phases Juanes and Patzek (2004a) assume that the fast-family eigenvectors are
parallel to OG and WG edge and that the slow eigenvector is parallel to the OW edge, see Figure 6.2. This
means that the gas corner will be an umbilic point. The necessary conditions for the relative permeabilities
on each edge are then derived by requiring that the correct eigenvector is parallel to each edge and that the
system is strictly hyperbolic along that edge, i.e. both eigenvalues must be real and distinct. Furthermore,
in the W and O corner the eigenvalues are also required to be real and distinct, whereas the eigenvalues are
required to be real and equal in the G corner. Assuming a Stone-type model the essential condition is that the
gas relative permeability should have a positive derivative with respect to its own saturation at the OW edge.
Juanes and Patzek (2004a) show that a positive derivative of the gas relative permeability with respect to gas
saturation at small saturation values, i.e. near the OW edge, is in agreement with both two-phase and three-
phase relative permeability data. Azevedo et al. (2010) on the other hand state that the positive derivative at
the OW edge, which means that the gas relative permeability is essentially linear for small gas saturations, is
typically associated with miscible flow.
For the existing relative permeability models described in section 4.1 with Corey-correlations for the two-
phase relative permeabilities the derivative of the gas relative permeability with respect to its own saturation
is zero. To meet the necessary condition of a positive derivative of the gas relative permeability at the OW
edge, a small linear term ε is introduced in the gas relative permeability for low gas saturation. The modified
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gas relative permeability k̂g
r and its derivative are then given by:

k̂g
r =

{
kg

r for Sg > Sg∗

kg
r +εSg for Sg < Sg∗ (6.5)

∂k̂g
r

∂Sg =

∂k

g
r

∂Sg for Sg > Sg∗
∂k

g
r

∂Sg +ε for Sg > Sg∗ (6.6)

The value of ε is determined by the condition on the OW edge, which is given by (Juanes and Patzek, 2004a):

λ
g
g >λw

w (6.7)

Assuming Corey-correlation with zero residual saturations and endpoints equal to one gives that this condi-
tion is met if ε > µg

µw
. Note that adding a linear term to the gas relative permeability changes the two-phase

gas relative permeability of the water-gas and oil-gas systems. Moreover, depending on the value of µg and
µw the added term ε can be quite large compared to the original gas relative permeability kg

r . If two-phase
relative permeability data is available, such a modification is undesirable.

6.2. Important curves
A second method to determine if an elliptic region exists is by a set of curves. Two sets of curves will be looked
at, namely those defined by Holden (1990) and the curves defined by Medeiros (1992). Holden (1990) defines
curves for a certain class of relative permeability models which gives sufficient conditions for the existence of
an elliptic region. Medeiros (1992) defines two-phase-like flow curves which can be used to estimate the size
of the elliptic region. These two-phase-like-flow curves are defined for the same class of relative permeability
models as Holden (1990) considered. In this section the curves from Holden (1990) and Medeiros (1992)
will be derived for more general three-phase relative permeability models. Furthermore, the behavior of the
curves by Holden for interpolation I, III and the hyperbolic model introduced by Juanes and Patzek (2004a)
will be investigated.

6.2.1. Curves by Holden

(a) Interpolation I (b) Interpolation III (c) Hyperbolic model

Figure 6.3: Curves by Holden for interpolation I (a), III (b) and for the hyperbolic model (c). The curve f w
g = 0 is shown in green, the

curve f
g
w = 0 is shown in red and the curve f w

w − f
g
g = 0 is shown in black. The area where f w

g f
g
w < 0 is shown in grey.

To derive the curves defined by Holden (1990) the term in the eigenvalues that determines if they are complex
will be looked at and the derivation outlined by Holden (1990) will be followed. Thus the discriminant d of
the characteristic equation of the Jacobian, see equation (3.3), will be considered:

d = ( f w
w − f g

g )2 +4 f w
g f g

w (6.8)

The eigenvalues are complex if d < 0, real and equal if d = 0 and real and distinct if d > 0. The first part of
the discriminant is always positive due to the square. The second term can be either positive or negative
depending on the signs of f w

g and f g
w . If this second term is positive, the entire discriminant will be positive

and hence there will be no elliptic region. If on the other hand this second term is negative the discriminant
can become negative. Therefore, two of the curves are given by:

f w
g = 0 and f g

w = 0 (6.9)
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Figure 6.4: Curves by Holden for interpolation I in part of the ternary diagram. The curve f w
g = 0 is shown in green, the curve f

g
w = 0 is

shown in red, the curve f w
w − f

g
g = 0 is shown in black and the elliptic region is shown in blue. The area where f w

g f
g
w < 0 is shown in grey.

These two curves create a region in the ternary where the last term of the discriminant f w
g f g

w is negative. If
there is an elliptic region inside the ternary diagram, it will lie inside this negative region created by the two
curves. If within this region the first term of the discriminant ( f w

w − f g
g )2 is zero, then there must be an elliptic

region. Therefore, the last curve is given by:
f w

w − f g
g = 0 (6.10)

If the last curves intersects the negative region there is an elliptic region present in the ternary diagram. For
the class of relative permeability models that Holden (1990) considers, this last curve always intersects both
of the other curves. It therefore either intersects the negative regions, or it intersects the other two curves at
the point where they intersect each other. This means that the elliptic region found by the intersection of the
third curve and the negative region is a non-removable elliptic region. The elliptic region can be shrunk to
an umbilic point by continuously perturbing the fractional flow functions in such a way that the third curve
intersects the other two curves at the point where they intersect each other. The umbilic point is then located
at the intersection of all three curves. Thus this set of curves can also be used to determine the existence and
location of an umbilic point.

For a general three-phase interpolation method the exact form of the three curves will be difficult or even
impossible to determine analytically. Using a numerical approach the curves can be plotted and the location
of a possible non-removable elliptic region can be determined, see Figures 6.3 and 6.4. These figures give an
example of an elliptic region with the three curves shown as well. It can indeed be seen that the elliptic region
lies inside the negative region created by the first two curves and that the elliptic region lies around the last
curve. Another way to use these curves is to determine the qualitative behavior of the curves based on the
derivatives of the fractional flow function on the edges of the ternary diagram (Holden, 1990). The first step
in this procedure is to determine the sign of the relevant derivatives on the edges for each curve. For example,
for the first curve the sign of f w

g is determined on all three edges. Based on these signs, the qualitative behav-
ior of the curves can be determined, see Figure 6.5. This procedure will be further explained for interpolation
I.

Interpolation I

In order to determine the qualitative behaviour of the curves, the sign of f w
g , f g

w and f w
w − f g

g for interpolation
I must be determined on the three edges of the ternary diagram. First, the sign of f w

g will be determined on
all edges. The detailed expression of the derivatives of the fractional flow functions can be found in Appendix
C and expressions for the derivatives of the relative permeabilities on the edges can be found in Appendix B.
On the OG edge f w

g = 0 for all Corey-coefficients. On the WG and the OW edge on the other hand f w
g has a

different sign depending on the Corey-coefficients. On the OW edge there are two options. If nog ¿ now it
holds that: {

f w
g > 0 for Sw < Ŝw

OW

f w
g < 0 for Sw > Ŝw

OW

(6.11)

where Ŝw
OW is some value of the water saturation for which f w

g = 0 on the OW edge. And for any other com-
bination of nog > 1 and now > 1 it holds that f w

g > 0 for all 0 < Sw < 1. Similarly, there are two options on the
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Figure 6.5: Determination of the qualitative behavior of the curves by Holden. The curve f w
g = 0 is shown in green, the curve f

g
w = 0 is

shown in red and the curve f w
w − f

g
g = 0 is shown in black. The grey area shows the region where the product f w

g f
g
w is negative.

WG edge. If ng o ¿ ng w it holds that: {
f w

g > 0 for Sw > Ŝw
W G

f w
g < 0 for Sw < Ŝw

W G

(6.12)

And for any other combination of ng o > 1 and ng w > 1 it holds that f w
g < 0. This means that in total there are

four options for the signs of f w
g on the edges of the ternary diagram.

For f g
w it holds that f g

w = 0 on the OW edge for all Corey-coefficients. As was the case for f w
g the sign of f g

w
on the other edges depends on the Corey-coefficients. On the OG edge there are two options. If now ¿ nog it
holds that: {

f g
w > 0 for Sg < Ŝg

OG

f g
w < 0 for Sg > Ŝg

OG

(6.13)

And for any other combination of now > 1 and nog > 1 it holds that f g
w > 0. Similarly, there are two options on

the WG edge. If nwo ¿ nw g it holds that: {
f g

w > 0 for Sw < Ŝw
W G

f g
w < 0 for Sw > Ŝw

W G

(6.14)

And for any other combination of nwo > 1 and nog > 1 it holds that f g
w < 0. Thus there are four options for the

signs of f g
w on the edges of the ternary diagram.

Finally for the sign of f w
w − f g

g it holds that f w
w − f g

g = f w
w > 0 on the OW edge for all Corey coefficients and

f w
w − f g

g =− f g
g < 0 on the OG edge for all Corey coefficients. Depending on the Corey-coefficients, there are

four options on the WG edge. If nwo ¿ nw g and ng o ¿ ng w it holds that:{
f w

w − f g
g > 0 for Sw > Ŝw

W G

f w
w − f g

g < 0 for Sw < Ŝw
W G

(6.15)
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If only nwo ¿ nw g it holds that f w
w − f g

g < 0 and if only ng o ¿ ng w it holds that f w
w − f g

g > 0. For any other
combination of nwo ,nw g ,ng o and ng w it holds that:

{
f w

w − f g
g > 0 for Sw < Ŝw

W G

f w
w − f g

g < 0 for Sw > Ŝw
W G

(6.16)

Since combining the curves can be done in 43 = 64 ways, only one example will be discussed. For the example
it will be assumed that nw g = nwo and ng w = ng o , which results in a Stone-type relative permeability model
when using interpolation I. This means that on the WG edge the sign of f w

w − f g
g is determined by equation

(6.16). For the other two curves it will be assumed that the sign is the same along the entire edge for each edge.
It will be assumed that f w

g < 0 on the WG edge, f w
g > 0 on the OW edge, f g

w < 0 on the WG edge and f g
w > 0 on

the OG edge, see Figure 6.5. From the signs on the edges the behavior of the curves can be determined. For
example, looking at the sign of f w

g on the edges in Figure 6.5a it can be seen that the curve f w
g = 0 must go

from the W corner to the OG edge. Similarly, the f g
w = 0 curve must go from the G corner to the OW edge and

the f w
w − f g

g = 0 curve consists of two separate curves; one from the G corner to the WG edge and one from
the W corner to the O corner. The point where a curve meets an edge and the shape of the curve inside the
ternary diagram can not be determined by the signs on the edges. Therefore, only the qualitative behavior
can be determined. For example, the combination of the curves as shown in Figure 6.5d suggest that there is a
non-removable elliptic region inside the upper negative region. But this location depends on the exact shape
of the curves inside the ternary diagram, which can not be determined solely using information on the edges.
Based on the information on the edges it can however be concluded that there is at least one non-removable
elliptic region or umbilic point since the f w

w − f g
g = 0 curve from W to O will always intersect the negative

region or there will be a single intersection point of all three curves. Note that based on the information on
the edges it is also possible that the f w

w − f g
g = 0 curve from G to WG will cross the negative region resulting

in a second non-removable elliptic region. Furthermore, there can be one or more removable elliptic regions
in the negative region. The qualitative behavior of the curves can therefore be used to determine if a non-
removable elliptic region is present, but the location can not be determined.

Interpolation III

To investigate the qualitative behavior of the three curves for interpolation III, the difference between inter-
polation III and interpolation I will be exploited. The main difference is that interpolation III has a non-zero
derivative of the relative permeability on the edge where the saturation of that phase is zero. This introduces
some extra terms to the derivatives of the fractional flow functions on the edges compared to the curves for
interpolation I, and the effect of these extra terms on the three curves will be looked at. The detailed expres-
sion of the derivatives of the fractional flow functions can be found in Appendix C and expressions for the
derivatives of the relative permeabilities on the edges can be found in Appendix B.
For the first curve f w

g = 0 the sign of f w
g must be determined on all edges, for which the following holds for

interpolation III:

f w,I I I
g = f w,I

g − 1

λ2
T

λwλ
g
g on the OW edge

f w,I I I
g = f w,I

g = 0 on the OG edge (6.17)

f w,I I I
g = f w,I

g − 1

λ2
T

λwλo
g on the WG edge

where f w,I
g and f w,I I I

g are used to denote f w
g obtained using interpolation I and interpolation III respectively.

So there are two extra terms compared to interpolation I; − 1
λ2

T
λwλ

g
g on the OW edge and − 1

λ2
T
λwλo

g on the

WG edge. On the OW edge λw ,λg
g > 0 for all 0 < Sw < 1 and on the WG edge λw ,λo

g > 0 for all 0 < Sw < 1, for
all Corey-coefficients. This means that both extra terms are negative.
For the second curve f g

w = 0 the sign of f g
w must be determined on all edges, for which the following holds for
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interpolation III:

f g ,I I I
w = f g ,I

w = 0 on the OW edge

f g ,I I I
w = f g ,I

w − 1

λ2
T

λgλw
w on the OG edge (6.18)

f g ,I I I
w = f g ,I

w − 1

λ2
T

λgλo
w on the WG edge

So there are two extra terms; − 1
λ2

T
λgλw

w on the OG edge and − 1
λ2

T
λgλo

w on the WG edge. On the OG edge

λg ,λw
w > 0 for all 0 < Sg < 1 and on the WG edge λg ,λo

w > 0 for all 0 < Sw < 1. Thus both extra terms are
negative.
For the third curve f w

w − f g
g = 0 the sign of f w

w − f g
g must be determined on all edges, for which the following

holds for interpolation III:

f w,I I I
w − f g ,I I I

g = f w,I
w − f g ,I I I

g on the OW edge

f w,I I I
w − f g ,I I I

g = f w,I I I
w − f g ,I

g on the OG edge (6.19)

f w,I I I
w − f g ,I I I

g = f w,I
w − f g ,I

g − 1

λ2
T

λwλo
w + 1

λ2
T

λgλo
g on the WG edge

So there are three extra terms; − f g ,I I I
g on the OW edge, f w,I I I

w on the OG edge and − 1
λ2

T
λwλo

w + 1
λ2

T
λgλo

g on

the WG edge. First note that

f g ,I I I
g = 1

λ2
T

[
λo +λw ]

λ
g
g on the OW edge

f w,I I I
w = 1

λ2
T

[
λo +λg ]

λw
w on the OG edge

On the OW edge λo ,λw ,λg
g > 0 for all 0 < Sw < 1 and on the OG edge λo ,λg ,λw

w > 0 for all 0 < Sg < 1. Therefore
the extra terms on the OW and OG edge are positive. Since λo

w = λo
g > 0 on the WG edge the extra term can

be rewritten to 1
λ2

T

[
λg −λw

]
λo

w . Note that λg ,λw > 0 on the WG edge. As Sw → 0 it holds that kw
r → 0 and

kg
r → 1 such that λg > λw if Sw is small. Conversely, as Sw → 1 it holds that kw

r → 1 and kg
r → 0 such that

λg <λw if Sw is large. This means that the extra term on the WG edge is positive if Sw is small and negative if
Sw is large, i.e: 

1
λ2

T

[
λg −λw

]
λo

w > 0 if Sw < Ŝw,I I I
W G

1
λ2

T

[
λg −λw

]
λo

w < 0 if Sw > Ŝw,I I I
W G

where Ŝw,I I I
W G is some water saturation for which the extra term is zero.

Note that the sign of the extra terms is independent of the Corey-coefficients. This means that, given the
curves obtained using interpolation I, interpolation III will always influence the sign of the curves on the
edges in the same way. In some cases this will alter the qualitative behavior of the curves, while in other cases
the influence of the extra terms may be too small to alter the behavior of the curves. The effect of interpolation
III is therefore determined by the output of interpolation I which in turn is determined by the two-phase rel-
ative permeabilities. As an example of the qualitative behavior of the curves for interpolation III the example
for interpolation I from the previous section will be used. Looking at the signs on the edges for interpolation
I in Figure 6.5 it can be seen that the extra terms on the OW and OG edge are of opposite sign whereas the
extra terms on the WG edge have the same sign as interpolation I. Looking at the sign of f w

w − f g
g on the WG

edge for interpolation I and at the sign of the extra terms it can be seen that for interpolation III f w
w − f g

g will
switch sign on the WG edge just like it does for interpolation I, but the point on the WG edge where it switches
sign might be different for interpolation I and III. If the extra terms on the OW and OG edges become large
enough, the signs of interpolation III will be the opposite of the signs of interpolation I. If on the other other
hand the extra terms are small the signs of interpolation III will be the same as the signs of interpolation I.
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W O

G

(a) Interpolation I

W O

G

(b) Interpolation, second option

Figure 6.6: Example of the qualitative behavior of the curves by Holden for interpolation I (a) and interpolation III (b). The curve f w
g = 0

is shown in green, the curve f
g
w = 0 is shown in red and the curve f w

w − f
g
g = 0 is shown in black. The grey area shows the region where

the product f w
g f

g
w is negative.

Finally, there is also an option in between where the signs of interpolation III will change along an edge while
the sign is constant along the edge for interpolation I. As an example a situation will be assumed where on
the OW edge f w

w − f g
g has opposite sign for interpolation III and interpolation I and it will be assumed that

f w
g will switch sign on the OW edge for interpolation III whereas f w

g < 0 on the OW edge for interpolation I.
All the other signs are assumed to be the same for interpolation I and III. This leads to the curves for interpo-
lation III as shown in Figure 6.6b. From this figure it can be concluded that the non-removable elliptic region
that is present for interpolation I due to the f w

w − f g
g = 0 curve from O to W does not exist for interpolation

III since there is no f w
w − f g

g curve from O to W. This can also be seen in Figures 6.3 and 6.4. Therefore, there
are situations where interpolation I shows a non-removable elliptic region which can be removed from the
ternary diagram by using interpolation III instead of interpolation I.

Hyperbolic model
The necessary conditions on the relative permeabilities to result in a strictly hyperbolic system derived by
Juanes and Patzek (2004a) are based on assumptions made on eigenvectors on the edges of the ternary dia-
gram. Comparing Figure 6.1a with Figure 6.2 shows that the difference between interpolation I and the hy-
perbolic model is the family of the eigenvector that is parallel to the OW edge. Therefore, the effect of this dif-
ferent family on the qualitative behavior of the three curves will be investigated. The assumption on the OW
edge for the hyperbolic model is that λg = 0 and the necessary condition is that λg

w = 0 and λg
g >λw

w −λT,w
λw

λT

(Juanes and Patzek, 2004a). From λ
g
w = 0 it follows that f g

w = 0 and from the the fact that the small eigenvector
is parallel to the OW edge it follows that f w

g 6= 0 on the OW edge, just like for interpolation I. The difference

with interpolation I becomes clear when looking at the sign of f w
w − f g

g . For the hyperbolic model, the small
eigenvector is parallel to the OW edge. From equation (6.2) it follows that ηs − f w

w = 0 if the small eigenvector
is parallel to the OW edge. Substituting f g

w = 0 in the expressions for the eigenvalues gives:

ηs − f w
w = 1

2

[
f w

w + f g
g −

√
( f w

w − f g
g )2 +4 f w

g ·0

]
− f w

w

= 1

2

[
f g

g − f w
w −

√
( f w

w − f g
g )2

]
(6.20)

=
{

0, f w
w − f g

g ≤ 0

f g
g − f w

w , f w
w − f g

g > 0
(6.21)

Since ηs − f w
w = 0 it follows that f w

w − f g
g ≤ 0 on the OW edge, while f w

w − f g
g > 0 on the OW edge for interpola-

tion I. Thus, the curve f w
w − f g

g = 0 will always be qualitatively different for interpolation I and the hyperbolic
model. Furthermore, the curve f w

g = 0 might be qualitatively different. An example is given in Figure 6.3. In
this example the hyperbolic model uses the same relative permeability model as obtained by using interpo-
lation I but with an added linear term ε= µw

µo
to the gas relative permeability for gas saturation smaller than
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Sg∗ = 0.1, see equations (6.5) and (6.6). From Figure 6.3a and 6.3c it follows that both the f w
w − f g

g = 0 and
f w

g = 0 curves are different. In fact, for the hyperbolic model f w
g < 0 throughout the entire ternary diagram.

Therefore the negative region is the region between the f g
w = 0 curve and the WG edge.

Since a Stone-type model is considered adding a linear term to the gas relative permeability only changes
the gas relative permeability. Furthermore, the isoperms of the gas relative permeability are straight lines
parallel to the OW edge. Therefore adding the linear term to the gas relative permeability only changes the
eigenvalues in the region of the ternary diagram where Sg < Sg∗. If there would be an elliptic region using
interpolation I for greater gas saturations, modifying the gas relative permeability will not remove the elliptic
region, see Figure 6.7. Furthermore, modifying the gas relative permeability by adding a linear term for small

(a) Interpolation I (b) Hyperbolic model

Figure 6.7: Curves by Holden for interpolation I (a) for the hyperbolic model (b). The curve f w
g = 0 is shown in green, the curve f

g
w = 0 is

shown in red and the curve f w
w − f

g
g = 0 is shown in black. The area where f w

g f
g
w < 0 is shown in grey and the elliptic region is shown in

blue.

gas saturation also alters the gas relative permeability in part of the two-phase oil-gas and water-gas systems.
In a situation where the two-phase relative permeability data is available this is an undesirable modification
if ε is large compared to the value of the measured gas relative permeability for small gas saturations. Alter-
ing the two-phase relative permeability data also contradicts the view that obtaining relative permeabilities
that lead to a strictly hyperbolic model must be seen as interpolation problems, since this view takes the
two-phase relative permeability as a given. Therefore, this model will not be considered any further.

6.2.2. Two-phase-like flow curves

(a) Interpolation I (b) Interpolation III

Figure 6.8: Example of two-phase-like flow curves for interpolation I (a) and III (b). The curves are shown in black and the elliptic region
is shown in blue.

The second set of curves that can be used to determine if there is an elliptic region is the set of two-phase-like
flow curves. A two-phase-like flow curve is characterized as a curve along which one of the eigenvectors of
the Jacobian of the system (6.1) is parallel to one of the edges of the ternary diagram T (Medeiros, 1992). This
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means that along these curves the system locally shows two-phase flow behaviour instead of three-phase
flow. Recall that the eigenvector is parallel to the OW edge if r = (1 0)T , parallel to the OG edge if r = (0 1)T

and parallel to the WG edge if r = (1 −1)T . Using equations (6.2), (6.3) and (6.4) the three two-phase-like flow
curves are given by:

η− f w
w = 0, eigenvector parallel to OW edge

η− f g
g = 0, eigenvector parallel to OG edge

η− f w
w + f w

g = 0, eigenvector parallel to WG edge

Substituting the expression for the eigenvalues results in the following curves:

f g
g − f w

w ±
√(

f w
w − f g

g
)2 +4 f w

g f g
w = 0, eigenvector parallel to OW edge (6.22)

f w
w − f g

g ±
√(

f w
w − f g

g
)2 +4 f w

g f g
w = 0, eigenvector parallel to OG edge (6.23)

1

2

[
f g

g − f w
w ±

√(
f w

w − f g
g

)2 +4 f w
g f g

w

]
+ f w

g = 0, eigenvector parallel to WG edge (6.24)

An example of the two-phase-like flow curves for interpolation I and interpolation III is shown in Figure
6.8. For a system without gravity, which is assumed for the system considered in this thesis, two of these
curves are the same as two of the curves by Holden (Medeiros, 1992). The two-phase-like flow curves create
one or multiple regions in which the elliptic region must be located (Medeiros, 1992). This means that the
two-phase-like flow curves can be used to estimate the size and location of the elliptic region, opposed to
the curves by Holden which only give sufficient conditions for the existence of an elliptic region. For the
specific class of relative permeability models considered by Medeiros (1992) the regions in which the elliptic
regions must be located can be determined analytically. However, for general relative permeability models
the two-phase-like flow curves (6.22) - (6.24), and subsequently the regions in which the elliptic region must
be located, will be difficult if not impossible to determine analytically. Therefore, the two-phase-like flow
curves will not be considered any further and the curves by Holden will be used.
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Numerical experiments

In chapter 6 multiple methods are described to determine if an elliptic region is present in the ternary dia-
gram depending on the three-phase relative permeability model. Chapter 5 explains how the structure of the
numerical solution can be obtained. In this chapter the methods described in chapter 5 and 6 are used to
analyse the effect of different interpolation methods on loss of strict hyperbolicity. Furthermore, the effect of
a different interpolation method on the numerical solution of the three-phase porous media flow model will
be investigated.

7.1. Loss of strict hyperbolicity for different interpolation methods
To investigate the effect of the relative permeability model on the occurrence of loss of strict hyperbolicity
the existing and widely used normalized Stone interpolation will be compared with the newly introduced
interpolation I and interpolation III. The current practice is to use an interpolation method to obtain the
oil relative permeability only, the water and gas relative permeabilities are assumed to be function of only
the water saturation and gas saturation respectively. This means that the three-phase water relative per-
meability is assumed to be equal to the water relative permeability of the two-phase water-oil system, i.e.
kw

r (Sw ) = kwo
r (Sw ). Similarly, the gas relative permeability is assumed to be equal to the gas relative perme-

ability of the two-phase oil-gas systems, i.e. kg
r (Sg ) = kg o

r (Sg ). Note that this can be viewed as that an inter-
polation method is implicitly used to obtain the water and gas relative permeabilities anyway. As described
in section 4.2.1 it is also possible to assume that all three-phase relative permeabilities depend on both the
water and gas saturations, meaning that an interpolation method is used explicitly to obtain the relative per-
meability of all three phases. Due to the construction and assumptions of normalized Stone, see section 3.1, it
can only be used to obtain the three-phase relative permeability of oil and not the water and gas relative per-
meability. Therefore, the following three-phase relative permeability models will be compared; normalized
Stone, interpolation I and interpolation III for only the oil relative permeability, and interpolation I and inter-
polation III for the relative permeability of all three phases. For all interpolation methods Corey-correlations
with zero residuals and endpoints one will be assumed for the two-phase relative permeabilities. Further-
more, Corey-coefficients are chosen such that ng w = ng o := ng and nw g = nwo := nw . Recall from chapter
4 that this choice of Corey-coefficients means that interpolation I for all phases will result in a Stone-type
relative permeability model whereas interpolation III for all three phases will result in a relative permeability
model where all three-phase relative permeabilities will depend on both the water and gas saturation. Note
that this means that interpolation I for only oil and interpolation I for all three phases will result in the same
relative permeability, i.e. they are equivalent for this choice of two-phase relative permeabilities. This means
that normalized Stone, interpolation I for only oil, interpolation I for all three phases and interpolation III for
oil will result in a Stone-type model, i.e. ko

r = ko
r (Sw ,Sg ), kg

r = kg
r (Sg ) and kw

r = kw
r (Sw ), whereas interpolation

III for all phases will result in a new type relative permeability model with ko
r = ko

r (Sw ,Sg ), kg
r = kg

r (Sw ,Sg )
and kw

r = kw
r (Sw ,Sg )

The first example that will be looked at is the same example as used in section 3.3, i.e with the following

52



7.1. Loss of strict hyperbolicity for different interpolation methods 53

(a) Normalized Stone (b) Interpolation I for only oil and interpolation I for all phases

(c) Interpolation III for only oil (d) Interpolation III for all phases

Figure 7.1: Curves by Holden for normalized Stone (a), interpolation I (b), interpolation III for only oil (c) and interpolation III for all
phases (d). All interpolation methods use two-phase relative permeabilities with nog = 2, ng = 1.1, nw = 1.1 and now = 2 as

Corey-coefficients. The grey area shows the region where f w
g f

g
w is negative and the elliptic region is shown in blue.

(a) Normalized Stone (b) Interpolation I for only oil and interpolation I for all phases

(c) Interpolation III for only oil (d) Interpolation III for all phases

Figure 7.2: Zoom in of curves by Holden for normalized Stone (a), interpolation I (b), interpolation III for only oil (c) and interpolation
III for all phases (d). All interpolation methods use two-phase relative permeabilities with nog = 2, ng = 1.1, nw = 1.1 and now = 2 as

Corey-coefficients. The grey area shows the region where f w
g f

g
w is negative.
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(a) Normalized Stone (b) Interpolation I for only oil and interpolation I for all phases

(c) Interpolation III for only oil (d) Interpolation III for all phases

Figure 7.3: Curves by Holden for normalized Stone (a), interpolation I (b), interpolation III for only oil (c) and interpolation III for all
phases (d). All interpolation methods use two-phase relative permeabilities with nog = 2.5, ng = 1.5, nw = 5 and now = 3.5 as

Corey-coefficients. The grey area shows the region where f w
g f

g
w is negative and the elliptic region is shown in blue.

Corey-coefficients and viscosities:

nog = 2 µw = 0.4cP

ng = 1.1 µo = 0.4cP

nw = 1.1 µg = 0.05cP

now = 2

where 1cP = 1 · 10−3 kg
ms . Note that nog = now which means that interpolation I will result in a Corey-type

model, i.e. ko
r = ko

r (So), such that a single umbilic point is expected inside the ternary diagram (Trangenstein,
1989). Figure 7.1 shows the curves by Holden and the possible elliptic regions for the different three-phase
relative permeability models, and a zoom in is shown in Figure 7.2. Note that to the left of the elliptic region
shown in Figure 7.1a the oil is immobile meaning that that region is governed by two-phase flow, see also
Figure 3.5b. This means that loss of strict hyperbolicity can not occur in this region. This can also be seen in
Figure 7.1a, which shows that f w

g f g
w > 0 in this region and that the elliptic region indeed stops at the boundary

of the two-phase flow region. Figure 7.2 shows that normalized Stone and interpolation III for only oil result
in a small elliptic region in the bottom region of the ternary diagram, since the curve f w

w − f g
g = 0 intersects the

region where f w
g f w

g < 0. This figure also shows that interpolation I results in an umbilic point. Furthermore,
it can be seen from Figures 7.1d and 7.2d that using interpolation III for all phases results in a strictly hyper-
bolic model. Hence, loss of strict hyperbolicity occurs for normalized Stone, interpolation I and interpolation
III for only oil. Note that the elliptic region obtained using normalized Stone is substantially larger than the
elliptic region obtained using interpolation III for oil, and that normalized Stone results in two elliptic regions.

For the second example the following Corey-coefficients and viscosities will be used:
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(a) Normalized Stone (b) Interpolation I for only oil and interpolation I for all phases

(c) Interpolation III for only oil (d) Interpolation III for all phases

Figure 7.4: Zoom in of curves by Holden for normalized Stone (a), interpolation I (b), interpolation III for only oil (c) and interpolation
III for all phases (d). All interpolation methods use two-phase relative permeabilities with nog = 2.5, ng = 1.5, nw = 5 and now = 3.5 as

Corey-coefficients. The grey area shows the region where f w
g f

g
w is negative.

nog = 2.5 µw = 0.4cP

ng = 1.5 µo = 0.7cP

nw = 5 µg = 0.05cP

now = 3.5

Figure 7.3 shows the curves by Holden and the possible elliptic regions for the different three-phase relative
permeability models, and a zoom in is shown in Figure 7.4. These figures show that, based on the curves by
Holden, normalized Stone and interpolation I result in a small elliptic region in the bottom of the ternary
diagram. Figures 7.3c and 7.4c show that interpolation III for only oil results in a large elliptic region in the
middle of the ternary diagram and, based on the curves by Holden, a small elliptic region in the bottom of
the ternary diagram. Finally, Figures 7.3d and 7.4d show that using interpolation III for all phases results in a
strictly hyperbolic three-phase porous media flow model throughout the entire ternary diagram. Hence, loss
of strict hyperbolicity occurs for normalizes Stone, interpolation I and interpolation III for only oil.

The third example uses the following Corey-coefficients and viscosities:

nog = 2 µw = 0.4cP

ng = 2 µo = 0.7cP

nw = 3.5 µg = 0.05cP

now = 3.5

The curves by Holden and the possible elliptic regions are shown in Figure 7.5, and a zoom in is shown in
Figure 7.6. Figures 7.5a and 7.6a show that normalized Stone results in two small elliptic region in the bottom
of the ternary diagram. Figures 7.5b and 7.6b show that interpolation I results in a small elliptic region in the
bottom of the ternary diagram. Figures 7.5c and 7.6c show that using interpolation III for only oil results in a
large elliptic region at the top of the ternary diagram and a small elliptic region at the bottom of the ternary
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(a) Normalized Stone (b) Interpolation I for only oil and interpolation I for all phases

(c) Interpolation III for only oil (d) Interpolation III for all phases

Figure 7.5: Curves by Holden for normalized Stone (a), interpolation I (b), interpolation III for only oil (c) and interpolation III for all
phases (d). All interpolation methods use two-phase relative permeabilities with nog = 2, ng = 2, nw = 3.5 and now = 3.5 as

Corey-coefficients. The grey area shows the region where f w
g f

g
w is negative and the elliptic region is shown in blue.

(a) Normalized Stone (b) Interpolation I for only oil and interpolation I for all phases

(c) Interpolation III for only oil (d) Interpolation III for all phases

Figure 7.6: Zoom if of curves by Holden for normalized Stone (a), interpolation I (b), interpolation III for only oil (c) and interpolation III
for all phases (d). All interpolation methods use two-phase relative permeabilities with nog = 2, ng = 2, nw = 3.5 and now = 3.5 as

Corey-coefficients. The grey area shows the region where f w
g f

g
w is negative and the elliptic region is shown in blue.
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(a) Normalized Stone (b) Interpolation I for only oil and interpolation I for all phases

(c) Interpolation III for only oil (d) Interpolation III for all phases

Figure 7.7: Curves by Holden for normalized Stone (a), interpolation I (b), interpolation III for only oil (c) and interpolation III for all
phases (d). All interpolation methods use two-phase relative permeabilities with nog = 3, ng = 2, nw = 5 and now = 3 as

Corey-coefficients. The grey area shows the region where f w
g f

g
w is negative and the elliptic region is shown in blue.

diagram. Figures 7.5d and 7.6d, on the other hand, show that using interpolation III for all phases results in
strictly hyperbolic model. Therefore, loss of strict hyperbolicity occurs for normalized Stone, interpolation I
and interpolation III for only oil, whereas loss of strict hyperbolicity does not occur for interpolation III for all
phases.

For the final example the following Corey-coefficients and viscosities will be used:

nog = 3 µw = 0.4cP

ng = 2 µo = 0.8cP

nw = 5 µg = 0.08cP

now = 3

Note that nog = now which means that interpolation I will result in a Corey-type model, i.e. ko
r = ko

r (So), such
that a single umbilic point is expected inside the ternary diagram (Trangenstein, 1989). Figure 7.7 shows the
curves by Holden and the possible elliptic regions for all interpolation methods, and a zoom in is shown in
Figure 7.8. Figures 7.7a and 7.8a show that normalized Stone results in two relatively small elliptic region at
the bottom of the ternary diagram. Figures 7.7b and 7.8b show that interpolation I results in a single umbilic
point, as expected based on the Corey-coefficients, located at the intersection of the three curves by Holden.
Figures 7.7c and 7.8c show that interpolation III for only oil results in a large elliptic region in the middle of
the ternary diagram and a small elliptic region at the bottom of the ternary diagram. Finally, Figures 7.7d and
7.8d show that interpolation III for all phases results in a strictly hyperbolic model. This means that loss of
strict hyperbolicity occurs for normalized Stone, interpolation I and interpolation III for only oil and that it
does not occur for interpolation III for all phases.

In the examples above the Stone-type models, i.e. normalized Stone, interpolation I and interpolation III for



58 7. Numerical experiments

(a) Normalized Stone (b) Interpolation I for only oil and interpolation I for all phases

(c) Interpolation III for only oil (d) Interpolation III for all phases

Figure 7.8: Zoom in of curves by Holden for normalized Stone (a), interpolation I (b), interpolation III for only oil (c) and interpolation
III for all phases (d). All interpolation methods use two-phase relative permeabilities with nog = 3, ng = 2, nw = 5 and now = 3 as

Corey-coefficients. The grey area shows the region where f w
g f

g
w is negative and the elliptic region is shown in blue.

oil, give rise to loss of strict hyperbolicity, which is in accordance with Trangenstein (1989) who showed that
Stone-type models will in general result in an elliptic region. However, interpolation I results in an umbilic
point or in a smaller elliptic region than normalized Stone and interpolation III for only oil. Furthermore,
it can be seen that interpolation I results in a single umbilic point or single elliptic region for all examples
whereas normalized Stone and interpolation III for oil result in two elliptic regions for most examples. There-
fore, interpolation I is preferred to normalized Stone and to interpolation III for oil for these examples. At the
same time, interpolation III for all phases results in a strictly hyperbolic model for all these examples. From
this it can be concluded that letting go of the assumptions of a Corey-type or a Stone-type model, as was
done for interpolation III for all phases, can indeed lead to a strictly hyperbolic model whereas Corey-type
and Stone-type models in general result in loss of strict hyperbolicity.
Note that the elliptic region that is present at the bottom of the ternary diagram is located in approximately
the same part of the ternary diagram for all the interpolation methods if it is present. Finally, note that all
the elliptic region lie inside the area where f w

g f g
w < 0, as expected, but that they also lie around the curve

f w
w − f g

g = 0 meaning that all the elliptic regions in these examples are non-removable elliptic regions.

Since the effect of a relatively large elliptic region on the numerical solution is already investigated in sec-
tion 3.3 and since interpolation I is preferred to normalized Stone and to interpolation III for only oil based
on the size of the elliptic region, normalized Stone and interpolation III for only oil will be not be considered
any further. Interpolation I results, for the examples considered, in a single umbilic point or in one small
elliptic region. Due to the size of the elliptic region the chance of choosing the injection or reservoir state
inside the elliptic region or at the umbilic point is small. However, in section 5.2 it is found that such a small
elliptic region still has an effect on the structure of the numerical solution even when both the injection and
the reservoir state are chosen outside the elliptic region. Since it is unclear whether the resulting numerical
solution is physical, such a small elliptic region or umbilic point should still be avoided. Therefore, the differ-
ence in numerical solution using interpolation I and interpolation III for all phases will be investigated, since
using interpolation III for all phases results in a strictly hyperbolic model for the examples considered here.
More specifically it is investigated if there is a clear difference in numerical solution between a model with a
very small elliptic region or umbilic point, and a strictly hyperbolic model.
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7.2. Difference in numerical solution when using interpolation I and in-
terpolation III

To investigate possible differences in numerical solution two examples from the previous section will be anal-
ysed. For the first case, interpolation I gives rise to a small elliptic region in the ternary diagram while inter-
polation III results in a strictly hyperbolic model, which corresponds to the third example in the previous
section. For the second case, using interpolation I results in a single umbilic point inside the ternary dia-
gram. Again, interpolation III results in a strictly hyperbolic model inside the ternary diagram. This case
corresponds to the fourth example in the previous section. Recall from the previous section that, for both
cases, Corey-correlations with zero residuals and endpoints one are assumed for the two-phase relative per-
meabilities. Furthermore, Corey-coefficients are chosen such that ng w = ng o := ng and nw g = nwo := nw and
interpolation I and interpolation III will be used to obtain the three-phase relative permeability for all three
phases. Also recall that this choice of Corey-coefficients means that interpolation I will result in a Stone-type
relative permeability model whereas for interpolation III all three-phase relative permeabilities will depend
on both the water and gas saturation. Since interpolation I and interpolation III are not incorporated in the
reservoir simulator that was used in section 3.3.2, the numerical experiments in this chapter are obtained
using the fractional flow equations and the upwind method as described in section 3.2.2.

7.2.1. Case with elliptic region for interpolation I
Recall from the previous section that for the first case, the following Corey-coefficients are used:

nog = 2

ng = 2

nw = 3.5

now = 3.5

The curves f w
g = 0, f g

w = 0 and f w
w − f g

g = 0 are shown in Figure 7.5b for interpolation I and in Figure 7.5d

for interpolation III. Since Figure 7.5b shows that the curve f w
w − f g

g = 0 intersect the region where f w
g f g

w is
negative, a non-removable elliptic region must be present inside the ternary diagram. A zoom in of the region

(a) Interpolation I (b) Interpolation III

Figure 7.9: Direction of eigenvectors on the edges of the ternary diagram for interpolation I (a) and interpolation III (b). Both
interpolation methods use two-phase relative permeabilities with nog = 2, ng = 2, nw = 3.5 and now = 3.5 as Corey-coefficients. The

fast eigenvectors are shown in red and the slow eigenvector is shown in blue.

where the curve f w
w − f g

g = 0 intersects the region where f w
g f g

w is negative for interpolation I is shown in Fig-

ure 7.6b. In this figure the elliptic region is clearly visible. Figure 7.5d shows that the curve f w
w − f g

g = 0 does

not intersect the area where f w
g f g

w is negative or the curves f g
w = 0 and f w

g = 0. Therefore, the elliptic region
that is present for interpolation I is not present for interpolation III. Furthermore, Figure 7.9 shows that the
fast-family eigenvectors are parallel to the OW edge on that edge for interpolation I whereas for interpolation
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III the slow-family eigenvectors are parallel to the OW edge.

For the first example, the injection state Su is taken inside the elliptic region and the reservoir state Sd is
taken outside the elliptic region and above the curve f w

w − f g
g = 0 from O to W:

Su =
(

0.4
0.025

)
Sd =

(
0.9
0.1

)
(7.1)

The saturation profile after 1.25 years for both interpolation I and III is shown in Figure 7.10. Comparing

(a) Saturation profile for interpolation I (b) Saturation profile for interpolation III

Figure 7.10: Saturation profile for interpolation I (a) and interpolation III (b) after a quarter of the total simulation time of 4.93 years.
The blue line shows the water saturation, the red line shows the oil saturation and the green line shows the gas saturation. The

downstream state is denoted by d, the middle state is denoted by m and the upstream state is denoted by u. Both interpolation methods
use two-phase relative permeabilities with nog = 2, ng = 2, nw = 3.5 and now = 3.5 as Corey-coefficients.

Figures 7.10a and 7.10b shows some differences in the saturation profiles. The first difference is that inter-
polation III has a different wave speed. The change in saturation that occurs around 30m for interpolation I
occurs around 25m for interpolation III. On the other hand, the change in saturation that occurs around 60m
for interpolation I occurs around 70m for interpolation III. The second difference is that the change in satu-
ration around 60m for interpolation I is smaller than the change around 70m for interpolation III. This can
be explained by looking at the structure of the numerical solution, which is shown in Figure 7.11. A zoom in

(a) Analysis numerical solution interpolation I (b) Analysis numerical solution interpolation III

Figure 7.11: Analysis of the numerical solution for interpolation I (a) and interpolation III (b) after the total simulation time of 4.93
years. The RH locus of the upstream state is shown in blue, and the fast integral curve through the downstream state is shown in red.

The saturation path is shown in black, and in (a) the elliptic region is shown in light blue.
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(a) Analysis numerical solution interpolation I (b) Analysis numerical solution interpolation III

Figure 7.12: Analysis of the numerical solution for interpolation I (a) and interpolation III (b) after the total simulation time of 4.93
years. The RH locus of the upstream state is shown in blue, and the fast integral curve through the downstream state is shown in red.

The saturation path is shown in black. Both figures show the same section of the ternary diagram.

of the structure around the downstream state is shown in Figure 7.12. From Figures 7.11a and 7.12a it follows
that the solution for interpolation I, when looking from downstream to upstream, consist of the downstream
state followed by a fast-family rarefaction wave to a middle state followed by a shock wave to the upstream
state:

Sd
R f−−→ Sm

S−→ Su for interpolation I (7.2)

Looking at Figures 7.11b and 7.12b it can be seen that the structure of the solution for interpolation III is sim-
ilar to the structure of the solution for interpolation I. That is, when looking from downstream to upstream,
the solution for interpolation III consist of the downstream state followed by a fast-family rarefaction wave to
a middle state followed by a slow-family shock wave to the upstream state:

Sd
R f−−→ Sm

Ss−→ Su for interpolation III (7.3)

The difference seen in the saturation profile is explained by the difference in the RH locus of the upstream
state for both interpolation methods. The solution for both methods follow the integral curve from the down-
stream state until a point on the RH locus of the upstream state is reached. Looking at Figure 7.12 it can be
seen that the RH locus of interpolation I intersect the WG edge at a higher water saturation than for interpola-
tion III such that the distance travelled over the integral curve is smaller for interpolation I than for interpola-
tion III. Therefore, the change in saturation due to the rarefaction wave is smaller for interpolation I than for
interpolation III. Also note that the RH locus of the upstream state for interpolation III consists of two contin-
uous curves, whereas the RH locus of the upstream state for interpolation I contains disconnected branches.
This is due to the fact that the upstream state lies inside an elliptic region for interpolation I whereas the up-
stream state lies in a strictly hyperbolic region for interpolation III, see section 5.2.

For the second example, the injection state Su is taken on the WG edge and lies above the curve f w
w − f g

g = 0

from O to W and the reservoir state Sd is taken on the OW edge and lies beneath the curve f w
w − f g

g = 0 from
O to W:

Su =
(
0.9
0.1

)
Sd =

(
0.3
0

)
(7.4)

The saturation profile after 1.23 years for both interpolation I and III is shown in Figure 7.13. Comparing
Figure 7.13a with Figure 7.13b a clear difference in saturation profile can be seen. This is due to the direction
of the eigenvectors on the OW edge and can be explained by looking at the structure of the numerical solution,
which is shown in Figure 7.14. Note that for the time simulated, the injection state has not yet reached point 1,
where the saturation path is taken. Comparing Figures 7.13a and 7.14a with Figures 7.13b and 7.14b it can be
seen that the main difference in the solution is the middle state. For interpolation I, this middle state is located
on the OW edge, whereas for interpolation III this state is located inside the ternary diagram. However, for
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(a) Saturation profile for interpolation I (b) Saturation profile for interpolation III

Figure 7.13: Saturation profile for interpolation I (a) and interpolation III (b) after a quarter of the total simulation time of 4.93 years.
The blue line shows the water saturation, the red line shows the oil saturation and the green line shows the gas saturation. The

downstream state is denoted by d, the middle state is denoted by m and the upstream state is denoted by u. Both interpolation methods
use two-phase relative permeabilities with nog = 2, ng = 2, nw = 3.5 and now = 3.5 as Corey-coefficients.

(a) Analysis numerical solution interpolation I (b) Analysis numerical solution interpolation III

Figure 7.14: Analysis of the numerical solution for interpolation I (a) and interpolation III (b) after the total simulation time of 4.93
years. The RH locus of the downstream state is shown in light blue, and the fast integral curve through the downstream state is shown in
red. The slow integral curve through the upstream state is shown in pink. The green curve shows the RH locus of the middle state. The

saturation path is shown in black.

both interpolation methods the downstream state is connected to the middle state by a fast-family shock
wave after which the middle state is connected to the upstream state by a slow-family shock-rarefaction wave,
i.e:

Sd
S f−→ Sm

SRs−−→ Su for both interpolation I and III (7.5)

The difference in location of the middle state is caused by the direction of the eigenvectors on the OW edge.
Since the wave speed must increase from upstream to downstream, the downstream state must be connected
by a fast-family wave to the next state. For interpolation I the fast-family eigenvectors are parallel to the OW
edge on the OW edge, whereas for interpolation III the slow-family eigenvectors are parallel to the edge and
the fast-family eigenvectors point into the ternary diagram. Therefore, the solution using interpolation I can
follow the OW edge resulting in two-phase behaviour for the first wave. This can also be seen in Figure 7.13a,
since the gas saturation does not change during the shock wave around 70m. The solution using interpolation
III, however, must shock into the ternary diagram resulting in three-phase behaviour for the first wave. This
can also be seen in Figure 7.13b since the gas saturation changes during the shock around 95m. Note that the
shock-rarefaction connecting the middle state to the upstream state shows three-phase behaviour for both
interpolation methods.
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7.2.2. Case with umbilic point for interpolation I
Recall from the fourth example of the previous section that for the second case, the following Corey-coefficients
are used:

nog = 3

ng = 2

nw = 5

now = 3

The curves f w
g = 0, f g

w = 0 and f w
w − f g

g = 0 are shown in Figure 7.7b for interpolation I and in Figure 7.7d for

interpolation III. Since Figure 7.7b shows that the curves f w
w − f g

g = 0, f w
g = 0 and f g

w = 0 intersect at one point
an umbilic point is present at that point in the ternary diagram. This could also be expected based on the
Corey-coefficients. Since nog = now , and since ng w = ng o := ng and nw g = nwo := nw , interpolation I results
in a Corey-type relative permeability model, meaning that there must be an umbilic point inside the ternary
diagram. A zoom in of the intersection of the three curves for interpolation I is shown in Figure 7.8b. Figure
7.7d, on the other hand, shows that the curve f w

w − f g
g = 0 does not intersect the area where f w

g f g
w is negative

or the curves f g
w = 0 and f w

g = 0. Therefore, the umbilic point that is present for interpolation I is not present
for interpolation III. Furthermore, Figure 7.15 shows that the fast-family eigenvectors are parallel to the OW

(a) Interpolation I (b) Interpolation III

Figure 7.15: Direction of eigenvectors on the edges of the ternary diagram for interpolation I (a) and interpolation III (b). Both
interpolation methods use the same two-phase relative permeabilities with nog = 3, ng = 2, nw = 5 and now = 3 as Corey-coefficients.

The fast eigenvectors are shown in red and the slow eigenvector is shown in blue.

edge on that edge for interpolation I whereas for interpolation III the slow-family eigenvectors are parallel to
the OW edge.

As an example the downstream state is chosen inside the closed curve f w
w − f g

g = 0, see Figure 7.7d, and the
upstream state is chosen such that it lies below the curve f w

g = 0 for both interpolation I and interpolation III:

Su =
(

0.1
0.05

)
Sd =

(
0.55
0.2

)
(7.6)

The saturation profile after 0.49 years for both interpolation I and III is shown in Figure 7.16. Comparing
Figure 7.16a with Figure 7.16b shows that there are relatively small differences in the saturation profile. The
structure of the numerical solution, on the other hand, shows a clear difference. The structure of the solution
using both interpolation I and interpolation III is given in Figure 7.17. The solution for interpolation I consists
of the following waves. The downstream state is connected with a fast-family shock-rarefaction to the first
constant state c1. This constant state is connected to a second constant state c2 with a shock-rarefaction.
Finally the second constant state is connected to the upstream state by a slow-family rarefaction wave. Hence,
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(a) Saturation profile for interpolation I (b) Saturation profile for interpolation III

Figure 7.16: Saturation profile for interpolation I (a) and interpolation III (b) after one tenth of the total simulation time of 4.93 years.
The blue line shows the water saturation, the red line shows the oil saturation and the green line shows the gas saturation. The

downstream state is denoted by d and the upstream state is denoted by u. In (a) the first constant state is denoted by c1 and the second
constant state is denoted by c2. In (b) the middle state is denoted by m. Both interpolation methods use the same two-phase relative

permeabilities with nog = 3, ng = 2, nw = 5 and now = 3 as Corey-coefficients.

(a) Analysis numerical solution interpolation I (b) Analysis numerical solution interpolation III

Figure 7.17: Analysis of the numerical solution for interpolation I (a) and interpolation III (b) after the total simulation time of 4.93
years. The RH locus of the downstream state is shown in light blue, and the fast integral curve through the downstream state is shown in
red. The slow integral curve through the upstream state is shown in pink. The green curve in (b) shows the RH locus of the middle state

and in (a) the RH locus of the first constant state. In (a) the yellow curve shows the integral curve through the second constant state.
The saturation path is shown in black.

the structure of the full solution is given by:

Sd
SR f−−→ Sc1

SR−−→ Sc2
Rs−→ Su for interpolation I (7.7)

This means that the solution for interpolation I has two constant states besides the downstream and upstream
states, which only occurs for non strictly hyperbolic systems. The first constant state after the downstream
state c1 can clearly be seen in the saturation profile, approximately between 25m and 50m. The second con-
stant state is less clear and occurs around 20m, see Figure 7.16a. The saturation profile at a later point in time
is shown in Figure 7.18. In this figure the second constant state c2 can be seen more clearly, approximately
around 70m. Interpolation III results in a strictly hyperbolic system. Therefore, the solution is expected to
have only one constant state besides the downstream and upstream state, which is then called the middle
state. From Figure 7.17b it follows that the solution using interpolation III consists of the downstream state
which is connected with a fast-family shock-rarefaction to the middle state which is in turn connected to the
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(a) Saturation profile for interpolation I (b) Saturation profile for interpolation III

Figure 7.18: Saturation profile for interpolation I (a) and interpolation III (b) after one third of the total simulation time of 4.93 years.
The blue line shows the water saturation, the red line shows the oil saturation and the green line shows the gas saturation. The

downstream state is denoted by d and the upstream state is denoted by u. In (a) the first constant state is denoted by c1 and the second
constant state is denoted by c2. In (b) the middle state is denoted by m. Both interpolation methods use the same two-phase relative

permeabilities with nog = 3, ng = 2, nw = 5 and now = 3 as Corey-coefficients.

upstream state with a slow-family shock-rarefaction:

Sd
SR f−−→ Sm

SRs−−→ Su for interpolation III (7.8)

The difference between the structure of the solutions is caused by the curve f w
w − f g

g = 0. For interpolation I
there is such a curve from O to W which is crossed twice by the saturation path. For interpolation III on the
other hand, the curve f w

w − f g
g = 0 from O to W does not exist and has therefore no effect on the solution.

From Figures 7.10, 7.13 and 7.16 it can be concluded that using different three-phase relative permeability
models results in significantly different numerical solutions. One of the main differences, which can be seen
in all three figures, is that using a different relative permeability model results in different wave speeds. This
means for instance that predicted breakthrough time of water will be different for each model. In Figure 7.10
it can be seen that even if the structure of the solution is the same for both interpolation methods, the values
of the saturation profile can be different resulting in different predictions of oil recovery. Figures 7.13 and 7.16
show that it is even possible that the solution has a different structure depending on the relative permeability
model used. For instance Figures 7.16 and 7.18 shows an extra constant state for interpolation I compared
to the solution of interpolation III. This extra constant state is caused by the loss of strict hyperbolicity that
occurs for interpolation I due to the umbilic point. Interpolation III results in a strictly hyperbolic system in
this example, meaning that the solution can only contain one constant state aside from the upstream and
downstream state. This shows that even a single umbilic point can have an effect on the structure of the nu-
merical solution.

From the examples in this chapter it can be concluded that the relative permeability model has a great in-
fluence on the solution of the three-phase porous media flow model. The relative permeability model deter-
mines if loss of strict hyperbolicity and subsequent effects on the numerical solution occur. Furthermore, the
relative permeability model determines the wave speed of the numerical solution as well as the structure of
the numerical solution and the saturation path taken. Therefore, extreme care must be taken when choosing
the three-phase relative permeability model.



8
Conclusion

In this chapter some concluding remarks are made in the first section and some comments one these con-
clusions are given in the second section. Furthermore, some remarks concerning future work are made in the
second section.

8.1. Conclusion
First, from section 6 it can be seen that analysis to determine if loss of strict hyperbolicity occurs can be
done before simulation by using the curves of Holden or the direction of the eigenvectors on the edges of the
ternary diagram. The curves by Holden are a set of three curves based on the derivatives of the fractional flow
functions that give sufficient conditions for loss of strict hyperbolicity to occur. If these curves are computed
throughout the entire ternary diagram they can be used to determine the location of an elliptic region or um-
bilic point. If the curves cannot be computed inside the ternary diagram, the sign of the curves on the edges
of the ternary diagram can be used to determine if loss of strict hyperbolicity occurs, but a precise location of
the elliptic region or umbilic point cannot be determined.

Secondly, it can be concluded that loss of strict hyperbolicity has a great influence on the numerical solu-
tion of the three-phase porous media flow model. In section 3.3 it was found that oscillations can occur in
the saturation profile if the injection state lies inside the elliptic region. Furthermore, if the injection state
lies inside the elliptic region the qualitative structure of the solution as a function of time can be different
for different grid cells. Moreover, the qualitative structure of the solution changes depending on the ratio
between ∆t and ∆x due to the underlying sensitivity of transitional shocks to diffusion. Finally, in chapter 5
and chapter 7 it was found that loss of strict hyperbolicity can result in extra constant states in the numerical
solution.

Thirdly, the three-phase relative permeability model is of great influence on the existence of an elliptic re-
gion or umbilic point and on the location and size of the elliptic region. For the same two-phase relative
permeability, the chosen three-phase relative permeability model determines if loss of strict hyperbolicity
occurs or the chosen model can alter the size of the elliptic region. Subsequently, the three-phase relative
permeability model is of great influence on the numerical solution, even up to the point where different rel-
ative permeability models lead to solutions with a different structure, see chapter 7.
Furthermore, three-phase relative permeability is difficult, time consuming and expensive to measure, mean-
ing that three-phase relative permeability data is scarce. In section 4.2 it was stated that the available data
show different behavior for each situation and therefore the relative permeability model should be chosen for
each individual situation in order to best match this behaviour. Moreover, the data show multiple situations
in which a Corey-type or Stone-type model would be unable to produce the correct isoperms, that is, the
gas and water relative permeabilities show dependence on both the water and gas saturation. At the same
time, Corey-type and Stone-type models generally result in loss of strict hyperbolicity. Modelling three-phase
relative permeability data can thus be seen as an interpolation problem, as described in section 4.2.1, where
the relative permeability of each phase is obtained by interpolating between two two-phase systems. This
can lead to a new type of relative permeability model where the relative permeability of all phases depend on
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both the water and gas saturation, meaning that the relative permeability model is neither of Stone-type nor
of Corey-type.

Finally, based on the numerical experiments in this thesis and on the theory and numerical and experi-
mental data available in the literature, loss of strict hyperbolicity and the subsequent solution are deemed
unphysical. Using a relative permeability model that ensures strict hyperbolicity can then be seen as an ex-
tra constraint that should be imposed on the three-phase porous media flow model. In this thesis a relative
permeability model that avoids loss of strict hyperbolicity for all situations has not been found. However,
the results in chapter 6 suggest that it is possible to choose a relative permeability model such that loss of
strict hyperbolicity is avoided for each situation separately, especially when viewing the relative permeability
model as an interpolation problem. This means that imposing the extra constraint that the system must be
strictly hyperbolic is feasible.

8.2. Further remarks
From the conclusions above it follows that the three-phase relative permeability model should be chosen
with great care in order to avoid loss of strict hyperbolicity. But, even if a relative permeability model can be
chosen such that loss of strict hyperbolicity does not occur for a given situation, this relative permeability
model might not result in the correct three-phase porous media flow model. For instance the breakthrough
time of water can be predicted incorrectly, see section 7. Therefore, choosing the correct relative permeability
must not only be done by making sure that loss of strict hyperbolicity does not occur, but history matching
and three-phase relative permeability data, when available, must also be taking into account. This means
that choosing the correct relative permeability model is even more difficult.

The examples investigated in this thesis where chosen such that the effect of loss of strict hyperbolicity and
the difference in solution when using different relative permeability models can clearly be observed. These
examples, or indeed even the new interpolation methods introduced, where not compared with available
three-phase data and it is therefore unclear how realistic these examples are. However, the examples illus-
trate that loss of strict hyperbolicity has a significant effect on the solution, even if there is only a single
umbilic point or a small elliptic region present inside the ternary diagram. This also means that even though
the chance of choosing the injection state inside the elliptic region is small, since the elliptic region is gen-
erally small for realistic situations, the solution can still be influenced by the loss of strict hyperbolicity. The
examples therefore still give valuable information for practical situations.

Section 3.4 states that there is no clear link between the eigenvalues of the Jacobian of the continuous system
and the eigenvalues of the submatrices of the Jacobian of FIM. And even if such a link exists, it would be im-
practical to compute the eigenvalues for each time step for every grid cell during a simulation. However, in
EOR the relative permeabilities are sometimes changed during a simulation. This means that analysis before
the simulation to determine if loss of strict hyperbolicity occurs would have to be done for all the possible
relative permeability models that might arise during the simulation. It would therefore still be interesting
to investigate if loss of strict hyperbolicity can be determined during the simulation. One way to make this
more practical might be not to do analysis for every time step for each grid cell, but only for those time steps
and grid cells in which loss of strict hyperbolicity is expected based on the observed numerical solution. For
instance if oscillations start to arise. One way to then perform the analysis might be to obtain the derivatives
of the fractional flow for these grid cells and time steps and then directly compute the eigenvalues of the Ja-
cobian of the continuous system.

The results in this thesis were obtained for 1D horizontal, incompressible, immiscible flow trough a homoge-
neous medium where capillary pressure is neglected. The effect on loss of strict hyperbolicity when adding
gravity or capillary pressure or when extending the model to two or three dimension or miscible flow is largely
unknown. Guzmán and Fayers (1997a) show that adding gravity changes the size of the elliptic region but they
could not find a clear relationship between the gravity coefficient and the size of the elliptic region. Azevedo
et al. (2002) show that the region of instability might even enlarge when capillary pressure is included in the
model. Therefore, loss of strict hyperbolicity when the model is extended to more dimensions or when grav-
ity or capillary pressure is included might have to be investigated.
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The new interpolation methods I, II and III introduced in chapter 4 generally result in linear or concave isop-
erms. In order to match all shapes of isoperms, an interpolation method that results in convex isoperms
might be developed. A combination of this interpolation method and interpolation I, II and III might then be
used to construct any shape of isoperms in order to match as many different situations as possible. Also, in
chapter 7 only cases with ng w = ng o = ng and nw g = nwo = nw , i.e. with the same Corey-coefficients for water
and gas in two-phase systems, are considered. Physical data suggest that in general the two phase behaviour
of water is different in a water-gas than in a water-oil system, and similarly, the two-phase behavior of gas
in a water-gas system is different than in a oil-gas system. Therefore, a generalization to Corey-coefficients
such that ng w 6= ng o and nw g 6= nwo may be worthwhile to investigate. Finally, the numerical experiments
conducted in this thesis used the same interpolation method for all three phases. However, for some practi-
cal situations it might be better to use a different interpolation method or three-phase relative permeability
model for each phase.



A
Derivation of Jacobian for

Newton-Raphson

This section gives the derivation of the substituted water saturation residual R Ãw
i

and the derivation of the

entries of the submatrices of the Jacobian for the Newton-Raphson method. First, R Ãw
i

is determined from

equations (3.24) and (3.25). From this and equation (3.25) the entries of the submatrices given by equation
(3.31) will be computed.

A.1. Water saturation residual
First, the phase volume residual (3.24) is rewritten:

0 = RVi =φ∆x∆y∆z −∑
α

Aα
i

ρα

0 =φ∆x∆y∆z − Aw
i

ρw − Ag
i

ρg − Ao
i

ρo

Aw
i = ρw

(
φ∆x∆y∆z − Ag

i

ρg − Ao
i

ρo

)
(A.1)

Substituting this in the residual of the water saturation (3.25) gives:

0 = Aw,n+1
i − Aw,n

i − ∆t

∆x
∆y∆zKρw 1

µw

[
kw,n+1

ri
(pn+1

i+1 −pn+1
i )−kw,n+1

ri−1
(pn+1

i −pn+1
i−1 )

]
= ρw

[
φ∆x∆y∆z − Ag ,n+1

i

ρg − Ao,n+1
i

ρo

]
−ρw

[
φ∆x∆y∆z − Ag ,n

i

ρg − Ao,n
i

ρo

]

− ∆t

∆x
∆y∆zKρw 1

µw

[
kw,n+1

ri
(pn+1

i+1 −pn+1
i )−kw,n+1

ri−1
(pn+1

i −pn+1
i−1 )

]
=−ρw

Ag ,n+1
i

ρg −ρw
Ao,n+1

i

ρo −ρw

[
− Ag ,n

i

ρg − Ao,n
i

ρo

]

−ρw ∆t

∆x
∆y∆zK

1

µw

[
kw,n+1

ri
(pn+1

i+1 −pn+1
i )−kw,n+1

ri−1
(pn+1

i −pn+1
i−1 )

]
Which means that the residual of the substituted water saturation is given by:

R Ãw
i
=−ρw A

g ,n+1
i
ρg −ρw Ao,n+1

i
ρo +ρw A

g ,n
i
ρg +ρw Ao,n

i
ρo −ρw ∆t

∆x∆y∆zK 1
µw

[
kw,n+1

ri
(pn+1

i+1 −pn+1
i )−kw,n+1

ri−1
(pn+1

i −pn+1
i−1 )

]
(A.2)

A.2. Primary variables
In the continuous system the primary variables are Sw and Sg whereas in the discretized system of FIM they
are Ao and Ag and p. This means that a transformation between these variables must be made. To make
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the distinction between the sets of variables clear Sw̃ and S g̃ will be used to denote the variables of the con-
tinuous system and Sw and So for the discretized system. The expressions for the derivatives of the relative
permeabilities in the discretized system will be rewritten to the derivatives as found in the continuous system.
First recall that:

Sαi ≈ Aα
i

φ∆x∆y∆zρα
, for α ∈ {w,o, g } (A.3)

This means that the following holds for each phase:

∂kα1
ri

∂Aα2
i

= ∂Sα2
i

∂Aα2
i

∂kα1
ri

∂Sα2
i

= 1

φ∆x∆y∆zρα2

∂kα1
ri

∂Sα2
i

, for α1,α2 ∈ {w,o, g } (A.4)

This means that only the derivatives of the relative permeabilities with respect to saturation are necessary to
do the transformation between the different variables. Note that:{

Sw̃ = 1−Sg −So

S g̃ = Sg (A.5)

Therefore, for a Stone-type relative permeability model, ko
r = ko

r (So ,Sg ) holds in the discretized system and
ko

r = ko
r (Sw̃ ,S g̃ ) in the continuous system. Furthermore kw

r = kw
r (So ,Sg ) and kg

r = kg
r (Sg ) holds in the dis-

cretized system and kw
r = kw

r (Sw̃ ) and kg
r = kg

r (S g̃ ) in the continuous system. Starting from the discretized
system, the derivatives can be rewritten in term of the variables of the continuous system. First, the deriva-
tives of the oil relative permeability will be looked at:

∂ko
r

∂So

∣∣∣∣
Sg

= ∂ko
r

∂Sw̃

∣∣∣∣
S g̃

∂Sw̃

∂So + ∂ko
r

∂S g̃

∣∣∣∣
Sw̃

∂S g̃

∂So

= ∂ko
r

∂Sw̃

∣∣∣∣
S g̃

·−1+ ∂ko
r

∂S g̃

∣∣∣∣
Sw̃

·0

=− ∂ko
r

∂Sw̃

∣∣∣∣
S g̃

(A.6)

∂ko
r

∂Sg

∣∣∣∣
So

= ∂ko
r

∂Sw̃

∣∣∣∣
S g̃

∂Sw̃

∂Sg + ∂ko
r

∂S g̃

∣∣∣∣
Sw̃

∂S g̃

∂Sg

= ∂ko
r

∂Sw̃

∣∣∣∣
S g̃

·−1+ ∂ko
r

∂S g̃

∣∣∣∣
Sw̃

·1

=− ∂ko
r

∂Sw̃

∣∣∣∣
S g̃

+ ∂ko
r

∂S g̃

∣∣∣∣
Sw̃

(A.7)

Secondly, the water relative permeability will be looked at:

∂kw
r

∂So

∣∣∣∣
Sg

= ∂kw
r

∂Sw̃

∣∣∣∣
S g̃

∂Sw̃

∂So

= ∂kw
r

∂Sw̃

∣∣∣∣
S g̃

·−1

=− ∂kw
r

∂Sw̃

∣∣∣∣
S g̃

(A.8)

∂kw
r

∂Sg

∣∣∣∣
So

= ∂kw
r

∂Sw̃

∣∣∣∣
S g̃

∂Sw̃

∂Sg

= ∂kw
r

∂Sw̃

∣∣∣∣
S g̃

·−1

=− ∂kw
r

∂Sw̃

∣∣∣∣
S g̃

(A.9)

Finally, the derivatives of the gas relative permeability are rewritten:

∂kg
r

∂So

∣∣∣∣
Sg

= ∂kg
r

∂S g̃

∣∣∣∣
Sw̃

∂S g̃

∂So

= ∂kg
r

∂S g̃

∣∣∣∣
Sw̃

·0

= 0

(A.10)
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∂kg
r

∂Sg

∣∣∣∣
So

= ∂kg
r

∂S g̃

∣∣∣∣
Sw̃

∂S g̃

∂Sg

= ∂kg
r

∂S g̃

∣∣∣∣
Sw̃

·1

= ∂kg
r

∂S g̃

∣∣∣∣
Sw̃

(A.11)

For notational simplicity (Sw ,Sg ) is used instead of (Sw̃ ,S g̃ ) for the variables of the continuous system as well
as for the variables of the discretized system from this point on.

A.3. Entries of the Jacobian matrix
In Section A.1 the phase volume equation was used to eliminate the water phase from the system of equations.
This means that a system of three residuals is left, namely R Ãw

i
, RAo

i
and RA

g
i

. Using these residuals every 3×3

submatrix Ji j of the Jacobian J can be calculated by:

Ji j =



∂R Ãw
i

∂pi

∂R Ãw
i

∂Ao
i

∂R Ãw
i

∂A
g
i

∂RAo
i

∂pi

∂RAo
i

∂Ao
i

∂RAo
i

∂A
g
i

∂R
A

g
i

∂pi

∂R
A

g
i

∂Ao
i

∂R
A

g
i

∂A
g
i

 (A.12)

Note that, due to the choice for an upwind scheme, the residuals in grid cell i only depend on accumulations
in grid cells i −1 and i and. And due to the choice for a central difference scheme, the residual in grid cell i
only depend on the pressure in grid cells i −1, i and i +1. Therefore Ji j ≡ 0 for j 6= i −1, i , i +1.
First the partial derivatives of the residuals with respect to pressure will be determined. For the substituted
water saturation residual (A.2) the following holds:

∂R Ãw
i

∂pi−1
=−∆t

∆x
∆y∆zK

ρw

µw kw
ri−1

(A.13)

∂R Ãw
i

∂pi
=−∆t

∆x
∆y∆zK

ρw

µw (−kw
ri
−kw

ri−1
)

= ∆t

∆x
∆y∆zK

ρw

µw (kw
ri
+kw

ri−1
) (A.14)

∂R Ãw
i

∂pi+1
=−∆t

∆x
∆y∆zK

ρw

µw kw
ri

(A.15)

For the oil saturation residual (3.25) the following holds:

∂RAo
i

∂pi−1
=−∆t

∆x
∆y∆zK

ρo

µo ko
ri−1

(A.16)

∂RAo
i

∂pi
=−∆t

∆x
∆y∆zK

ρo

µo (−ko
ri
−ko

ri−1
)

= ∆t

∆x
∆y∆zK

ρo

µo (ko
ri
+ko

ri−1
) (A.17)

∂RAo
i

∂pi+1
=−∆t

∆x
∆y∆zK

ρo

µo ko
ri

(A.18)
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And for the gas saturation residual (3.25) similar expressions as for the substituted water residual are ob-
tained:

∂RA
g
i

∂pi−1
=−∆t

∆x
∆y∆zK

ρg

µg kg
ri−1

(A.19)

∂RA
g
i

∂pi
=−∆t

∆x
∆y∆zK

ρg

µg (−kg
ri
−kg

ri−1
)

= ∆t

∆x
∆y∆zK

ρg

µg (kg
ri
+kg

ri−1
) (A.20)

∂RA
g
i

∂pi+1
=−∆t

∆x
∆y∆zK

ρg

µg kg
ri

(A.21)

Secondly, the partial derivatives of the residuals with respect to the oil accumulation are determined. Using
equations (A.4) and (A.8), the following holds for the substituted water saturation residual (A.2):

∂R Ãw
i

∂Ao
i−1

=−∆t

∆x
∆y∆zK

ρw

µw

[
− 1

φ∆x∆y∆zρo
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=− ∆t
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(A.22)
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(A.23)

∂R Ãw
i

∂Ao
i+1

= 0 (A.24)

Using equations (A.4) and (A.6), the following holds for the oil saturation residual (3.25):

∂RAo
i

∂Ao
i−1
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∆y∆zKρo 1
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− 1
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(A.25)
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[
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(A.26)

∂RAo
i

∂Ao
i+1

= 0 (A.27)
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And for the gas saturation residual (3.25) the following is obtained:

∂RA
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∂RA
g
i

∂Ao
i+1

= 0 (A.30)

Finally, the partial derivatives of the residuals with respect to the gas accumulation are determined. Using
equations (A.4) and (A.9), the following holds for the substituted water saturation residual (A.2):
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∂R Ãw
i
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= 0 (A.33)

Using equations (A.4) and (A.7), the following holds for the oil saturation residual (3.25):
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∂RAo
i

∂Ag
i+1

= 0 (A.36)



74 A. Derivation of Jacobian for Newton-Raphson

Finally, using equations (A.4) and (A.11), the following holds for the gas saturation residual (3.25):

∂RA
g
i
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=−∆t

∆x
∆y∆zKρg 1
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∂RA
g
i

∂Ag
i+1

= 0 (A.39)



B
Relatives permeabilities and their

derivatives for interpolation I, II and III

In this appendix the derivation of the expressions for the three-phase relative permeability of all three phases
using interpolation I, II and III are given. Sections 4.3.1, 4.3.2 and 4.3.3 describe how this derivation works for
the oil relative permeability. For the other two phases the derivation is similar. This means that the satura-
tions S̃ on the two-phase edges have to be determined after which linear interpolation between the relative
permeabilities for these saturations is used to obtain the three-phase relative permeability. For oil relative
permeability interpolation is done between the two-phase relative permeabilities of a water-oil and oil-gas
system. Similarly, to obtain the water relative permeability interpolation is used between the two-phase rel-
ative permeabilities of a water-oil and water-gas system. And for the gas relative permeability interpolation
is used between the two-phase relative permeabilities of a oil-gas and water-gas system. For the two-phase
relative permeabilities the following is assumed:

kwo
r = kwo

r (Sw )

kow
r = kow

r (Sw )

kg o
r = kg o

r (Sg )

kog
r = kog

r (Sg )

kw g
r = kw g

r (Sw )

kg w
r = kg w

r (Sw )

Here kα1α2
r is used to denote the relative permeability of phase α1 in a α1-α2 system, e.g. kw g

r denotes the
relative permeability of water in a water-gas system. Furthermore, if for all two-phase relative permeabilities
Corey-correlations with zero residual saturations and endpoint equal to one are assumed, the two-phase
relative permeabilities are given:

kwo
r = kwo

r (Sw ) = (Sw )nwo (B.1)

kow
r = kow

r (Sw ) = (1−Sw )now (B.2)

kg o
r = kg o

r (Sg ) = (Sg )ng o (B.3)

kog
r = kog

r (Sg ) = (1−Sg )nog (B.4)

kw g
r = kw g

r (Sw ) = (Sw )nw g (B.5)

kg w
r = kg w

r (Sw ) = (1−Sw )ng w (B.6)

B.1. Interpolation I
For interpolation I the two-phase relative permeabilities are taken at the saturations S̃ that lie on the isosatu-
ration line through the point in the interior at which the three-phase relative permeability is to be computed,
see Figure B.1. Note that for the interpolation of the gas and water relative permeabilities the oil saturation
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is used. But the relative permeabilities can be rewritten as functions of Sw and Sg using that the saturations
sum up to one.

0

1

1

S̃g

S̃w

(Sw ,Sg )

Sw

Sg

(a) Oil relative permeability

0

1

1

S̃g

S̃o

(So ,Sg )

So

Sg

(b) Water relative permeability

0

1

1

S̃o

S̃w

(Sw ,So )

Sw

So

(c) Gas relative permeability

Figure B.1: Construction of interpolation I to obtain three-phase relative permeability for oil (a), water (b) and gas (c). The isosaturation
is shown in red.

B.1.1. Oil
To obtain the three-phase relative permeability of oil S̃w and S̃g have to be determined and then linear inter-
polation has to be used, see Figure B.1a. Since So = 1−Sw −Sg and since S̃w and S̃g lie on the oil isosaturion
and on the OW edge and OG edge respectively, the following holds:

So = 1− S̃g

So = 1− S̃w

So = 1−Sw −Sg

Therefore,
S̃w = S̃g = Sw +Sg

Then, linear interpolation is used between the oil relative permeabilities in S̃w and S̃g on the two edges to
obtain the oil relative permeability for the interior point (Sw ,Sg ). Note that S̃w and S̃g lie on the oil-water
and oil-gas edge respectively. Therefore the oil relative permeability in these points is given by the two-phase
relative permeabilities kow

r (S̃w ) and kog
r (S̃g ). The three-phase oil relative permeability is then given by:

ko
r (Sw ,Sg ) = Sw

Sw +Sg kow
r (S̃w )+ Sg

Sw +Sg kog
r (S̃g )

= Sw

Sw +Sg kow
r (Sw +Sg )+ Sg

Sw +Sg kog
r (Sw +Sg ) (B.7)

B.1.2. Water
To find the water relative permeability interpolation is done between the relative permeabilities in the water-
gas and water-oil system. This means S̃o and S̃g have to be determined and subsequently linear interpolation
is used, see Figure B.1b. Since Sw = 1−So −Sg and since S̃o and S̃g lie on the water isosaturion and on the
OW and WG edge respectively, the following holds:

Sw = 1− S̃g

Sw = 1− S̃o

Sw = 1−So −Sg

Therefore,
S̃o = S̃g = So +Sg

The two-phase relative permeabilities can be written in term of S̃g and S̃o as follows:

kw g
r = kw g

r (Sw ) = kw g
r (1− S̃g ) (B.8)

kwo
r = kwo

r (Sw ) = kwo
r (1− S̃o) (B.9)
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The three-phase water relative permeability is then given by:

kw
r (So ,Sg ) = So

So +Sg kwo
r (1− S̃o)+ Sg

So +Sg kw g
r (1− S̃g )

= So

So +Sg kwo
r (1−So −Sg )+ Sg

So +Sg kw g
r (1−So −Sg ) (B.10)

Using that the sum of the saturation is one, such that So = 1−Sw −Sg , the relative permeability kw
r can be

rewritten as function of Sw and Sg :

kw
r (Sw ,Sg ) = 1−Sw −Sg

1−Sw −Sg +Sg kwo
r (1− (1−Sw −Sg )−Sg )+ Sg

1−Sw −Sg +Sg kw g
r (1− (1−Sw −Sg )−Sg )

= 1−Sw −Sg

1−Sw kwo
r (Sw )+ Sg

1−Sw kw g
r (Sw ) (B.11)

B.1.3. Gas
To find the gas relative permeability interpolation must be done between the relative permeabilities in the
water-gas and oil-gas system. This means S̃o and S̃w have to be determined and subsequently linear inter-
polation has to be used, see Figure B.1c. Since Sg = 1−So −Sw and since S̃o and S̃w lie on the gas isosaturion
and on the OG edge and WG edge respectively the following holds:

Sg = 1− S̃w

Sg = 1− S̃o

Sg = 1−So −Sw

Therefore,

S̃o = S̃w = So +Sw

For the two-phase relative permeabilities this means that:

kg w
r = kg w

r (S̃w ) (B.12)

kg o
r = kg o

r (Sg ) = kg o
r (1− S̃o) (B.13)

The three-phase gas relative permeability is then given by:

kg
r (Sw ,So) = So

So +Sw kg o
r (1− S̃o)+ Sg

So +Sw kg w
r (S̃w )

= So

So +Sw kg o
r (1−So −Sw )+ Sg

So +Sw kg w
r (So +Sw ) (B.14)

Using that the sum of the saturation is one, such that So = 1−Sw −Sg , the relative permeability kg
r can be

rewritten as function of Sw and Sg :

kg
r (Sw ,Sg ) = 1−Sw −Sg

1−Sw −Sg +Sw kg o
r (1− (1−Sw −Sg )−Sw )+ Sg

1−Sw −Sg +Sw kg w
r (1−Sw −Sg +Sw )

= 1−Sw −Sg

1−Sg kg o
r (Sg )+ Sw

1−Sg kg w
r (1−Sg ) (B.15)

B.2. Interpolation II
For interpolation II the two-phase relative permeabilities are taken at the saturations S̃ that lie on a circle,
with the origin as the centre, through the point of interest in the interior at which the three-phase relative
permeability is to be computed, see Figure B.2. Note that for the gas and water relative permeabilities the oil
saturation is used. But the relative permeabilities can be rewritten as functions of Sw and Sg using that the
saturations sum up to one.
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(a) Oil relative permeability
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(b) Water relative permeability
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(c) Gas relative permeability

Figure B.2: Construction of interpolation II to obtain three-phase relative permeability for oil (a), water (b) and gas (c). The circle
through the interior point for which the relative permeability is computed is shown in red.

B.2.1. Oil
To obtain the three-phase relative permeability of oil S̃w and S̃g must be determine and subsequently linear

interpolation is used. From Figure B.2a it follows that S̃w = S̃g = R =
√

(Sw )2 + (Sg )2 . Then linear interpola-
tion is used between the oil relative permeabilities in S̃w and S̃g on the two edges to obtain the oil relative
permeability for the interior point (Sw ,Sg ). Note that S̃w and S̃g lie on the water-oil and oil-gas edge respec-
tively. Therefore the oil relative permeability in these points is given by the two-phase relative permeabilities
kow

r (S̃w ) and kog
r (S̃g ). The three-phase oil relative permeability is then given by:

ko
r (Sw ,Sg ) = Sw

Sw +Sg kow
r (S̃w )+ Sg

Sw +Sg kog
r (S̃g )

= Sw

Sw +Sg kow
r

(√
(Sw )2 + (Sg )2

)
+ Sg

Sw +Sg kog
r

(√
(Sw )2 + (Sg )2

)
(B.16)

B.2.2. Water
From Figure B.2b it follows that S̃o = S̃g = R=

√
(So)2 + (Sg )2 . Then linear interpolation is used between the

water relative permeabilities in S̃o and S̃g on the two edges to obtain the water relative permeability for the
interior points. For the two-phase relative permeabilities kw g

r and kwo
r are assumed to be functions of Sw , so:

kw g
r = kw g

r (1− S̃g ) (B.17)

kwo
r = kwo

r (1− S̃o) (B.18)

The three-phase water relative permeability is then given by:

kw
r (So ,Sg ) = So

So +Sg kwo
r (1− S̃o)+ Sg

So +Sg kw g
r (1− S̃g )

= So

So +Sg kwo
r

(
1−

√
(So)2 + (Sg )2

)
+ Sg

So +Sg kw g
r

(
1−

√
(So)2 + (Sg )2

)
(B.19)

Using that the sum of the saturations is one, such that So = 1−Sw −Sg , the relative permeability kw
r can be

rewritten as function of Sw and Sg :

kw
r (Sw ,Sg ) = 1−Sw −Sg

1−Sw −Sg +Sg kwo
r

(
1−

√
(So)2 + (Sg )2

)
+ Sg

1−Sw −Sg +Sg kw g
r

(
1−

√
(So)2 + (Sg )2

)
= 1−Sw −Sg

1−Sw kwo
r

(
1−

√
(So)2 + (Sg )2

)
+ Sg

1−Sw kw g
r

(
1−

√
(So)2 + (Sg )2

)
(B.20)

with

(So)2 + (Sg )2 = (1−Sw −Sg )2 + (Sg )2

= 1−2Sw −2Sg +2Sw Sg + (Sw )2 +2(Sg )2
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B.2.3. Gas
From Figure B.2c it follows that S̃o = S̃w = R =

√
(So)2 + (Sw )2 . Then linear interpolation is used between

the gas relative permeabilities in S̃o and S̃w on the two edges to obtain the gas relative permeability for the
interior points. For the two-phase relative permeabilities kg w

r is assumed to be a function of Sw and kg o
r to

be a function of Sg , which means that:

kg w
r = kg w

r (S̃w ) (B.21)

kg o
r = kg o

r (1− S̃o) (B.22)

The three-phase gas relative permeability is then given by:

kg
r (Sw ,So) = So

So +Sw kg o
r (1− S̃o)+ Sw

So +Sw kg w
r (S̃w )

= So

So +Sw kg o
r

(
1−

√
(So)2 + (Sw )2

)
+ Sw

So +Sw kg w
r

(√
(So)2 + (Sw )2

)
(B.23)

Using that the sum of the saturation is one, such that So = 1−Sw −Sg , the relative permeability kg
r can be

rewritten as function of Sw and Sg :

kg
r (Sw ,Sg ) = 1−Sw −Sg

1−Sw −Sg +Sw kg o
r

(
1−

√
(So)2 + (Sw )2

)
+ Sw

1−Sw −Sg +Sw kg w
r

(√
(So)2 + (Sw )2

)
= 1−Sw −Sg

1−Sg kg o
r

(
1−

√
(So)2 + (Sw )2

)
+ Sw

1−Sg kg w
r

(√
(So)2 + (Sw )2

)
(B.24)

with

(So)2 + (Sw )2 = (1−Sw −Sg )2 + (Sw )2

= 1−2Sw −2Sg +2Sw Sg +2(Sw )2 + (Sg )2

B.3. Interpolation III
Interpolation III is a combination of interpolation I and interpolation II. Interpolation I is used for the low
saturation values to ensure that the relative permeability goes to zero when the saturation goes to zero. Inter-
polation II is used for the smaller saturation values to obtain more concave isoperms for this region. Writing
kα,I

r and kα,I I
r for the relative permeability of phase α obtained from interpolation I and interpolation II re-

spectively the relative permeabilities obtained using interpolation III are given by:

ko
r (Sw ,Sg ) = Soko,I I

r (Sw ,Sg )+ (1−So)ko,I
r (Sw ,Sg )

= (1−Sw −Sg )ko,I I
r (Sw ,Sg )+ (Sw +Sg )ko,I

r (Sw ,Sg ) (B.25)

kw
r (Sw ,Sg ) = Sw kw,I I

r (Sw ,Sg )+ (1−Sw )kw,I
r (Sw ,Sg ) (B.26)

kg
r (Sw ,Sg ) = Sg kg ,I I

r (Sw ,Sg )+ (1−Sg )kg ,I
r (Sw ,Sg ) (B.27)

B.4. Derivatives of the relative permeabilities
In this section the derivatives of the relative permeabilities with respect to the water saturation and gas sat-
uration are determined. These derivative are used to determine the qualitative behavior of the curves by
Holden and to determine the direction of the eigenvectors on the edges of the ternary diagram.

B.4.1. Interpolation I
Oil
Equation (B.7) gives the following for the oil relative permeability:

ko
r = Sw kow

r (S̃ I
o)+Sg kog

r (S̃ I
o)

Sw +Sg (B.28)

where S̃ I
o is used to denote the S̃ used for interpolation I to obtain the oil relative permeability and is given by

S̃ I
o = Sw +Sg . This gives:

∂S̃ I
o

∂Sw = ∂S̃ I
o

∂Sg = 1
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This means that the following holds for the derivatives of the oil relative permeability:

∂So

∂Sw =
(
Sw +Sg

)[
kow

r (S̃ I
o)+Sw kow ′

r (S̃ I
o)+Sg kog ′

r (S̃ I
o)

]
− [

Sw kow
r (S̃ I

o)+Sg kog
r (S̃ I

o)
] ·1

(Sw +Sg )2

= 1

Sw +Sg

[
kow

r (S̃ I
o)+Sw kow ′

r (S̃ I
o)+Sg kog ′

r (S̃ I
o)−ko

r (Sw ,Sg )
]

=
(Sw +Sg )

[
Sw kow ′

r (S̃ I
o)+Sg kog ′

r (S̃ I
o)

]
+Sg

[
kow

r (S̃ I
o)−kog

r (S̃ I
o)

]
(Sw +Sg )2 (B.29)

∂So

∂Sg =
(
Sw +Sg

)[
Sw kow ′

r (S̃ I
o)+kog

r (S̃ I
o)+Sg kog ′

r (S̃ I
o)

]
− [

Sw kow
r (S̃ I

o)+Sg kog
r (S̃ I

o)
] ·1

(Sw +Sg )2

= 1

Sw +Sg

[
Sw kow ′

r (S̃ I
o)+kog

r (S̃ I
o)+Sg kog ′

r (S̃ I
o)−ko

r (Sw ,Sg )
]

=
(Sw +Sg )

[
Sw kow ′

r (S̃ I
o)+Sg kog ′

r (S̃ I
o)

]
+Sw

[
kog

r (S̃ I
o)−kow

r (S̃ I
o)

]
(Sw +Sg )2 (B.30)

Where kow ′
r = dkow

r
dSw and kog ′

r = dk
og
r

dSg .

Water

To obtain the derivatives of the water relative permeability, equation (B.11) is used:

kw
r = (1−Sw −Sg )kwo

r (Sw )+Sg kw g
r (Sw )

1−Sw (B.31)

The derivatives of the water relative permeability to water and gas saturation are then given by:

∂kw
r

∂Sw =
(1−Sw )

[
−kwo

r (Sw )+ (1−Sw −Sg )kwo′
r (Sw )+Sg kw g ′

r (Sw )
]
− [

(1−Sw −Sg )kwo
r (Sw )+Sg kw g

r (Sw )
] · (−1)

(1−Sw )2

= 1

1−Sw

[
−kwo

r (Sw )+ (1−Sw −Sg )kwo′
r (Sw )+Sg kw g ′

r (Sw )+kw
r (Sw ,Sg )

]

=
(1−Sw )

[
(1−Sw −Sg )kwo′

r (Sw )+Sg kw g ′
r (Sw )

]
+Sg

[
kw g

r (Sw )−kwo
r (Sw )

]
(1−Sw )2 (B.32)

∂kw
r

∂Sg = −1 ·kwo
r (Sw )+kw g

r (Sw )

1−Sw

= kw g
r (Sw )−kwo

r (Sw )

1−Sw (B.33)

Where kw g ′
r = dk

w g
r

dSw and kwo′
r = dkwo

r
dSw

Gas

Finally, for the gas relative permeability, equation (B.15) is used:

kg
r = (1−Sw −Sg )kg o

r (Sg )+Sw kg w
r (1−Sg )

1−Sg (B.34)
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This means that the following holds for the derivatives of the gas relative permeability:

∂kg
r

∂Sw = 1

1−Sg

[−kg o
r (Sg )+kg w

r (1−Sg )
]

= kg w
r (1−Sg )−kg o

r (Sg )

1−Sg (B.35)

∂kg
r

∂Sg =
(1−Sg )

[
−kg o

r (Sg )+ (1−Sw −Sg )kg o′
r (Sg )+Sw kg w ′

r (1−Sg ) · (−1)
]
− [

(1−Sw −Sg )kg o
r (Sg )+Sw kg w

r (1−Sg )
] · (−1)

(1−Sg )2

= 1

1−Sg

[
−kg o

r (Sg )+ (1−Sw −Sg )kg o′
r (Sg )−Sw kg w ′

r (1−Sg )+kg
r (Sw ,Sg )

]

=
(1−Sg )

[
(1−Sw −Sg )kg o′

r (Sg )−Sw kg w ′
r (1−Sg )

]
+Sw

[
kg w

r (1−Sg )−kg o
r (Sg )

]
(1−Sg )2 (B.36)

Where kg o′
r = dk

g o
r

dSg and kg w ′
r = dk

g w
r

dSw .

B.4.2. Interpolation II
Oil
To determine the derivatives of the oil relative permeability recall that for interpolation II the following holds,
see equation (B.16):

ko
r = Sw kow

r (S̃ I I
o )+Sg kog

r (S̃ I I
o )

Sw +Sg (B.37)

where S̃ I I
o =

√
(Sw )2 + (Sg )2 , which means that:

∂S̃ I I
o

∂Sw = 1

2
√

(Sw )2 + (Sg )2
·2Sw = Sw√

(Sw )2 + (Sg )2
= Sw

S̃ I I
o

∂S̃ I I
o

∂Sg = 1

2
√

(Sw )2 + (Sg )2
·2Sg = Sg√

(Sw )2 + (Sg )2
= Sg

S̃ I I
o

Using these expressions, the derivatives of the oil relative permeability to the water and gas saturation are
given by:

∂ko
r

∂Sw =
(
Sw +Sg

)[
kow

r (S̃ I I
o )+Sw kow ′

r (S̃ I I
o )

∂S̃ I I
o

∂Sw +Sg kog ′
r (S̃ I I

o )
∂S̃ I I

o
∂Sw

]
− [

Sw kow
r (S̃ I I

o )+Sg kog
r (S̃ I I

o )
] ·1

(Sw +Sg )2

= 1

Sw +Sg

[
kow

r (S̃ I I
o )+Sw kow ′

r (S̃ I I
o )

Sw

S̃ I I
o

+Sg kog ′
r (S̃ I I

o )
Sw

S̃ I I
o

−ko
r (Sw ,Sg )

]

=
(Sw +Sg ) Sw

S̃ I I
o

[
Sw kow ′

r (S̃ I I
o )+Sg kog ′

r (S̃ I I
o )

]
+Sg

[
kow

r (S̃ I I
o )−kog

r (S̃ I I
o )

]
(Sw +Sg )2 (B.38)

∂ko
r

∂Sg =
(
Sw +Sg

)[
Sw kow ′

r (S̃ I I
o )

∂S̃ I I
o

∂Sg +kog
r (S̃ I I

o )+Sg kog ′
r (S̃ I I

o )
∂S̃ I I

o
∂Sg

]
− [

Sw kow
r (S̃ I I

o )+Sg kog
r (S̃ I I

o )
] ·1

(Sw +Sg )2

= 1

Sw +Sg

[
Sw kow ′

r (S̃ I I
o )

Sg

S̃ I I
o

+kog
r (S̃ I I

o )+Sg kog ′
r (S̃ I I

o )
Sg

S̃ I I
o

−ko
r (Sw ,Sg )

]

=
(Sw +Sg ) Sg

S̃ I I
o

[
Sw kow ′

r (S̃ I I
o )+Sg kog ′

r (S̃ I I
o )

]
+Sw

[
kog

r (S̃ I I
o )−kow

r (S̃ I I
o )

]
(Sw +Sg )2 (B.39)

Water
To obtain the derivatives of the water relative permeability recall that for interpolation II the following holds,
see equation (B.20):

kw
r = (1−Sw −Sg )kwo

r (1− S̃ I I
w )+Sg kw g

r (1− S̃ I I
w )

1−Sw (B.40)
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with S̃ I I
w =

√
(So)2 + (Sg )2 =

√
1−2Sw −2Sg +2Sw Sg + (Sw )2 +2(Sg )2 , so:

∂S̃ I I
w

∂Sw = 1

2
√

(So)2 + (Sg )2
(−2+2Sg +2Sw ) = −1+Sw +Sg√

(So)2 + (Sg )2
= −So√

(So)2 + (Sg )2

∂S̃ I I
w

∂Sg = 1

2
√

(Sw )2 + (Sg )2
(−2+2Sw +4Sg ) = −1+Sw +2Sg√

(Sw )2 + (Sg )2
= Sg −So√

(So)2 + (Sg )2

Therefore the derivatives of the water relative permeability to water and gas saturation are given by:

∂kw
r

∂Sw = 1

(1−Sw )2

{
(1−Sw )

[
−kwo

r (1− S̃ I I
w )+ (1−Sw −Sg )kwo′

r (1− S̃ I I
w ) · −∂S̃ I I

w

∂Sw +Sg kw g ′
r (1− S̃ I I

w ) · −∂S̃ I I
w

∂Sw

]

− [
(1−Sw −Sg )kwo

r (1− S̃ I I
w )+Sg kw g

r (1− S̃ I I
w )

] · (−1)

}

= 1

1−Sw

[
−kwo

r (1− S̃ I I
w )− (1−Sw −Sg )kwo′

r (1− S̃ I I
w )

∂S̃ I I
w

∂Sw −Sg kw g ′
r (1− S̃ I I

w )
∂S̃ I I

w

∂Sw +kw
r (Sw ,Sg )

]

=
−(1−Sw )

∂S̃ I I
w

∂Sw

[
(1−Sw −Sg )kwo′

r (1− S̃ I I
w )+Sg kw g ′

r (1− S̃ I I
w )

]
+Sg

[
kw g

r (1− S̃ I I
w )−kwo

r (1− S̃ I I
w )

]
(1−Sw )2 (B.41)

∂kw
r

∂Sg = −1 ·kwo
r (1− S̃ I I

w )+ (1−Sw −Sg )kwo′
r (1− S̃ I I

w )
−∂S̃ I I

w
∂Sg +kw g

r (1− S̃ I I
w )+Sg kw g ′

r (1− S̃ I I
w )

−∂S̃ I I
w

∂Sg

1−Sw

=
−∂S̃ I I

w
∂Sg

{
(1−Sw −Sg )kwo′

r (1− S̃ I I
w )+Sg kw g ′

r (1− S̃ I I
w )

}
+kw g

r (1− S̃ I I
w )−kwo

r (1− S̃ I I
w )

1−Sw (B.42)

Gas

Finally, for the gas relative permeability recall that for interpolation II the following holds, see equation (B.24):

kg
r =

(1−Sg −Sw )kg o
r (1− S̃ I I

g )+Sw kg w
r (S̃ I I

g )

1−Sg (B.43)

with S̃ I I
g =

√
(So)2 + (Sw )2 =

√
1−2Sw −2Sg +2Sw Sg +2(Sw )2 + (Sg )2 , which gives:

∂S̃ I I
g

∂Sw = 1

2
√

(So)2 + (Sw )2
(−2+2Sg +4Sw ) = −1+2Sw +Sg√

(So)2 + (Sw )2
= Sw −So√

(So)2 + (Sw )2

∂S̃ I I
g

∂Sg = 1

2
√

(So)2 + (Sw )2
(−2+2Sw +2Sg ) = −1+Sw +Sg√

(So)2 + (Sw )2
= −So√

(So)2 + (Sw )2
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This means that the following holds for the derivatives of the gas relative permeability:

∂kg
r

∂Sw =
−kg o

r (1− S̃ I I
g )+ (1−Sw −Sg )kg o′

r (1− S̃ I I
g )

−∂S̃ I I
g

∂Sw +kg w
r (S̃ I I

g )+Sw kg w ′
r (S̃ I I

g )
∂S̃ I I

g

∂Sw

1−Sg

=
∂S̃ I I

g

∂Sw

[
Sw kg w ′

r (S̃ I I
g )− (1−Sw −Sg )kg o′

r (1− S̃ I I
g )

]
+kg w

r (S̃ I I
g )−kg o

r (1− S̃ I I
g )

1−Sg (B.44)

∂kg
r

∂Sg = 1

(1−Sg )2

{
(1−Sg )

[
−kg o

r (1− S̃ I I
g )+ (1−Sw −Sg )kg o′

r (1− S̃ I I
g )

−∂S̃ I I
g

∂Sg +Sw kg w ′
r (S̃ I I

g )
∂S̃ I I

g

∂Sg

]

−
[

(1−Sw −Sg )kg o
r (1− S̃ I I

g )+Sw kg w
r (S̃ I I

g )
]
· (−1)

}

= 1

1−Sg

[
−kg o

r (1− S̃ I I
g )− (1−Sw −Sg )kg o′

r (1− S̃ I I
g )

∂S̃ I I
g

∂Sg +Sw kg w ′
r (S̃ I I

g )
∂S̃ I I

g

∂Sg +kg
r (Sw ,Sg )

]

=
(1−Sg )

∂S̃ I I
g

∂Sg

[
Sw kg w ′

r (S̃ I I
g )− (1−Sw −Sg )kg o′

r (1− S̃ I I
g )

]
+Sw

[
kg w

r (S̃ I I
g )−kg o

r (1− S̃ I I
g )

]
(1−Sg )2 (B.45)

B.4.3. Interpolation III

To determine the derivatives of the relative permeabilities, equations (B.25), (B.26) and (B.27) are used:

ko
r (Sw ,Sg ) = (1−Sw −Sg )ko,I I

r (Sw ,Sg )+ (Sw +Sg )ko,I
r (Sw ,Sg )

kw
r (Sw ,Sg ) = Sw kw,I I

r (Sw ,Sg )+ (1−Sw )kw,I
r (Sw ,Sg )

kg
r (Sw ,Sg ) = Sg kg ,I I

r (Sw ,Sg )+ (1−Sg )kg ,I
r (Sw ,Sg )

Recall that kα,I
r and kα,I I

r are used to denote the relative permeability of phaseα obtained using interpolation
I and interpolation II respectively. This gives the following for the derivatives:

∂ko
r

∂Sw =−ko,I I
r + (1−Sw −Sg )

∂ko,I I
r

∂Sw +ko,I
r + (Sw +Sg )

∂ko,I
r

∂Sw (B.46)

∂ko
r

∂Sg =−ko,I I
r + (1−Sw −Sg )

∂ko,I I
r

∂Sg +ko,I
r + (Sw +Sg )

∂ko,I
r

∂Sg (B.47)

∂kw
r

∂Sw = kw,I I
r +Sw ∂kw,I I

r

∂Sw −kw,I
r + (1−Sw )

∂kw,I
r

∂Sw (B.48)

∂kw
r

∂Sg = Sw ∂kw,I I
r

∂Sg + (1−Sw )
∂kw,I

r

∂Sg (B.49)

∂kg
r

∂Sw = Sg ∂kg ,I I
r

∂Sw + (1−Sg )
∂kg ,I

r

∂Sw (B.50)

∂kg
r

∂Sg = kg ,I I
r +Sg ∂kg ,I I

r

∂Sg −kg ,I
r + (1−Sg )

∂kg ,I
r

∂Sg (B.51)

B.4.4. Derivatives at edges of ternary diagram

At the edges of the ternary diagram it is possible to be more explicit since the two-phase relative permeabil-
ities are known. Recall that Corey-Correlations with zero residual saturations and endpoint equal to one are
assumed for all the two-phase relative permeabilities. The derivatives for all phases at all edges for interpo-
lation I and III are given in Table B.1. In this section the derivation of these expressions is worked out in full
detail for the OW edge. Note that only the edges will be considered and not the corners, i.e. 0 < Sw ,So < 1.
The derivation for the expressions on the other two edges is similar and is therefore omitted.



84 B. Relatives permeabilities and their derivatives for interpolation I, II and III

Oil
At the OW edge the gas saturation is zero such that Sg = 0 and So = 1−Sw . Therefore:

S̃ I
o = Sw +Sg = Sw (B.52)

S̃ I I
o =

√
(Sw )2 + (Sg )2 = Sw (B.53)

Substituting this in the equations (B.7), (B.29) and (B.30) the oil relative permeability and its derivatives using
interpolation I reduce to:

ko,I
r = kow

r (Sw ) (B.54)

∂ko,I
r

∂Sw =
(Sw +0)

[
Sw kow ′

r (Sw )+0 ·kog ′
r (Sw )

]
+0 · [kow

r (Sw )−kog
r (Sw )

]
(Sw )2

= kow ′
r (Sw ) (B.55)

∂ko,I
r

∂Sg =
(Sw +0)

[
Sw kow ′

r (Sw )+0 ·kog ′
r (Sw )]

]
+Sw

[
kog

r (Sw )−kow
r (Sw )

]
(Sw )2

= kow ′
r (Sw )+ 1

Sw

[
kog

r (Sw )−kow
r (Sw )

]
(B.56)

For interpolation II first note that:

∂S̃ I I
o

∂Sw = Sw√
(Sw )2 +02

= 1

∂S̃ I I
o

∂Sg = 0√
(Sw )2 +02

= 0

Then substituting these expressions and equation (B.53) in equations (B.16), (B.38) and (B.39) gives:

ko,I I
r = kow

r (Sw ) (B.57)

∂ko,I I
r

∂Sw =
(Sw +0) ·1 ·

[
Sw kow ′

r (Sw )+0 ·kog ′
r (Sw )

]
+0 · [kow

r (Sw )−kog
r (Sw )

]
(Sw )2

= kow ′
r (Sw ) (B.58)

∂ko,I I
r

∂Sg =
(Sw +0) ·0 ·

[
Sw kow ′

r (Sw )+0 ·kog ′
r (Sw )

]
+Sw

[
kog

r (Sw )−kow
r (Sw )

]
(Sw )2

= 1

Sw

[
kog

r (Sw )−kow
r (Sw )

]
(B.59)

To obtain the behavior of the interpolation III on the OW edge, the expressions for interpolation I and inter-
polation II are substituted in equations (B.25), (B.46) and (B.47). Therefore:

ko,I I I
r = (1−Sw )ko,I I

r +Sw ko,I
r

= (1−Sw )kow
r +Sw kow

r

= kow
r (B.60)

∂ko,I I I
r

∂Sw =−ko,I I
r + (1−Sw )

∂ko,I I
r

∂Sw +ko,I
r +Sw ∂ko,I

r

∂Sw

=−kow
r + (1−Sw )kow ′

r (Sw )+kow
r +Sw kow ′

r (Sw )

= kow ′
r (Sw ) (B.61)

∂ko,I I I
r

∂Sg =−ko,I I
r + (1−Sw )

∂ko,I I
r

∂Sg +ko,I
r +Sw ∂ko,I

r

∂Sg

=−kow
r + (1−Sw )

1

Sw

[
kog

r (Sw )−kow
r (Sw )

]+kow
r +Sw

{
kow ′

r (Sw )+ 1

Sw

[
kog

r (Sw )−kow
r (Sw )

]}
= Sw kow ′

r (Sw )+ 1

Sw

[
kog

r (Sw )−kow
r (Sw )

]
(B.62)
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Water
A similar derivations holds for the water relative permeability. On the OW edge the following holds:

S̃ I
w = So +Sg = S0 = 1−Sw (B.63)

S̃ I I
w =

√
(So)2 + (Sg )2 =

√
(1−Sw )2 = 1−Sw (B.64)

Substituting equation (B.63) into the expression for the water relative permeability and its derivatives, see
equations (B.11), (B.32) and (B.33) gives:

kw,I
r = (1−Sw −0)kwo

r (Sw )+0 ·kw g
r (Sw )

1−Sw

= kwo
r (Sw ) (B.65)

∂kw,I
r

∂Sw =
(1−Sw )

[
(1−Sw −0)kwo′

r (Sw )+0 ·kw g ′
r (Sw )

]
+0 · [kw g

r (Sw )−kwo
r (Sw )

]
(1−Sw )2

= kwo′
r (Sw ) (B.66)

∂kw,I
r

∂Sg = 1

1−Sw

[
kw g

r (Sw )−kwo
r (Sw )

]
(B.67)

For interpolation II, first note that:

∂S̃ I I
w

∂Sw = −So√
(So)2 +02

= −(1−Sw )

1−Sw =−1

∂S̃ I I
w

∂Sg = 0−So√
(So)2 +02

= 0− (1−Sw )

1−Sw =−1

Then, substituting the above expressions and equation (B.64) in equation (B.20), (B.41) and (B.42) gives:

kw,I I
r = kwo

r (1− S̃ I I
w )

= kwo
r (Sw ) (B.68)

∂kw,I I
r

∂Sw =
−(1−Sw ) ·−1 ·

[
(1−Sw −0)kwo′

r (1− S̃ I I
w )+0 ·kw g ′

r (1− S̃ I I
w )

]
+0 · [kw g

r (1− S̃ I I
w )−kwo

r (1− S̃ I I
w )

]
(1−Sw )2

= kwo′
r (Sw ) (B.69)

∂kw,I I
r

∂Sg = 1

1−Sw

[
−−1

{
(1−Sw −0)kwo′

r (1− S̃ I I
w )+0 ·kw g ′

r (1− S̃ I I
w )

}
+kw g

r (1− S̃ I I
w )−kwo

r (1− S̃ I I
w )

]
= kwo′

r (Sw )+ 1

1−Sw

[
kw g

r (Sw )−kwo
r (Sw )

]
(B.70)

(B.71)

To obtain the behavior of the interpolation III on the OW edge, the expressions for interpolation I and inter-
polation II are substituted in equations (B.26), (B.48) and (B.49). Therefore:

kw,I I I
r = Sw kw,I I

r + (1−Sw )kw,I
r

= Sw kwo
r + (1−Sw )kwo

r

= kwo
r (B.72)

∂kw,I I I
r

∂Sw = kw,I I
r +Sw ∂kw,I I

r

∂Sw −kw,I
r + (1−Sw )

∂kw,I
r

∂Sw

= kwo
r (Sw )+Sw kwo′

r (Sw )−kwo
r (Sw )+ (1−Sw )kwo′

r (Sw )

= kwo′
r (Sw ) (B.73)

∂kw,I I I
r

∂Sg = Sw ∂kw,I I
r

∂Sg + (1−Sw )
∂kw,I

r

∂Sg

= Sw
[

kwo′
r (Sw )+ 1

1−Sw

(
kw g

r (Sw )−kwo
r (Sw )

)]+ (1−Sw )
1

1−Sw

[
kw g

r (Sw )−kwo
r (Sw )

]
= Sw kwo′

r (Sw )+ 1

1−Sw

[
kw g

r (Sw )−kwo
r (Sw )

]
(B.74)
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Gas

Finally, the derivatives of the gas relative permeability on the OW edge are determined. On the OW edge the
following holds:

S̃ I
g = So +Sw = 1−Sw +Sw = 1 (B.75)

S̃ I I
g =

√
(So)2 + (Sw )2 =

√
(1−Sw )2 + (Sw )2 =

√
2(Sw )2 −2Sw +1 (B.76)

Note that kg o
r (0) = kg w

r (1) = kg o′
r (0) = kg w ′

r (1) = 0 since Corey-correlations with zero residual saturations and
endpoints equal to one are assumed for the two-phase relative permeabilities. Substituting equation (B.75)
in equations (B.15), (B.35) and (B.36) gives:

kg ,I
r = (1−Sw )kg o

r (0)+Sw kg w
r (1−0)

1−0
= 0 (B.77)

∂kg ,I
r

∂Sw = kg w
r (1−0)−kg o

r (0)

1−0
= 0 (B.78)

∂kg ,I
r

∂Sg =
(1−0)

[
(1−Sw )kg o′

r (0)−Sw kg w ′
r (1−0)

]
+Sw

[
kg w

r (1−0)−kg o
r (0)

]
(1−0)2 = 0 (B.79)

For interpolation II, first note that:

∂S̃ I I
g

∂Sw = Sw −So√
(So)2 + (Sw )2

= Sw − (1−Sw )√
2(Sw )2 −2Sw +1

= 2Sw −1√
2(Sw )2 −2Sw +1

∂S̃ I I
g

∂Sg = −So√
(So)2 + (Sw )2

= −(1−Sw )√
2(Sw )2 −2Sw +1

Substituting this in equations (B.24), (B.44) and (B.45) gives:

kg ,I I
r =

(1−Sw −0)kg o
r (1− S̃ I I

g )+Sw kg w
r (S̃ I I

g )

1−0
= (1−Sw )kg o

r (1− S̃ I I
g )+Sw kg w

r (S̃ I I
g ) (B.80)

∂kg ,I I
r

∂Sw = 1

1−0

[
2Sw −1√

2(Sw )2 −2Sw +1

{
Sw kg w ′

r (S̃ I I
g )− (1−Sw −0)kg o′

r (1− S̃ I I
g )

}
+kg w

r (S̃ I I
g )−kg o

r (1− S̃ I I
g )

]

= 2Sw −1√
2(Sw )2 −2Sw +1

[
Sw kg w ′

r (S̃ I I
g )− (1−Sw )kg o′

r (1− S̃ I I
g )

]
+kg w

r (S̃ I I
g )−kg o

r (1− S̃ I I
g ) (B.81)

∂kg ,I I
r

∂Sg =
(1−0) −(1−Sw )p

2(Sw )2−2Sw+1

[
Sw kg w ′

r (S̃ I I
g )− (1−Sw −0)kg o′

r (1− S̃ I I
g )

]
+Sw

[
kg w

r (S̃ I I
g )−kg o

r (1− S̃ I I
g )

]
(1−0)2

= −(1−Sw )√
2(Sw )2 −2Sw +1

[
Sw kg w ′

r (S̃ I I
g )− (1−Sw )kg o′

r (1− S̃ I I
g )

]
+Sw

[
kg w

r (S̃ I I
g )−kg o

r (1− S̃ I I
g )

]
(B.82)

Where S̃ I I
g is given by equation (B.76). Note that kg ,I I

r is in general not equal to zero, meaning that the second
interpolation does not result in a zero relative permeability when the saturation goes to zero.
To obtain the behavior of the interpolation III on the OW edge, the expressions for interpolation I and inter-
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polation II are substituted in equations (B.27), (B.50) and (B.51). Therefore:

kg ,I I I
r = 0 ·kg ,I I

r + (1−0)kg ,I
r

= kg ,I
r

= 0 (B.83)

∂kg ,I I I
r

∂Sw = 0 · ∂kg ,I I
r

∂Sw + (1−0)
∂kg ,I

r

∂Sw

= ∂kg ,I
r

∂Sw

= 0 (B.84)

∂kg ,I I I
r

∂Sg = kg ,I I
r +0 · ∂kg ,I I

r

∂Sg −kg ,I
r + (1−0)

∂kg ,I
r

∂Sg

= kg ,I I
r −kg ,I

r + ∂kg ,I
r

∂Sg

= (1−Sw )kg o
r (1− S̃ I I

g )+Sw kg w
r (S̃ I I

g ) (B.85)



88 B. Relatives permeabilities and their derivatives for interpolation I, II and III

Table B.1: Relative permeability and its derivatives with respect to water and gas saturation of all phases on the edges of the ternary
diagram. All derivatives are expressed in terms of the two-phase relative permeabilities kα1α2

r on each edge.

I III

OW edge oil ko
r = kow

r (Sw ) ko
r = kow

r (Sw )

∂ko
r

∂Sw = kow ′
r (Sw )

∂ko
r

∂Sw = kow ′
r (Sw )

∂ko
r

∂Sg = kow ′
r (Sw )+ 1

Sw

[
k

og
r (Sw )−kow

r (Sw )
]

∂ko
r

∂Sg = Sw kow ′
r (Sw )+ 1

Sw

[
k

og
r (Sw )−kow

r (Sw )
]

water kw
r = kwo

r (Sw ) kw
r = kwo

r (Sw )

∂kw
r

∂Sw = kwo′
r (Sw )

∂kw
r

∂Sw = kwo′
r (Sw )

∂kw
r

∂Sg = 1
1−Sw

[
k

w g
r (Sw )−kwo

r (Sw )
]

∂kw
r

∂Sg = Sw kwo′
r (Sw )+ 1

1−Sw

[
k

w g
r (Sw )−kwo

r (Sw )
]

gas k
g
r = 0 k

g
r = 0

∂k
g
r

∂Sw = 0
∂k

g
r

∂Sw = 0

∂k
g
r

∂Sg = 0
∂k

g
r

∂Sg = (1−Sw )k
g o
r (1− S̃ I I

g )+Sw k
g w
r (S̃ I I

g )

with S̃ I I
g =

√
2(Sw )2 −2Sw +1

OG edge oil ko
r = k

og
r (Sg ) ko

r = k
og
r (Sg )

∂ko
r

∂Sw = k
og ′
r (Sg )+ 1

Sg

[
kow

r (Sg )−k
og
r (Sg )

]
∂ko

r
∂Sw = Sg k

og ′
r (Sg )+ 1

Sg

[
kow

r (Sg )−k
og
r (Sg )

]
∂ko

r
∂Sg = k

og ′
r (Sg )

∂ko
r

∂Sg = k
og ′
r (Sg )

water kw
r = 0 kw

r = 0

∂kw
r

∂Sw = 0
∂kw

r
∂Sw = (1−Sg )kwo

r (1− S̃ I I
w )+Sg k

w g
r (1− S̃ I I

w )

with S̃ I I
w =

√
2(Sg )2 −2Sg +1

∂kw
r

∂Sg = 0
∂kw

r
∂Sg = 0

gas k
g
r = k

g o
r (Sg ) k

g
r = k

g o
r (Sg )

∂k
g
r

∂Sw = 1
1−Sg

[
k

g w
r (1−Sg )−k

g o
r (Sg )

]
∂k

g
r

∂Sw = Sg k
g o′
r (Sg )+ 1

1−Sg

[
k

g w
r (1−Sg )−k

g o
r (Sg )

]
∂k

g
r

∂Sg = k
g o′
r (Sg )

∂k
g
r

∂Sg = k
g o′
r (Sg )

WG edge oil ko
r = 0 ko

r = 0

∂ko
r

∂Sw = 0
∂ko

r
∂Sw =−Sw kow

r (S̃ I I
o )−Sg k

og
r (S̃ I I

o )

∂ko
r

∂Sg = 0
∂ko

r
∂Sg =−Sw kow

r (S̃ I I
o )−Sg k

og
r (S̃ I I

o )

with S̃ I I
o =

√
2(Sw )2 −2Sw +1 =

√
2(Sg )2 −2Sg +1

water kw
r = k

w g
r (Sw ) kw

r = k
w g
r (Sw )

∂kw
r

∂Sw = k
w g ′
r (Sw )+ 1

1−Sw

[
k

w g
r (Sw )−kwo

r (Sw )
]

∂kw
r

∂Sw = (1−Sw )k
w g ′
r (Sw )+ 1

1−Sw

[
k

w g
r (Sw )−kwo

r (Sw )
]

∂kw
r

∂Sg = 1
1−Sw

[
k

w g
r (Sw )−kwo

r (Sw )
]

∂kw
r

∂Sg =−Sw k
w g ′
r (Sw )+ 1

1−Sw

[
k

w g
r (Sw )−kwo

r (Sw )
]

gas k
g
r = k

g w
r (1−Sg ) k

g
r = k

g w
r (1−Sg )

∂k
g
r

∂Sw = 1
1−Sg

[
k

g w
r (1−Sg )−k

g o
r (Sg )

]
∂k

g
r

∂Sw = Sg k
g w ′
r (1−Sg )+ 1

1−Sg

[
k

g w
r (1−Sg )−k

g o
r (Sg )

]
∂k

g
r

∂Sg =−k
g w ′
r (1−Sg )+ 1

1−Sg

[
k

g w
r (1−Sg )−k

g o
r (Sg )

]
∂k

g
r

∂Sg =−(1−Sg )k
g w ′
r (1−Sg )+ 1

1−Sg

[
k

g w
r (1−Sg )−k

g o
r (Sg )

]



C
Eigenvectors on the edges of the ternary

diagram for interpolation I and III

In this appendix the direction of both the fast eigenvector and the slow eigenvector along the three edges of
the ternary diagram are looked at for interpolation I and III. For both interpolations the flow reduces to two-
phase flow on the edges of the ternary diagram. This means that to each edge one of the eigenvectors must
be parallel. In this appendix it is determined for every edge whether the fast or the slow eigenvector is parallel
to that edge. Corey-correlations with zero residual saturation and endpoints equal to one are assumed for all
two-phase relative permeabilities in order to use the results from Table B.1. Furthermore, it is assumed that
interpolation I or interpolation III is used to obtain the three-phase relative permeabilities for water, oil and
gas. Only the edges of the ternary diagram will be looked at and not the corners, i.e. 0 < Sw ,So < 1 on the OW
edge, 0 < Sg ,So < 1 on the OG edge and 0 < Sw ,Sg < 1 on the WG edge

First recall equation (1.12) which gives the Jacobian matrix of the governing system:

∂ f

∂S
:=

(
f w

w f w
g

f g
w f g

g

)
(C.1)

And recall that the eigenvalues are given by (3.3):

η=
f w

w + f g
g ±

√
( f w

w + f g
g )2 −4( f w

w f g
g − f w

g f g
w )

2

=
f w

w + f g
g ±

√
( f w

w − f g
g )2 +4 f w

g f g
w

2
(C.2)

If the eigenvalues are real, η+ ≥ η− such that η+ := η f is the eigenvalue corresponding to the fast family and
η− := ηs is the eigenvalue corresponding tot the slow family. Recall that the fractional flow f α of phase α is
given by:

f α = λα

λT

Therefore the following holds for the derivatives of the fractional flow functions:

f w
w = 1

λ2
T

[
λTλ

w
w −λwλT,w

]
(C.3)

f w
g = 1

λ2
T

[
λTλ

w
g −λwλT,g

]
(C.4)

f g
w = 1

λ2
T

[
λTλ

g
w −λgλT,w

]
(C.5)

f g
g = 1

λ2
T

[
λTλ

g
g −λgλT,g

]
(C.6)
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For the right eigenvector r = (
r w r g

)T the following holds (Juanes and Patzek, 2004a)

r w

r g =
f w

g

η− f w
w

=
η− f g

g

f g
w

(C.7)

C.1. OW edge
Note that the right eigenvector is parallel to the OW edge if r = (1 0)T . In other words, the right eigenvector is
parallel to the OW edge if:

r g

r w = η− f w
w

f w
g

= f g
w

η− f g
g

= 0 (C.8)

C.1.1. Interpolation I
From Table B.1 it can be concluded that on the OW edge the mobilities and its derivatives for oil and water
are non-zero in general and that the following holds for the gas mobility:

λg =λg
w =λg

g = 0 (C.9)

such that:
λT =λo +λw and λT,w =λo

w +λw
w and λT,g =λo

g +λw
g (C.10)

This gives:

f w
g = 1

λ2
T

[(
λo +λw )

λw
g −λw

(
λo

g +λw
g

)]
= 1

λ2
T

[
λoλw

g −λwλo
g

]
f g

w = 1

λ2
T

[(
λo +λw ) ·0−0 · (λo

w +λw
w

)]
= 0

So f g
w = 0 on the OW edge whereas in general f w

g 6= 0 on the OW edge. From equation (C.8) it follows that the
right eigenvector will be parallel to the OW edge if:

η− f w
w = 0 (C.11)

Substituting the mobilities, i.e. equations (C.9) and (C.10), in the derivatives of the fractional flow functions,
i.e. equations (C.3) and (C.6), gives:

f w
w = 1

λ2
T

[(
λo +λw )

λw
w −λw (

λo
w +λw

w

)]
= 1

λ2
T

[
λoλw

w −λwλo
w

]
f g

g = 1

λ2
T

[(
λo +λw ) ·0−0 ·

(
λo

g +λw
g

)]
= 0

So f g
g = 0 on the OW edge whereas f w

w > 0 on the OW edge since λw
w > 0 and λo

w < 0 on the OW edge. Substi-

tuting f g
g = 0 and f g

w = 0 in equation (C.2) the eigenvalues reduce to:

η=
f w

w +0±
√(

f w
w −0

)2 +4 f w
g ·0

2
(C.12)

= 1

2

[
f w

w ±
√(

f w
w

)2
]

(C.13)

= 1

2

[
f w

w ± f w
w

]
(C.14)
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Therefore η f = f w
w and ηs = 0. Looking at equation (C.11), which determines when the right eigenvector is

parallel to the OW edge, it follows that:

η f − f w
w = 0 (C.15)

ηs − f w
w =− f w

w (C.16)

Since f w
w > 0 on the OW edge, the fast eigenvector is parallel to the OW edge for interpolation I.

C.1.2. Interpolation III
For interpolation III the derivation is similar to that of interpolation I, but some of the derivatives of the gas
mobility are slightly different. From Table B.1 it follows that in general:

λg =λg
w = 0 and λ

g
g 6= 0 (C.17)

such that:
λT =λo +λw and λT,w =λo

w +λw
w and λT,g =λo

g +λw
g +λg

g (C.18)

This gives:

f w
g = 1

λ2
T

[(
λo +λw )

λw
g −λw

(
λo

g +λw
g +λg

g

)]
= 1

λ2
T

[
λoλw

g −λw
(
λo

g +λg
g

)]
f g

w = 1

λ2
T

[(
λo +λw ) ·0−0 · (λo

w +λw
w

)]
= 0

So f g
w = 0 on the OW edge whereas in general f w

g 6= 0 on the OW edge, which was also the case for interpolation
I. Therefore equation (C.8) gives that the right eigenvector will be parallel to the OW edge if:

η− f w
w = 0 (C.19)

Substituting the mobilities, i.e. equations (C.17) and (C.18), in the the fractional flow functions, i.e. equations
(C.3) and (C.6), gives:

f w
w = 1

λ2
T

[(
λo +λw )

λw
w −λw (

λo
w +λw

w

)]
= 1

λ2
T

[
λoλw

w −λwλo
w

]
f g

g = 1

λ2
T

[(
λo +λw )

λ
g
g −0 ·

(
λo

g +λw
g +λg

g

)]
= 1

λ2
T

[
λo +λw ]

λ
g
g

So in general f w
w 6= 0 and f g

g 6= 0 on the OW edge, whereas for interpolation I it holds that f g
g = 0. Substituting

f g
w = 0 in equation (C.2) the eigenvalues reduce to:

η=
f w

w + f g
g ±

√(
f w

w − f g
g

)2 +4 f w
g ·0

2
(C.20)

= 1

2

[
f w

w + f g
g ±

√(
f w

w − f g
g

)2
]

(C.21)

=


1
2

[
f w

w + f g
g ± (

f w
w − f g

g
)]

if f w
w − f g

g > 0
1
2

[
f w

w + f g
g ±−(

f w
w − f g

g
)]

if f w
w − f g

g < 0
1
2

[
f w

w + f g
g

]
if f w

w − f g
g = 0

(C.22)
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Note that f w
w − f g

g = 0 if and only if f w
w = f g

g . Therefore:

η f =


f w

w if f w
w − f g

g > 0

f g
g if f w

w − f g
g < 0

1
2

[
f w

w + f g
g

]= f w
w = f g

g if f w
w − f g

g = 0

and ηs =


f g

g if f w
w − f g

g > 0

f w
w if f w

w − f g
g < 0

1
2

[
f w

w + f g
g

]= f w
w = f g

g if f w
w − f g

g = 0

Looking at equation (C.19), which determine when the right eigenvector is parallel to the OW edge, it follows
that:

η f − f w
w =


0 if f w

w − f g
g > 0

f g
g − f w

w if f w
w − f g

g < 0

0 if f w
w − f g

g = 0

and ηs =


f g

g − f w
w if f w

w − f g
g > 0

0 if f w
w − f g

g < 0

0 if f w
w − f g

g = 0

(C.23)

Therefore, the following conditions to determine which eigenvector is parallel to the OW edge hold:

• If f w
w − f g

g > 0 then the fast-family eigenvector is parallel to the OW edge.

• If f w
w − f g

g < 0 then the slow-family eigenvector is parallel to the OW edge.

• If f w
w − f g

g = 0 then both eigenvectors are parallel to the OW edge.

C.2. OG edge
The right eigenvector r is parallel to the OG edge if r = (0 1)T . In other words, the right eigenvector is parallel
to the OG edge if:

r w

r g =
f w

g

η− f w
w

=
η− f g

g

f g
w

= 0 (C.24)

C.2.1. Interpolation I
From Table B.1 it follows that on the OG edge the mobilities of gas and oil and their derivatives are in general
non-zero. From this table it can be seen that the following holds for the water mobility and derivatives of the
mobility:

λw =λw
w =λw

g = 0 (C.25)

such that:

λT =λo +λg and λT,w =λo
w +λg

w and λT,g =λo
g +λg

g (C.26)

This means that the following holds for the fractional flow functions:

f w
g = 1

λ2
T

[(
λo +λg ) ·0−0 ·

(
λo

g +λg
g

)]
= 0

f g
w = 1

λ2
T

[(
λo +λg )

λ
g
w −λg (

λo
w +λg

w
)]

= 1

λ2
T

[
λoλ

g
w −λgλo

w

]
So f w

g = 0 on the OG edge whereas in general f g
w 6= 0 on the OG edge. From equation (C.24) it then follows

that the right eigenvector will be parallel to the OG edge if:

η− f g
g = 0 (C.27)
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Substituting the mobilities, i.e. equations (C.25) and (C.26), in the the fractional flow functions, i.e. equations
(C.3) and (C.6), gives:

f w
w = 1

λ2
T

[(
λo +λg ) ·0−0 · (λo

w +λg
w

)]
= 0

f g
g = 1

λ2
T

[(
λo +λg )

λ
g
g −λg

(
λo

g +λg
g

)]
= 1

λ2
T

[
λoλ

g
g −λgλo

g

]

So f w
w = 0 on the OG edge whereas f g

g > 0 on the OG edge sinceλg
g > 0 andλo

g < 0 on the OG edge. Substituting
f w

w = 0 and f w
g = 0 in equation (C.2) the eigenvalues reduce to:

η=
0+ f g

g ±
√

(0− f g
g )2 +4 f g

w ·0

2
(C.28)

= 1

2

[
f g

g ±
√

(− f g
g )2

]
(C.29)

= 1

2

[
f g

g ± f g
g

]
(C.30)

Therefore η f = f g
g and ηs = 0. Looking at equation (C.27), which determines when the right eigenvector is

parallel to the OG edge, it follows that :

η f − f g
g = 0 (C.31)

ηs − f g
g =− f g

g (C.32)

Since f g
g > 0 on the OG edge, the fast eigenvector is parallel to the OG edge for interpolation I.

C.2.2. Interpolation III
For interpolation III the derivation is similar to that of interpolation I, but some of the derivatives of the water
mobility are slightly different. From Table B.1 it can be seen that in general:

λw =λw
g = 0 and λw

w 6= 0 (C.33)

such that:

λT =λo +λg and λT,w =λo
w +λg

w +λw
w and λT,g =λo

g +λg
g (C.34)

This gives:

f w
g = 1

λ2
T

[(
λo +λg ) ·0−0 ·

(
λo

g +λg
g

)]
= 0

f g
w = 1

λ2
T

[(
λo +λg )

λ
g
w −λg (

λo
w +λw

w +λg
w

)]
= 1

λ2
T

[
λoλ

g
w −λg (

λo
w +λw

w

)]
So f w

g = 0 on the OG edge whereas in general f g
w 6= 0 on the OG edge, which was also the case for interpolation

I. Therefore equation (C.24) again gives that the right eigenvector will be parallel to the OG edge if:

η− f g
g = 0 (C.35)
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Substituting the mobilities, i.e. equations (C.33) and (C.34), in the the fractional flow functions, i.e. equations
(C.3) and (C.6), gives:

f w
w = 1

λ2
T

[(
λo +λg )

λw
w −0 · (λo

w +λw
w +λg

w
)]

= 1

λ2
T

[
λo +λg ]

λw
w

f g
g = 1

λ2
T

[(
λo +λg )

λ
g
g −λg

(
λo

g +λg
g

)]
= 1

λ2
T

[
λoλ

g
g −λgλo

g

]

So in general f w
w 6= 0 and f g

g 6= 0 on the OG edge, whereas for interpolation I f w
w = 0 holds. Substituting f w

g = 0
in equation (C.2) the eigenvalues reduce to:

η=
f w

w + f g
g ±

√(
f w

w − f g
g

)2 +4 f g
w ·0

2
(C.36)

= 1

2

[
f w

w + f g
g ±

√(
f w

w − f g
g

)2
]

(C.37)

=


1
2

[
f w

w + f g
g ± (

f w
w − f g

g
)]

if f w
w − f g

g > 0
1
2

[
f w

w + f g
g ±−(

f w
w − f g

g
)]

if f w
w − f g

g < 0
1
2

[
f w

w + f g
g

]
if f w

w − f g
g = 0

(C.38)

Note that f w
w − f g

g = 0 if and only if f w
w = f g

g . Therefore:

η f =


f w

w if f w
w − f g

g > 0

f g
g if f w

w − f g
g < 0

1
2

[
f w

w + f g
g

]= f w
w = f g

g if f w
w − f g

g = 0

and ηs =


f g

g if f w
w − f g

g > 0

f w
w if f w

w − f g
g < 0

1
2

[
f w

w + f g
g

]= f w
w = f g

g if f w
w − f g

g = 0

Looking at equation (C.35), which determines when the right eigenvector is parallel to the OG edge, it follows
that:

η f − f g
g =


f w

w − f g
g if f w

w − f g
g > 0

0 if f w
w − f g

g < 0

0 if f w
w − f g

g = 0

and ηs − f g
g =


0 if f w

w − f g
g > 0

f w
w − f g

g if f w
w − f g

g < 0

0 if f w
w − f g

g = 0

(C.39)

This means that the following conditions to determine which eigenvector is parallel to the OG edge are ob-
tained:

• If f w
w − f g

g < 0 then the fast-family eigenvector is parallel to the OG edge.

• If f w
w − f g

g > 0 then the slow-family eigenvector is parallel to the OG edge.

• If f w
w − f g

g = 0 then both eigenvectors are parallel to the OG edge.

C.3. WG edge
The right eigenvector r is parallel to the WG edge if r = (1 −1)T . In other words, the right eigenvector is
parallel to the WG edge if:

r w

r g =
f w

g

η− f w
w

=
η− f g

g

f g
w

=−1 (C.40)



C.3. WG edge 95

C.3.1. Interpolation I
From Table B.1 it follows that on the WG edge the mobilities of gas and water and their derivatives are in gen-
eral non-zero. From this table it can also be seen that the following holds for the oil mobility and derivatives
of the mobility:

λo =λo
w =λo

g = 0 (C.41)

such that:

λT =λw +λg and λT,w =λw
w +λg

w and λT,g =λw
g +λg

g (C.42)

This means that the following holds for the fractional flow functions:

f w
g = 1

λ2
T

[(
λw +λg )

λw
g −λw

(
λw

g +λg
g

)]
= 1

λ2
T

[
λgλw

g −λwλ
g
g

]
f g

w = 1

λ2
T

[(
λw +λg )

λ
g
w −λg (

λw
w +λg

w
)]

= 1

λ2
T

[
λwλ

g
w −λgλw

w

]
So in general f w

g 6= 0 and f g
w 6= 0 on the WG edge. From equation (C.40) it follows that the right eigenvector

will be parallel to the WG edge if:

η− f g
g + f g

w = 0 (C.43)

Substituting the mobilities, i.e. equations (C.41) and (C.42), in the the fractional flow functions, i.e. equations
(C.3) and (C.6), gives:

f w
w = 1

λ2
T

[(
λw +λg )

λw
w −λw (

λw
w +λg

w
)]

= 1

λ2
T

[
λgλw

w −λwλ
g
w

]
=− f g

w

f g
g = 1

λ2
T

[(
λw +λg )

λ
g
g −λg

(
λw

g +λg
g

)]
= 1

λ2
T

[
λwλ

g
g −λgλw

g

]
=− f w

g

So f g
w = − f w

w and f w
g = − f g

g on the WG edge. Substituting this in the first expression of equation (C.2) the
eigenvalues reduce to:

η=
f w

w + f g
g ±

√(
f w

w + f g
g

)2 −4
(

f w
w f g

g − (− f w
w )(− f g

g )
)

2
(C.44)

= 1

2

[
f w

w + f g
g ±

√(
f w

w + f g
g

)2
]

(C.45)

= 1

2

[
f w

w + f g
g ± (

f w
w + f g

g
)]

(C.46)

Here it was used that f w
w + f g

g ≥ 0 since λw
w ,λg

g > 0 and λ
g
w ,λw

g < 0 on the WG edge. Therefore η f = f w
w + f g

g
and ηs = 0. Looking at equation (C.43), which determines when the right eigenvector is parallel to the WG
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edge, and using that f g
w =− f w

w and f w
g =− f g

g the following holds:

η f − f g
g + f g

w = f w
w + f g

g − f g
g + f g

w

= f w
w + f g

w

=− f g
w + f g

w

= 0 (C.47)

ηs − f g
g + f g

w =− f g
g + f g

w

= f w
g + f g

w (C.48)

Since f w
g + f g

w =− f g
g − f w

w < 0 on the WG edge, the fast eigenvector is parallel to the WG edge for interpolation
I.

C.3.2. Interpolation III
For interpolation III the derivation is similar to that of interpolation I, but some of the derivatives of the oil
mobility are slightly different. From Table B.1 it follows that in general:

λo = 0 and λw
w 6= 0 and λw

g 6= 0 (C.49)

such that:
λT =λw +λg and λT,w =λo

w +λg
w +λw

w and λT,g =λo
g +λg

g +λw
g (C.50)

This means that:

f w
g = 1

λ2
T

[(
λw +λg )

λw
g −λw

(
λo

g +λw
g +λg

g

)]
= 1

λ2
T

[
λgλw

g −λw
(
λo

g +λg
g

)]
= 1

λ2
T

[
λgλw

g −λwλ
g
g

]
− 1

λ2
T

λwλo
g (C.51)

f g
w = 1

λ2
T

[(
λw +λg )

λ
g
w −λg (

λo
w +λw

w +λg
w

)]
= 1

λ2
T

[
λwλ

g
w −λg (

λo
w +λw

w

)]
= 1

λ2
T

[
λwλ

g
w −λgλw

w

]− 1

λ2
T

λgλo
w (C.52)

So in general f w
g 6= 0 and f g

w 6= 0 on the WG edge. From equation (C.40) it follows that the right eigenvector
will be parallel to the WG edge if:

η− f g
g + f g

w = 0 (C.53)

Substituting the mobilities, i.e. equations (C.49) and (C.50), in the the fractional flow functions, i.e. equations
(C.3) and (C.6), gives:

f w
w = 1

λ2
T

[(
λw +λg )

λw
w −λw (

λo
w +λw

w +λg
w

)]
= 1

λ2
T

[
λgλw

w −λw (
λo

w +λg
w

)]
= 1

λ2
T

[
λgλw

w −λwλ
g
w

]− 1

λ2
T

λwλo
w (C.54)

f g
g = 1

λ2
T

[(
λw +λg )

λ
g
g −λg

(
λo

g +λw
g +λg

g

)]
= 1

λ2
T

[
λwλ

g
g −λg

(
λo

g +λw
g

)]
= 1

λ2
T

[
λwλ

g
g −λgλw

g

]
− 1

λ2
T

λgλo
g (C.55)
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So in general f w
w 6= 0 and f g

g 6= 0 on the WG edge. Furthermore, comparing equation (C.51) with equation
(C.55) and comparing equation (C.52) with (C.54) gives:

f w
g =− f g

g − 1

λ2
T

λo
g

(
λw +λg )

(C.56)

f g
w =− f w

w − 1

λ2
T

λo
w

(
λw +λg )

(C.57)

Table B.1 gives that
∂ko

r
∂Sw = ∂ko

r
∂Sg for interpolation III on the WG edge, and therefore λo

w = λo
g on the WG edge.

This means that:

f w
g f g

w = f g
g f w

w + f g
g

1

λ2
T

λo
w

(
λw +λg )+ f w

w
1

λ2
T

λo
g

(
λw +λg )+ 1

λ4
T

λo
gλ

o
w

(
λw +λg )2

= f g
g f w

w + 1

λ2
T

λo
w

(
λw +λg )(

f w
w + f g

g
)+ 1

λ4
T

(
λo

w

)2 (
λw +λg )2

= f g
g f w

w + 1

λT
λo

w

(
f w

w + f g
g

)+ 1

λ2
T

(
λo

w

)2 (C.58)

where in the last step it was used that λT = λg +λw on the WG edge. Substituting this in the first expression
of equation (C.2) gives:

η=
f w

w + f g
g ±

√(
f w

w + f g
g

)2 −4

[
f w

w f g
g −

(
f g

g f w
w + 1

λT
λo

w
(

f w
w + f g

g
)+ 1

λ2
T

(
λo

w
)2

)]
2

= 1

2

[
f w

w + f g
g ±

√(
f w

w + f g
g

)2 +4
1

λT
λo

w
(

f w
w + f g

g
)+4

1

λ2
T

(
λo

w
)2

]

= 1

2

 f w
w + f g

g ±
√(

( f w
w + f g

g )+2
1

λT

(
λo

w
))2



=


1
2

[
f w

w + f g
g ±

(
f w

w + f g
g +2 1

λT
λo

w

)]
if f w

w + f g
g +2 1

λT
λo

w > 0

1
2

[
f w

w + f g
g ±−

(
f w

w + f g
g +2 1

λT
λo

w

)]
if f w

w + f g
g +2 1

λT
λo

w < 0

1
2

[
f w

w + f g
g

]
if f w

w + f g
g +2 1

λT
λo

w = 0

(C.59)

Which gives the following for the large and small eigenvalues:

η f =


f w

w + f g
g + 1

λT
λo

w if f w
w + f g

g +2 1
λT
λo

w > 0

− 1
λT
λo

w if f w
w + f g

g +2 1
λT
λo

w < 0
1
2

[
f w

w + f g
g

]
if f w

w + f g
g +2 1

λT
λo

w = 0

and ηs =


1
λT
λo

w if f w
w + f g

g +2 1
λT
λo

w > 0

f w
w + f g

g + 1
λT
λo

w if f w
w + f g

g +2 1
λT
λo

w < 0
1
2

[
f w

w + f g
g

]
if f w

w + f g
g +2 1

λT
λo

w = 0
(C.60)

Substituting λo
w =λo

g and λT =λw +λg in equations (C.56) and (C.57) gives:

f w
g =− f g

g − 1

λT
λo

w

f g
w =− f w

w − 1

λT
λo

w

Looking at equation (C.53), which determines when the right eigenvector is parallel to the WG edge, it follows
that:

η f − f g
g + f g

w = f w
w + 1

λT
λo

w + f g
w

=− f g
w + f g

w

= 0

ηs − f g
g + f g

w =− 1

λT
λo

w − f g
g + f g

w

= f w
g + f g

w
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if f w
w + f g

g +2 1
λT
λo

w > 0. In the case f w
w + f g

g +2 1
λT
λo

w < 0 equation (C.53) gives:

η f − f g
g + f g

w =− 1

λT
λo

w − f g
g + f g

w

= f w
g + f g

w

ηs − f g
g + f g

w = f w
w + 1

λT
λo

w + f g
w

=− f g
w + f g

w

= 0

Note that f w
w + f g

g +2 1
λT
λo

w = 0 if and only if f w
w + f g

g =−2 1
λT
λo

w . Therefore, in the case that f w
w + f g

g +2 1
λT
λo

w = 0

the eigenvalues reduce to η f = ηs =− 1
λT
λo

w . Substituting this in equation (C.53) gives:

η f − f g
g + f g

w = ηs − f g
g + f g

w =− 1

λT
λo

w − f g
g + f g

w

=− 1

λT
λo

w − f g
g − f w

w − 1

λT
λo

w

=−2
1

λT
λo

w − (
f g

g + f w
w

)
=−2

1

λT
λo

w +2
1

λT
λo

w

= 0

This means that the following conditions to determine which eigenvector is parallel to the WG edge are ob-
tained:

• If f w
w + f g

g +2 1
λT
λo

w < 0 then the fast-family eigenvector is parallel to the WG edge.

• If f w
w + f g

g +2 1
λT
λo

w > 0 then the slow-family eigenvector is parallel to the WG edge.

• If f w
w + f g

g +2 1
λT
λo

w = 0 then both eigenvectors are parallel to the WG edge.
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